[PowerPC] Fix no-assert build
[oota-llvm.git] / lib / Target / PowerPC / PPCISelLowering.cpp
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCMachineFunctionInfo.h"
17 #include "PPCPerfectShuffle.h"
18 #include "PPCTargetMachine.h"
19 #include "PPCTargetObjectFile.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringSwitch.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetOptions.h"
40 using namespace llvm;
41
42 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
43 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
44
45 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
46 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
47
48 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
49 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
50
51 // FIXME: Remove this once the bug has been fixed!
52 extern cl::opt<bool> ANDIGlueBug;
53
54 static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
55   // If it isn't a Mach-O file then it's going to be a linux ELF
56   // object file.
57   if (TT.isOSDarwin())
58     return new TargetLoweringObjectFileMachO();
59
60   return new PPC64LinuxTargetObjectFile();
61 }
62
63 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
64     : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))),
65       Subtarget(*TM.getSubtargetImpl()) {
66   setPow2DivIsCheap();
67
68   // Use _setjmp/_longjmp instead of setjmp/longjmp.
69   setUseUnderscoreSetJmp(true);
70   setUseUnderscoreLongJmp(true);
71
72   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
73   // arguments are at least 4/8 bytes aligned.
74   bool isPPC64 = Subtarget.isPPC64();
75   setMinStackArgumentAlignment(isPPC64 ? 8:4);
76
77   // Set up the register classes.
78   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
79   addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
80   addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
81
82   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
83   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
84   setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
85
86   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
87
88   // PowerPC has pre-inc load and store's.
89   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
90   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
91   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
92   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
93   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
94   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
95   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
96   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
97   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
98   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
99
100   if (Subtarget.useCRBits()) {
101     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
102
103     if (isPPC64 || Subtarget.hasFPCVT()) {
104       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
105       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
106                          isPPC64 ? MVT::i64 : MVT::i32);
107       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
108       AddPromotedToType (ISD::UINT_TO_FP, MVT::i1, 
109                          isPPC64 ? MVT::i64 : MVT::i32);
110     } else {
111       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
112       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
113     }
114
115     // PowerPC does not support direct load / store of condition registers
116     setOperationAction(ISD::LOAD, MVT::i1, Custom);
117     setOperationAction(ISD::STORE, MVT::i1, Custom);
118
119     // FIXME: Remove this once the ANDI glue bug is fixed:
120     if (ANDIGlueBug)
121       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
122
123     setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
124     setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
125     setTruncStoreAction(MVT::i64, MVT::i1, Expand);
126     setTruncStoreAction(MVT::i32, MVT::i1, Expand);
127     setTruncStoreAction(MVT::i16, MVT::i1, Expand);
128     setTruncStoreAction(MVT::i8, MVT::i1, Expand);
129
130     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
131   }
132
133   // This is used in the ppcf128->int sequence.  Note it has different semantics
134   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
135   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
136
137   // We do not currently implement these libm ops for PowerPC.
138   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
139   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
140   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
141   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
142   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
143   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
144
145   // PowerPC has no SREM/UREM instructions
146   setOperationAction(ISD::SREM, MVT::i32, Expand);
147   setOperationAction(ISD::UREM, MVT::i32, Expand);
148   setOperationAction(ISD::SREM, MVT::i64, Expand);
149   setOperationAction(ISD::UREM, MVT::i64, Expand);
150
151   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
152   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
153   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
154   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
155   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
156   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
157   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
158   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
159   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
160
161   // We don't support sin/cos/sqrt/fmod/pow
162   setOperationAction(ISD::FSIN , MVT::f64, Expand);
163   setOperationAction(ISD::FCOS , MVT::f64, Expand);
164   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
165   setOperationAction(ISD::FREM , MVT::f64, Expand);
166   setOperationAction(ISD::FPOW , MVT::f64, Expand);
167   setOperationAction(ISD::FMA  , MVT::f64, Legal);
168   setOperationAction(ISD::FSIN , MVT::f32, Expand);
169   setOperationAction(ISD::FCOS , MVT::f32, Expand);
170   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
171   setOperationAction(ISD::FREM , MVT::f32, Expand);
172   setOperationAction(ISD::FPOW , MVT::f32, Expand);
173   setOperationAction(ISD::FMA  , MVT::f32, Legal);
174
175   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
176
177   // If we're enabling GP optimizations, use hardware square root
178   if (!Subtarget.hasFSQRT() &&
179       !(TM.Options.UnsafeFPMath &&
180         Subtarget.hasFRSQRTE() && Subtarget.hasFRE()))
181     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
182
183   if (!Subtarget.hasFSQRT() &&
184       !(TM.Options.UnsafeFPMath &&
185         Subtarget.hasFRSQRTES() && Subtarget.hasFRES()))
186     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
187
188   if (Subtarget.hasFCPSGN()) {
189     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
190     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
191   } else {
192     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
193     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
194   }
195
196   if (Subtarget.hasFPRND()) {
197     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
198     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
199     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
200     setOperationAction(ISD::FROUND, MVT::f64, Legal);
201
202     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
203     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
204     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
205     setOperationAction(ISD::FROUND, MVT::f32, Legal);
206   }
207
208   // PowerPC does not have BSWAP, CTPOP or CTTZ
209   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
210   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
211   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
212   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
213   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
214   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
215   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
216   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
217
218   if (Subtarget.hasPOPCNTD()) {
219     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
220     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
221   } else {
222     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
223     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
224   }
225
226   // PowerPC does not have ROTR
227   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
228   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
229
230   if (!Subtarget.useCRBits()) {
231     // PowerPC does not have Select
232     setOperationAction(ISD::SELECT, MVT::i32, Expand);
233     setOperationAction(ISD::SELECT, MVT::i64, Expand);
234     setOperationAction(ISD::SELECT, MVT::f32, Expand);
235     setOperationAction(ISD::SELECT, MVT::f64, Expand);
236   }
237
238   // PowerPC wants to turn select_cc of FP into fsel when possible.
239   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
240   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
241
242   // PowerPC wants to optimize integer setcc a bit
243   if (!Subtarget.useCRBits())
244     setOperationAction(ISD::SETCC, MVT::i32, Custom);
245
246   // PowerPC does not have BRCOND which requires SetCC
247   if (!Subtarget.useCRBits())
248     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
249
250   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
251
252   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
253   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
254
255   // PowerPC does not have [U|S]INT_TO_FP
256   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
257   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
258
259   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
260   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
261   setOperationAction(ISD::BITCAST, MVT::i64, Expand);
262   setOperationAction(ISD::BITCAST, MVT::f64, Expand);
263
264   // We cannot sextinreg(i1).  Expand to shifts.
265   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
266
267   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
268   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
269   // support continuation, user-level threading, and etc.. As a result, no
270   // other SjLj exception interfaces are implemented and please don't build
271   // your own exception handling based on them.
272   // LLVM/Clang supports zero-cost DWARF exception handling.
273   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
274   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
275
276   // We want to legalize GlobalAddress and ConstantPool nodes into the
277   // appropriate instructions to materialize the address.
278   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
279   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
280   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
281   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
282   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
283   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
284   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
285   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
286   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
287   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
288
289   // TRAP is legal.
290   setOperationAction(ISD::TRAP, MVT::Other, Legal);
291
292   // TRAMPOLINE is custom lowered.
293   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
294   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
295
296   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
297   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
298
299   if (Subtarget.isSVR4ABI()) {
300     if (isPPC64) {
301       // VAARG always uses double-word chunks, so promote anything smaller.
302       setOperationAction(ISD::VAARG, MVT::i1, Promote);
303       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
304       setOperationAction(ISD::VAARG, MVT::i8, Promote);
305       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
306       setOperationAction(ISD::VAARG, MVT::i16, Promote);
307       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
308       setOperationAction(ISD::VAARG, MVT::i32, Promote);
309       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
310       setOperationAction(ISD::VAARG, MVT::Other, Expand);
311     } else {
312       // VAARG is custom lowered with the 32-bit SVR4 ABI.
313       setOperationAction(ISD::VAARG, MVT::Other, Custom);
314       setOperationAction(ISD::VAARG, MVT::i64, Custom);
315     }
316   } else
317     setOperationAction(ISD::VAARG, MVT::Other, Expand);
318
319   if (Subtarget.isSVR4ABI() && !isPPC64)
320     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
321     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
322   else
323     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
324
325   // Use the default implementation.
326   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
327   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
328   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
329   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
330   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
331
332   // We want to custom lower some of our intrinsics.
333   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
334
335   // To handle counter-based loop conditions.
336   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
337
338   // Comparisons that require checking two conditions.
339   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
340   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
341   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
342   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
343   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
344   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
345   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
346   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
347   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
348   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
349   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
350   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
351
352   if (Subtarget.has64BitSupport()) {
353     // They also have instructions for converting between i64 and fp.
354     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
355     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
356     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
357     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
358     // This is just the low 32 bits of a (signed) fp->i64 conversion.
359     // We cannot do this with Promote because i64 is not a legal type.
360     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
361
362     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
363       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
364   } else {
365     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
366     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
367   }
368
369   // With the instructions enabled under FPCVT, we can do everything.
370   if (Subtarget.hasFPCVT()) {
371     if (Subtarget.has64BitSupport()) {
372       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
373       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
374       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
375       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
376     }
377
378     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
379     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
380     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
381     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
382   }
383
384   if (Subtarget.use64BitRegs()) {
385     // 64-bit PowerPC implementations can support i64 types directly
386     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
387     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
388     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
389     // 64-bit PowerPC wants to expand i128 shifts itself.
390     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
391     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
392     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
393   } else {
394     // 32-bit PowerPC wants to expand i64 shifts itself.
395     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
396     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
397     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
398   }
399
400   if (Subtarget.hasAltivec()) {
401     // First set operation action for all vector types to expand. Then we
402     // will selectively turn on ones that can be effectively codegen'd.
403     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
404          i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
405       MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
406
407       // add/sub are legal for all supported vector VT's.
408       setOperationAction(ISD::ADD , VT, Legal);
409       setOperationAction(ISD::SUB , VT, Legal);
410
411       // We promote all shuffles to v16i8.
412       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
413       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
414
415       // We promote all non-typed operations to v4i32.
416       setOperationAction(ISD::AND   , VT, Promote);
417       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
418       setOperationAction(ISD::OR    , VT, Promote);
419       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
420       setOperationAction(ISD::XOR   , VT, Promote);
421       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
422       setOperationAction(ISD::LOAD  , VT, Promote);
423       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
424       setOperationAction(ISD::SELECT, VT, Promote);
425       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
426       setOperationAction(ISD::STORE, VT, Promote);
427       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
428
429       // No other operations are legal.
430       setOperationAction(ISD::MUL , VT, Expand);
431       setOperationAction(ISD::SDIV, VT, Expand);
432       setOperationAction(ISD::SREM, VT, Expand);
433       setOperationAction(ISD::UDIV, VT, Expand);
434       setOperationAction(ISD::UREM, VT, Expand);
435       setOperationAction(ISD::FDIV, VT, Expand);
436       setOperationAction(ISD::FREM, VT, Expand);
437       setOperationAction(ISD::FNEG, VT, Expand);
438       setOperationAction(ISD::FSQRT, VT, Expand);
439       setOperationAction(ISD::FLOG, VT, Expand);
440       setOperationAction(ISD::FLOG10, VT, Expand);
441       setOperationAction(ISD::FLOG2, VT, Expand);
442       setOperationAction(ISD::FEXP, VT, Expand);
443       setOperationAction(ISD::FEXP2, VT, Expand);
444       setOperationAction(ISD::FSIN, VT, Expand);
445       setOperationAction(ISD::FCOS, VT, Expand);
446       setOperationAction(ISD::FABS, VT, Expand);
447       setOperationAction(ISD::FPOWI, VT, Expand);
448       setOperationAction(ISD::FFLOOR, VT, Expand);
449       setOperationAction(ISD::FCEIL,  VT, Expand);
450       setOperationAction(ISD::FTRUNC, VT, Expand);
451       setOperationAction(ISD::FRINT,  VT, Expand);
452       setOperationAction(ISD::FNEARBYINT, VT, Expand);
453       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
454       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
455       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
456       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
457       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
458       setOperationAction(ISD::UDIVREM, VT, Expand);
459       setOperationAction(ISD::SDIVREM, VT, Expand);
460       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
461       setOperationAction(ISD::FPOW, VT, Expand);
462       setOperationAction(ISD::BSWAP, VT, Expand);
463       setOperationAction(ISD::CTPOP, VT, Expand);
464       setOperationAction(ISD::CTLZ, VT, Expand);
465       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
466       setOperationAction(ISD::CTTZ, VT, Expand);
467       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
468       setOperationAction(ISD::VSELECT, VT, Expand);
469       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
470
471       for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
472            j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
473         MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
474         setTruncStoreAction(VT, InnerVT, Expand);
475       }
476       setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
477       setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
478       setLoadExtAction(ISD::EXTLOAD, VT, Expand);
479     }
480
481     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
482     // with merges, splats, etc.
483     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
484
485     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
486     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
487     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
488     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
489     setOperationAction(ISD::SELECT, MVT::v4i32,
490                        Subtarget.useCRBits() ? Legal : Expand);
491     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
492     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
493     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
494     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
495     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
496     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
497     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
498     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
499     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
500
501     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
502     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
503     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
504     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
505
506     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
507     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
508
509     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
510       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
511       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
512     }
513
514     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
515     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
516     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
517
518     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
519     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
520
521     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
522     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
523     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
524     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
525
526     // Altivec does not contain unordered floating-point compare instructions
527     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
528     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
529     setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
530     setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
531     setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
532     setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
533
534     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
535     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
536
537     if (Subtarget.hasVSX()) {
538       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
539       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
540
541       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
542       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
543       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
544       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
545       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
546
547       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
548
549       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
550       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
551
552       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
553       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
554
555       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
556       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
557       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
558       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
559       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
560
561       // Share the Altivec comparison restrictions.
562       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
563       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
564       setCondCodeAction(ISD::SETUGT, MVT::v2f64, Expand);
565       setCondCodeAction(ISD::SETUGE, MVT::v2f64, Expand);
566       setCondCodeAction(ISD::SETULT, MVT::v2f64, Expand);
567       setCondCodeAction(ISD::SETULE, MVT::v2f64, Expand);
568
569       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
570       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
571
572       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
573       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
574
575       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
576
577       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
578
579       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
580       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
581
582       // VSX v2i64 only supports non-arithmetic operations.
583       setOperationAction(ISD::ADD, MVT::v2i64, Expand);
584       setOperationAction(ISD::SUB, MVT::v2i64, Expand);
585
586       setOperationAction(ISD::SHL, MVT::v2i64, Expand);
587       setOperationAction(ISD::SRA, MVT::v2i64, Expand);
588       setOperationAction(ISD::SRL, MVT::v2i64, Expand);
589
590       setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
591
592       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
593       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
594       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
595       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
596
597       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
598
599       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
600       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
601       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
602       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
603
604       // Vector operation legalization checks the result type of
605       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
606       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
607       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
608       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
609       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
610
611       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
612     }
613   }
614
615   if (Subtarget.has64BitSupport()) {
616     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
617     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
618   }
619
620   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
621   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
622   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
623   setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
624
625   setBooleanContents(ZeroOrOneBooleanContent);
626   // Altivec instructions set fields to all zeros or all ones.
627   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
628
629   if (isPPC64) {
630     setStackPointerRegisterToSaveRestore(PPC::X1);
631     setExceptionPointerRegister(PPC::X3);
632     setExceptionSelectorRegister(PPC::X4);
633   } else {
634     setStackPointerRegisterToSaveRestore(PPC::R1);
635     setExceptionPointerRegister(PPC::R3);
636     setExceptionSelectorRegister(PPC::R4);
637   }
638
639   // We have target-specific dag combine patterns for the following nodes:
640   setTargetDAGCombine(ISD::SINT_TO_FP);
641   setTargetDAGCombine(ISD::LOAD);
642   setTargetDAGCombine(ISD::STORE);
643   setTargetDAGCombine(ISD::BR_CC);
644   if (Subtarget.useCRBits())
645     setTargetDAGCombine(ISD::BRCOND);
646   setTargetDAGCombine(ISD::BSWAP);
647   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
648
649   setTargetDAGCombine(ISD::SIGN_EXTEND);
650   setTargetDAGCombine(ISD::ZERO_EXTEND);
651   setTargetDAGCombine(ISD::ANY_EXTEND);
652
653   if (Subtarget.useCRBits()) {
654     setTargetDAGCombine(ISD::TRUNCATE);
655     setTargetDAGCombine(ISD::SETCC);
656     setTargetDAGCombine(ISD::SELECT_CC);
657   }
658
659   // Use reciprocal estimates.
660   if (TM.Options.UnsafeFPMath) {
661     setTargetDAGCombine(ISD::FDIV);
662     setTargetDAGCombine(ISD::FSQRT);
663   }
664
665   // Darwin long double math library functions have $LDBL128 appended.
666   if (Subtarget.isDarwin()) {
667     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
668     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
669     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
670     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
671     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
672     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
673     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
674     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
675     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
676     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
677   }
678
679   // With 32 condition bits, we don't need to sink (and duplicate) compares
680   // aggressively in CodeGenPrep.
681   if (Subtarget.useCRBits())
682     setHasMultipleConditionRegisters();
683
684   setMinFunctionAlignment(2);
685   if (Subtarget.isDarwin())
686     setPrefFunctionAlignment(4);
687
688   if (isPPC64 && Subtarget.isJITCodeModel())
689     // Temporary workaround for the inability of PPC64 JIT to handle jump
690     // tables.
691     setSupportJumpTables(false);
692
693   setInsertFencesForAtomic(true);
694
695   if (Subtarget.enableMachineScheduler())
696     setSchedulingPreference(Sched::Source);
697   else
698     setSchedulingPreference(Sched::Hybrid);
699
700   computeRegisterProperties();
701
702   // The Freescale cores does better with aggressive inlining of memcpy and
703   // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
704   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
705       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
706     MaxStoresPerMemset = 32;
707     MaxStoresPerMemsetOptSize = 16;
708     MaxStoresPerMemcpy = 32;
709     MaxStoresPerMemcpyOptSize = 8;
710     MaxStoresPerMemmove = 32;
711     MaxStoresPerMemmoveOptSize = 8;
712
713     setPrefFunctionAlignment(4);
714   }
715 }
716
717 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
718 /// the desired ByVal argument alignment.
719 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
720                              unsigned MaxMaxAlign) {
721   if (MaxAlign == MaxMaxAlign)
722     return;
723   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
724     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
725       MaxAlign = 32;
726     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
727       MaxAlign = 16;
728   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
729     unsigned EltAlign = 0;
730     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
731     if (EltAlign > MaxAlign)
732       MaxAlign = EltAlign;
733   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
734     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
735       unsigned EltAlign = 0;
736       getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign);
737       if (EltAlign > MaxAlign)
738         MaxAlign = EltAlign;
739       if (MaxAlign == MaxMaxAlign)
740         break;
741     }
742   }
743 }
744
745 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
746 /// function arguments in the caller parameter area.
747 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
748   // Darwin passes everything on 4 byte boundary.
749   if (Subtarget.isDarwin())
750     return 4;
751
752   // 16byte and wider vectors are passed on 16byte boundary.
753   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
754   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
755   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
756     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
757   return Align;
758 }
759
760 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
761   switch (Opcode) {
762   default: return nullptr;
763   case PPCISD::FSEL:            return "PPCISD::FSEL";
764   case PPCISD::FCFID:           return "PPCISD::FCFID";
765   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
766   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
767   case PPCISD::FRE:             return "PPCISD::FRE";
768   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
769   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
770   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
771   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
772   case PPCISD::VPERM:           return "PPCISD::VPERM";
773   case PPCISD::Hi:              return "PPCISD::Hi";
774   case PPCISD::Lo:              return "PPCISD::Lo";
775   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
776   case PPCISD::LOAD:            return "PPCISD::LOAD";
777   case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
778   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
779   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
780   case PPCISD::SRL:             return "PPCISD::SRL";
781   case PPCISD::SRA:             return "PPCISD::SRA";
782   case PPCISD::SHL:             return "PPCISD::SHL";
783   case PPCISD::CALL:            return "PPCISD::CALL";
784   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
785   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
786   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
787   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
788   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
789   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
790   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
791   case PPCISD::VCMP:            return "PPCISD::VCMP";
792   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
793   case PPCISD::LBRX:            return "PPCISD::LBRX";
794   case PPCISD::STBRX:           return "PPCISD::STBRX";
795   case PPCISD::LARX:            return "PPCISD::LARX";
796   case PPCISD::STCX:            return "PPCISD::STCX";
797   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
798   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
799   case PPCISD::BDZ:             return "PPCISD::BDZ";
800   case PPCISD::MFFS:            return "PPCISD::MFFS";
801   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
802   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
803   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
804   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
805   case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
806   case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
807   case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
808   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
809   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
810   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
811   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
812   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
813   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
814   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
815   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
816   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
817   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
818   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
819   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
820   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
821   case PPCISD::SC:              return "PPCISD::SC";
822   }
823 }
824
825 EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
826   if (!VT.isVector())
827     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
828   return VT.changeVectorElementTypeToInteger();
829 }
830
831 //===----------------------------------------------------------------------===//
832 // Node matching predicates, for use by the tblgen matching code.
833 //===----------------------------------------------------------------------===//
834
835 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
836 static bool isFloatingPointZero(SDValue Op) {
837   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
838     return CFP->getValueAPF().isZero();
839   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
840     // Maybe this has already been legalized into the constant pool?
841     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
842       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
843         return CFP->getValueAPF().isZero();
844   }
845   return false;
846 }
847
848 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
849 /// true if Op is undef or if it matches the specified value.
850 static bool isConstantOrUndef(int Op, int Val) {
851   return Op < 0 || Op == Val;
852 }
853
854 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
855 /// VPKUHUM instruction.
856 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary,
857                                SelectionDAG &DAG) {
858   unsigned j = DAG.getTarget().getDataLayout()->isLittleEndian() ? 0 : 1;
859   if (!isUnary) {
860     for (unsigned i = 0; i != 16; ++i)
861       if (!isConstantOrUndef(N->getMaskElt(i),  i*2+j))
862         return false;
863   } else {
864     for (unsigned i = 0; i != 8; ++i)
865       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
866           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
867         return false;
868   }
869   return true;
870 }
871
872 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
873 /// VPKUWUM instruction.
874 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary,
875                                SelectionDAG &DAG) {
876   unsigned j, k;
877   if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
878     j = 0;
879     k = 1;
880   } else {
881     j = 2;
882     k = 3;
883   }
884   if (!isUnary) {
885     for (unsigned i = 0; i != 16; i += 2)
886       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j) ||
887           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+k))
888         return false;
889   } else {
890     for (unsigned i = 0; i != 8; i += 2)
891       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j) ||
892           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+k) ||
893           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j) ||
894           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+k))
895         return false;
896   }
897   return true;
898 }
899
900 /// isVMerge - Common function, used to match vmrg* shuffles.
901 ///
902 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
903                      unsigned LHSStart, unsigned RHSStart) {
904   if (N->getValueType(0) != MVT::v16i8)
905     return false;
906   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
907          "Unsupported merge size!");
908
909   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
910     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
911       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
912                              LHSStart+j+i*UnitSize) ||
913           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
914                              RHSStart+j+i*UnitSize))
915         return false;
916     }
917   return true;
918 }
919
920 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
921 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
922 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
923                              bool isUnary, SelectionDAG &DAG) {
924   if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
925     if (!isUnary)
926       return isVMerge(N, UnitSize, 0, 16);
927     return isVMerge(N, UnitSize, 0, 0);
928   } else {
929     if (!isUnary)
930       return isVMerge(N, UnitSize, 8, 24);
931     return isVMerge(N, UnitSize, 8, 8);
932   }
933 }
934
935 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
936 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
937 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
938                              bool isUnary, SelectionDAG &DAG) {
939   if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
940     if (!isUnary)
941       return isVMerge(N, UnitSize, 8, 24);
942     return isVMerge(N, UnitSize, 8, 8);
943   } else {
944     if (!isUnary)
945       return isVMerge(N, UnitSize, 0, 16);
946     return isVMerge(N, UnitSize, 0, 0);
947   }
948 }
949
950
951 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
952 /// amount, otherwise return -1.
953 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary, SelectionDAG &DAG) {
954   if (N->getValueType(0) != MVT::v16i8)
955     return -1;
956
957   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
958
959   // Find the first non-undef value in the shuffle mask.
