[SparcV9] Handle i64 <-> float conversions in sparcv9 mode.
[oota-llvm.git] / lib / Target / Sparc / SparcInstr64Bit.td
1 //===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains instruction definitions and patterns needed for 64-bit
11 // code generation on SPARC v9.
12 //
13 // Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
14 // also be used in 32-bit code running on a SPARC v9 CPU.
15 //
16 //===----------------------------------------------------------------------===//
17
18 let Predicates = [Is64Bit] in {
19 // The same integer registers are used for i32 and i64 values.
20 // When registers hold i32 values, the high bits are don't care.
21 // This give us free trunc and anyext.
22 def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
23 def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
24
25 } // Predicates = [Is64Bit]
26
27
28 //===----------------------------------------------------------------------===//
29 // 64-bit Shift Instructions.
30 //===----------------------------------------------------------------------===//
31 //
32 // The 32-bit shift instructions are still available. The left shift srl
33 // instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
34 //
35 // The srl instructions only shift the low 32 bits and clear the high 32 bits.
36 // Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
37
38 let Predicates = [Is64Bit] in {
39
40 def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
41 def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
42
43 def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
44 def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
45
46 defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
47 defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
48 defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
49
50 } // Predicates = [Is64Bit]
51
52
53 //===----------------------------------------------------------------------===//
54 // 64-bit Immediates.
55 //===----------------------------------------------------------------------===//
56 //
57 // All 32-bit immediates can be materialized with sethi+or, but 64-bit
58 // immediates may require more code. There may be a point where it is
59 // preferable to use a constant pool load instead, depending on the
60 // microarchitecture.
61
62 // Single-instruction patterns.
63
64 // The ALU instructions want their simm13 operands as i32 immediates.
65 def as_i32imm : SDNodeXForm<imm, [{
66   return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
67 }]>;
68 def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
69 def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
70
71 // Double-instruction patterns.
72
73 // All unsigned i32 immediates can be handled by sethi+or.
74 def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
75 def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
76       Requires<[Is64Bit]>;
77
78 // All negative i33 immediates can be handled by sethi+xor.
79 def nimm33 : PatLeaf<(imm), [{
80   int64_t Imm = N->getSExtValue();
81   return Imm < 0 && isInt<33>(Imm);
82 }]>;
83 // Bits 10-31 inverted. Same as assembler's %hix.
84 def HIX22 : SDNodeXForm<imm, [{
85   uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
86   return CurDAG->getTargetConstant(Val, MVT::i32);
87 }]>;
88 // Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
89 def LOX10 : SDNodeXForm<imm, [{
90   return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32);
91 }]>;
92 def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
93       Requires<[Is64Bit]>;
94
95 // More possible patterns:
96 //
97 //   (sllx sethi, n)
98 //   (sllx simm13, n)
99 //
100 // 3 instrs:
101 //
102 //   (xor (sllx sethi), simm13)
103 //   (sllx (xor sethi, simm13))
104 //
105 // 4 instrs:
106 //
107 //   (or sethi, (sllx sethi))
108 //   (xnor sethi, (sllx sethi))
109 //
110 // 5 instrs:
111 //
112 //   (or (sllx sethi), (or sethi, simm13))
113 //   (xnor (sllx sethi), (or sethi, simm13))
114 //   (or (sllx sethi), (sllx sethi))
115 //   (xnor (sllx sethi), (sllx sethi))
116 //
117 // Worst case is 6 instrs:
118 //
119 //   (or (sllx (or sethi, simmm13)), (or sethi, simm13))
120
121 // Bits 42-63, same as assembler's %hh.
122 def HH22 : SDNodeXForm<imm, [{
123   uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
124   return CurDAG->getTargetConstant(Val, MVT::i32);
125 }]>;
126 // Bits 32-41, same as assembler's %hm.
127 def HM10 : SDNodeXForm<imm, [{
128   uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
129   return CurDAG->getTargetConstant(Val, MVT::i32);
130 }]>;
131 def : Pat<(i64 imm:$val),
132           (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
133                 (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
134       Requires<[Is64Bit]>;
135
136
137 //===----------------------------------------------------------------------===//
138 // 64-bit Integer Arithmetic and Logic.
139 //===----------------------------------------------------------------------===//
140
141 let Predicates = [Is64Bit] in {
142
143 // Register-register instructions.
144
145 def : Pat<(and i64:$a, i64:$b), (ANDrr $a, $b)>;
146 def : Pat<(or  i64:$a, i64:$b), (ORrr  $a, $b)>;
147 def : Pat<(xor i64:$a, i64:$b), (XORrr $a, $b)>;
148
149 def : Pat<(and i64:$a, (not i64:$b)), (ANDNrr $a, $b)>;
150 def : Pat<(or  i64:$a, (not i64:$b)), (ORNrr  $a, $b)>;
151 def : Pat<(xor i64:$a, (not i64:$b)), (XNORrr $a, $b)>;
152
153 def : Pat<(add i64:$a, i64:$b), (ADDrr $a, $b)>;
154 def : Pat<(sub i64:$a, i64:$b), (SUBrr $a, $b)>;
155
156 def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>;
157
158 def : Pat<(tlsadd i64:$a, i64:$b, tglobaltlsaddr:$sym),
159           (TLS_ADDrr $a, $b, $sym)>;
160
161 // Register-immediate instructions.