960   unsigned i;
961   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
962     /*search*/;
963
964   if (i == 16) return -1;  // all undef.
965
966   // Otherwise, check to see if the rest of the elements are consecutively
967   // numbered from this value.
968   unsigned ShiftAmt = SVOp->getMaskElt(i);
969   if (ShiftAmt < i) return -1;
970
971   if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
972
973     ShiftAmt += i;
974
975     if (!isUnary) {
976       // Check the rest of the elements to see if they are consecutive.
977       for (++i; i != 16; ++i)
978         if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt - i))
979           return -1;
980     } else {
981       // Check the rest of the elements to see if they are consecutive.
982       for (++i; i != 16; ++i)
983         if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt - i) & 15))
984           return -1;
985     }
986
987   } else {  // Big Endian
988
989     ShiftAmt -= i;
990
991     if (!isUnary) {
992       // Check the rest of the elements to see if they are consecutive.
993       for (++i; i != 16; ++i)
994         if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
995           return -1;
996     } else {
997       // Check the rest of the elements to see if they are consecutive.
998       for (++i; i != 16; ++i)
999         if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1000           return -1;
1001     }
1002   }
1003   return ShiftAmt;
1004 }
1005
1006 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1007 /// specifies a splat of a single element that is suitable for input to
1008 /// VSPLTB/VSPLTH/VSPLTW.
1009 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1010   assert(N->getValueType(0) == MVT::v16i8 &&
1011          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1012
1013   // This is a splat operation if each element of the permute is the same, and
1014   // if the value doesn't reference the second vector.
1015   unsigned ElementBase = N->getMaskElt(0);
1016
1017   // FIXME: Handle UNDEF elements too!
1018   if (ElementBase >= 16)
1019     return false;
1020
1021   // Check that the indices are consecutive, in the case of a multi-byte element
1022   // splatted with a v16i8 mask.
1023   for (unsigned i = 1; i != EltSize; ++i)
1024     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1025       return false;
1026
1027   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1028     if (N->getMaskElt(i) < 0) continue;
1029     for (unsigned j = 0; j != EltSize; ++j)
1030       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1031         return false;
1032   }
1033   return true;
1034 }
1035
1036 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
1037 /// are -0.0.
1038 bool PPC::isAllNegativeZeroVector(SDNode *N) {
1039   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
1040
1041   APInt APVal, APUndef;
1042   unsigned BitSize;
1043   bool HasAnyUndefs;
1044
1045   if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
1046     if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
1047       return CFP->getValueAPF().isNegZero();
1048
1049   return false;
1050 }
1051
1052 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1053 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1054 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1055                                 SelectionDAG &DAG) {
1056   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1057   assert(isSplatShuffleMask(SVOp, EltSize));
1058   if (DAG.getTarget().getDataLayout()->isLittleEndian())
1059     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1060   else
1061     return SVOp->getMaskElt(0) / EltSize;
1062 }
1063
1064 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1065 /// by using a vspltis[bhw] instruction of the specified element size, return
1066 /// the constant being splatted.  The ByteSize field indicates the number of
1067 /// bytes of each element [124] -> [bhw].
1068 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1069   SDValue OpVal(nullptr, 0);
1070
1071   // If ByteSize of the splat is bigger than the element size of the
1072   // build_vector, then we have a case where we are checking for a splat where
1073   // multiple elements of the buildvector are folded together into a single
1074   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1075   unsigned EltSize = 16/N->getNumOperands();
1076   if (EltSize < ByteSize) {
1077     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1078     SDValue UniquedVals[4];
1079     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1080
1081     // See if all of the elements in the buildvector agree across.
1082     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1083       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1084       // If the element isn't a constant, bail fully out.
1085       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1086
1087
1088       if (!UniquedVals[i&(Multiple-1)].getNode())
1089         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1090       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1091         return SDValue();  // no match.
1092     }
1093
1094     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1095     // either constant or undef values that are identical for each chunk.  See
1096     // if these chunks can form into a larger vspltis*.
1097
1098     // Check to see if all of the leading entries are either 0 or -1.  If
1099     // neither, then this won't fit into the immediate field.
1100     bool LeadingZero = true;
1101     bool LeadingOnes = true;
1102     for (unsigned i = 0; i != Multiple-1; ++i) {
1103       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1104
1105       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
1106       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
1107     }
1108     // Finally, check the least significant entry.
1109     if (LeadingZero) {
1110       if (!UniquedVals[Multiple-1].getNode())
1111         return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
1112       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1113       if (Val < 16)
1114         return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
1115     }
1116     if (LeadingOnes) {
1117       if (!UniquedVals[Multiple-1].getNode())
1118         return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
1119       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1120       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1121         return DAG.getTargetConstant(Val, MVT::i32);
1122     }
1123
1124     return SDValue();
1125   }
1126
1127   // Check to see if this buildvec has a single non-undef value in its elements.
1128   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1129     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1130     if (!OpVal.getNode())
1131       OpVal = N->getOperand(i);
1132     else if (OpVal != N->getOperand(i))
1133       return SDValue();
1134   }
1135
1136   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1137
1138   unsigned ValSizeInBytes = EltSize;
1139   uint64_t Value = 0;
1140   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1141     Value = CN->getZExtValue();
1142   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1143     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1144     Value = FloatToBits(CN->getValueAPF().convertToFloat());
1145   }
1146
1147   // If the splat value is larger than the element value, then we can never do
1148   // this splat.  The only case that we could fit the replicated bits into our
1149   // immediate field for would be zero, and we prefer to use vxor for it.
1150   if (ValSizeInBytes < ByteSize) return SDValue();
1151
1152   // If the element value is larger than the splat value, cut it in half and
1153   // check to see if the two halves are equal.  Continue doing this until we
1154   // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
1155   while (ValSizeInBytes > ByteSize) {
1156     ValSizeInBytes >>= 1;
1157
1158     // If the top half equals the bottom half, we're still ok.
1159     if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
1160          (Value                        & ((1 << (8*ValSizeInBytes))-1)))
1161       return SDValue();
1162   }
1163
1164   // Properly sign extend the value.
1165   int MaskVal = SignExtend32(Value, ByteSize * 8);
1166
1167   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1168   if (MaskVal == 0) return SDValue();
1169
1170   // Finally, if this value fits in a 5 bit sext field, return it
1171   if (SignExtend32<5>(MaskVal) == MaskVal)
1172     return DAG.getTargetConstant(MaskVal, MVT::i32);
1173   return SDValue();
1174 }
1175
1176 //===----------------------------------------------------------------------===//
1177 //  Addressing Mode Selection
1178 //===----------------------------------------------------------------------===//
1179
1180 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
1181 /// or 64-bit immediate, and if the value can be accurately represented as a
1182 /// sign extension from a 16-bit value.  If so, this returns true and the
1183 /// immediate.
1184 static bool isIntS16Immediate(SDNode *N, short &Imm) {
1185   if (!isa<ConstantSDNode>(N))
1186     return false;
1187
1188   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1189   if (N->getValueType(0) == MVT::i32)
1190     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1191   else
1192     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1193 }
1194 static bool isIntS16Immediate(SDValue Op, short &Imm) {
1195   return isIntS16Immediate(Op.getNode(), Imm);
1196 }
1197
1198
1199 /// SelectAddressRegReg - Given the specified addressed, check to see if it
1200 /// can be represented as an indexed [r+r] operation.  Returns false if it
1201 /// can be more efficiently represented with [r+imm].
1202 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1203                                             SDValue &Index,
1204                                             SelectionDAG &DAG) const {
1205   short imm = 0;
1206   if (N.getOpcode() == ISD::ADD) {
1207     if (isIntS16Immediate(N.getOperand(1), imm))
1208       return false;    // r+i
1209     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1210       return false;    // r+i
1211
1212     Base = N.getOperand(0);
1213     Index = N.getOperand(1);
1214     return true;
1215   } else if (N.getOpcode() == ISD::OR) {
1216     if (isIntS16Immediate(N.getOperand(1), imm))
1217       return false;    // r+i can fold it if we can.
1218
1219     // If this is an or of disjoint bitfields, we can codegen this as an add
1220     // (for better address arithmetic) if the LHS and RHS of the OR are provably
1221     // disjoint.
1222     APInt LHSKnownZero, LHSKnownOne;
1223     APInt RHSKnownZero, RHSKnownOne;
1224     DAG.computeKnownBits(N.getOperand(0),
1225                          LHSKnownZero, LHSKnownOne);
1226
1227     if (LHSKnownZero.getBoolValue()) {
1228       DAG.computeKnownBits(N.getOperand(1),
1229                            RHSKnownZero, RHSKnownOne);
1230       // If all of the bits are known zero on the LHS or RHS, the add won't
1231       // carry.
1232       if (~(LHSKnownZero | RHSKnownZero) == 0) {
1233         Base = N.getOperand(0);
1234         Index = N.getOperand(1);
1235         return true;
1236       }
1237     }
1238   }
1239
1240   return false;
1241 }
1242
1243 // If we happen to be doing an i64 load or store into a stack slot that has
1244 // less than a 4-byte alignment, then the frame-index elimination may need to
1245 // use an indexed load or store instruction (because the offset may not be a
1246 // multiple of 4). The extra register needed to hold the offset comes from the
1247 // register scavenger, and it is possible that the scavenger will need to use
1248 // an emergency spill slot. As a result, we need to make sure that a spill slot
1249 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1250 // stack slot.
1251 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1252   // FIXME: This does not handle the LWA case.
1253   if (VT != MVT::i64)
1254     return;
1255
1256   // NOTE: We'll exclude negative FIs here, which come from argument
1257   // lowering, because there are no known test cases triggering this problem
1258   // using packed structures (or similar). We can remove this exclusion if
1259   // we find such a test case. The reason why this is so test-case driven is
1260   // because this entire 'fixup' is only to prevent crashes (from the
1261   // register scavenger) on not-really-valid inputs. For example, if we have:
1262   //   %a = alloca i1
1263   //   %b = bitcast i1* %a to i64*
1264   //   store i64* a, i64 b
1265   // then the store should really be marked as 'align 1', but is not. If it
1266   // were marked as 'align 1' then the indexed form would have been
1267   // instruction-selected initially, and the problem this 'fixup' is preventing
1268   // won't happen regardless.
1269   if (FrameIdx < 0)
1270     return;
1271
1272   MachineFunction &MF = DAG.getMachineFunction();
1273   MachineFrameInfo *MFI = MF.getFrameInfo();
1274
1275   unsigned Align = MFI->getObjectAlignment(FrameIdx);
1276   if (Align >= 4)
1277     return;
1278
1279   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1280   FuncInfo->setHasNonRISpills();
1281 }
1282
1283 /// Returns true if the address N can be represented by a base register plus
1284 /// a signed 16-bit displacement [r+imm], and if it is not better
1285 /// represented as reg+reg.  If Aligned is true, only accept displacements
1286 /// suitable for STD and friends, i.e. multiples of 4.
1287 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1288                                             SDValue &Base,
1289                                             SelectionDAG &DAG,
1290                                             bool Aligned) const {
1291   // FIXME dl should come from parent load or store, not from address
1292   SDLoc dl(N);
1293   // If this can be more profitably realized as r+r, fail.
1294   if (SelectAddressRegReg(N, Disp, Base, DAG))
1295     return false;
1296
1297   if (N.getOpcode() == ISD::ADD) {
1298     short imm = 0;
1299     if (isIntS16Immediate(N.getOperand(1), imm) &&
1300         (!Aligned || (imm & 3) == 0)) {
1301       Disp = DAG.getTargetConstant(imm, N.getValueType());
1302       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1303         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1304         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1305       } else {
1306         Base = N.getOperand(0);
1307       }
1308       return true; // [r+i]
1309     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1310       // Match LOAD (ADD (X, Lo(G))).
1311       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1312              && "Cannot handle constant offsets yet!");
1313       Disp = N.getOperand(1).getOperand(0);  // The global address.
1314       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1315              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1316              Disp.getOpcode() == ISD::TargetConstantPool ||
1317              Disp.getOpcode() == ISD::TargetJumpTable);
1318       Base = N.getOperand(0);
1319       return true;  // [&g+r]
1320     }
1321   } else if (N.getOpcode() == ISD::OR) {
1322     short imm = 0;
1323     if (isIntS16Immediate(N.getOperand(1), imm) &&
1324         (!Aligned || (imm & 3) == 0)) {
1325       // If this is an or of disjoint bitfields, we can codegen this as an add
1326       // (for better address arithmetic) if the LHS and RHS of the OR are
1327       // provably disjoint.
1328       APInt LHSKnownZero, LHSKnownOne;
1329       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1330
1331       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1332         // If all of the bits are known zero on the LHS or RHS, the add won't
1333         // carry.
1334         Base = N.getOperand(0);
1335         Disp = DAG.getTargetConstant(imm, N.getValueType());
1336         return true;
1337       }
1338     }
1339   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1340     // Loading from a constant address.
1341
1342     // If this address fits entirely in a 16-bit sext immediate field, codegen
1343     // this as "d, 0"
1344     short Imm;
1345     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1346       Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1347       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1348                              CN->getValueType(0));
1349       return true;
1350     }
1351
1352     // Handle 32-bit sext immediates with LIS + addr mode.
1353     if ((CN->getValueType(0) == MVT::i32 ||
1354          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1355         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1356       int Addr = (int)CN->getZExtValue();
1357
1358       // Otherwise, break this down into an LIS + disp.
1359       Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1360
1361       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1362       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1363       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1364       return true;
1365     }
1366   }
1367
1368   Disp = DAG.getTargetConstant(0, getPointerTy());
1369   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
1370     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1371     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1372   } else
1373     Base = N;
1374   return true;      // [r+0]
1375 }
1376
1377 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1378 /// represented as an indexed [r+r] operation.
1379 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1380                                                 SDValue &Index,
1381                                                 SelectionDAG &DAG) const {
1382   // Check to see if we can easily represent this as an [r+r] address.  This
1383   // will fail if it thinks that the address is more profitably represented as
1384   // reg+imm, e.g. where imm = 0.
1385   if (SelectAddressRegReg(N, Base, Index, DAG))
1386     return true;
1387
1388   // If the operand is an addition, always emit this as [r+r], since this is
1389   // better (for code size, and execution, as the memop does the add for free)
1390   // than emitting an explicit add.
1391   if (N.getOpcode() == ISD::ADD) {
1392     Base = N.getOperand(0);
1393     Index = N.getOperand(1);
1394     return true;
1395   }
1396
1397   // Otherwise, do it the hard way, using R0 as the base register.
1398   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1399                          N.getValueType());
1400   Index = N;
1401   return true;
1402 }
1403
1404 /// getPreIndexedAddressParts - returns true by value, base pointer and
1405 /// offset pointer and addressing mode by reference if the node's address
1406 /// can be legally represented as pre-indexed load / store address.
1407 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1408                                                   SDValue &Offset,
1409                                                   ISD::MemIndexedMode &AM,
1410                                                   SelectionDAG &DAG) const {
1411   if (DisablePPCPreinc) return false;
1412
1413   bool isLoad = true;
1414   SDValue Ptr;
1415   EVT VT;
1416   unsigned Alignment;
1417   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1418     Ptr = LD->getBasePtr();
1419     VT = LD->getMemoryVT();
1420     Alignment = LD->getAlignment();
1421   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1422     Ptr = ST->getBasePtr();
1423     VT  = ST->getMemoryVT();
1424     Alignment = ST->getAlignment();
1425     isLoad = false;
1426   } else
1427     return false;
1428
1429   // PowerPC doesn't have preinc load/store instructions for vectors.
1430   if (VT.isVector())
1431     return false;
1432
1433   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1434
1435     // Common code will reject creating a pre-inc form if the base pointer
1436     // is a frame index, or if N is a store and the base pointer is either
1437     // the same as or a predecessor of the value being stored.  Check for
1438     // those situations here, and try with swapped Base/Offset instead.
1439     bool Swap = false;
1440
1441     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1442       Swap = true;
1443     else if (!isLoad) {
1444       SDValue Val = cast<StoreSDNode>(N)->getValue();
1445       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1446         Swap = true;
1447     }
1448
1449     if (Swap)
1450       std::swap(Base, Offset);
1451
1452     AM = ISD::PRE_INC;
1453     return true;
1454   }
1455
1456   // LDU/STU can only handle immediates that are a multiple of 4.
1457   if (VT != MVT::i64) {
1458     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
1459       return false;
1460   } else {
1461     // LDU/STU need an address with at least 4-byte alignment.
1462     if (Alignment < 4)
1463       return false;
1464
1465     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
1466       return false;
1467   }
1468
1469   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1470     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1471     // sext i32 to i64 when addr mode is r+i.
1472     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1473         LD->getExtensionType() == ISD::SEXTLOAD &&
1474         isa<ConstantSDNode>(Offset))
1475       return false;
1476   }
1477
1478   AM = ISD::PRE_INC;
1479   return true;
1480 }
1481
1482 //===----------------------------------------------------------------------===//
1483 //  LowerOperation implementation
1484 //===----------------------------------------------------------------------===//
1485
1486 /// GetLabelAccessInfo - Return true if we should reference labels using a
1487 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1488 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1489                                unsigned &LoOpFlags,
1490                                const GlobalValue *GV = nullptr) {
1491   HiOpFlags = PPCII::MO_HA;
1492   LoOpFlags = PPCII::MO_LO;
1493
1494   // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1495   // non-darwin platform.  We don't support PIC on other platforms yet.
1496   bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1497                TM.getSubtarget<PPCSubtarget>().isDarwin();
1498   if (isPIC) {
1499     HiOpFlags |= PPCII::MO_PIC_FLAG;
1500     LoOpFlags |= PPCII::MO_PIC_FLAG;
1501   }
1502
1503   // If this is a reference to a global value that requires a non-lazy-ptr, make
1504   // sure that instruction lowering adds it.
1505   if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1506     HiOpFlags |= PPCII::MO_NLP_FLAG;
1507     LoOpFlags |= PPCII::MO_NLP_FLAG;
1508
1509     if (GV->hasHiddenVisibility()) {
1510       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1511       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1512     }
1513   }
1514
1515   return isPIC;
1516 }
1517
1518 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1519                              SelectionDAG &DAG) {
1520   EVT PtrVT = HiPart.getValueType();
1521   SDValue Zero = DAG.getConstant(0, PtrVT);
1522   SDLoc DL(HiPart);
1523
1524   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1525   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1526
1527   // With PIC, the first instruction is actually "GR+hi(&G)".
1528   if (isPIC)
1529     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1530                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1531
1532   // Generate non-pic code that has direct accesses to the constant pool.
1533   // The address of the global is just (hi(&g)+lo(&g)).
1534   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1535 }
1536
1537 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1538                                              SelectionDAG &DAG) const {
1539   EVT PtrVT = Op.getValueType();
1540   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1541   const Constant *C = CP->getConstVal();
1542
1543   // 64-bit SVR4 ABI code is always position-independent.
1544   // The actual address of the GlobalValue is stored in the TOC.
1545   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
1546     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1547     return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
1548                        DAG.getRegister(PPC::X2, MVT::i64));
1549   }
1550
1551   unsigned MOHiFlag, MOLoFlag;
1552   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1553   SDValue CPIHi =
1554     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1555   SDValue CPILo =
1556     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1557   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1558 }
1559
1560 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1561   EVT PtrVT = Op.getValueType();
1562   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1563
1564   // 64-bit SVR4 ABI code is always position-independent.
1565   // The actual address of the GlobalValue is stored in the TOC.
1566   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
1567     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1568     return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
1569                        DAG.getRegister(PPC::X2, MVT::i64));
1570   }
1571
1572   unsigned MOHiFlag, MOLoFlag;
1573   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1574   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1575   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1576   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1577 }
1578
1579 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1580                                              SelectionDAG &DAG) const {
1581   EVT PtrVT = Op.getValueType();
1582
1583   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1584
1585   unsigned MOHiFlag, MOLoFlag;
1586   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1587   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1588   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1589   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1590 }
1591
1592 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1593                                               SelectionDAG &DAG) const {
1594
1595   // FIXME: TLS addresses currently use medium model code sequences,
1596   // which is the most useful form.  Eventually support for small and
1597   // large models could be added if users need it, at the cost of
1598   // additional complexity.
1599   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1600   SDLoc dl(GA);
1601   const GlobalValue *GV = GA->getGlobal();
1602   EVT PtrVT = getPointerTy();
1603   bool is64bit = Subtarget.isPPC64();
1604
1605   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1606
1607   if (Model == TLSModel::LocalExec) {
1608     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1609                                                PPCII::MO_TPREL_HA);
1610     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1611                                                PPCII::MO_TPREL_LO);
1612     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1613                                      is64bit ? MVT::i64 : MVT::i32);
1614     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1615     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1616   }
1617
1618   if (Model == TLSModel::InitialExec) {
1619     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1620     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1621                                                 PPCII::MO_TLS);
1622     SDValue GOTPtr;
1623     if (is64bit) {
1624       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1625       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1626                            PtrVT, GOTReg, TGA);
1627     } else
1628       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
1629     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1630                                    PtrVT, TGA, GOTPtr);
1631     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
1632   }
1633
1634   if (Model == TLSModel::GeneralDynamic) {
1635     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1636     SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1637     SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1638                                      GOTReg, TGA);
1639     SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1640                                    GOTEntryHi, TGA);
1641
1642     // We need a chain node, and don't have one handy.  The underlying
1643     // call has no side effects, so using the function entry node
1644     // suffices.
1645     SDValue Chain = DAG.getEntryNode();
1646     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1647     SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1648     SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1649                                   PtrVT, ParmReg, TGA);
1650     // The return value from GET_TLS_ADDR really is in X3 already, but
1651     // some hacks are needed here to tie everything together.  The extra
1652     // copies dissolve during subsequent transforms.
1653     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1654     return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1655   }
1656
1657   if (Model == TLSModel::LocalDynamic) {
1658     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1659     SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1660     SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1661                                      GOTReg, TGA);
1662     SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1663                                    GOTEntryHi, TGA);
1664
1665     // We need a chain node, and don't have one handy.  The underlying
1666     // call has no side effects, so using the function entry node
1667     // suffices.
1668     SDValue Chain = DAG.getEntryNode();
1669     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1670     SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1671     SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1672                                   PtrVT, ParmReg, TGA);
1673     // The return value from GET_TLSLD_ADDR really is in X3 already, but
1674     // some hacks are needed here to tie everything together.  The extra
1675     // copies dissolve during subsequent transforms.
1676     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1677     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1678                                       Chain, ParmReg, TGA);
1679     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1680   }
1681
1682   llvm_unreachable("Unknown TLS model!");
1683 }
1684
1685 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1686                                               SelectionDAG &DAG) const {
1687   EVT PtrVT = Op.getValueType();
1688   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1689   SDLoc DL(GSDN);
1690   const GlobalValue *GV = GSDN->getGlobal();
1691
1692   // 64-bit SVR4 ABI code is always position-independent.
1693   // The actual address of the GlobalValue is stored in the TOC.
1694   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
1695     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1696     return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1697                        DAG.getRegister(PPC::X2, MVT::i64));
1698   }
1699
1700   unsigned MOHiFlag, MOLoFlag;
1701   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1702
1703   SDValue GAHi =
1704     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1705   SDValue GALo =
1706     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1707
1708   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1709
1710   // If the global reference is actually to a non-lazy-pointer, we have to do an
1711   // extra load to get the address of the global.
1712   if (MOHiFlag & PPCII::MO_NLP_FLAG)
1713     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1714                       false, false, false, 0);
1715   return Ptr;
1716 }
1717
1718 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1719   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1720   SDLoc dl(Op);
1721
1722   if (Op.getValueType() == MVT::v2i64) {
1723     // When the operands themselves are v2i64 values, we need to do something
1724     // special because VSX has no underlying comparison operations for these.
1725     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
1726       // Equality can be handled by casting to the legal type for Altivec
1727       // comparisons, everything else needs to be expanded.
1728       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
1729         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
1730                  DAG.getSetCC(dl, MVT::v4i32,
1731                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
1732                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
1733                    CC));
1734       }
1735
1736       return SDValue();
1737     }
1738
1739     // We handle most of these in the usual way.
1740     return Op;
1741   }
1742
1743   // If we're comparing for equality to zero, expose the fact that this is
1744   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1745   // fold the new nodes.
1746   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1747     if (C->isNullValue() && CC == ISD::SETEQ) {
1748       EVT VT = Op.getOperand(0).getValueType();
1749       SDValue Zext = Op.getOperand(0);
1750       if (VT.bitsLT(MVT::i32)) {
1751         VT = MVT::i32;
1752         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1753       }
1754       unsigned Log2b = Log2_32(VT.getSizeInBits());
1755       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1756       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1757                                 DAG.getConstant(Log2b, MVT::i32));
1758       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1759     }
1760     // Leave comparisons against 0 and -1 alone for now, since they're usually
1761     // optimized.  FIXME: revisit this when we can custom lower all setcc
1762     // optimizations.
1763     if (C->isAllOnesValue() || C->isNullValue())
1764       return SDValue();
1765   }
1766
1767   // If we have an integer seteq/setne, turn it into a compare against zero
1768   // by xor'ing the rhs with the lhs, which is faster than setting a
1769   // condition register, reading it back out, and masking the correct bit.  The
1770   // normal approach here uses sub to do this instead of xor.  Using xor exposes
1771   // the result to other bit-twiddling opportunities.
1772   EVT LHSVT = Op.getOperand(0).getValueType();
1773   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1774     EVT VT = Op.getValueType();
1775     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1776                                 Op.getOperand(1));
1777     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1778   }
1779   return SDValue();
1780 }
1781
1782 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1783                                       const PPCSubtarget &Subtarget) const {
1784   SDNode *Node = Op.getNode();
1785   EVT VT = Node->getValueType(0);
1786   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1787   SDValue InChain = Node->getOperand(0);
1788   SDValue VAListPtr = Node->getOperand(1);
1789   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1790   SDLoc dl(Node);
1791
1792   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1793
1794   // gpr_index
1795   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1796                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
1797                                     false, false, 0);
1798   InChain = GprIndex.getValue(1);
1799
1800   if (VT == MVT::i64) {
1801     // Check if GprIndex is even
1802     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1803                                  DAG.getConstant(1, MVT::i32));
1804     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1805                                 DAG.getConstant(0, MVT::i32), ISD::SETNE);
1806     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1807                                           DAG.getConstant(1, MVT::i32));
1808     // Align GprIndex to be even if it isn't
1809     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1810                            GprIndex);
1811   }
1812
1813   // fpr index is 1 byte after gpr
1814   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1815                                DAG.getConstant(1, MVT::i32));
1816
1817   // fpr
1818   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1819                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
1820                                     false, false, 0);
1821   InChain = FprIndex.getValue(1);
1822
1823   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1824                                        DAG.getConstant(8, MVT::i32));
1825
1826   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1827                                         DAG.getConstant(4, MVT::i32));
1828
1829   // areas
1830   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1831                                      MachinePointerInfo(), false, false,
1832                                      false, 0);
1833   InChain = OverflowArea.getValue(1);
1834
1835   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1836                                     MachinePointerInfo(), false, false,
1837                                     false, 0);
1838   InChain = RegSaveArea.getValue(1);
1839
1840   // select overflow_area if index > 8
1841   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1842                             DAG.getConstant(8, MVT::i32), ISD::SETLT);
1843
1844   // adjustment constant gpr_index * 4/8
1845   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1846                                     VT.isInteger() ? GprIndex : FprIndex,
1847                                     DAG.getConstant(VT.isInteger() ? 4 : 8,
1848                                                     MVT::i32));
1849
1850   // OurReg = RegSaveArea + RegConstant
1851   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1852                                RegConstant);
1853
1854   // Floating types are 32 bytes into RegSaveArea
1855   if (VT.isFloatingPoint())
1856     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1857                          DAG.getConstant(32, MVT::i32));
1858
1859   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1860   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1861                                    VT.isInteger() ? GprIndex : FprIndex,
1862                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1863                                                    MVT::i32));
1864
1865   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1866                               VT.isInteger() ? VAListPtr : FprPtr,
1867                               MachinePointerInfo(SV),
1868                               MVT::i8, false, false, 0);
1869
1870   // determine if we should load from reg_save_area or overflow_area
1871   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1872
1873   // increase overflow_area by 4/8 if gpr/fpr > 8
1874   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1875                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
1876                                           MVT::i32));
1877
1878   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1879                              OverflowAreaPlusN);
1880
1881   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1882                               OverflowAreaPtr,
1883                               MachinePointerInfo(),
1884                               MVT::i32, false, false, 0);
1885
1886   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1887                      false, false, false, 0);
1888 }
1889
1890 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
1891                                        const PPCSubtarget &Subtarget) const {
1892   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
1893
1894   // We have to copy the entire va_list struct:
1895   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
1896   return DAG.getMemcpy(Op.getOperand(0), Op,
1897                        Op.getOperand(1), Op.getOperand(2),
1898                        DAG.getConstant(12, MVT::i32), 8, false, true,
1899                        MachinePointerInfo(), MachinePointerInfo());
1900 }
1901
1902 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1903                                                   SelectionDAG &DAG) const {
1904   return Op.getOperand(0);
1905 }
1906
1907 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1908                                                 SelectionDAG &DAG) const {
1909   SDValue Chain = Op.getOperand(0);
1910   SDValue Trmp = Op.getOperand(1); // trampoline
1911   SDValue FPtr = Op.getOperand(2); // nested function
1912   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1913   SDLoc dl(Op);
1914
1915   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1916   bool isPPC64 = (PtrVT == MVT::i64);
1917   Type *IntPtrTy =
1918     DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1919                                                              *DAG.getContext());
1920
1921   TargetLowering::ArgListTy Args;
1922   TargetLowering::ArgListEntry Entry;
1923
1924   Entry.Ty = IntPtrTy;
1925   Entry.Node = Trmp; Args.push_back(Entry);
1926
1927   // TrampSize == (isPPC64 ? 48 : 40);
1928   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1929                                isPPC64 ? MVT::i64 : MVT::i32);
1930   Args.push_back(Entry);
1931
1932   Entry.Node = FPtr; Args.push_back(Entry);
1933   Entry.Node = Nest; Args.push_back(Entry);
1934
1935   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1936   TargetLowering::CallLoweringInfo CLI(DAG);
1937   CLI.setDebugLoc(dl).setChain(Chain)
1938     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
1939                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1940                std::move(Args), 0);
1941
1942   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1943   return CallResult.second;
1944 }
1945
1946 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1947                                         const PPCSubtarget &Subtarget) const {
1948   MachineFunction &MF = DAG.getMachineFunction();
1949   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1950
1951   SDLoc dl(Op);
1952
1953   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1954     // vastart just stores the address of the VarArgsFrameIndex slot into the
1955     // memory location argument.
1956     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1957     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1958     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1959     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1960                         MachinePointerInfo(SV),
1961                         false, false, 0);
1962   }
1963
1964   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1965   // We suppose the given va_list is already allocated.
1966   //
1967   // typedef struct {
1968   //  char gpr;     /* index into the array of 8 GPRs
1969   //                 * stored in the register save area
1970   //                 * gpr=0 corresponds to r3,
1971   //                 * gpr=1 to r4, etc.
1972   //                 */
1973   //  char fpr;     /* index into the array of 8 FPRs
1974   //                 * stored in the register save area
1975   //                 * fpr=0 corresponds to f1,
1976   //                 * fpr=1 to f2, etc.
1977   //                 */
1978   //  char *overflow_arg_area;
1979   //                /* location on stack that holds
1980   //                 * the next overflow argument
1981   //                 */
1982   //  char *reg_save_area;
1983   //               /* where r3:r10 and f1:f8 (if saved)
1984   //                * are stored
1985   //                */
1986   // } va_list[1];
1987
1988
1989   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1990   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1991
1992
1993   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1994
1995   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1996                                             PtrVT);
1997   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1998                                  PtrVT);
1999
2000   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2001   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
2002
2003   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2004   SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
2005
2006   uint64_t FPROffset = 1;
2007   SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
2008
2009   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2010
2011   // Store first byte : number of int regs
2012   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
2013                                          Op.getOperand(1),
2014                                          MachinePointerInfo(SV),
2015                                          MVT::i8, false, false, 0);
2016   uint64_t nextOffset = FPROffset;
2017   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2018                                   ConstFPROffset);
2019
2020   // Store second byte : number of float regs
2021   SDValue secondStore =
2022     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2023                       MachinePointerInfo(SV, nextOffset), MVT::i8,
2024                       false, false, 0);
2025   nextOffset += StackOffset;
2026   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2027
2028   // Store second word : arguments given on stack
2029   SDValue thirdStore =
2030     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2031                  MachinePointerInfo(SV, nextOffset),
2032                  false, false, 0);
2033   nextOffset += FrameOffset;
2034   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2035
2036   // Store third word : arguments given in registers
2037   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2038                       MachinePointerInfo(SV, nextOffset),
2039                       false, false, 0);
2040
2041 }
2042
2043 #include "PPCGenCallingConv.inc"
2044
2045 // Function whose sole purpose is to kill compiler warnings 
2046 // stemming from unused functions included from PPCGenCallingConv.inc.
2047 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2048   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2049 }
2050
2051 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2052                                       CCValAssign::LocInfo &LocInfo,
2053                                       ISD::ArgFlagsTy &ArgFlags,
2054                                       CCState &State) {
2055   return true;
2056 }
2057
2058 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2059                                              MVT &LocVT,
2060                                              CCValAssign::LocInfo &LocInfo,
2061                                              ISD::ArgFlagsTy &ArgFlags,
2062                                              CCState &State) {
2063   static const MCPhysReg ArgRegs[] = {
2064     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2065     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2066   };
2067   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2068
2069   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
2070
2071   // Skip one register if the first unallocated register has an even register
2072   // number and there are still argument registers available which have not been
2073   // allocated yet. RegNum is actually an index into ArgRegs, which means we
2074   // need to skip a register if RegNum is odd.
2075   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
2076     State.AllocateReg(ArgRegs[RegNum]);
2077   }
2078
2079   // Always return false here, as this function only makes sure that the first
2080   // unallocated register has an odd register number and does not actually
2081   // allocate a register for the current argument.
2082   return false;
2083 }
2084
2085 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
2086                                                MVT &LocVT,
2087                                                CCValAssign::LocInfo &LocInfo,
2088                                                ISD::ArgFlagsTy &ArgFlags,
2089                                                CCState &State) {
2090   static const MCPhysReg ArgRegs[] = {
2091     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2092     PPC::F8
2093   };
2094
2095   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2096
2097   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
2098
2099   // If there is only one Floating-point register left we need to put both f64
2100   // values of a split ppc_fp128 value on the stack.
2101   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
2102     State.AllocateReg(ArgRegs[RegNum]);
2103   }
2104
2105   // Always return false here, as this function only makes sure that the two f64
2106   // values a ppc_fp128 value is split into are both passed in registers or both
2107   // passed on the stack and does not actually allocate a register for the
2108   // current argument.
2109   return false;
2110 }
2111
2112 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
2113 /// on Darwin.
2114 static const MCPhysReg *GetFPR() {
2115   static const MCPhysReg FPR[] = {
2116     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2117     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
2118   };
2119
2120   return FPR;
2121 }
2122
2123 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
2124 /// the stack.
2125 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
2126                                        unsigned PtrByteSize) {
2127   unsigned ArgSize = ArgVT.getStoreSize();
2128   if (Flags.isByVal())
2129     ArgSize = Flags.getByValSize();
2130   ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2131
2132   return ArgSize;
2133 }
2134
2135 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
2136 /// on the stack.
2137 static unsigned CalculateStackSlotAlignment(EVT ArgVT, ISD::ArgFlagsTy Flags,
2138                                             unsigned PtrByteSize) {
2139   unsigned Align = PtrByteSize;
2140
2141   // Altivec parameters are padded to a 16 byte boundary.
2142   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2143       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2144       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
2145     Align = 16;
2146
2147   // ByVal parameters are aligned as requested.
2148   if (Flags.isByVal()) {
2149     unsigned BVAlign = Flags.getByValAlign();
2150     if (BVAlign > PtrByteSize) {
2151       if (BVAlign % PtrByteSize != 0)
2152           llvm_unreachable(
2153             "ByVal alignment is not a multiple of the pointer size");
2154
2155       Align = BVAlign;
2156     }
2157   }
2158
2159   return Align;
2160 }
2161
2162 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
2163 /// ensure minimum alignment required for target.
2164 static unsigned EnsureStackAlignment(const TargetMachine &Target,
2165                                      unsigned NumBytes) {
2166   unsigned TargetAlign = Target.getFrameLowering()->getStackAlignment();
2167   unsigned AlignMask = TargetAlign - 1;
2168   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2169   return NumBytes;
2170 }
2171
2172 SDValue
2173 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
2174                                         CallingConv::ID CallConv, bool isVarArg,
2175                                         const SmallVectorImpl<ISD::InputArg>
2176                                           &Ins,
2177                                         SDLoc dl, SelectionDAG &DAG,
2178                                         SmallVectorImpl<SDValue> &InVals)
2179                                           const {
2180   if (Subtarget.isSVR4ABI()) {
2181     if (Subtarget.isPPC64())
2182       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
2183                                          dl, DAG, InVals);
2184     else
2185       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
2186                                          dl, DAG, InVals);
2187   } else {
2188     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
2189                                        dl, DAG, InVals);
2190   }
2191 }
2192
2193 SDValue
2194 PPCTargetLowering::LowerFormalArguments_32SVR4(
2195                                       SDValue Chain,
2196                                       CallingConv::ID CallConv, bool isVarArg,
2197                                       const SmallVectorImpl<ISD::InputArg>
2198                                         &Ins,
2199                                       SDLoc dl, SelectionDAG &DAG,
2200                                       SmallVectorImpl<SDValue> &InVals) const {
2201
2202   // 32-bit SVR4 ABI Stack Frame Layout:
2203   //              +-----------------------------------+
2204   //        +-->  |            Back chain             |
2205   //        |     +-----------------------------------+
2206   //        |     | Floating-point register save area |
2207   //        |     +-----------------------------------+
2208   //        |     |    General register save area     |
2209   //        |     +-----------------------------------+
2210   //        |     |          CR save word             |
2211   //        |     +-----------------------------------+
2212   //        |     |         VRSAVE save word          |
2213   //        |     +-----------------------------------+
2214   //        |     |         Alignment padding         |
2215   //        |     +-----------------------------------+
2216   //        |     |     Vector register save area     |
2217   //        |     +-----------------------------------+
2218   //        |     |       Local variable space        |
2219   //        |     +-----------------------------------+
2220   //        |     |        Parameter list area        |
2221   //        |     +-----------------------------------+
2222   //        |     |           LR save word            |
2223   //        |     +-----------------------------------+
2224   // SP-->  +---  |            Back chain             |
2225   //              +-----------------------------------+
2226   //
2227   // Specifications:
2228   //   System V Application Binary Interface PowerPC Processor Supplement
2229   //   AltiVec Technology Programming Interface Manual
2230
2231   MachineFunction &MF = DAG.getMachineFunction();
2232   MachineFrameInfo *MFI = MF.getFrameInfo();
2233   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2234
2235   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2236   // Potential tail calls could cause overwriting of argument stack slots.
2237   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2238                        (CallConv == CallingConv::Fast));
2239   unsigned PtrByteSize = 4;
2240
2241   // Assign locations to all of the incoming arguments.
2242   SmallVector<CCValAssign, 16> ArgLocs;
2243   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2244                  getTargetMachine(), ArgLocs, *DAG.getContext());
2245
2246   // Reserve space for the linkage area on the stack.
2247   unsigned LinkageSize = PPCFrameLowering::getLinkageSize(false, false);
2248   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
2249
2250   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
2251
2252   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2253     CCValAssign &VA = ArgLocs[i];
2254
2255     // Arguments stored in registers.
2256     if (VA.isRegLoc()) {
2257       const TargetRegisterClass *RC;
2258       EVT ValVT = VA.getValVT();
2259
2260       switch (ValVT.getSimpleVT().SimpleTy) {
2261         default:
2262           llvm_unreachable("ValVT not supported by formal arguments Lowering");
2263         case MVT::i1:
2264         case MVT::i32:
2265           RC = &PPC::GPRCRegClass;
2266           break;
2267         case MVT::f32:
2268           RC = &PPC::F4RCRegClass;
2269           break;
2270         case MVT::f64:
2271           if (Subtarget.hasVSX())
2272             RC = &PPC::VSFRCRegClass;
2273           else
2274             RC = &PPC::F8RCRegClass;
2275           break;
2276         case MVT::v16i8:
2277         case MVT::v8i16:
2278         case MVT::v4i32:
2279         case MVT::v4f32:
2280           RC = &PPC::VRRCRegClass;
2281           break;
2282         case MVT::v2f64:
2283         case MVT::v2i64:
2284           RC = &PPC::VSHRCRegClass;
2285           break;
2286       }
2287
2288       // Transform the arguments stored in physical registers into virtual ones.
2289       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2290       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2291                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
2292
2293       if (ValVT == MVT::i1)
2294         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
2295
2296       InVals.push_back(ArgValue);
2297     } else {
2298       // Argument stored in memory.
2299       assert(VA.isMemLoc());
2300
2301       unsigned ArgSize = VA.getLocVT().getStoreSize();
2302       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2303                                       isImmutable);
2304
2305       // Create load nodes to retrieve arguments from the stack.
2306       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2307       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2308                                    MachinePointerInfo(),
2309                                    false, false, false, 0));
2310     }
2311   }
2312
2313   // Assign locations to all of the incoming aggregate by value arguments.
2314   // Aggregates passed by value are stored in the local variable space of the
2315   // caller's stack frame, right above the parameter list area.
2316   SmallVector<CCValAssign, 16> ByValArgLocs;
2317   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2318                       getTargetMachine(), ByValArgLocs, *DAG.getContext());
2319
2320   // Reserve stack space for the allocations in CCInfo.
2321   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2322
2323   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2324
2325   // Area that is at least reserved in the caller of this function.
2326   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2327   MinReservedArea = std::max(MinReservedArea, LinkageSize);
2328
2329   // Set the size that is at least reserved in caller of this function.  Tail
2330   // call optimized function's reserved stack space needs to be aligned so that
2331   // taking the difference between two stack areas will result in an aligned
2332   // stack.
2333   MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
2334   FuncInfo->setMinReservedArea(MinReservedArea);
2335
2336   SmallVector<SDValue, 8> MemOps;
2337
2338   // If the function takes variable number of arguments, make a frame index for
2339   // the start of the first vararg value... for expansion of llvm.va_start.
2340   if (isVarArg) {
2341     static const MCPhysReg GPArgRegs[] = {
2342       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2343       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2344     };
2345     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2346
2347     static const MCPhysReg FPArgRegs[] = {
2348       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2349       PPC::F8
2350     };
2351     const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2352
2353     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2354                                                           NumGPArgRegs));
2355     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2356                                                           NumFPArgRegs));
2357
2358     // Make room for NumGPArgRegs and NumFPArgRegs.
2359     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2360                 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2361
2362     FuncInfo->setVarArgsStackOffset(
2363       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2364                              CCInfo.getNextStackOffset(), true));
2365
2366     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2367     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2368
2369     // The fixed integer arguments of a variadic function are stored to the
2370     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2371     // the result of va_next.
2372     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2373       // Get an existing live-in vreg, or add a new one.
2374       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2375       if (!VReg)
2376         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2377
2378       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2379       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2380                                    MachinePointerInfo(), false, false, 0);
2381       MemOps.push_back(Store);
2382       // Increment the address by four for the next argument to store
2383       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2384       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2385     }
2386
2387     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2388     // is set.
2389     // The double arguments are stored to the VarArgsFrameIndex
2390     // on the stack.
2391     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2392       // Get an existing live-in vreg, or add a new one.
2393       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2394       if (!VReg)
2395         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2396
2397       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2398       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2399                                    MachinePointerInfo(), false, false, 0);
2400       MemOps.push_back(Store);
2401       // Increment the address by eight for the next argument to store
2402       SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2403                                          PtrVT);
2404       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2405     }
2406   }
2407
2408   if (!MemOps.empty())
2409     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2410
2411   return Chain;
2412 }
2413
2414 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2415 // value to MVT::i64 and then truncate to the correct register size.
2416 SDValue
2417 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2418                                      SelectionDAG &DAG, SDValue ArgVal,
2419                                      SDLoc dl) const {
2420   if (Flags.isSExt())
2421     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2422                          DAG.getValueType(ObjectVT));
2423   else if (Flags.isZExt())
2424     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2425                          DAG.getValueType(ObjectVT));
2426
2427   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
2428 }
2429
2430 SDValue
2431 PPCTargetLowering::LowerFormalArguments_64SVR4(
2432                                       SDValue Chain,
2433                                       CallingConv::ID CallConv, bool isVarArg,
2434                                       const SmallVectorImpl<ISD::InputArg>
2435                                         &Ins,
2436                                       SDLoc dl, SelectionDAG &DAG,
2437                                       SmallVectorImpl<SDValue> &InVals) const {
2438   // TODO: add description of PPC stack frame format, or at least some docs.
2439   //
2440   bool isLittleEndian = Subtarget.isLittleEndian();
2441   MachineFunction &MF = DAG.getMachineFunction();
2442   MachineFrameInfo *MFI = MF.getFrameInfo();
2443   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2444
2445   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2446   // Potential tail calls could cause overwriting of argument stack slots.
2447   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2448                        (CallConv == CallingConv::Fast));
2449   unsigned PtrByteSize = 8;
2450
2451   unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false);
2452   unsigned ArgOffset = LinkageSize;
2453
2454   static const MCPhysReg GPR[] = {
2455     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2456     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2457   };
2458
2459   static const MCPhysReg *FPR = GetFPR();
2460
2461   static const MCPhysReg VR[] = {
2462     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2463     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2464   };
2465   static const MCPhysReg VSRH[] = {
2466     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
2467     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
2468   };
2469
2470   const unsigned Num_GPR_Regs = array_lengthof(GPR);
2471   const unsigned Num_FPR_Regs = 13;
2472   const unsigned Num_VR_Regs  = array_lengthof(VR);
2473
2474   unsigned GPR_idx, FPR_idx = 0, VR_idx = 0;
2475
2476   // Add DAG nodes to load the arguments or copy them out of registers.  On
2477   // entry to a function on PPC, the arguments start after the linkage area,
2478   // although the first ones are often in registers.
2479
2480   SmallVector<SDValue, 8> MemOps;
2481   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2482   unsigned CurArgIdx = 0;
2483   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2484     SDValue ArgVal;
2485     bool needsLoad = false;
2486     EVT ObjectVT = Ins[ArgNo].VT;
2487     unsigned ObjSize = ObjectVT.getStoreSize();
2488     unsigned ArgSize = ObjSize;
2489     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2490     std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2491     CurArgIdx = Ins[ArgNo].OrigArgIndex;
2492
2493     /* Respect alignment of argument on the stack.  */
2494     unsigned Align =
2495       CalculateStackSlotAlignment(ObjectVT, Flags, PtrByteSize);
2496     ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
2497     unsigned CurArgOffset = ArgOffset;
2498
2499     /* Compute GPR index associated with argument offset.  */
2500     GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
2501     GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
2502
2503     // FIXME the codegen can be much improved in some cases.
2504     // We do not have to keep everything in memory.
2505     if (Flags.isByVal()) {
2506       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2507       ObjSize = Flags.getByValSize();
2508       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2509       // Empty aggregate parameters do not take up registers.  Examples:
2510       //   struct { } a;
2511       //   union  { } b;
2512       //   int c[0];
2513       // etc.  However, we have to provide a place-holder in InVals, so
2514       // pretend we have an 8-byte item at the current address for that
2515       // purpose.
2516       if (!ObjSize) {
2517         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2518         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2519         InVals.push_back(FIN);
2520         continue;
2521       }
2522
2523       // All aggregates smaller than 8 bytes must be passed right-justified.
2524       if (ObjSize < PtrByteSize && !isLittleEndian)
2525         CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2526       // The value of the object is its address.
2527       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2528       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2529       InVals.push_back(FIN);
2530
2531       if (ObjSize < 8) {
2532         if (GPR_idx != Num_GPR_Regs) {
2533           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2534           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2535           SDValue Store;
2536
2537           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2538             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2539                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
2540             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2541                                       MachinePointerInfo(FuncArg),
2542                                       ObjType, false, false, 0);
2543           } else {
2544             // For sizes that don't fit a truncating store (3, 5, 6, 7),
2545             // store the whole register as-is to the parameter save area
2546             // slot.  The address of the parameter was already calculated
2547             // above (InVals.push_back(FIN)) to be the right-justified
2548             // offset within the slot.  For this store, we need a new
2549             // frame index that points at the beginning of the slot.