162
163 def : Pat<(and i64:$a, (i64 simm13:$b)), (ANDri $a, (as_i32imm $b))>;
164 def : Pat<(or  i64:$a, (i64 simm13:$b)), (ORri  $a, (as_i32imm $b))>;
165 def : Pat<(xor i64:$a, (i64 simm13:$b)), (XORri $a, (as_i32imm $b))>;
166
167 def : Pat<(add i64:$a, (i64 simm13:$b)), (ADDri $a, (as_i32imm $b))>;
168 def : Pat<(sub i64:$a, (i64 simm13:$b)), (SUBri $a, (as_i32imm $b))>;
169
170 def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>;
171
172 def : Pat<(ctpop i64:$src), (POPCrr $src)>;
173
174 } // Predicates = [Is64Bit]
175
176
177 //===----------------------------------------------------------------------===//
178 // 64-bit Integer Multiply and Divide.
179 //===----------------------------------------------------------------------===//
180
181 let Predicates = [Is64Bit] in {
182
183 def MULXrr : F3_1<2, 0b001001,
184                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
185                   "mulx $rs1, $rs2, $rd",
186                   [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
187 def MULXri : F3_2<2, 0b001001,
188                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
189                   "mulx $rs1, $i, $rd",
190                   [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$i)))]>;
191
192 // Division can trap.
193 let hasSideEffects = 1 in {
194 def SDIVXrr : F3_1<2, 0b101101,
195                    (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
196                    "sdivx $rs1, $rs2, $rd",
197                    [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
198 def SDIVXri : F3_2<2, 0b101101,
199                    (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
200                    "sdivx $rs1, $i, $rd",
201                    [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$i)))]>;
202
203 def UDIVXrr : F3_1<2, 0b001101,
204                    (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
205                    "udivx $rs1, $rs2, $rd",
206                    [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
207 def UDIVXri : F3_2<2, 0b001101,
208                    (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
209                    "udivx $rs1, $i, $rd",
210                    [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$i)))]>;
211 } // hasSideEffects = 1
212
213 } // Predicates = [Is64Bit]
214
215
216 //===----------------------------------------------------------------------===//
217 // 64-bit Loads and Stores.
218 //===----------------------------------------------------------------------===//
219 //
220 // All the 32-bit loads and stores are available. The extending loads are sign
221 // or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
222 // zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
223 // Word).
224 //
225 // SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
226
227 let Predicates = [Is64Bit] in {
228
229 // 64-bit loads.
230 def LDXrr  : F3_1<3, 0b001011,
231                   (outs I64Regs:$dst), (ins MEMrr:$addr),
232                   "ldx [$addr], $dst",
233                   [(set i64:$dst, (load ADDRrr:$addr))]>;
234 def LDXri  : F3_2<3, 0b001011,
235                   (outs I64Regs:$dst), (ins MEMri:$addr),
236                   "ldx [$addr], $dst",
237                   [(set i64:$dst, (load ADDRri:$addr))]>;
238 let mayLoad = 1 in
239   def TLS_LDXrr : F3_1<3, 0b001011,
240                        (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
241                        "ldx [$addr], $dst, $sym",
242                        [(set i64:$dst,
243                            (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
244
245 // Extending loads to i64.
246 def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
247 def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
248 def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
249 def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
250
251 def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
252 def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
253 def : Pat<(i64 (extloadi8 ADDRrr:$addr)),  (LDUBrr ADDRrr:$addr)>;
254 def : Pat<(i64 (extloadi8 ADDRri:$addr)),  (LDUBri ADDRri:$addr)>;
255 def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
256 def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
257
258 def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
259 def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
260 def : Pat<(i64 (extloadi16 ADDRrr:$addr)),  (LDUHrr ADDRrr:$addr)>;
261 def : Pat<(i64 (extloadi16 ADDRri:$addr)),  (LDUHri ADDRri:$addr)>;
262 def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
263 def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
264
265 def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
266 def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
267 def : Pat<(i64 (extloadi32 ADDRrr:$addr)),  (LDrr ADDRrr:$addr)>;
268 def : Pat<(i64 (extloadi32 ADDRri:$addr)),  (LDri ADDRri:$addr)>;
269
270 // Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
271 def LDSWrr : F3_1<3, 0b001011,
272                  (outs I64Regs:$dst), (ins MEMrr:$addr),
273                  "ldsw [$addr], $dst",
274                  [(set i64:$dst, (sextloadi32 ADDRrr:$addr))]>;
275 def LDSWri : F3_2<3, 0b001011,
276                  (outs I64Regs:$dst), (ins MEMri:$addr),
277                  "ldsw [$addr], $dst",
278                  [(set i64:$dst, (sextloadi32 ADDRri:$addr))]>;
279
280 // 64-bit stores.