2550             int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2551             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2552             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2553                                  MachinePointerInfo(FuncArg),
2554                                  false, false, 0);
2555           }
2556
2557           MemOps.push_back(Store);
2558         }
2559         // Whether we copied from a register or not, advance the offset
2560         // into the parameter save area by a full doubleword.
2561         ArgOffset += PtrByteSize;
2562         continue;
2563       }
2564
2565       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2566         // Store whatever pieces of the object are in registers
2567         // to memory.  ArgOffset will be the address of the beginning
2568         // of the object.
2569         if (GPR_idx != Num_GPR_Regs) {
2570           unsigned VReg;
2571           VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2572           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2573           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2574           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2575           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2576                                        MachinePointerInfo(FuncArg, j),
2577                                        false, false, 0);
2578           MemOps.push_back(Store);
2579           ++GPR_idx;
2580           ArgOffset += PtrByteSize;
2581         } else {
2582           ArgOffset += ArgSize - j;
2583           break;
2584         }
2585       }
2586       continue;
2587     }
2588
2589     switch (ObjectVT.getSimpleVT().SimpleTy) {
2590     default: llvm_unreachable("Unhandled argument type!");
2591     case MVT::i1:
2592     case MVT::i32:
2593     case MVT::i64:
2594       if (GPR_idx != Num_GPR_Regs) {
2595         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2596         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2597
2598         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
2599           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2600           // value to MVT::i64 and then truncate to the correct register size.
2601           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2602       } else {
2603         needsLoad = true;
2604         ArgSize = PtrByteSize;
2605       }
2606       ArgOffset += 8;
2607       break;
2608
2609     case MVT::f32:
2610     case MVT::f64:
2611       if (FPR_idx != Num_FPR_Regs) {
2612         unsigned VReg;
2613
2614         if (ObjectVT == MVT::f32)
2615           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2616         else
2617           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() ?
2618                                             &PPC::VSFRCRegClass :
2619                                             &PPC::F8RCRegClass);
2620
2621         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2622         ++FPR_idx;
2623       } else {
2624         needsLoad = true;
2625         ArgSize = PtrByteSize;
2626       }
2627
2628       ArgOffset += 8;
2629       break;
2630     case MVT::v4f32:
2631     case MVT::v4i32:
2632     case MVT::v8i16:
2633     case MVT::v16i8:
2634     case MVT::v2f64:
2635     case MVT::v2i64:
2636       if (VR_idx != Num_VR_Regs) {
2637         unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
2638                         MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
2639                         MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2640         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2641         ++VR_idx;
2642       } else {
2643         needsLoad = true;
2644       }
2645       ArgOffset += 16;
2646       break;
2647     }
2648
2649     // We need to load the argument to a virtual register if we determined
2650     // above that we ran out of physical registers of the appropriate type.
2651     if (needsLoad) {
2652       if (ObjSize < ArgSize && !isLittleEndian)
2653         CurArgOffset += ArgSize - ObjSize;
2654       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
2655       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2656       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2657                            false, false, false, 0);
2658     }
2659
2660     InVals.push_back(ArgVal);
2661   }
2662
2663   // Area that is at least reserved in the caller of this function.
2664   unsigned MinReservedArea;
2665   MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
2666
2667   // Set the size that is at least reserved in caller of this function.  Tail
2668   // call optimized functions' reserved stack space needs to be aligned so that
2669   // taking the difference between two stack areas will result in an aligned
2670   // stack.
2671   MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
2672   FuncInfo->setMinReservedArea(MinReservedArea);
2673
2674   // If the function takes variable number of arguments, make a frame index for
2675   // the start of the first vararg value... for expansion of llvm.va_start.
2676   if (isVarArg) {
2677     int Depth = ArgOffset;
2678
2679     FuncInfo->setVarArgsFrameIndex(
2680       MFI->CreateFixedObject(PtrByteSize, Depth, true));
2681     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2682
2683     // If this function is vararg, store any remaining integer argument regs
2684     // to their spots on the stack so that they may be loaded by deferencing the
2685     // result of va_next.
2686     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
2687          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
2688       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2689       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2690       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2691                                    MachinePointerInfo(), false, false, 0);
2692       MemOps.push_back(Store);
2693       // Increment the address by four for the next argument to store
2694       SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2695       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2696     }
2697   }
2698
2699   if (!MemOps.empty())
2700     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2701
2702   return Chain;
2703 }
2704
2705 SDValue
2706 PPCTargetLowering::LowerFormalArguments_Darwin(
2707                                       SDValue Chain,
2708                                       CallingConv::ID CallConv, bool isVarArg,
2709                                       const SmallVectorImpl<ISD::InputArg>
2710                                         &Ins,
2711                                       SDLoc dl, SelectionDAG &DAG,
2712                                       SmallVectorImpl<SDValue> &InVals) const {
2713   // TODO: add description of PPC stack frame format, or at least some docs.
2714   //
2715   MachineFunction &MF = DAG.getMachineFunction();
2716   MachineFrameInfo *MFI = MF.getFrameInfo();
2717   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2718
2719   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2720   bool isPPC64 = PtrVT == MVT::i64;
2721   // Potential tail calls could cause overwriting of argument stack slots.
2722   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2723                        (CallConv == CallingConv::Fast));
2724   unsigned PtrByteSize = isPPC64 ? 8 : 4;
2725
2726   unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true);
2727   unsigned ArgOffset = LinkageSize;
2728   // Area that is at least reserved in caller of this function.
2729   unsigned MinReservedArea = ArgOffset;
2730
2731   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
2732     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2733     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2734   };
2735   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
2736     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2737     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2738   };
2739
2740   static const MCPhysReg *FPR = GetFPR();
2741
2742   static const MCPhysReg VR[] = {
2743     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2744     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2745   };
2746
2747   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2748   const unsigned Num_FPR_Regs = 13;
2749   const unsigned Num_VR_Regs  = array_lengthof( VR);
2750
2751   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2752
2753   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
2754
2755   // In 32-bit non-varargs functions, the stack space for vectors is after the
2756   // stack space for non-vectors.  We do not use this space unless we have
2757   // too many vectors to fit in registers, something that only occurs in
2758   // constructed examples:), but we have to walk the arglist to figure
2759   // that out...for the pathological case, compute VecArgOffset as the
2760   // start of the vector parameter area.  Computing VecArgOffset is the
2761   // entire point of the following loop.
2762   unsigned VecArgOffset = ArgOffset;
2763   if (!isVarArg && !isPPC64) {
2764     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2765          ++ArgNo) {
2766       EVT ObjectVT = Ins[ArgNo].VT;
2767       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2768
2769       if (Flags.isByVal()) {
2770         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2771         unsigned ObjSize = Flags.getByValSize();
2772         unsigned ArgSize =
2773                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2774         VecArgOffset += ArgSize;
2775         continue;
2776       }
2777
2778       switch(ObjectVT.getSimpleVT().SimpleTy) {
2779       default: llvm_unreachable("Unhandled argument type!");
2780       case MVT::i1:
2781       case MVT::i32:
2782       case MVT::f32:
2783         VecArgOffset += 4;
2784         break;
2785       case MVT::i64:  // PPC64
2786       case MVT::f64:
2787         // FIXME: We are guaranteed to be !isPPC64 at this point.
2788         // Does MVT::i64 apply?
2789         VecArgOffset += 8;
2790         break;
2791       case MVT::v4f32:
2792       case MVT::v4i32:
2793       case MVT::v8i16:
2794       case MVT::v16i8:
2795         // Nothing to do, we're only looking at Nonvector args here.
2796         break;
2797       }
2798     }
2799   }
2800   // We've found where the vector parameter area in memory is.  Skip the
2801   // first 12 parameters; these don't use that memory.
2802   VecArgOffset = ((VecArgOffset+15)/16)*16;
2803   VecArgOffset += 12*16;
2804
2805   // Add DAG nodes to load the arguments or copy them out of registers.  On
2806   // entry to a function on PPC, the arguments start after the linkage area,
2807   // although the first ones are often in registers.
2808
2809   SmallVector<SDValue, 8> MemOps;
2810   unsigned nAltivecParamsAtEnd = 0;
2811   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2812   unsigned CurArgIdx = 0;
2813   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2814     SDValue ArgVal;
2815     bool needsLoad = false;
2816     EVT ObjectVT = Ins[ArgNo].VT;
2817     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2818     unsigned ArgSize = ObjSize;
2819     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2820     std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2821     CurArgIdx = Ins[ArgNo].OrigArgIndex;
2822
2823     unsigned CurArgOffset = ArgOffset;
2824
2825     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2826     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2827         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2828       if (isVarArg || isPPC64) {
2829         MinReservedArea = ((MinReservedArea+15)/16)*16;
2830         MinReservedArea += CalculateStackSlotSize(ObjectVT,
2831                                                   Flags,
2832                                                   PtrByteSize);
2833       } else  nAltivecParamsAtEnd++;
2834     } else
2835       // Calculate min reserved area.
2836       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2837                                                 Flags,
2838                                                 PtrByteSize);
2839
2840     // FIXME the codegen can be much improved in some cases.
2841     // We do not have to keep everything in memory.
2842     if (Flags.isByVal()) {
2843       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2844       ObjSize = Flags.getByValSize();
2845       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2846       // Objects of size 1 and 2 are right justified, everything else is
2847       // left justified.  This means the memory address is adjusted forwards.
2848       if (ObjSize==1 || ObjSize==2) {
2849         CurArgOffset = CurArgOffset + (4 - ObjSize);
2850       }
2851       // The value of the object is its address.
2852       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2853       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2854       InVals.push_back(FIN);
2855       if (ObjSize==1 || ObjSize==2) {
2856         if (GPR_idx != Num_GPR_Regs) {
2857           unsigned VReg;
2858           if (isPPC64)
2859             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2860           else
2861             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2862           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2863           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2864           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2865                                             MachinePointerInfo(FuncArg),
2866                                             ObjType, false, false, 0);
2867           MemOps.push_back(Store);
2868           ++GPR_idx;
2869         }
2870
2871         ArgOffset += PtrByteSize;
2872
2873         continue;
2874       }
2875       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2876         // Store whatever pieces of the object are in registers
2877         // to memory.  ArgOffset will be the address of the beginning
2878         // of the object.
2879         if (GPR_idx != Num_GPR_Regs) {
2880           unsigned VReg;
2881           if (isPPC64)
2882             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2883           else
2884             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2885           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2886           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2887           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2888           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2889                                        MachinePointerInfo(FuncArg, j),
2890                                        false, false, 0);
2891           MemOps.push_back(Store);
2892           ++GPR_idx;
2893           ArgOffset += PtrByteSize;
2894         } else {
2895           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2896           break;
2897         }
2898       }
2899       continue;
2900     }
2901
2902     switch (ObjectVT.getSimpleVT().SimpleTy) {
2903     default: llvm_unreachable("Unhandled argument type!");
2904     case MVT::i1:
2905     case MVT::i32:
2906       if (!isPPC64) {
2907         if (GPR_idx != Num_GPR_Regs) {
2908           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2909           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2910
2911           if (ObjectVT == MVT::i1)
2912             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
2913
2914           ++GPR_idx;
2915         } else {
2916           needsLoad = true;
2917           ArgSize = PtrByteSize;
2918         }
2919         // All int arguments reserve stack space in the Darwin ABI.
2920         ArgOffset += PtrByteSize;
2921         break;
2922       }
2923       // FALLTHROUGH
2924     case MVT::i64:  // PPC64
2925       if (GPR_idx != Num_GPR_Regs) {
2926         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2927         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2928
2929         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
2930           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2931           // value to MVT::i64 and then truncate to the correct register size.
2932           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2933
2934         ++GPR_idx;
2935       } else {
2936         needsLoad = true;
2937         ArgSize = PtrByteSize;
2938       }
2939       // All int arguments reserve stack space in the Darwin ABI.
2940       ArgOffset += 8;
2941       break;
2942
2943     case MVT::f32:
2944     case MVT::f64:
2945       // Every 4 bytes of argument space consumes one of the GPRs available for
2946       // argument passing.
2947       if (GPR_idx != Num_GPR_Regs) {
2948         ++GPR_idx;
2949         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2950           ++GPR_idx;
2951       }
2952       if (FPR_idx != Num_FPR_Regs) {
2953         unsigned VReg;
2954
2955         if (ObjectVT == MVT::f32)
2956           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2957         else
2958           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2959
2960         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2961         ++FPR_idx;
2962       } else {
2963         needsLoad = true;
2964       }
2965
2966       // All FP arguments reserve stack space in the Darwin ABI.
2967       ArgOffset += isPPC64 ? 8 : ObjSize;
2968       break;
2969     case MVT::v4f32:
2970     case MVT::v4i32:
2971     case MVT::v8i16:
2972     case MVT::v16i8:
2973       // Note that vector arguments in registers don't reserve stack space,
2974       // except in varargs functions.
2975       if (VR_idx != Num_VR_Regs) {
2976         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2977         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2978         if (isVarArg) {
2979           while ((ArgOffset % 16) != 0) {
2980             ArgOffset += PtrByteSize;
2981             if (GPR_idx != Num_GPR_Regs)
2982               GPR_idx++;
2983           }
2984           ArgOffset += 16;
2985           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2986         }
2987         ++VR_idx;
2988       } else {
2989         if (!isVarArg && !isPPC64) {
2990           // Vectors go after all the nonvectors.
2991           CurArgOffset = VecArgOffset;
2992           VecArgOffset += 16;
2993         } else {
2994           // Vectors are aligned.
2995           ArgOffset = ((ArgOffset+15)/16)*16;
2996           CurArgOffset = ArgOffset;
2997           ArgOffset += 16;
2998         }
2999         needsLoad = true;
3000       }
3001       break;
3002     }
3003
3004     // We need to load the argument to a virtual register if we determined above
3005     // that we ran out of physical registers of the appropriate type.
3006     if (needsLoad) {
3007       int FI = MFI->CreateFixedObject(ObjSize,
3008                                       CurArgOffset + (ArgSize - ObjSize),
3009                                       isImmutable);
3010       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3011       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3012                            false, false, false, 0);
3013     }
3014
3015     InVals.push_back(ArgVal);
3016   }
3017
3018   // Allow for Altivec parameters at the end, if needed.
3019   if (nAltivecParamsAtEnd) {
3020     MinReservedArea = ((MinReservedArea+15)/16)*16;
3021     MinReservedArea += 16*nAltivecParamsAtEnd;
3022   }
3023
3024   // Area that is at least reserved in the caller of this function.
3025   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
3026
3027   // Set the size that is at least reserved in caller of this function.  Tail
3028   // call optimized functions' reserved stack space needs to be aligned so that
3029   // taking the difference between two stack areas will result in an aligned
3030   // stack.
3031   MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
3032   FuncInfo->setMinReservedArea(MinReservedArea);
3033
3034   // If the function takes variable number of arguments, make a frame index for
3035   // the start of the first vararg value... for expansion of llvm.va_start.
3036   if (isVarArg) {
3037     int Depth = ArgOffset;
3038
3039     FuncInfo->setVarArgsFrameIndex(
3040       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
3041                              Depth, true));
3042     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3043
3044     // If this function is vararg, store any remaining integer argument regs
3045     // to their spots on the stack so that they may be loaded by deferencing the
3046     // result of va_next.
3047     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
3048       unsigned VReg;
3049
3050       if (isPPC64)
3051         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3052       else
3053         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3054
3055       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3056       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3057                                    MachinePointerInfo(), false, false, 0);
3058       MemOps.push_back(Store);
3059       // Increment the address by four for the next argument to store
3060       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
3061       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3062     }
3063   }
3064
3065   if (!MemOps.empty())
3066     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3067
3068   return Chain;
3069 }
3070
3071 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
3072 /// adjusted to accommodate the arguments for the tailcall.
3073 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
3074                                    unsigned ParamSize) {
3075
3076   if (!isTailCall) return 0;
3077
3078   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
3079   unsigned CallerMinReservedArea = FI->getMinReservedArea();
3080   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
3081   // Remember only if the new adjustement is bigger.
3082   if (SPDiff < FI->getTailCallSPDelta())
3083     FI->setTailCallSPDelta(SPDiff);
3084
3085   return SPDiff;
3086 }
3087
3088 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3089 /// for tail call optimization. Targets which want to do tail call
3090 /// optimization should implement this function.
3091 bool
3092 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3093                                                      CallingConv::ID CalleeCC,
3094                                                      bool isVarArg,
3095                                       const SmallVectorImpl<ISD::InputArg> &Ins,
3096                                                      SelectionDAG& DAG) const {
3097   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
3098     return false;
3099
3100   // Variable argument functions are not supported.
3101   if (isVarArg)
3102     return false;
3103
3104   MachineFunction &MF = DAG.getMachineFunction();
3105   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
3106   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
3107     // Functions containing by val parameters are not supported.
3108     for (unsigned i = 0; i != Ins.size(); i++) {
3109        ISD::ArgFlagsTy Flags = Ins[i].Flags;
3110        if (Flags.isByVal()) return false;
3111     }
3112
3113     // Non-PIC/GOT tail calls are supported.
3114     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
3115       return true;
3116
3117     // At the moment we can only do local tail calls (in same module, hidden
3118     // or protected) if we are generating PIC.
3119     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3120       return G->getGlobal()->hasHiddenVisibility()
3121           || G->getGlobal()->hasProtectedVisibility();
3122   }
3123
3124   return false;
3125 }
3126
3127 /// isCallCompatibleAddress - Return the immediate to use if the specified
3128 /// 32-bit value is representable in the immediate field of a BxA instruction.
3129 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
3130   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3131   if (!C) return nullptr;
3132
3133   int Addr = C->getZExtValue();
3134   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
3135       SignExtend32<26>(Addr) != Addr)
3136     return nullptr;  // Top 6 bits have to be sext of immediate.
3137
3138   return DAG.getConstant((int)C->getZExtValue() >> 2,
3139                          DAG.getTargetLoweringInfo().getPointerTy()).getNode();
3140 }
3141
3142 namespace {
3143
3144 struct TailCallArgumentInfo {
3145   SDValue Arg;
3146   SDValue FrameIdxOp;
3147   int       FrameIdx;
3148
3149   TailCallArgumentInfo() : FrameIdx(0) {}
3150 };
3151
3152 }
3153
3154 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
3155 static void
3156 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
3157                                            SDValue Chain,
3158                    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
3159                    SmallVectorImpl<SDValue> &MemOpChains,
3160                    SDLoc dl) {
3161   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
3162     SDValue Arg = TailCallArgs[i].Arg;
3163     SDValue FIN = TailCallArgs[i].FrameIdxOp;
3164     int FI = TailCallArgs[i].FrameIdx;
3165     // Store relative to framepointer.
3166     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
3167                                        MachinePointerInfo::getFixedStack(FI),
3168                                        false, false, 0));
3169   }
3170 }
3171
3172 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
3173 /// the appropriate stack slot for the tail call optimized function call.
3174 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
3175                                                MachineFunction &MF,
3176                                                SDValue Chain,
3177                                                SDValue OldRetAddr,
3178                                                SDValue OldFP,
3179                                                int SPDiff,
3180                                                bool isPPC64,
3181                                                bool isDarwinABI,
3182                                                SDLoc dl) {
3183   if (SPDiff) {
3184     // Calculate the new stack slot for the return address.
3185     int SlotSize = isPPC64 ? 8 : 4;
3186     int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
3187                                                                    isDarwinABI);
3188     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3189                                                           NewRetAddrLoc, true);
3190     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3191     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
3192     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
3193                          MachinePointerInfo::getFixedStack(NewRetAddr),
3194                          false, false, 0);
3195
3196     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
3197     // slot as the FP is never overwritten.
3198     if (isDarwinABI) {
3199       int NewFPLoc =
3200         SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
3201       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
3202                                                           true);
3203       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
3204       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
3205                            MachinePointerInfo::getFixedStack(NewFPIdx),
3206                            false, false, 0);
3207     }
3208   }
3209   return Chain;
3210 }
3211
3212 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
3213 /// the position of the argument.
3214 static void
3215 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
3216                          SDValue Arg, int SPDiff, unsigned ArgOffset,
3217                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
3218   int Offset = ArgOffset + SPDiff;
3219   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
3220   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3221   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3222   SDValue FIN = DAG.getFrameIndex(FI, VT);
3223   TailCallArgumentInfo Info;
3224   Info.Arg = Arg;
3225   Info.FrameIdxOp = FIN;
3226   Info.FrameIdx = FI;
3227   TailCallArguments.push_back(Info);
3228 }
3229
3230 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
3231 /// stack slot. Returns the chain as result and the loaded frame pointers in
3232 /// LROpOut/FPOpout. Used when tail calling.
3233 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
3234                                                         int SPDiff,
3235                                                         SDValue Chain,
3236                                                         SDValue &LROpOut,
3237                                                         SDValue &FPOpOut,
3238                                                         bool isDarwinABI,
3239                                                         SDLoc dl) const {
3240   if (SPDiff) {
3241     // Load the LR and FP stack slot for later adjusting.
3242     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
3243     LROpOut = getReturnAddrFrameIndex(DAG);
3244     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3245                           false, false, false, 0);
3246     Chain = SDValue(LROpOut.getNode(), 1);
3247
3248     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3249     // slot as the FP is never overwritten.
3250     if (isDarwinABI) {
3251       FPOpOut = getFramePointerFrameIndex(DAG);
3252       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3253                             false, false, false, 0);
3254       Chain = SDValue(FPOpOut.getNode(), 1);
3255     }
3256   }
3257   return Chain;
3258 }
3259
3260 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3261 /// by "Src" to address "Dst" of size "Size".  Alignment information is
3262 /// specified by the specific parameter attribute. The copy will be passed as
3263 /// a byval function parameter.
3264 /// Sometimes what we are copying is the end of a larger object, the part that
3265 /// does not fit in registers.
3266 static SDValue
3267 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3268                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3269                           SDLoc dl) {
3270   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3271   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3272                        false, false, MachinePointerInfo(),
3273                        MachinePointerInfo());
3274 }
3275
3276 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3277 /// tail calls.
3278 static void
3279 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3280                  SDValue Arg, SDValue PtrOff, int SPDiff,
3281                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
3282                  bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
3283                  SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
3284                  SDLoc dl) {
3285   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3286   if (!isTailCall) {
3287     if (isVector) {
3288       SDValue StackPtr;
3289       if (isPPC64)
3290         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3291       else
3292         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3293       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3294                            DAG.getConstant(ArgOffset, PtrVT));
3295     }
3296     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3297                                        MachinePointerInfo(), false, false, 0));
3298   // Calculate and remember argument location.
3299   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3300                                   TailCallArguments);
3301 }
3302
3303 static
3304 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3305                      SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3306                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
3307                      SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
3308   MachineFunction &MF = DAG.getMachineFunction();
3309
3310   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3311   // might overwrite each other in case of tail call optimization.
3312   SmallVector<SDValue, 8> MemOpChains2;
3313   // Do not flag preceding copytoreg stuff together with the following stuff.
3314   InFlag = SDValue();
3315   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3316                                     MemOpChains2, dl);
3317   if (!MemOpChains2.empty())
3318     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
3319
3320   // Store the return address to the appropriate stack slot.
3321   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3322                                         isPPC64, isDarwinABI, dl);
3323
3324   // Emit callseq_end just before tailcall node.
3325   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3326                              DAG.getIntPtrConstant(0, true), InFlag, dl);
3327   InFlag = Chain.getValue(1);
3328 }
3329
3330 static
3331 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3332                      SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
3333                      SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
3334                      SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
3335                      const PPCSubtarget &Subtarget) {
3336
3337   bool isPPC64 = Subtarget.isPPC64();
3338   bool isSVR4ABI = Subtarget.isSVR4ABI();
3339
3340   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3341   NodeTys.push_back(MVT::Other);   // Returns a chain
3342   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
3343
3344   unsigned CallOpc = PPCISD::CALL;
3345
3346   bool needIndirectCall = true;
3347   if (!isSVR4ABI || !isPPC64)
3348     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3349       // If this is an absolute destination address, use the munged value.
3350       Callee = SDValue(Dest, 0);
3351       needIndirectCall = false;
3352     }
3353
3354   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3355     // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3356     // Use indirect calls for ALL functions calls in JIT mode, since the
3357     // far-call stubs may be outside relocation limits for a BL instruction.
3358     if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3359       unsigned OpFlags = 0;
3360       if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3361           (Subtarget.getTargetTriple().isMacOSX() &&
3362            Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3363           (G->getGlobal()->isDeclaration() ||
3364            G->getGlobal()->isWeakForLinker())) {
3365         // PC-relative references to external symbols should go through $stub,
3366         // unless we're building with the leopard linker or later, which
3367         // automatically synthesizes these stubs.
3368         OpFlags = PPCII::MO_DARWIN_STUB;
3369       }
3370
3371       // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3372       // every direct call is) turn it into a TargetGlobalAddress /
3373       // TargetExternalSymbol node so that legalize doesn't hack it.
3374       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3375                                           Callee.getValueType(),
3376                                           0, OpFlags);
3377       needIndirectCall = false;
3378     }
3379   }
3380
3381   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3382     unsigned char OpFlags = 0;
3383
3384     if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3385         (Subtarget.getTargetTriple().isMacOSX() &&
3386          Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3387       // PC-relative references to external symbols should go through $stub,
3388       // unless we're building with the leopard linker or later, which
3389       // automatically synthesizes these stubs.
3390       OpFlags = PPCII::MO_DARWIN_STUB;
3391     }
3392
3393     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3394                                          OpFlags);
3395     needIndirectCall = false;
3396   }
3397
3398   if (needIndirectCall) {
3399     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3400     // to do the call, we can't use PPCISD::CALL.
3401     SDValue MTCTROps[] = {Chain, Callee, InFlag};
3402
3403     if (isSVR4ABI && isPPC64) {
3404       // Function pointers in the 64-bit SVR4 ABI do not point to the function
3405       // entry point, but to the function descriptor (the function entry point
3406       // address is part of the function descriptor though).
3407       // The function descriptor is a three doubleword structure with the
3408       // following fields: function entry point, TOC base address and
3409       // environment pointer.
3410       // Thus for a call through a function pointer, the following actions need
3411       // to be performed:
3412       //   1. Save the TOC of the caller in the TOC save area of its stack
3413       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3414       //   2. Load the address of the function entry point from the function
3415       //      descriptor.
3416       //   3. Load the TOC of the callee from the function descriptor into r2.
3417       //   4. Load the environment pointer from the function descriptor into
3418       //      r11.
3419       //   5. Branch to the function entry point address.
3420       //   6. On return of the callee, the TOC of the caller needs to be
3421       //      restored (this is done in FinishCall()).
3422       //
3423       // All those operations are flagged together to ensure that no other
3424       // operations can be scheduled in between. E.g. without flagging the
3425       // operations together, a TOC access in the caller could be scheduled
3426       // between the load of the callee TOC and the branch to the callee, which
3427       // results in the TOC access going through the TOC of the callee instead
3428       // of going through the TOC of the caller, which leads to incorrect code.
3429
3430       // Load the address of the function entry point from the function
3431       // descriptor.
3432       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3433       SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs,
3434                               makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
3435       Chain = LoadFuncPtr.getValue(1);
3436       InFlag = LoadFuncPtr.getValue(2);
3437
3438       // Load environment pointer into r11.
3439       // Offset of the environment pointer within the function descriptor.
3440       SDValue PtrOff = DAG.getIntPtrConstant(16);
3441
3442       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3443       SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3444                                        InFlag);
3445       Chain = LoadEnvPtr.getValue(1);
3446       InFlag = LoadEnvPtr.getValue(2);
3447
3448       SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3449                                         InFlag);
3450       Chain = EnvVal.getValue(0);
3451       InFlag = EnvVal.getValue(1);
3452
3453       // Load TOC of the callee into r2. We are using a target-specific load
3454       // with r2 hard coded, because the result of a target-independent load
3455       // would never go directly into r2, since r2 is a reserved register (which
3456       // prevents the register allocator from allocating it), resulting in an
3457       // additional register being allocated and an unnecessary move instruction
3458       // being generated.
3459       VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3460       SDValue TOCOff = DAG.getIntPtrConstant(8);
3461       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
3462       SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3463                                        AddTOC, InFlag);
3464       Chain = LoadTOCPtr.getValue(0);
3465       InFlag = LoadTOCPtr.getValue(1);
3466
3467       MTCTROps[0] = Chain;
3468       MTCTROps[1] = LoadFuncPtr;
3469       MTCTROps[2] = InFlag;
3470     }
3471
3472     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
3473                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
3474     InFlag = Chain.getValue(1);
3475
3476     NodeTys.clear();
3477     NodeTys.push_back(MVT::Other);
3478     NodeTys.push_back(MVT::Glue);
3479     Ops.push_back(Chain);
3480     CallOpc = PPCISD::BCTRL;
3481     Callee.setNode(nullptr);
3482     // Add use of X11 (holding environment pointer)
3483     if (isSVR4ABI && isPPC64)
3484       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
3485     // Add CTR register as callee so a bctr can be emitted later.
3486     if (isTailCall)
3487       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3488   }
3489
3490   // If this is a direct call, pass the chain and the callee.
3491   if (Callee.getNode()) {
3492     Ops.push_back(Chain);
3493     Ops.push_back(Callee);
3494   }
3495   // If this is a tail call add stack pointer delta.
3496   if (isTailCall)
3497     Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3498
3499   // Add argument registers to the end of the list so that they are known live
3500   // into the call.
3501   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3502     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3503                                   RegsToPass[i].second.getValueType()));
3504
3505   return CallOpc;
3506 }
3507
3508 static
3509 bool isLocalCall(const SDValue &Callee)
3510 {
3511   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3512     return !G->getGlobal()->isDeclaration() &&
3513            !G->getGlobal()->isWeakForLinker();
3514   return false;
3515 }
3516
3517 SDValue
3518 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3519                                    CallingConv::ID CallConv, bool isVarArg,
3520                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3521                                    SDLoc dl, SelectionDAG &DAG,
3522                                    SmallVectorImpl<SDValue> &InVals) const {
3523
3524   SmallVector<CCValAssign, 16> RVLocs;
3525   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3526                     getTargetMachine(), RVLocs, *DAG.getContext());
3527   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3528
3529   // Copy all of the result registers out of their specified physreg.
3530   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3531     CCValAssign &VA = RVLocs[i];
3532     assert(VA.isRegLoc() && "Can only return in registers!");
3533
3534     SDValue Val = DAG.getCopyFromReg(Chain, dl,
3535                                      VA.getLocReg(), VA.getLocVT(), InFlag);
3536     Chain = Val.getValue(1);
3537     InFlag = Val.getValue(2);
3538
3539     switch (VA.getLocInfo()) {
3540     default: llvm_unreachable("Unknown loc info!");
3541     case CCValAssign::Full: break;
3542     case CCValAssign::AExt:
3543       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3544       break;
3545     case CCValAssign::ZExt:
3546       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3547                         DAG.getValueType(VA.getValVT()));
3548       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3549       break;
3550     case CCValAssign::SExt:
3551       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3552                         DAG.getValueType(VA.getValVT()));
3553       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3554       break;
3555     }
3556
3557     InVals.push_back(Val);
3558   }
3559
3560   return Chain;
3561 }
3562
3563 SDValue
3564 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
3565                               bool isTailCall, bool isVarArg,
3566                               SelectionDAG &DAG,
3567                               SmallVector<std::pair<unsigned, SDValue>, 8>
3568                                 &RegsToPass,
3569                               SDValue InFlag, SDValue Chain,
3570                               SDValue &Callee,
3571                               int SPDiff, unsigned NumBytes,
3572                               const SmallVectorImpl<ISD::InputArg> &Ins,
3573                               SmallVectorImpl<SDValue> &InVals) const {
3574   std::vector<EVT> NodeTys;
3575   SmallVector<SDValue, 8> Ops;
3576   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3577                                  isTailCall, RegsToPass, Ops, NodeTys,
3578                                  Subtarget);
3579
3580   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3581   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
3582     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3583
3584   // When performing tail call optimization the callee pops its arguments off
3585   // the stack. Account for this here so these bytes can be pushed back on in
3586   // PPCFrameLowering::eliminateCallFramePseudoInstr.
3587   int BytesCalleePops =
3588     (CallConv == CallingConv::Fast &&
3589      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3590
3591   // Add a register mask operand representing the call-preserved registers.
3592   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3593   const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3594   assert(Mask && "Missing call preserved mask for calling convention");
3595   Ops.push_back(DAG.getRegisterMask(Mask));
3596
3597   if (InFlag.getNode())
3598     Ops.push_back(InFlag);
3599
3600   // Emit tail call.
3601   if (isTailCall) {
3602     assert(((Callee.getOpcode() == ISD::Register &&
3603              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3604             Callee.getOpcode() == ISD::TargetExternalSymbol ||
3605             Callee.getOpcode() == ISD::TargetGlobalAddress ||
3606             isa<ConstantSDNode>(Callee)) &&
3607     "Expecting an global address, external symbol, absolute value or register");
3608
3609     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
3610   }
3611
3612   // Add a NOP immediately after the branch instruction when using the 64-bit
3613   // SVR4 ABI. At link time, if caller and callee are in a different module and
3614   // thus have a different TOC, the call will be replaced with a call to a stub
3615   // function which saves the current TOC, loads the TOC of the callee and
3616   // branches to the callee. The NOP will be replaced with a load instruction
3617   // which restores the TOC of the caller from the TOC save slot of the current
3618   // stack frame. If caller and callee belong to the same module (and have the
3619   // same TOC), the NOP will remain unchanged.
3620
3621   bool needsTOCRestore = false;
3622   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64()) {
3623     if (CallOpc == PPCISD::BCTRL) {
3624       // This is a call through a function pointer.
3625       // Restore the caller TOC from the save area into R2.
3626       // See PrepareCall() for more information about calls through function
3627       // pointers in the 64-bit SVR4 ABI.
3628       // We are using a target-specific load with r2 hard coded, because the
3629       // result of a target-independent load would never go directly into r2,
3630       // since r2 is a reserved register (which prevents the register allocator
3631       // from allocating it), resulting in an additional register being
3632       // allocated and an unnecessary move instruction being generated.
3633       needsTOCRestore = true;
3634     } else if ((CallOpc == PPCISD::CALL) &&
3635                (!isLocalCall(Callee) ||
3636                 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
3637       // Otherwise insert NOP for non-local calls.
3638       CallOpc = PPCISD::CALL_NOP;
3639     }
3640   }
3641
3642   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
3643   InFlag = Chain.getValue(1);
3644
3645   if (needsTOCRestore) {
3646     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3647     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3648     SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
3649     unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset();
3650     SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset);
3651     SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
3652     Chain = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, AddTOC, InFlag);
3653     InFlag = Chain.getValue(1);
3654   }
3655
3656   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3657                              DAG.getIntPtrConstant(BytesCalleePops, true),
3658                              InFlag, dl);
3659   if (!Ins.empty())
3660     InFlag = Chain.getValue(1);
3661
3662   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3663                          Ins, dl, DAG, InVals);
3664 }
3665
3666 SDValue
3667 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3668                              SmallVectorImpl<SDValue> &InVals) const {
3669   SelectionDAG &DAG                     = CLI.DAG;
3670   SDLoc &dl                             = CLI.DL;
3671   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3672   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
3673   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
3674   SDValue Chain                         = CLI.Chain;
3675   SDValue Callee                        = CLI.Callee;
3676   bool &isTailCall                      = CLI.IsTailCall;
3677   CallingConv::ID CallConv              = CLI.CallConv;
3678   bool isVarArg                         = CLI.IsVarArg;
3679
3680   if (isTailCall)
3681     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3682                                                    Ins, DAG);
3683
3684   if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
3685     report_fatal_error("failed to perform tail call elimination on a call "
3686                        "site marked musttail");
3687
3688   if (Subtarget.isSVR4ABI()) {
3689     if (Subtarget.isPPC64())
3690       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3691                               isTailCall, Outs, OutVals, Ins,
3692                               dl, DAG, InVals);
3693     else
3694       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3695                               isTailCall, Outs, OutVals, Ins,
3696                               dl, DAG, InVals);
3697   }
3698
3699   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3700                           isTailCall, Outs, OutVals, Ins,
3701                           dl, DAG, InVals);
3702 }
3703
3704 SDValue
3705 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3706                                     CallingConv::ID CallConv, bool isVarArg,
3707                                     bool isTailCall,
3708                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
3709                                     const SmallVectorImpl<SDValue> &OutVals,
3710                                     const SmallVectorImpl<ISD::InputArg> &Ins,
3711                                     SDLoc dl, SelectionDAG &DAG,
3712                                     SmallVectorImpl<SDValue> &InVals) const {
3713   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3714   // of the 32-bit SVR4 ABI stack frame layout.
3715
3716   assert((CallConv == CallingConv::C ||
3717           CallConv == CallingConv::Fast) && "Unknown calling convention!");
3718
3719   unsigned PtrByteSize = 4;
3720
3721   MachineFunction &MF = DAG.getMachineFunction();
3722
3723   // Mark this function as potentially containing a function that contains a
3724   // tail call. As a consequence the frame pointer will be used for dynamicalloc
3725   // and restoring the callers stack pointer in this functions epilog. This is
3726   // done because by tail calling the called function might overwrite the value
3727   // in this function's (MF) stack pointer stack slot 0(SP).
3728   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3729       CallConv == CallingConv::Fast)
3730     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3731
3732   // Count how many bytes are to be pushed on the stack, including the linkage
3733   // area, parameter list area and the part of the local variable space which
3734   // contains copies of aggregates which are passed by value.
3735
3736   // Assign locations to all of the outgoing arguments.
3737   SmallVector<CCValAssign, 16> ArgLocs;
3738   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3739                  getTargetMachine(), ArgLocs, *DAG.getContext());
3740
3741   // Reserve space for the linkage area on the stack.
3742   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3743
3744   if (isVarArg) {
3745     // Handle fixed and variable vector arguments differently.
3746     // Fixed vector arguments go into registers as long as registers are
3747     // available. Variable vector arguments always go into memory.
3748     unsigned NumArgs = Outs.size();
3749
3750     for (unsigned i = 0; i != NumArgs; ++i) {
3751       MVT ArgVT = Outs[i].VT;
3752       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3753       bool Result;
3754
3755       if (Outs[i].IsFixed) {
3756         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3757                                CCInfo);
3758       } else {
3759         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3760                                       ArgFlags, CCInfo);
3761       }
3762
3763       if (Result) {
3764 #ifndef NDEBUG
3765         errs() << "Call operand #" << i << " has unhandled type "
3766              << EVT(ArgVT).getEVTString() << "\n";
3767 #endif
3768         llvm_unreachable(nullptr);
3769       }
3770     }
3771   } else {
3772     // All arguments are treated the same.
3773     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
3774   }
3775
3776   // Assign locations to all of the outgoing aggregate by value arguments.
3777   SmallVector<CCValAssign, 16> ByValArgLocs;
3778   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3779                       getTargetMachine(), ByValArgLocs, *DAG.getContext());
3780
3781   // Reserve stack space for the allocations in CCInfo.
3782   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3783
3784   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
3785
3786   // Size of the linkage area, parameter list area and the part of the local
3787   // space variable where copies of aggregates which are passed by value are
3788   // stored.
3789   unsigned NumBytes = CCByValInfo.getNextStackOffset();
3790
3791   // Calculate by how many bytes the stack has to be adjusted in case of tail
3792   // call optimization.
3793   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3794
3795   // Adjust the stack pointer for the new arguments...
3796   // These operations are automatically eliminated by the prolog/epilog pass
3797   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
3798                                dl);
3799   SDValue CallSeqStart = Chain;
3800
3801   // Load the return address and frame pointer so it can be moved somewhere else
3802   // later.
3803   SDValue LROp, FPOp;
3804   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3805                                        dl);
3806
3807   // Set up a copy of the stack pointer for use loading and storing any
3808   // arguments that may not fit in the registers available for argument
3809   // passing.
3810   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3811
3812   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3813   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3814   SmallVector<SDValue, 8> MemOpChains;
3815
3816   bool seenFloatArg = false;
3817   // Walk the register/memloc assignments, inserting copies/loads.
3818   for (unsigned i = 0, j = 0, e = ArgLocs.size();
3819        i != e;
3820        ++i) {
3821     CCValAssign &VA = ArgLocs[i];
3822     SDValue Arg = OutVals[i];
3823     ISD::ArgFlagsTy Flags = Outs[i].Flags;
3824
3825     if (Flags.isByVal()) {
3826       // Argument is an aggregate which is passed by value, thus we need to
3827       // create a copy of it in the local variable space of the current stack
3828       // frame (which is the stack frame of the caller) and pass the address of
3829       // this copy to the callee.
3830       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3831       CCValAssign &ByValVA = ByValArgLocs[j++];
3832       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3833
3834       // Memory reserved in the local variable space of the callers stack frame.
3835       unsigned LocMemOffset = ByValVA.getLocMemOffset();
3836
3837       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3838       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3839
3840       // Create a copy of the argument in the local area of the current
3841       // stack frame.
3842       SDValue MemcpyCall =
3843         CreateCopyOfByValArgument(Arg, PtrOff,
3844                                   CallSeqStart.getNode()->getOperand(0),
3845                                   Flags, DAG, dl);
3846
3847       // This must go outside the CALLSEQ_START..END.
3848       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3849                            CallSeqStart.getNode()->getOperand(1),
3850                            SDLoc(MemcpyCall));
3851       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3852                              NewCallSeqStart.getNode());
3853       Chain = CallSeqStart = NewCallSeqStart;
3854
3855       // Pass the address of the aggregate copy on the stack either in a
3856       // physical register or in the parameter list area of the current stack
3857       // frame to the callee.
3858       Arg = PtrOff;
3859     }
3860
3861     if (VA.isRegLoc()) {
3862       if (Arg.getValueType() == MVT::i1)
3863         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
3864
3865       seenFloatArg |= VA.getLocVT().isFloatingPoint();
3866       // Put argument in a physical register.
3867       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3868     } else {
3869       // Put argument in the parameter list area of the current stack frame.
3870       assert(VA.isMemLoc());
3871       unsigned LocMemOffset = VA.getLocMemOffset();
3872
3873       if (!isTailCall) {
3874         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3875         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3876
3877         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3878                                            MachinePointerInfo(),
3879                                            false, false, 0));
3880       } else {
3881         // Calculate and remember argument location.
3882         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3883                                  TailCallArguments);
3884       }
3885     }
3886   }
3887
3888   if (!MemOpChains.empty())
3889     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
3890
3891   // Build a sequence of copy-to-reg nodes chained together with token chain
3892   // and flag operands which copy the outgoing args into the appropriate regs.
3893   SDValue InFlag;
3894   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3895     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3896                              RegsToPass[i].second, InFlag);
3897     InFlag = Chain.getValue(1);
3898   }
3899
3900   // Set CR bit 6 to true if this is a vararg call with floating args passed in
3901   // registers.
3902   if (isVarArg) {
3903     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3904     SDValue Ops[] = { Chain, InFlag };
3905
3906     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3907                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
3908
3909     InFlag = Chain.getValue(1);
3910   }
3911
3912   if (isTailCall)
3913     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3914                     false, TailCallArguments);
3915
3916   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3917                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3918                     Ins, InVals);
3919 }
3920
3921 // Copy an argument into memory, being careful to do this outside the
3922 // call sequence for the call to which the argument belongs.
3923 SDValue
3924 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3925                                               SDValue CallSeqStart,
3926                                               ISD::ArgFlagsTy Flags,
3927                                               SelectionDAG &DAG,
3928                                               SDLoc dl) const {
3929   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3930                         CallSeqStart.getNode()->getOperand(0),
3931                         Flags, DAG, dl);
3932   // The MEMCPY must go outside the CALLSEQ_START..END.
3933   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3934                              CallSeqStart.getNode()->getOperand(1),
3935                              SDLoc(MemcpyCall));
3936   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3937                          NewCallSeqStart.getNode());
3938   return NewCallSeqStart;
3939 }
3940
3941 SDValue
3942 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3943                                     CallingConv::ID CallConv, bool isVarArg,
3944                                     bool isTailCall,
3945                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
3946                                     const SmallVectorImpl<SDValue> &OutVals,
3947                                     const SmallVectorImpl<ISD::InputArg> &Ins,
3948                                     SDLoc dl, SelectionDAG &DAG,
3949                                     SmallVectorImpl<SDValue> &InVals) const {
3950
3951   bool isLittleEndian = Subtarget.isLittleEndian();
3952   unsigned NumOps = Outs.size();
3953
3954   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3955   unsigned PtrByteSize = 8;
3956
3957   MachineFunction &MF = DAG.getMachineFunction();
3958
3959   // Mark this function as potentially containing a function that contains a
3960   // tail call. As a consequence the frame pointer will be used for dynamicalloc
3961   // and restoring the callers stack pointer in this functions epilog. This is
3962   // done because by tail calling the called function might overwrite the value
3963   // in this function's (MF) stack pointer stack slot 0(SP).
3964   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3965       CallConv == CallingConv::Fast)
3966     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3967
3968   // Count how many bytes are to be pushed on the stack, including the linkage
3969   // area, and parameter passing area.  We start with at least 48 bytes, which
3970   // is reserved space for [SP][CR][LR][3 x unused].
3971   unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false);
3972   unsigned NumBytes = LinkageSize;
3973
3974   // Add up all the space actually used.
3975   for (unsigned i = 0; i != NumOps; ++i) {
3976     ISD::ArgFlagsTy Flags = Outs[i].Flags;
3977     EVT ArgVT = Outs[i].VT;
3978
3979     /* Respect alignment of argument on the stack.  */
3980     unsigned Align = CalculateStackSlotAlignment(ArgVT, Flags, PtrByteSize);
3981     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
3982
3983     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3984   }
3985
3986   unsigned NumBytesActuallyUsed = NumBytes;
3987
3988   // The prolog code of the callee may store up to 8 GPR argument registers to
3989   // the stack, allowing va_start to index over them in memory if its varargs.
3990   // Because we cannot tell if this is needed on the caller side, we have to
3991   // conservatively assume that it is needed.  As such, make sure we have at
3992   // least enough stack space for the caller to store the 8 GPRs.
3993   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
3994
3995   // Tail call needs the stack to be aligned.
3996   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3997       CallConv == CallingConv::Fast)
3998     NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes);
3999
4000   // Calculate by how many bytes the stack has to be adjusted in case of tail
4001   // call optimization.
4002   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4003
4004   // To protect arguments on the stack from being clobbered in a tail call,
4005   // force all the loads to happen before doing any other lowering.
4006   if (isTailCall)
4007     Chain = DAG.getStackArgumentTokenFactor(Chain);
4008
4009   // Adjust the stack pointer for the new arguments...
4010   // These operations are automatically eliminated by the prolog/epilog pass
4011   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
4012                                dl);
4013   SDValue CallSeqStart = Chain;
4014
4015   // Load the return address and frame pointer so it can be move somewhere else
4016   // later.
4017   SDValue LROp, FPOp;
4018   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4019                                        dl);
4020
4021   // Set up a copy of the stack pointer for use loading and storing any
4022   // arguments that may not fit in the registers available for argument
4023   // passing.
4024   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4025
4026   // Figure out which arguments are going to go in registers, and which in
4027   // memory.  Also, if this is a vararg function, floating point operations
4028   // must be stored to our stack, and loaded into integer regs as well, if
4029   // any integer regs are available for argument passing.
4030   unsigned ArgOffset = LinkageSize;
4031   unsigned GPR_idx, FPR_idx = 0, VR_idx = 0;
4032
4033   static const MCPhysReg GPR[] = {
4034     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4035     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4036   };
4037   static const MCPhysReg *FPR = GetFPR();
4038
4039   static const MCPhysReg VR[] = {
4040     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4041     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4042   };
4043   static const MCPhysReg VSRH[] = {
4044     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
4045     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
4046   };
4047
4048   const unsigned NumGPRs = array_lengthof(GPR);
4049   const unsigned NumFPRs = 13;
4050   const unsigned NumVRs  = array_lengthof(VR);
4051
4052   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4053   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4054
4055   SmallVector<SDValue, 8> MemOpChains;
4056   for (unsigned i = 0; i != NumOps; ++i) {
4057     SDValue Arg = OutVals[i];
4058     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4059
4060     /* Respect alignment of argument on the stack.  */
4061     unsigned Align =
4062       CalculateStackSlotAlignment(Outs[i].VT, Flags, PtrByteSize);
4063     ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
4064
4065     /* Compute GPR index associated with argument offset.  */
4066     GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4067     GPR_idx = std::min(GPR_idx, NumGPRs);
4068
4069     // PtrOff will be used to store the current argument to the stack if a
4070     // register cannot be found for it.