281 def STXrr  : F3_1<3, 0b001110,
282                  (outs), (ins MEMrr:$addr, I64Regs:$src),
283                  "stx $src, [$addr]",
284                  [(store i64:$src, ADDRrr:$addr)]>;
285 def STXri  : F3_2<3, 0b001110,
286                  (outs), (ins MEMri:$addr, I64Regs:$src),
287                  "stx $src, [$addr]",
288                  [(store i64:$src, ADDRri:$addr)]>;
289
290 // Truncating stores from i64 are identical to the i32 stores.
291 def : Pat<(truncstorei8  i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
292 def : Pat<(truncstorei8  i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
293 def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
294 def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
295 def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr  ADDRrr:$addr, $src)>;
296 def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri  ADDRri:$addr, $src)>;
297
298 // store 0, addr -> store %g0, addr
299 def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>;
300 def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>;
301
302 } // Predicates = [Is64Bit]
303
304
305 //===----------------------------------------------------------------------===//
306 // 64-bit Conditionals.
307 //===----------------------------------------------------------------------===//
308 //
309 // Flag-setting instructions like subcc and addcc set both icc and xcc flags.
310 // The icc flags correspond to the 32-bit result, and the xcc are for the
311 // full 64-bit result.
312 //
313 // We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
314 // 64-bit compares. See LowerBR_CC.
315
316 let Predicates = [Is64Bit] in {
317
318 let Uses = [ICC] in
319 def BPXCC : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
320                      "b$cond %xcc, $imm22",
321                      [(SPbrxcc bb:$imm22, imm:$cond)]>;
322
323 // Conditional moves on %xcc.
324 let Uses = [ICC], Constraints = "$f = $rd" in {
325 def MOVXCCrr : Pseudo<(outs IntRegs:$rd),
326                       (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
327                       "mov$cond %xcc, $rs2, $rd",
328                       [(set i32:$rd,
329                        (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
330 def MOVXCCri : Pseudo<(outs IntRegs:$rd),
331                       (ins i32imm:$i, IntRegs:$f, CCOp:$cond),
332                       "mov$cond %xcc, $i, $rd",
333                       [(set i32:$rd,
334                        (SPselectxcc simm11:$i, i32:$f, imm:$cond))]>;
335 def FMOVS_XCC : Pseudo<(outs FPRegs:$rd),
336                       (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
337                       "fmovs$cond %xcc, $rs2, $rd",
338                       [(set f32:$rd,
339                        (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>;
340 def FMOVD_XCC : Pseudo<(outs DFPRegs:$rd),
341                       (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
342                       "fmovd$cond %xcc, $rs2, $rd",
343                       [(set f64:$rd,
344                        (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>;
345 } // Uses, Constraints
346
347 //===----------------------------------------------------------------------===//
348 // 64-bit Floating Point Conversions.
349 //===----------------------------------------------------------------------===//
350
351 let Predicates = [Is64Bit] in {
352
353 def FXTOS : F3_3u<2, 0b110100, 0b010000100,
354                  (outs FPRegs:$dst), (ins DFPRegs:$src),
355                  "fxtos $src, $dst",
356                  [(set FPRegs:$dst, (SPxtof DFPRegs:$src))]>;
357 def FXTOD : F3_3u<2, 0b110100, 0b010001000,
358                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
359                  "fxtod $src, $dst",
360                  [(set DFPRegs:$dst, (SPxtof DFPRegs:$src))]>;
361 def FXTOQ : F3_3u<2, 0b110100, 0b010001100,
362                  (outs QFPRegs:$dst), (ins DFPRegs:$src),
363                  "fxtoq $src, $dst",
364                  [(set QFPRegs:$dst, (SPxtof DFPRegs:$src))]>,
365                  Requires<[HasHardQuad]>;
366
367 def FSTOX : F3_3u<2, 0b110100, 0b010000001,
368                  (outs DFPRegs:$dst), (ins FPRegs:$src),
369                  "fstox $src, $dst",
370                  [(set DFPRegs:$dst, (SPftox FPRegs:$src))]>;
371 def FDTOX : F3_3u<2, 0b110100, 0b010000010,
372                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
373                  "fdtox $src, $dst",
374                  [(set DFPRegs:$dst, (SPftox DFPRegs:$src))]>;
375 def FQTOX : F3_3u<2, 0b110100, 0b010000011,
376                  (outs DFPRegs:$dst), (ins QFPRegs:$src),
377                  "fqtox $src, $dst",
378                  [(set DFPRegs:$dst, (SPftox QFPRegs:$src))]>,
379                  Requires<[HasHardQuad]>;
380
381 } // Predicates = [Is64Bit]
382
383 def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
384           (MOVXCCrr $t, $f, imm:$cond)>;
385 def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
386           (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
387
388 def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond),
389           (MOVICCrr $t, $f, imm:$cond)>;
390 def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond),
391           (MOVICCri (as_i32imm $t), $f, imm:$cond)>;
392
393 def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond),
394           (MOVFCCrr $t, $f, imm:$cond)>;
395 def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond),
396           (MOVFCCri (as_i32imm $t), $f, imm:$cond)>;
397
398 } // Predicates = [Is64Bit]