4071     SDValue PtrOff;
4072
4073     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4074
4075     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4076
4077     // Promote integers to 64-bit values.
4078     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
4079       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4080       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4081       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4082     }
4083
4084     // FIXME memcpy is used way more than necessary.  Correctness first.
4085     // Note: "by value" is code for passing a structure by value, not
4086     // basic types.
4087     if (Flags.isByVal()) {
4088       // Note: Size includes alignment padding, so
4089       //   struct x { short a; char b; }
4090       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
4091       // These are the proper values we need for right-justifying the
4092       // aggregate in a parameter register.
4093       unsigned Size = Flags.getByValSize();
4094
4095       // An empty aggregate parameter takes up no storage and no
4096       // registers.
4097       if (Size == 0)
4098         continue;
4099
4100       // All aggregates smaller than 8 bytes must be passed right-justified.
4101       if (Size==1 || Size==2 || Size==4) {
4102         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
4103         if (GPR_idx != NumGPRs) {
4104           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4105                                         MachinePointerInfo(), VT,
4106                                         false, false, 0);
4107           MemOpChains.push_back(Load.getValue(1));
4108           RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
4109
4110           ArgOffset += PtrByteSize;
4111           continue;
4112         }
4113       }
4114
4115       if (GPR_idx == NumGPRs && Size < 8) {
4116         SDValue AddPtr = PtrOff;
4117         if (!isLittleEndian) {
4118           SDValue Const = DAG.getConstant(PtrByteSize - Size,
4119                                           PtrOff.getValueType());
4120           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4121         }
4122         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4123                                                           CallSeqStart,
4124                                                           Flags, DAG, dl);
4125         ArgOffset += PtrByteSize;
4126         continue;
4127       }
4128       // Copy entire object into memory.  There are cases where gcc-generated
4129       // code assumes it is there, even if it could be put entirely into
4130       // registers.  (This is not what the doc says.)
4131
4132       // FIXME: The above statement is likely due to a misunderstanding of the
4133       // documents.  All arguments must be copied into the parameter area BY
4134       // THE CALLEE in the event that the callee takes the address of any
4135       // formal argument.  That has not yet been implemented.  However, it is
4136       // reasonable to use the stack area as a staging area for the register
4137       // load.
4138
4139       // Skip this for small aggregates, as we will use the same slot for a
4140       // right-justified copy, below.
4141       if (Size >= 8)
4142         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4143                                                           CallSeqStart,
4144                                                           Flags, DAG, dl);
4145
4146       // When a register is available, pass a small aggregate right-justified.
4147       if (Size < 8 && GPR_idx != NumGPRs) {
4148         // The easiest way to get this right-justified in a register
4149         // is to copy the structure into the rightmost portion of a
4150         // local variable slot, then load the whole slot into the
4151         // register.
4152         // FIXME: The memcpy seems to produce pretty awful code for
4153         // small aggregates, particularly for packed ones.
4154         // FIXME: It would be preferable to use the slot in the
4155         // parameter save area instead of a new local variable.
4156         SDValue AddPtr = PtrOff;
4157         if (!isLittleEndian) {
4158           SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
4159           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4160         }
4161         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4162                                                           CallSeqStart,
4163                                                           Flags, DAG, dl);
4164
4165         // Load the slot into the register.
4166         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
4167                                    MachinePointerInfo(),
4168                                    false, false, false, 0);
4169         MemOpChains.push_back(Load.getValue(1));
4170         RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
4171
4172         // Done with this argument.
4173         ArgOffset += PtrByteSize;
4174         continue;
4175       }
4176
4177       // For aggregates larger than PtrByteSize, copy the pieces of the
4178       // object that fit into registers from the parameter save area.
4179       for (unsigned j=0; j<Size; j+=PtrByteSize) {
4180         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4181         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4182         if (GPR_idx != NumGPRs) {
4183           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4184                                      MachinePointerInfo(),
4185                                      false, false, false, 0);
4186           MemOpChains.push_back(Load.getValue(1));
4187           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4188           ArgOffset += PtrByteSize;
4189         } else {
4190           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4191           break;
4192         }
4193       }
4194       continue;
4195     }
4196
4197     switch (Arg.getSimpleValueType().SimpleTy) {
4198     default: llvm_unreachable("Unexpected ValueType for argument!");
4199     case MVT::i1:
4200     case MVT::i32:
4201     case MVT::i64:
4202       if (GPR_idx != NumGPRs) {
4203         RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Arg));
4204       } else {
4205         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4206                          true, isTailCall, false, MemOpChains,
4207                          TailCallArguments, dl);
4208       }
4209       ArgOffset += PtrByteSize;
4210       break;
4211     case MVT::f32:
4212     case MVT::f64:
4213       if (FPR_idx != NumFPRs) {
4214         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4215
4216         if (isVarArg) {
4217           // A single float or an aggregate containing only a single float
4218           // must be passed right-justified in the stack doubleword, and
4219           // in the GPR, if one is available.
4220           SDValue StoreOff;
4221           if (Arg.getSimpleValueType().SimpleTy == MVT::f32 &&
4222               !isLittleEndian) {
4223             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4224             StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4225           } else
4226             StoreOff = PtrOff;
4227
4228           SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
4229                                        MachinePointerInfo(), false, false, 0);
4230           MemOpChains.push_back(Store);
4231
4232           // Float varargs are always shadowed in available integer registers
4233           if (GPR_idx != NumGPRs) {
4234             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4235                                        MachinePointerInfo(), false, false,
4236                                        false, 0);
4237             MemOpChains.push_back(Load.getValue(1));
4238             RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
4239           }
4240         }
4241       } else {
4242         // Single-precision floating-point values are mapped to the
4243         // second (rightmost) word of the stack doubleword.
4244         if (Arg.getValueType() == MVT::f32 && !isLittleEndian) {
4245           SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4246           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4247         }
4248
4249         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4250                          true, isTailCall, false, MemOpChains,
4251                          TailCallArguments, dl);
4252       }
4253       ArgOffset += 8;
4254       break;
4255     case MVT::v4f32:
4256     case MVT::v4i32:
4257     case MVT::v8i16:
4258     case MVT::v16i8:
4259     case MVT::v2f64:
4260     case MVT::v2i64:
4261       // For a varargs call, named arguments go into VRs or on the stack as
4262       // usual; unnamed arguments always go to the stack or the corresponding
4263       // GPRs when within range.  For now, we always put the value in both
4264       // locations (or even all three).
4265       if (isVarArg) {
4266         // We could elide this store in the case where the object fits
4267         // entirely in R registers.  Maybe later.
4268         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4269                                      MachinePointerInfo(), false, false, 0);
4270         MemOpChains.push_back(Store);
4271         if (VR_idx != NumVRs) {
4272           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4273                                      MachinePointerInfo(),
4274                                      false, false, false, 0);
4275           MemOpChains.push_back(Load.getValue(1));
4276
4277           unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
4278                            Arg.getSimpleValueType() == MVT::v2i64) ?
4279                           VSRH[VR_idx] : VR[VR_idx];
4280           ++VR_idx;
4281
4282           RegsToPass.push_back(std::make_pair(VReg, Load));
4283         }
4284         ArgOffset += 16;
4285         for (unsigned i=0; i<16; i+=PtrByteSize) {
4286           if (GPR_idx == NumGPRs)
4287             break;
4288           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4289                                   DAG.getConstant(i, PtrVT));
4290           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4291                                      false, false, false, 0);
4292           MemOpChains.push_back(Load.getValue(1));
4293           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4294         }
4295         break;
4296       }
4297
4298       // Non-varargs Altivec params go into VRs or on the stack.
4299       if (VR_idx != NumVRs) {
4300         unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
4301                          Arg.getSimpleValueType() == MVT::v2i64) ?
4302                         VSRH[VR_idx] : VR[VR_idx];
4303         ++VR_idx;
4304
4305         RegsToPass.push_back(std::make_pair(VReg, Arg));
4306       } else {
4307         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4308                          true, isTailCall, true, MemOpChains,
4309                          TailCallArguments, dl);
4310       }
4311       ArgOffset += 16;
4312       break;
4313     }
4314   }
4315
4316   assert(NumBytesActuallyUsed == ArgOffset);
4317   (void)NumBytesActuallyUsed;
4318
4319   if (!MemOpChains.empty())
4320     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4321
4322   // Check if this is an indirect call (MTCTR/BCTRL).
4323   // See PrepareCall() for more information about calls through function
4324   // pointers in the 64-bit SVR4 ABI.
4325   if (!isTailCall &&
4326       !dyn_cast<GlobalAddressSDNode>(Callee) &&
4327       !dyn_cast<ExternalSymbolSDNode>(Callee)) {
4328     // Load r2 into a virtual register and store it to the TOC save area.
4329     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4330     // TOC save area offset.
4331     unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset();
4332     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset);
4333     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4334     Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4335                          false, false, 0);
4336   }
4337
4338   // Build a sequence of copy-to-reg nodes chained together with token chain
4339   // and flag operands which copy the outgoing args into the appropriate regs.
4340   SDValue InFlag;
4341   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4342     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4343                              RegsToPass[i].second, InFlag);
4344     InFlag = Chain.getValue(1);
4345   }
4346
4347   if (isTailCall)
4348     PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4349                     FPOp, true, TailCallArguments);
4350
4351   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4352                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4353                     Ins, InVals);
4354 }
4355
4356 SDValue
4357 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4358                                     CallingConv::ID CallConv, bool isVarArg,
4359                                     bool isTailCall,
4360                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4361                                     const SmallVectorImpl<SDValue> &OutVals,
4362                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4363                                     SDLoc dl, SelectionDAG &DAG,
4364                                     SmallVectorImpl<SDValue> &InVals) const {
4365
4366   unsigned NumOps = Outs.size();
4367
4368   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4369   bool isPPC64 = PtrVT == MVT::i64;
4370   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4371
4372   MachineFunction &MF = DAG.getMachineFunction();
4373
4374   // Mark this function as potentially containing a function that contains a
4375   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4376   // and restoring the callers stack pointer in this functions epilog. This is
4377   // done because by tail calling the called function might overwrite the value
4378   // in this function's (MF) stack pointer stack slot 0(SP).
4379   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4380       CallConv == CallingConv::Fast)
4381     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4382
4383   // Count how many bytes are to be pushed on the stack, including the linkage
4384   // area, and parameter passing area.  We start with 24/48 bytes, which is
4385   // prereserved space for [SP][CR][LR][3 x unused].
4386   unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true);
4387   unsigned NumBytes = LinkageSize;
4388
4389   // Add up all the space actually used.
4390   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
4391   // they all go in registers, but we must reserve stack space for them for
4392   // possible use by the caller.  In varargs or 64-bit calls, parameters are
4393   // assigned stack space in order, with padding so Altivec parameters are
4394   // 16-byte aligned.
4395   unsigned nAltivecParamsAtEnd = 0;
4396   for (unsigned i = 0; i != NumOps; ++i) {
4397     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4398     EVT ArgVT = Outs[i].VT;
4399     // Varargs Altivec parameters are padded to a 16 byte boundary.
4400     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
4401         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
4402         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
4403       if (!isVarArg && !isPPC64) {
4404         // Non-varargs Altivec parameters go after all the non-Altivec
4405         // parameters; handle those later so we know how much padding we need.
4406         nAltivecParamsAtEnd++;
4407         continue;
4408       }
4409       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
4410       NumBytes = ((NumBytes+15)/16)*16;
4411     }
4412     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
4413   }
4414
4415   // Allow for Altivec parameters at the end, if needed.
4416   if (nAltivecParamsAtEnd) {
4417     NumBytes = ((NumBytes+15)/16)*16;
4418     NumBytes += 16*nAltivecParamsAtEnd;
4419   }
4420
4421   // The prolog code of the callee may store up to 8 GPR argument registers to
4422   // the stack, allowing va_start to index over them in memory if its varargs.
4423   // Because we cannot tell if this is needed on the caller side, we have to
4424   // conservatively assume that it is needed.  As such, make sure we have at
4425   // least enough stack space for the caller to store the 8 GPRs.
4426   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
4427
4428   // Tail call needs the stack to be aligned.
4429   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4430       CallConv == CallingConv::Fast)
4431     NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes);
4432
4433   // Calculate by how many bytes the stack has to be adjusted in case of tail
4434   // call optimization.
4435   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4436
4437   // To protect arguments on the stack from being clobbered in a tail call,
4438   // force all the loads to happen before doing any other lowering.
4439   if (isTailCall)
4440     Chain = DAG.getStackArgumentTokenFactor(Chain);
4441
4442   // Adjust the stack pointer for the new arguments...
4443   // These operations are automatically eliminated by the prolog/epilog pass
4444   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
4445                                dl);
4446   SDValue CallSeqStart = Chain;
4447
4448   // Load the return address and frame pointer so it can be move somewhere else
4449   // later.
4450   SDValue LROp, FPOp;
4451   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4452                                        dl);
4453
4454   // Set up a copy of the stack pointer for use loading and storing any
4455   // arguments that may not fit in the registers available for argument
4456   // passing.
4457   SDValue StackPtr;
4458   if (isPPC64)
4459     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4460   else
4461     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4462
4463   // Figure out which arguments are going to go in registers, and which in
4464   // memory.  Also, if this is a vararg function, floating point operations
4465   // must be stored to our stack, and loaded into integer regs as well, if
4466   // any integer regs are available for argument passing.
4467   unsigned ArgOffset = LinkageSize;
4468   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4469
4470   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4471     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4472     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4473   };
4474   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4475     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4476     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4477   };
4478   static const MCPhysReg *FPR = GetFPR();
4479
4480   static const MCPhysReg VR[] = {
4481     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4482     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4483   };
4484   const unsigned NumGPRs = array_lengthof(GPR_32);
4485   const unsigned NumFPRs = 13;
4486   const unsigned NumVRs  = array_lengthof(VR);
4487
4488   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4489
4490   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4491   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4492
4493   SmallVector<SDValue, 8> MemOpChains;
4494   for (unsigned i = 0; i != NumOps; ++i) {
4495     SDValue Arg = OutVals[i];
4496     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4497
4498     // PtrOff will be used to store the current argument to the stack if a
4499     // register cannot be found for it.
4500     SDValue PtrOff;
4501
4502     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4503
4504     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4505
4506     // On PPC64, promote integers to 64-bit values.
4507     if (isPPC64 && Arg.getValueType() == MVT::i32) {
4508       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4509       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4510       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4511     }
4512
4513     // FIXME memcpy is used way more than necessary.  Correctness first.
4514     // Note: "by value" is code for passing a structure by value, not
4515     // basic types.
4516     if (Flags.isByVal()) {
4517       unsigned Size = Flags.getByValSize();
4518       // Very small objects are passed right-justified.  Everything else is
4519       // passed left-justified.
4520       if (Size==1 || Size==2) {
4521         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4522         if (GPR_idx != NumGPRs) {
4523           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4524                                         MachinePointerInfo(), VT,
4525                                         false, false, 0);
4526           MemOpChains.push_back(Load.getValue(1));
4527           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4528
4529           ArgOffset += PtrByteSize;
4530         } else {
4531           SDValue Const = DAG.getConstant(PtrByteSize - Size,
4532                                           PtrOff.getValueType());
4533           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4534           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4535                                                             CallSeqStart,
4536                                                             Flags, DAG, dl);
4537           ArgOffset += PtrByteSize;
4538         }
4539         continue;
4540       }
4541       // Copy entire object into memory.  There are cases where gcc-generated
4542       // code assumes it is there, even if it could be put entirely into
4543       // registers.  (This is not what the doc says.)
4544       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4545                                                         CallSeqStart,
4546                                                         Flags, DAG, dl);
4547
4548       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4549       // copy the pieces of the object that fit into registers from the
4550       // parameter save area.
4551       for (unsigned j=0; j<Size; j+=PtrByteSize) {
4552         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4553         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4554         if (GPR_idx != NumGPRs) {
4555           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4556                                      MachinePointerInfo(),
4557                                      false, false, false, 0);
4558           MemOpChains.push_back(Load.getValue(1));
4559           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4560           ArgOffset += PtrByteSize;
4561         } else {
4562           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4563           break;
4564         }
4565       }
4566       continue;
4567     }
4568
4569     switch (Arg.getSimpleValueType().SimpleTy) {
4570     default: llvm_unreachable("Unexpected ValueType for argument!");
4571     case MVT::i1:
4572     case MVT::i32:
4573     case MVT::i64:
4574       if (GPR_idx != NumGPRs) {
4575         if (Arg.getValueType() == MVT::i1)
4576           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
4577
4578         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4579       } else {
4580         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4581                          isPPC64, isTailCall, false, MemOpChains,
4582                          TailCallArguments, dl);
4583       }
4584       ArgOffset += PtrByteSize;
4585       break;
4586     case MVT::f32:
4587     case MVT::f64:
4588       if (FPR_idx != NumFPRs) {
4589         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4590
4591         if (isVarArg) {
4592           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4593                                        MachinePointerInfo(), false, false, 0);
4594           MemOpChains.push_back(Store);
4595
4596           // Float varargs are always shadowed in available integer registers
4597           if (GPR_idx != NumGPRs) {
4598             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4599                                        MachinePointerInfo(), false, false,
4600                                        false, 0);
4601             MemOpChains.push_back(Load.getValue(1));
4602             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4603           }
4604           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4605             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4606             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4607             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4608                                        MachinePointerInfo(),
4609                                        false, false, false, 0);
4610             MemOpChains.push_back(Load.getValue(1));
4611             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4612           }
4613         } else {
4614           // If we have any FPRs remaining, we may also have GPRs remaining.
4615           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4616           // GPRs.
4617           if (GPR_idx != NumGPRs)
4618             ++GPR_idx;
4619           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4620               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
4621             ++GPR_idx;
4622         }
4623       } else
4624         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4625                          isPPC64, isTailCall, false, MemOpChains,
4626                          TailCallArguments, dl);
4627       if (isPPC64)
4628         ArgOffset += 8;
4629       else
4630         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4631       break;
4632     case MVT::v4f32:
4633     case MVT::v4i32:
4634     case MVT::v8i16:
4635     case MVT::v16i8:
4636       if (isVarArg) {
4637         // These go aligned on the stack, or in the corresponding R registers
4638         // when within range.  The Darwin PPC ABI doc claims they also go in
4639         // V registers; in fact gcc does this only for arguments that are
4640         // prototyped, not for those that match the ...  We do it for all
4641         // arguments, seems to work.
4642         while (ArgOffset % 16 !=0) {
4643           ArgOffset += PtrByteSize;
4644           if (GPR_idx != NumGPRs)
4645             GPR_idx++;
4646         }
4647         // We could elide this store in the case where the object fits
4648         // entirely in R registers.  Maybe later.
4649         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4650                             DAG.getConstant(ArgOffset, PtrVT));
4651         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4652                                      MachinePointerInfo(), false, false, 0);
4653         MemOpChains.push_back(Store);
4654         if (VR_idx != NumVRs) {
4655           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4656                                      MachinePointerInfo(),
4657                                      false, false, false, 0);
4658           MemOpChains.push_back(Load.getValue(1));
4659           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4660         }
4661         ArgOffset += 16;
4662         for (unsigned i=0; i<16; i+=PtrByteSize) {
4663           if (GPR_idx == NumGPRs)
4664             break;
4665           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4666                                   DAG.getConstant(i, PtrVT));
4667           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4668                                      false, false, false, 0);
4669           MemOpChains.push_back(Load.getValue(1));
4670           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4671         }
4672         break;
4673       }
4674
4675       // Non-varargs Altivec params generally go in registers, but have
4676       // stack space allocated at the end.
4677       if (VR_idx != NumVRs) {
4678         // Doesn't have GPR space allocated.
4679         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4680       } else if (nAltivecParamsAtEnd==0) {
4681         // We are emitting Altivec params in order.
4682         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4683                          isPPC64, isTailCall, true, MemOpChains,
4684                          TailCallArguments, dl);
4685         ArgOffset += 16;
4686       }
4687       break;
4688     }
4689   }
4690   // If all Altivec parameters fit in registers, as they usually do,
4691   // they get stack space following the non-Altivec parameters.  We
4692   // don't track this here because nobody below needs it.
4693   // If there are more Altivec parameters than fit in registers emit
4694   // the stores here.
4695   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4696     unsigned j = 0;
4697     // Offset is aligned; skip 1st 12 params which go in V registers.
4698     ArgOffset = ((ArgOffset+15)/16)*16;
4699     ArgOffset += 12*16;
4700     for (unsigned i = 0; i != NumOps; ++i) {
4701       SDValue Arg = OutVals[i];
4702       EVT ArgType = Outs[i].VT;
4703       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4704           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4705         if (++j > NumVRs) {
4706           SDValue PtrOff;
4707           // We are emitting Altivec params in order.
4708           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4709                            isPPC64, isTailCall, true, MemOpChains,
4710                            TailCallArguments, dl);
4711           ArgOffset += 16;
4712         }
4713       }
4714     }
4715   }
4716
4717   if (!MemOpChains.empty())
4718     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4719
4720   // On Darwin, R12 must contain the address of an indirect callee.  This does
4721   // not mean the MTCTR instruction must use R12; it's easier to model this as
4722   // an extra parameter, so do that.
4723   if (!isTailCall &&
4724       !dyn_cast<GlobalAddressSDNode>(Callee) &&
4725       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4726       !isBLACompatibleAddress(Callee, DAG))
4727     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4728                                                    PPC::R12), Callee));
4729
4730   // Build a sequence of copy-to-reg nodes chained together with token chain
4731   // and flag operands which copy the outgoing args into the appropriate regs.
4732   SDValue InFlag;
4733   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4734     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4735                              RegsToPass[i].second, InFlag);
4736     InFlag = Chain.getValue(1);
4737   }
4738
4739   if (isTailCall)
4740     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4741                     FPOp, true, TailCallArguments);
4742
4743   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4744                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4745                     Ins, InVals);
4746 }
4747
4748 bool
4749 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4750                                   MachineFunction &MF, bool isVarArg,
4751                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
4752                                   LLVMContext &Context) const {
4753   SmallVector<CCValAssign, 16> RVLocs;
4754   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4755                  RVLocs, Context);
4756   return CCInfo.CheckReturn(Outs, RetCC_PPC);
4757 }
4758
4759 SDValue
4760 PPCTargetLowering::LowerReturn(SDValue Chain,
4761                                CallingConv::ID CallConv, bool isVarArg,
4762                                const SmallVectorImpl<ISD::OutputArg> &Outs,
4763                                const SmallVectorImpl<SDValue> &OutVals,
4764                                SDLoc dl, SelectionDAG &DAG) const {
4765
4766   SmallVector<CCValAssign, 16> RVLocs;
4767   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4768                  getTargetMachine(), RVLocs, *DAG.getContext());
4769   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4770
4771   SDValue Flag;
4772   SmallVector<SDValue, 4> RetOps(1, Chain);
4773
4774   // Copy the result values into the output registers.
4775   for (unsigned i = 0; i != RVLocs.size(); ++i) {
4776     CCValAssign &VA = RVLocs[i];
4777     assert(VA.isRegLoc() && "Can only return in registers!");
4778
4779     SDValue Arg = OutVals[i];
4780
4781     switch (VA.getLocInfo()) {
4782     default: llvm_unreachable("Unknown loc info!");
4783     case CCValAssign::Full: break;
4784     case CCValAssign::AExt:
4785       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4786       break;
4787     case CCValAssign::ZExt:
4788       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4789       break;
4790     case CCValAssign::SExt:
4791       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4792       break;
4793     }
4794
4795     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4796     Flag = Chain.getValue(1);
4797     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4798   }
4799
4800   RetOps[0] = Chain;  // Update chain.
4801
4802   // Add the flag if we have it.
4803   if (Flag.getNode())
4804     RetOps.push_back(Flag);
4805
4806   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
4807 }
4808
4809 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4810                                    const PPCSubtarget &Subtarget) const {
4811   // When we pop the dynamic allocation we need to restore the SP link.
4812   SDLoc dl(Op);
4813
4814   // Get the corect type for pointers.
4815   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4816
4817   // Construct the stack pointer operand.
4818   bool isPPC64 = Subtarget.isPPC64();
4819   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4820   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4821
4822   // Get the operands for the STACKRESTORE.
4823   SDValue Chain = Op.getOperand(0);
4824   SDValue SaveSP = Op.getOperand(1);
4825
4826   // Load the old link SP.
4827   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4828                                    MachinePointerInfo(),
4829                                    false, false, false, 0);
4830
4831   // Restore the stack pointer.
4832   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4833
4834   // Store the old link SP.
4835   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4836                       false, false, 0);
4837 }
4838
4839
4840
4841 SDValue
4842 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4843   MachineFunction &MF = DAG.getMachineFunction();
4844   bool isPPC64 = Subtarget.isPPC64();
4845   bool isDarwinABI = Subtarget.isDarwinABI();
4846   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4847
4848   // Get current frame pointer save index.  The users of this index will be
4849   // primarily DYNALLOC instructions.
4850   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4851   int RASI = FI->getReturnAddrSaveIndex();
4852
4853   // If the frame pointer save index hasn't been defined yet.
4854   if (!RASI) {
4855     // Find out what the fix offset of the frame pointer save area.
4856     int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4857     // Allocate the frame index for frame pointer save area.
4858     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4859     // Save the result.
4860     FI->setReturnAddrSaveIndex(RASI);
4861   }
4862   return DAG.getFrameIndex(RASI, PtrVT);
4863 }
4864
4865 SDValue
4866 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4867   MachineFunction &MF = DAG.getMachineFunction();
4868   bool isPPC64 = Subtarget.isPPC64();
4869   bool isDarwinABI = Subtarget.isDarwinABI();
4870   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4871
4872   // Get current frame pointer save index.  The users of this index will be
4873   // primarily DYNALLOC instructions.
4874   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4875   int FPSI = FI->getFramePointerSaveIndex();
4876
4877   // If the frame pointer save index hasn't been defined yet.
4878   if (!FPSI) {
4879     // Find out what the fix offset of the frame pointer save area.
4880     int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4881                                                            isDarwinABI);
4882
4883     // Allocate the frame index for frame pointer save area.
4884     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4885     // Save the result.
4886     FI->setFramePointerSaveIndex(FPSI);
4887   }
4888   return DAG.getFrameIndex(FPSI, PtrVT);
4889 }
4890
4891 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4892                                          SelectionDAG &DAG,
4893                                          const PPCSubtarget &Subtarget) const {
4894   // Get the inputs.
4895   SDValue Chain = Op.getOperand(0);
4896   SDValue Size  = Op.getOperand(1);
4897   SDLoc dl(Op);
4898
4899   // Get the corect type for pointers.
4900   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4901   // Negate the size.
4902   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4903                                   DAG.getConstant(0, PtrVT), Size);
4904   // Construct a node for the frame pointer save index.
4905   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4906   // Build a DYNALLOC node.
4907   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4908   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4909   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
4910 }
4911
4912 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
4913                                                SelectionDAG &DAG) const {
4914   SDLoc DL(Op);
4915   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
4916                      DAG.getVTList(MVT::i32, MVT::Other),
4917                      Op.getOperand(0), Op.getOperand(1));
4918 }
4919
4920 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
4921                                                 SelectionDAG &DAG) const {
4922   SDLoc DL(Op);
4923   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
4924                      Op.getOperand(0), Op.getOperand(1));
4925 }
4926
4927 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
4928   assert(Op.getValueType() == MVT::i1 &&
4929          "Custom lowering only for i1 loads");
4930
4931   // First, load 8 bits into 32 bits, then truncate to 1 bit.
4932
4933   SDLoc dl(Op);
4934   LoadSDNode *LD = cast<LoadSDNode>(Op);
4935
4936   SDValue Chain = LD->getChain();
4937   SDValue BasePtr = LD->getBasePtr();
4938   MachineMemOperand *MMO = LD->getMemOperand();
4939
4940   SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain,
4941                                  BasePtr, MVT::i8, MMO);
4942   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
4943
4944   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
4945   return DAG.getMergeValues(Ops, dl);
4946 }
4947
4948 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
4949   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
4950          "Custom lowering only for i1 stores");
4951
4952   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
4953
4954   SDLoc dl(Op);
4955   StoreSDNode *ST = cast<StoreSDNode>(Op);
4956
4957   SDValue Chain = ST->getChain();
4958   SDValue BasePtr = ST->getBasePtr();
4959   SDValue Value = ST->getValue();
4960   MachineMemOperand *MMO = ST->getMemOperand();
4961
4962   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value);
4963   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
4964 }
4965
4966 // FIXME: Remove this once the ANDI glue bug is fixed:
4967 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
4968   assert(Op.getValueType() == MVT::i1 &&
4969          "Custom lowering only for i1 results");
4970
4971   SDLoc DL(Op);
4972   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
4973                      Op.getOperand(0));
4974 }
4975
4976 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4977 /// possible.
4978 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4979   // Not FP? Not a fsel.
4980   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4981       !Op.getOperand(2).getValueType().isFloatingPoint())
4982     return Op;
4983
4984   // We might be able to do better than this under some circumstances, but in
4985   // general, fsel-based lowering of select is a finite-math-only optimization.
4986   // For more information, see section F.3 of the 2.06 ISA specification.
4987   if (!DAG.getTarget().Options.NoInfsFPMath ||
4988       !DAG.getTarget().Options.NoNaNsFPMath)
4989     return Op;
4990
4991   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4992
4993   EVT ResVT = Op.getValueType();
4994   EVT CmpVT = Op.getOperand(0).getValueType();
4995   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4996   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
4997   SDLoc dl(Op);
4998
4999   // If the RHS of the comparison is a 0.0, we don't need to do the
5000   // subtraction at all.
5001   SDValue Sel1;
5002   if (isFloatingPointZero(RHS))
5003     switch (CC) {
5004     default: break;       // SETUO etc aren't handled by fsel.
5005     case ISD::SETNE:
5006       std::swap(TV, FV);
5007     case ISD::SETEQ:
5008       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
5009         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
5010       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
5011       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
5012         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
5013       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
5014                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
5015     case ISD::SETULT:
5016     case ISD::SETLT:
5017       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
5018     case ISD::SETOGE:
5019     case ISD::SETGE:
5020       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
5021         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
5022       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
5023     case ISD::SETUGT:
5024     case ISD::SETGT:
5025       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
5026     case ISD::SETOLE:
5027     case ISD::SETLE:
5028       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
5029         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
5030       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
5031                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
5032     }
5033
5034   SDValue Cmp;
5035   switch (CC) {
5036   default: break;       // SETUO etc aren't handled by fsel.
5037   case ISD::SETNE:
5038     std::swap(TV, FV);
5039   case ISD::SETEQ:
5040     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
5041     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5042       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5043     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
5044     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
5045       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
5046     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
5047                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
5048   case ISD::SETULT:
5049   case ISD::SETLT:
5050     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
5051     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5052       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5053     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
5054   case ISD::SETOGE:
5055   case ISD::SETGE:
5056     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
5057     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5058       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5059     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
5060   case ISD::SETUGT:
5061   case ISD::SETGT:
5062     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
5063     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5064       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5065     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
5066   case ISD::SETOLE:
5067   case ISD::SETLE:
5068     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
5069     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5070       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5071     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
5072   }
5073   return Op;
5074 }
5075
5076 // FIXME: Split this code up when LegalizeDAGTypes lands.
5077 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
5078                                            SDLoc dl) const {
5079   assert(Op.getOperand(0).getValueType().isFloatingPoint());
5080   SDValue Src = Op.getOperand(0);
5081   if (Src.getValueType() == MVT::f32)
5082     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
5083
5084   SDValue Tmp;
5085   switch (Op.getSimpleValueType().SimpleTy) {
5086   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
5087   case MVT::i32:
5088     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
5089                         (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ :
5090                                                    PPCISD::FCTIDZ),
5091                       dl, MVT::f64, Src);
5092     break;
5093   case MVT::i64:
5094     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
5095            "i64 FP_TO_UINT is supported only with FPCVT");
5096     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
5097                                                         PPCISD::FCTIDUZ,
5098                       dl, MVT::f64, Src);
5099     break;
5100   }
5101
5102   // Convert the FP value to an int value through memory.
5103   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
5104     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
5105   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
5106   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
5107   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
5108
5109   // Emit a store to the stack slot.
5110   SDValue Chain;
5111   if (i32Stack) {
5112     MachineFunction &MF = DAG.getMachineFunction();
5113     MachineMemOperand *MMO =
5114       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
5115     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
5116     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
5117               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
5118   } else
5119     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
5120                          MPI, false, false, 0);
5121
5122   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
5123   // add in a bias.
5124   if (Op.getValueType() == MVT::i32 && !i32Stack) {
5125     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
5126                         DAG.getConstant(4, FIPtr.getValueType()));
5127     MPI = MachinePointerInfo();
5128   }
5129
5130   return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
5131                      false, false, false, 0);
5132 }
5133
5134 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
5135                                            SelectionDAG &DAG) const {
5136   SDLoc dl(Op);
5137   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
5138   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
5139     return SDValue();
5140
5141   if (Op.getOperand(0).getValueType() == MVT::i1)
5142     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
5143                        DAG.getConstantFP(1.0, Op.getValueType()),
5144                        DAG.getConstantFP(0.0, Op.getValueType()));
5145
5146   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
5147          "UINT_TO_FP is supported only with FPCVT");
5148
5149   // If we have FCFIDS, then use it when converting to single-precision.
5150   // Otherwise, convert to double-precision and then round.
5151   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
5152                    (Op.getOpcode() == ISD::UINT_TO_FP ?
5153                     PPCISD::FCFIDUS : PPCISD::FCFIDS) :
5154                    (Op.getOpcode() == ISD::UINT_TO_FP ?
5155                     PPCISD::FCFIDU : PPCISD::FCFID);
5156   MVT      FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
5157                    MVT::f32 : MVT::f64;
5158
5159   if (Op.getOperand(0).getValueType() == MVT::i64) {
5160     SDValue SINT = Op.getOperand(0);
5161     // When converting to single-precision, we actually need to convert
5162     // to double-precision first and then round to single-precision.
5163     // To avoid double-rounding effects during that operation, we have
5164     // to prepare the input operand.  Bits that might be truncated when
5165     // converting to double-precision are replaced by a bit that won't
5166     // be lost at this stage, but is below the single-precision rounding
5167     // position.
5168     //
5169     // However, if -enable-unsafe-fp-math is in effect, accept double
5170     // rounding to avoid the extra overhead.
5171     if (Op.getValueType() == MVT::f32 &&
5172         !Subtarget.hasFPCVT() &&
5173         !DAG.getTarget().Options.UnsafeFPMath) {
5174
5175       // Twiddle input to make sure the low 11 bits are zero.  (If this
5176       // is the case, we are guaranteed the value will fit into the 53 bit
5177       // mantissa of an IEEE double-precision value without rounding.)
5178       // If any of those low 11 bits were not zero originally, make sure
5179       // bit 12 (value 2048) is set instead, so that the final rounding
5180       // to single-precision gets the correct result.
5181       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
5182                                   SINT, DAG.getConstant(2047, MVT::i64));
5183       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
5184                           Round, DAG.getConstant(2047, MVT::i64));
5185       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
5186       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
5187                           Round, DAG.getConstant(-2048, MVT::i64));
5188
5189       // However, we cannot use that value unconditionally: if the magnitude
5190       // of the input value is small, the bit-twiddling we did above might
5191       // end up visibly changing the output.  Fortunately, in that case, we
5192       // don't need to twiddle bits since the original input will convert
5193       // exactly to double-precision floating-point already.  Therefore,
5194       // construct a conditional to use the original value if the top 11
5195       // bits are all sign-bit copies, and use the rounded value computed
5196       // above otherwise.
5197       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
5198                                  SINT, DAG.getConstant(53, MVT::i32));
5199       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
5200                          Cond, DAG.getConstant(1, MVT::i64));
5201       Cond = DAG.getSetCC(dl, MVT::i32,
5202                           Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
5203
5204       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
5205     }
5206
5207     SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
5208     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
5209
5210     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
5211       FP = DAG.getNode(ISD::FP_ROUND, dl,
5212                        MVT::f32, FP, DAG.getIntPtrConstant(0));
5213     return FP;
5214   }
5215
5216   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
5217          "Unhandled INT_TO_FP type in custom expander!");
5218   // Since we only generate this in 64-bit mode, we can take advantage of
5219   // 64-bit registers.  In particular, sign extend the input value into the
5220   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
5221   // then lfd it and fcfid it.
5222   MachineFunction &MF = DAG.getMachineFunction();
5223   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
5224   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5225
5226   SDValue Ld;
5227   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
5228     int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
5229     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5230
5231     SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
5232                                  MachinePointerInfo::getFixedStack(FrameIdx),
5233                                  false, false, 0);
5234
5235     assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
5236            "Expected an i32 store");
5237     MachineMemOperand *MMO =
5238       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
5239                               MachineMemOperand::MOLoad, 4, 4);
5240     SDValue Ops[] = { Store, FIdx };
5241     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
5242                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
5243                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
5244                                  Ops, MVT::i32, MMO);
5245   } else {
5246     assert(Subtarget.isPPC64() &&
5247            "i32->FP without LFIWAX supported only on PPC64");
5248
5249     int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
5250     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5251
5252     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
5253                                 Op.getOperand(0));
5254
5255     // STD the extended value into the stack slot.
5256     SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
5257                                  MachinePointerInfo::getFixedStack(FrameIdx),
5258                                  false, false, 0);
5259
5260     // Load the value as a double.
5261     Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
5262                      MachinePointerInfo::getFixedStack(FrameIdx),
5263                      false, false, false, 0);
5264   }
5265
5266   // FCFID it and return it.
5267   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
5268   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
5269     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
5270   return FP;
5271 }
5272
5273 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
5274                                             SelectionDAG &DAG) const {
5275   SDLoc dl(Op);
5276   /*
5277    The rounding mode is in bits 30:31 of FPSR, and has the following
5278    settings:
5279      00 Round to nearest
5280      01 Round to 0
5281      10 Round to +inf
5282      11 Round to -inf
5283
5284   FLT_ROUNDS, on the other hand, expects the following:
5285     -1 Undefined
5286      0 Round to 0
5287      1 Round to nearest
5288      2 Round to +inf
5289      3 Round to -inf
5290
5291   To perform the conversion, we do:
5292     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
5293   */
5294
5295   MachineFunction &MF = DAG.getMachineFunction();
5296   EVT VT = Op.getValueType();
5297   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5298
5299   // Save FP Control Word to register
5300   EVT NodeTys[] = {
5301     MVT::f64,    // return register
5302     MVT::Glue    // unused in this context
5303   };
5304   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
5305
5306   // Save FP register to stack slot
5307   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5308   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
5309   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
5310                                StackSlot, MachinePointerInfo(), false, false,0);
5311
5312   // Load FP Control Word from low 32 bits of stack slot.
5313   SDValue Four = DAG.getConstant(4, PtrVT);
5314   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
5315   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
5316                             false, false, false, 0);
5317
5318   // Transform as necessary
5319   SDValue CWD1 =
5320     DAG.getNode(ISD::AND, dl, MVT::i32,
5321                 CWD, DAG.getConstant(3, MVT::i32));
5322   SDValue CWD2 =
5323     DAG.getNode(ISD::SRL, dl, MVT::i32,
5324                 DAG.getNode(ISD::AND, dl, MVT::i32,
5325                             DAG.getNode(ISD::XOR, dl, MVT::i32,
5326                                         CWD, DAG.getConstant(3, MVT::i32)),
5327                             DAG.getConstant(3, MVT::i32)),
5328                 DAG.getConstant(1, MVT::i32));
5329
5330   SDValue RetVal =
5331     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
5332
5333   return DAG.getNode((VT.getSizeInBits() < 16 ?
5334                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
5335 }
5336
5337 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
5338   EVT VT = Op.getValueType();
5339   unsigned BitWidth = VT.getSizeInBits();
5340   SDLoc dl(Op);
5341   assert(Op.getNumOperands() == 3 &&
5342          VT == Op.getOperand(1).getValueType() &&
5343          "Unexpected SHL!");
5344
5345   // Expand into a bunch of logical ops.  Note that these ops
5346   // depend on the PPC behavior for oversized shift amounts.
5347   SDValue Lo = Op.getOperand(0);
5348   SDValue Hi = Op.getOperand(1);
5349   SDValue Amt = Op.getOperand(2);
5350   EVT AmtVT = Amt.getValueType();
5351
5352   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5353                              DAG.getConstant(BitWidth, AmtVT), Amt);
5354   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
5355   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
5356   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
5357   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5358                              DAG.getConstant(-BitWidth, AmtVT));
5359   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
5360   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
5361   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
5362   SDValue OutOps[] = { OutLo, OutHi };
5363   return DAG.getMergeValues(OutOps, dl);
5364 }
5365
5366 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
5367   EVT VT = Op.getValueType();
5368   SDLoc dl(Op);
5369   unsigned BitWidth = VT.getSizeInBits();
5370   assert(Op.getNumOperands() == 3 &&
5371          VT == Op.getOperand(1).getValueType() &&
5372          "Unexpected SRL!");
5373
5374   // Expand into a bunch of logical ops.  Note that these ops
5375   // depend on the PPC behavior for oversized shift amounts.
5376   SDValue Lo = Op.getOperand(0);
5377   SDValue Hi = Op.getOperand(1);
5378   SDValue Amt = Op.getOperand(2);
5379   EVT AmtVT = Amt.getValueType();
5380
5381   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5382                              DAG.getConstant(BitWidth, AmtVT), Amt);
5383   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5384   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5385   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5386   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5387                              DAG.getConstant(-BitWidth, AmtVT));
5388   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
5389   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
5390   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
5391   SDValue OutOps[] = { OutLo, OutHi };
5392   return DAG.getMergeValues(OutOps, dl);
5393 }
5394
5395 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
5396   SDLoc dl(Op);
5397   EVT VT = Op.getValueType();
5398   unsigned BitWidth = VT.getSizeInBits();
5399   assert(Op.getNumOperands() == 3 &&
5400          VT == Op.getOperand(1).getValueType() &&
5401          "Unexpected SRA!");
5402
5403   // Expand into a bunch of logical ops, followed by a select_cc.
5404   SDValue Lo = Op.getOperand(0);
5405   SDValue Hi = Op.getOperand(1);
5406   SDValue Amt = Op.getOperand(2);
5407   EVT AmtVT = Amt.getValueType();
5408
5409   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5410                              DAG.getConstant(BitWidth, AmtVT), Amt);
5411   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5412   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5413   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5414   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5415                              DAG.getConstant(-BitWidth, AmtVT));
5416   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
5417   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
5418   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
5419                                   Tmp4, Tmp6, ISD::SETLE);
5420   SDValue OutOps[] = { OutLo, OutHi };
5421   return DAG.getMergeValues(OutOps, dl);
5422 }
5423
5424 //===----------------------------------------------------------------------===//
5425 // Vector related lowering.
5426 //
5427
5428 /// BuildSplatI - Build a canonical splati of Val with an element size of
5429 /// SplatSize.  Cast the result to VT.
5430 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
5431                              SelectionDAG &DAG, SDLoc dl) {
5432   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
5433
5434   static const EVT VTys[] = { // canonical VT to use for each size.
5435     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
5436   };
5437
5438   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
5439
5440   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
5441   if (Val == -1)
5442     SplatSize = 1;
5443
5444   EVT CanonicalVT = VTys[SplatSize-1];
5445
5446   // Build a canonical splat for this value.
5447   SDValue Elt = DAG.getConstant(Val, MVT::i32);
5448   SmallVector<SDValue, 8> Ops;
5449   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
5450   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops);
5451   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
5452 }
5453
5454 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
5455 /// specified intrinsic ID.
5456 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
5457                                 SelectionDAG &DAG, SDLoc dl,
5458                                 EVT DestVT = MVT::Other) {
5459   if (DestVT == MVT::Other) DestVT = Op.getValueType();
5460   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5461                      DAG.getConstant(IID, MVT::i32), Op);
5462 }
5463
5464 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
5465 /// specified intrinsic ID.
5466 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
5467                                 SelectionDAG &DAG, SDLoc dl,
5468                                 EVT DestVT = MVT::Other) {
5469   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
5470   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5471                      DAG.getConstant(IID, MVT::i32), LHS, RHS);
5472 }
5473
5474 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
5475 /// specified intrinsic ID.
5476 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
5477                                 SDValue Op2, SelectionDAG &DAG,
5478                                 SDLoc dl, EVT DestVT = MVT::Other) {
5479   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
5480   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5481                      DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
5482 }
5483
5484
5485 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
5486 /// amount.  The result has the specified value type.
5487 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
5488                              EVT VT, SelectionDAG &DAG, SDLoc dl) {
5489   // Force LHS/RHS to be the right type.
5490   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
5491   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
5492
5493   int Ops[16];
5494   for (unsigned i = 0; i != 16; ++i)
5495     Ops[i] = i + Amt;
5496   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
5497   return DAG.getNode(ISD::BITCAST, dl, VT, T);
5498 }
5499
5500 // If this is a case we can't handle, return null and let the default
5501 // expansion code take care of it.  If we CAN select this case, and if it
5502 // selects to a single instruction, return Op.  Otherwise, if we can codegen
5503 // this case more efficiently than a constant pool load, lower it to the
5504 // sequence of ops that should be used.
5505 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
5506                                              SelectionDAG &DAG) const {
5507   SDLoc dl(Op);
5508   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5509   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
5510
5511   // Check if this is a splat of a constant value.
5512   APInt APSplatBits, APSplatUndef;
5513   unsigned SplatBitSize;
5514   bool HasAnyUndefs;
5515   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
5516                              HasAnyUndefs, 0, true) || SplatBitSize > 32)
5517     return SDValue();
5518
5519   unsigned SplatBits = APSplatBits.getZExtValue();
5520   unsigned SplatUndef = APSplatUndef.getZExtValue();
5521   unsigned SplatSize = SplatBitSize / 8;
5522
5523   // First, handle single instruction cases.
5524
5525   // All zeros?
5526   if (SplatBits == 0) {
5527     // Canonicalize all zero vectors to be v4i32.
5528     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5529       SDValue Z = DAG.getConstant(0, MVT::i32);
5530       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5531       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5532     }
5533     return Op;
5534   }
5535
5536   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5537   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5538                     (32-SplatBitSize));
5539   if (SextVal >= -16 && SextVal <= 15)
5540     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5541
5542
5543   // Two instruction sequences.
5544
5545   // If this value is in the range [-32,30] and is even, use:
5546   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
5547   // If this value is in the range [17,31] and is odd, use:
5548   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
5549   // If this value is in the range [-31,-17] and is odd, use:
5550   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
5551   // Note the last two are three-instruction sequences.
5552   if (SextVal >= -32 && SextVal <= 31) {
5553     // To avoid having these optimizations undone by constant folding,
5554     // we convert to a pseudo that will be expanded later into one of
5555     // the above forms.
5556     SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
5557     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
5558               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
5559     SDValue EltSize = DAG.getConstant(SplatSize, MVT::i32);
5560     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
5561     if (VT == Op.getValueType())
5562       return RetVal;
5563     else
5564       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
5565   }
5566
5567   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
5568   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
5569   // for fneg/fabs.
5570   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5571     // Make -1 and vspltisw -1:
5572     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5573
5574     // Make the VSLW intrinsic, computing 0x8000_0000.
5575     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5576                                    OnesV, DAG, dl);
5577
5578     // xor by OnesV to invert it.
5579     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5580     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5581   }
5582
5583   // The remaining cases assume either big endian element order or
5584   // a splat-size that equates to the element size of the vector
5585   // to be built.  An example that doesn't work for little endian is
5586   // {0, -1, 0, -1, 0, -1, 0, -1} which has a splat size of 32 bits
5587   // and a vector element size of 16 bits.  The code below will
5588   // produce the vector in big endian element order, which for little
5589   // endian is {-1, 0, -1, 0, -1, 0, -1, 0}.
5590
5591   // For now, just avoid these optimizations in that case.
5592   // FIXME: Develop correct optimizations for LE with mismatched
5593   // splat and element sizes.
5594
5595   if (Subtarget.isLittleEndian() &&
5596       SplatSize != Op.getValueType().getVectorElementType().getSizeInBits())
5597     return SDValue();
5598
5599   // Check to see if this is a wide variety of vsplti*, binop self cases.
5600   static const signed char SplatCsts[] = {
5601     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5602     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5603   };
5604
5605   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5606     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5607     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
5608     int i = SplatCsts[idx];
5609
5610     // Figure out what shift amount will be used by altivec if shifted by i in
5611     // this splat size.
5612     unsigned TypeShiftAmt = i & (SplatBitSize-1);
5613
5614     // vsplti + shl self.
5615     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5616       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5617       static const unsigned IIDs[] = { // Intrinsic to use for each size.
5618         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5619         Intrinsic::ppc_altivec_vslw
5620       };
5621       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5622       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5623     }
5624
5625     // vsplti + srl self.
5626     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5627       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5628       static const unsigned IIDs[] = { // Intrinsic to use for each size.
5629         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5630         Intrinsic::ppc_altivec_vsrw
5631       };
5632       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5633       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5634     }
5635
5636     // vsplti + sra self.
5637     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5638       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5639       static const unsigned IIDs[] = { // Intrinsic to use for each size.
5640         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5641         Intrinsic::ppc_altivec_vsraw
5642       };
5643       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5644       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5645     }
5646
5647     // vsplti + rol self.
5648     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5649                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5650       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5651       static const unsigned IIDs[] = { // Intrinsic to use for each size.
5652         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5653         Intrinsic::ppc_altivec_vrlw
5654       };
5655       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5656       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5657     }
5658
5659     // t = vsplti c, result = vsldoi t, t, 1
5660     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5661       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5662       return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5663     }
5664     // t = vsplti c, result = vsldoi t, t, 2
5665     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5666       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5667       return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5668     }
5669     // t = vsplti c, result = vsldoi t, t, 3
5670     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5671       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5672       return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5673     }
5674   }
5675
5676   return SDValue();
5677 }
5678
5679 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5680 /// the specified operations to build the shuffle.
5681 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5682                                       SDValue RHS, SelectionDAG &DAG,
5683                                       SDLoc dl) {
5684   unsigned OpNum = (PFEntry >> 26) & 0x0F;
5685   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5686   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5687
5688   enum {
5689     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5690     OP_VMRGHW,
5691     OP_VMRGLW,
5692     OP_VSPLTISW0,
5693     OP_VSPLTISW1,
5694     OP_VSPLTISW2,
5695     OP_VSPLTISW3,
5696     OP_VSLDOI4,
5697     OP_VSLDOI8,
5698     OP_VSLDOI12
5699   };
5700
5701   if (OpNum == OP_COPY) {
5702     if (LHSID == (1*9+2)*9+3) return LHS;
5703     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5704     return RHS;
5705   }
5706
5707   SDValue OpLHS, OpRHS;
5708   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5709   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5710
5711   int ShufIdxs[16];
5712   switch (OpNum) {
5713   default: llvm_unreachable("Unknown i32 permute!");
5714   case OP_VMRGHW:
5715     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
5716     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5717     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
5718     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5719     break;
5720   case OP_VMRGLW:
5721     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5722     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5723     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5724     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5725     break;
5726   case OP_VSPLTISW0:
5727     for (unsigned i = 0; i != 16; ++i)
5728       ShufIdxs[i] = (i&3)+0;
5729     break;
5730   case OP_VSPLTISW1:
5731     for (unsigned i = 0; i != 16; ++i)
5732       ShufIdxs[i] = (i&3)+4;
5733     break;
5734   case OP_VSPLTISW2:
5735     for (unsigned i = 0; i != 16; ++i)
5736       ShufIdxs[i] = (i&3)+8;
5737     break;
5738   case OP_VSPLTISW3:
5739     for (unsigned i = 0; i != 16; ++i)
5740       ShufIdxs[i] = (i&3)+12;
5741     break;
5742   case OP_VSLDOI4:
5743     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5744   case OP_VSLDOI8:
5745     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5746   case OP_VSLDOI12:
5747     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5748   }
5749   EVT VT = OpLHS.getValueType();
5750   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5751   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5752   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5753   return DAG.getNode(ISD::BITCAST, dl, VT, T);
5754 }
5755
5756 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
5757 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
5758 /// return the code it can be lowered into.  Worst case, it can always be
5759 /// lowered into a vperm.
5760 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5761                                                SelectionDAG &DAG) const {
5762   SDLoc dl(Op);
5763   SDValue V1 = Op.getOperand(0);
5764   SDValue V2 = Op.getOperand(1);
5765   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5766   EVT VT = Op.getValueType();
5767   bool isLittleEndian = Subtarget.isLittleEndian();
5768
5769   // Cases that are handled by instructions that take permute immediates
5770   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5771   // selected by the instruction selector.
5772   if (V2.getOpcode() == ISD::UNDEF) {
5773     if (PPC::isSplatShuffleMask(SVOp, 1) ||
5774         PPC::isSplatShuffleMask(SVOp, 2) ||
5775         PPC::isSplatShuffleMask(SVOp, 4) ||
5776         PPC::isVPKUWUMShuffleMask(SVOp, true, DAG) ||
5777         PPC::isVPKUHUMShuffleMask(SVOp, true, DAG) ||
5778         PPC::isVSLDOIShuffleMask(SVOp, true, DAG) != -1 ||
5779         PPC::isVMRGLShuffleMask(SVOp, 1, true, DAG) ||
5780         PPC::isVMRGLShuffleMask(SVOp, 2, true, DAG) ||
5781         PPC::isVMRGLShuffleMask(SVOp, 4, true, DAG) ||
5782         PPC::isVMRGHShuffleMask(SVOp, 1, true, DAG) ||
5783         PPC::isVMRGHShuffleMask(SVOp, 2, true, DAG) ||
5784         PPC::isVMRGHShuffleMask(SVOp, 4, true, DAG)) {
5785       return Op;
5786     }
5787   }
5788
5789   // Altivec has a variety of "shuffle immediates" that take two vector inputs
5790   // and produce a fixed permutation.  If any of these match, do not lower to
5791   // VPERM.
5792   if (PPC::isVPKUWUMShuffleMask(SVOp, false, DAG) ||
5793       PPC::isVPKUHUMShuffleMask(SVOp, false, DAG) ||
5794       PPC::isVSLDOIShuffleMask(SVOp, false, DAG) != -1 ||
5795       PPC::isVMRGLShuffleMask(SVOp, 1, false, DAG) ||
5796       PPC::isVMRGLShuffleMask(SVOp, 2, false, DAG) ||
5797       PPC::isVMRGLShuffleMask(SVOp, 4, false, DAG) ||
5798       PPC::isVMRGHShuffleMask(SVOp, 1, false, DAG) ||
5799       PPC::isVMRGHShuffleMask(SVOp, 2, false, DAG) ||
5800       PPC::isVMRGHShuffleMask(SVOp, 4, false, DAG))
5801     return Op;
5802
5803   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
5804   // perfect shuffle table to emit an optimal matching sequence.
5805   ArrayRef<int> PermMask = SVOp->getMask();
5806
5807   unsigned PFIndexes[4];
5808   bool isFourElementShuffle = true;
5809   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5810     unsigned EltNo = 8;   // Start out undef.
5811     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
5812       if (PermMask[i*4+j] < 0)
5813         continue;   // Undef, ignore it.
5814
5815       unsigned ByteSource = PermMask[i*4+j];
5816       if ((ByteSource & 3) != j) {
5817         isFourElementShuffle = false;
5818         break;
5819       }
5820
5821       if (EltNo == 8) {
5822         EltNo = ByteSource/4;
5823       } else if (EltNo != ByteSource/4) {
5824         isFourElementShuffle = false;
5825         break;
5826       }
5827     }
5828     PFIndexes[i] = EltNo;
5829   }
5830
5831   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5832   // perfect shuffle vector to determine if it is cost effective to do this as
5833   // discrete instructions, or whether we should use a vperm.
5834   // For now, we skip this for little endian until such time as we have a
5835   // little-endian perfect shuffle table.
5836   if (isFourElementShuffle && !isLittleEndian) {
5837     // Compute the index in the perfect shuffle table.
5838     unsigned PFTableIndex =
5839       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5840
5841     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5842     unsigned Cost  = (PFEntry >> 30);
5843
5844     // Determining when to avoid vperm is tricky.  Many things affect the cost
5845     // of vperm, particularly how many times the perm mask needs to be computed.
5846     // For example, if the perm mask can be hoisted out of a loop or is already
5847     // used (perhaps because there are multiple permutes with the same shuffle
5848     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
5849     // the loop requires an extra register.
5850     //
5851     // As a compromise, we only emit discrete instructions if the shuffle can be
5852     // generated in 3 or fewer operations.  When we have loop information
5853     // available, if this block is within a loop, we should avoid using vperm
5854     // for 3-operation perms and use a constant pool load instead.
5855     if (Cost < 3)
5856       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5857   }
5858
5859   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5860   // vector that will get spilled to the constant pool.
5861   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5862
5863   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5864   // that it is in input element units, not in bytes.  Convert now.
5865
5866   // For little endian, the order of the input vectors is reversed, and
5867   // the permutation mask is complemented with respect to 31.  This is
5868   // necessary to produce proper semantics with the big-endian-biased vperm
5869   // instruction.
5870   EVT EltVT = V1.getValueType().getVectorElementType();
5871   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5872
5873   SmallVector<SDValue, 16> ResultMask;
5874   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5875     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5876
5877     for (unsigned j = 0; j != BytesPerElement; ++j)
5878       if (isLittleEndian)
5879         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement+j),
5880                                              MVT::i32));
5881       else
5882         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5883                                              MVT::i32));
5884   }
5885
5886   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5887                                   ResultMask);
5888   if (isLittleEndian)
5889     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
5890                        V2, V1, VPermMask);
5891   else
5892     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
5893                        V1, V2, VPermMask);
5894 }
5895
5896 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5897 /// altivec comparison.  If it is, return true and fill in Opc/isDot with
5898 /// information about the intrinsic.
5899 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5900                                   bool &isDot) {
5901   unsigned IntrinsicID =
5902     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5903   CompareOpc = -1;
5904   isDot = false;
5905   switch (IntrinsicID) {
5906   default: return false;
5907     // Comparison predicates.
5908   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
5909   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5910   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
5911   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
5912   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5913   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5914   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5915   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5916   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5917   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5918   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5919   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5920   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5921
5922     // Normal Comparisons.
5923   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
5924   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
5925   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
5926   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
5927   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
5928   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
5929   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
5930   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
5931   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
5932   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
5933   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
5934   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
5935   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
5936   }
5937   return true;
5938 }
5939
5940 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5941 /// lower, do it, otherwise return null.
5942 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5943                                                    SelectionDAG &DAG) const {
5944   // If this is a lowered altivec predicate compare, CompareOpc is set to the
5945   // opcode number of the comparison.
5946   SDLoc dl(Op);
5947   int CompareOpc;
5948   bool isDot;
5949   if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5950     return SDValue();    // Don't custom lower most intrinsics.
5951
5952   // If this is a non-dot comparison, make the VCMP node and we are done.
5953   if (!isDot) {
5954     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5955                               Op.getOperand(1), Op.getOperand(2),
5956                               DAG.getConstant(CompareOpc, MVT::i32));
5957     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5958   }
5959
5960   // Create the PPCISD altivec 'dot' comparison node.
5961   SDValue Ops[] = {
5962     Op.getOperand(2),  // LHS
5963     Op.getOperand(3),  // RHS
5964     DAG.getConstant(CompareOpc, MVT::i32)
5965   };
5966   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
5967   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
5968
5969   // Now that we have the comparison, emit a copy from the CR to a GPR.
5970   // This is flagged to the above dot comparison.
5971   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
5972                                 DAG.getRegister(PPC::CR6, MVT::i32),
5973                                 CompNode.getValue(1));
5974
5975   // Unpack the result based on how the target uses it.
5976   unsigned BitNo;   // Bit # of CR6.
5977   bool InvertBit;   // Invert result?
5978   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5979   default:  // Can't happen, don't crash on invalid number though.
5980   case 0:   // Return the value of the EQ bit of CR6.
5981     BitNo = 0; InvertBit = false;
5982     break;
5983   case 1:   // Return the inverted value of the EQ bit of CR6.
5984     BitNo = 0; InvertBit = true;
5985     break;
5986   case 2:   // Return the value of the LT bit of CR6.
5987     BitNo = 2; InvertBit = false;
5988     break;
5989   case 3:   // Return the inverted value of the LT bit of CR6.
5990     BitNo = 2; InvertBit = true;
5991     break;
5992   }
5993
5994   // Shift the bit into the low position.
5995   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5996                       DAG.getConstant(8-(3-BitNo), MVT::i32));
5997   // Isolate the bit.
5998   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5999                       DAG.getConstant(1, MVT::i32));
6000
6001   // If we are supposed to, toggle the bit.
6002   if (InvertBit)
6003     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
6004                         DAG.getConstant(1, MVT::i32));
6005   return Flags;
6006 }
6007
6008 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
6009                                                   SelectionDAG &DAG) const {
6010   SDLoc dl(Op);
6011   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
6012   // instructions), but for smaller types, we need to first extend up to v2i32
6013   // before doing going farther.
6014   if (Op.getValueType() == MVT::v2i64) {
6015     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
6016     if (ExtVT != MVT::v2i32) {
6017       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
6018       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
6019                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
6020                                         ExtVT.getVectorElementType(), 4)));
6021       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
6022       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
6023                        DAG.getValueType(MVT::v2i32));
6024     }
6025
6026     return Op;
6027   }
6028
6029   return SDValue();
6030 }
6031
6032 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
6033                                                    SelectionDAG &DAG) const {
6034   SDLoc dl(Op);
6035   // Create a stack slot that is 16-byte aligned.
6036   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
6037   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
6038   EVT PtrVT = getPointerTy();
6039   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6040
6041   // Store the input value into Value#0 of the stack slot.
6042   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
6043                                Op.getOperand(0), FIdx, MachinePointerInfo(),
6044                                false, false, 0);
6045   // Load it out.
6046   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
6047                      false, false, false, 0);
6048 }
6049
6050 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
6051   SDLoc dl(Op);
6052   if (Op.getValueType() == MVT::v4i32) {
6053     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6054
6055     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
6056     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
6057
6058     SDValue RHSSwap =   // = vrlw RHS, 16
6059       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
6060
6061     // Shrinkify inputs to v8i16.
6062     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
6063     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
6064     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
6065
6066     // Low parts multiplied together, generating 32-bit results (we ignore the
6067     // top parts).
6068     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
6069                                         LHS, RHS, DAG, dl, MVT::v4i32);
6070
6071     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
6072                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
6073     // Shift the high parts up 16 bits.
6074     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
6075                               Neg16, DAG, dl);
6076     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
6077   } else if (Op.getValueType() == MVT::v8i16) {
6078     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6079
6080     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
6081
6082     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
6083                             LHS, RHS, Zero, DAG, dl);
6084   } else if (Op.getValueType() == MVT::v16i8) {
6085     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6086     bool isLittleEndian = Subtarget.isLittleEndian();
6087
6088     // Multiply the even 8-bit parts, producing 16-bit sums.
6089     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
6090                                            LHS, RHS, DAG, dl, MVT::v8i16);
6091     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
6092
6093     // Multiply the odd 8-bit parts, producing 16-bit sums.
6094     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
6095                                           LHS, RHS, DAG, dl, MVT::v8i16);
6096     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
6097
6098     // Merge the results together.  Because vmuleub and vmuloub are
6099     // instructions with a big-endian bias, we must reverse the
6100     // element numbering and reverse the meaning of "odd" and "even"
6101     // when generating little endian code.
6102     int Ops[16];
6103     for (unsigned i = 0; i != 8; ++i) {
6104       if (isLittleEndian) {
6105         Ops[i*2  ] = 2*i;
6106         Ops[i*2+1] = 2*i+16;
6107       } else {
6108         Ops[i*2  ] = 2*i+1;
6109         Ops[i*2+1] = 2*i+1+16;
6110       }
6111     }
6112     if (isLittleEndian)
6113       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
6114     else
6115       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
6116   } else {
6117     llvm_unreachable("Unknown mul to lower!");
6118   }
6119 }
6120
6121 /// LowerOperation - Provide custom lowering hooks for some operations.
6122 ///
6123 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6124   switch (Op.getOpcode()) {
6125   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
6126   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6127   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
6128   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6129   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6130   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6131   case ISD::SETCC:              return LowerSETCC(Op, DAG);
6132   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
6133   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
6134   case ISD::VASTART:
6135     return LowerVASTART(Op, DAG, Subtarget);
6136
6137   case ISD::VAARG:
6138     return LowerVAARG(Op, DAG, Subtarget);
6139
6140   case ISD::VACOPY:
6141     return LowerVACOPY(Op, DAG, Subtarget);
6142
6143   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, Subtarget);
6144   case ISD::DYNAMIC_STACKALLOC:
6145     return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
6146
6147   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
6148   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
6149
6150   case ISD::LOAD:               return LowerLOAD(Op, DAG);
6151   case ISD::STORE:              return LowerSTORE(Op, DAG);
6152   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
6153   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
6154   case ISD::FP_TO_UINT:
6155   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
6156                                                        SDLoc(Op));
6157   case ISD::UINT_TO_FP:
6158   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
6159   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6160
6161   // Lower 64-bit shifts.
6162   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
6163   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
6164   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
6165
6166   // Vector-related lowering.
6167   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6168   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6169   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6170   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6171   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
6172   case ISD::MUL:                return LowerMUL(Op, DAG);
6173
6174   // For counter-based loop handling.
6175   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
6176
6177   // Frame & Return address.
6178   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6179   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6180   }
6181 }
6182
6183 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
6184                                            SmallVectorImpl<SDValue>&Results,
6185                                            SelectionDAG &DAG) const {
6186   const TargetMachine &TM = getTargetMachine();
6187   SDLoc dl(N);
6188   switch (N->getOpcode()) {
6189   default:
6190     llvm_unreachable("Do not know how to custom type legalize this operation!");
6191   case ISD::INTRINSIC_W_CHAIN: {
6192     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
6193         Intrinsic::ppc_is_decremented_ctr_nonzero)
6194       break;
6195
6196     assert(N->getValueType(0) == MVT::i1 &&
6197            "Unexpected result type for CTR decrement intrinsic");
6198     EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
6199     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
6200     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
6201                                  N->getOperand(1)); 
6202
6203     Results.push_back(NewInt);
6204     Results.push_back(NewInt.getValue(1));
6205     break;
6206   }
6207   case ISD::VAARG: {
6208     if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
6209         || TM.getSubtarget<PPCSubtarget>().isPPC64())
6210       return;
6211
6212     EVT VT = N->getValueType(0);
6213
6214     if (VT == MVT::i64) {
6215       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
6216
6217       Results.push_back(NewNode);
6218       Results.push_back(NewNode.getValue(1));
6219     }
6220     return;
6221   }
6222   case ISD::FP_ROUND_INREG: {
6223     assert(N->getValueType(0) == MVT::ppcf128);
6224     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
6225     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
6226                              MVT::f64, N->getOperand(0),
6227                              DAG.getIntPtrConstant(0));
6228     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
6229                              MVT::f64, N->getOperand(0),
6230                              DAG.getIntPtrConstant(1));
6231
6232     // Add the two halves of the long double in round-to-zero mode.
6233     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
6234
6235     // We know the low half is about to be thrown away, so just use something
6236     // convenient.
6237     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
6238                                 FPreg, FPreg));
6239     return;
6240   }
6241   case ISD::FP_TO_SINT:
6242     // LowerFP_TO_INT() can only handle f32 and f64.
6243     if (N->getOperand(0).getValueType() == MVT::ppcf128)
6244       return;
6245     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
6246     return;
6247   }
6248 }
6249
6250
6251 //===----------------------------------------------------------------------===//
6252 //  Other Lowering Code
6253 //===----------------------------------------------------------------------===//
6254
6255 MachineBasicBlock *
6256 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
6257                                     bool is64bit, unsigned BinOpcode) const {
6258   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
6259   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6260
6261   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6262   MachineFunction *F = BB->getParent();
6263   MachineFunction::iterator It = BB;
6264   ++It;
6265
6266   unsigned dest = MI->getOperand(0).getReg();
6267   unsigned ptrA = MI->getOperand(1).getReg();
6268   unsigned ptrB = MI->getOperand(2).getReg();
6269   unsigned incr = MI->getOperand(3).getReg();
6270   DebugLoc dl = MI->getDebugLoc();
6271
6272   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
6273   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6274   F->insert(It, loopMBB);
6275   F->insert(It, exitMBB);
6276   exitMBB->splice(exitMBB->begin(), BB,
6277                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
6278   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6279
6280   MachineRegisterInfo &RegInfo = F->getRegInfo();
6281   unsigned TmpReg = (!BinOpcode) ? incr :
6282     RegInfo.createVirtualRegister(
6283        is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6284                  (const TargetRegisterClass *) &PPC::GPRCRegClass);
6285
6286   //  thisMBB:
6287   //   ...
6288   //   fallthrough --> loopMBB
6289   BB->addSuccessor(loopMBB);
6290
6291   //  loopMBB:
6292   //   l[wd]arx dest, ptr
6293   //   add r0, dest, incr
6294   //   st[wd]cx. r0, ptr
6295   //   bne- loopMBB
6296   //   fallthrough --> exitMBB
6297   BB = loopMBB;
6298   BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6299     .addReg(ptrA).addReg(ptrB);
6300   if (BinOpcode)
6301     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
6302   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6303     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
6304   BuildMI(BB, dl, TII->get(PPC::BCC))
6305     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
6306   BB->addSuccessor(loopMBB);
6307   BB->addSuccessor(exitMBB);
6308
6309   //  exitMBB:
6310   //   ...
6311   BB = exitMBB;
6312   return BB;
6313 }
6314
6315 MachineBasicBlock *
6316 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
6317                                             MachineBasicBlock *BB,
6318                                             bool is8bit,    // operation
6319                                             unsigned BinOpcode) const {
6320   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
6321   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6322   // In 64 bit mode we have to use 64 bits for addresses, even though the
6323   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
6324   // registers without caring whether they're 32 or 64, but here we're
6325   // doing actual arithmetic on the addresses.
6326   bool is64bit = Subtarget.isPPC64();
6327   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
6328
6329   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6330   MachineFunction *F = BB->getParent();
6331   MachineFunction::iterator It = BB;
6332   ++It;
6333
6334   unsigned dest = MI->getOperand(0).getReg();
6335   unsigned ptrA = MI->getOperand(1).getReg();
6336   unsigned ptrB = MI->getOperand(2).getReg();
6337   unsigned incr = MI->getOperand(3).getReg();
6338   DebugLoc dl = MI->getDebugLoc();
6339
6340   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
6341   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6342   F->insert(It, loopMBB);
6343   F->insert(It, exitMBB);
6344   exitMBB->splice(exitMBB->begin(), BB,
6345                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
6346   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6347
6348   MachineRegisterInfo &RegInfo = F->getRegInfo();
6349   const TargetRegisterClass *RC =
6350     is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6351               (const TargetRegisterClass *) &PPC::GPRCRegClass;
6352   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6353   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6354   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6355   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
6356   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6357   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6358   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6359   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6360   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
6361   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6362   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6363   unsigned Ptr1Reg;
6364   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
6365
6366   //  thisMBB:
6367   //   ...
6368   //   fallthrough --> loopMBB
6369   BB->addSuccessor(loopMBB);
6370
6371   // The 4-byte load must be aligned, while a char or short may be
6372   // anywhere in the word.  Hence all this nasty bookkeeping code.
6373   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6374   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6375   //   xori shift, shift1, 24 [16]
6376   //   rlwinm ptr, ptr1, 0, 0, 29
6377   //   slw incr2, incr, shift
6378   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6379   //   slw mask, mask2, shift
6380   //  loopMBB:
6381   //   lwarx tmpDest, ptr
6382   //   add tmp, tmpDest, incr2
6383   //   andc tmp2, tmpDest, mask
6384   //   and tmp3, tmp, mask
6385   //   or tmp4, tmp3, tmp2
6386   //   stwcx. tmp4, ptr
6387   //   bne- loopMBB
6388   //   fallthrough --> exitMBB
6389   //   srw dest, tmpDest, shift
6390   if (ptrA != ZeroReg) {
6391     Ptr1Reg = RegInfo.createVirtualRegister(RC);
6392     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6393       .addReg(ptrA).addReg(ptrB);
6394   } else {
6395     Ptr1Reg = ptrB;
6396   }
6397   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6398       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6399   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6400       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6401   if (is64bit)
6402     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6403       .addReg(Ptr1Reg).addImm(0).addImm(61);
6404   else
6405     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6406       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6407   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
6408       .addReg(incr).addReg(ShiftReg);
6409   if (is8bit)
6410     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6411   else {
6412     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6413     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
6414   }
6415   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6416       .addReg(Mask2Reg).addReg(ShiftReg);
6417
6418   BB = loopMBB;
6419   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6420     .addReg(ZeroReg).addReg(PtrReg);
6421   if (BinOpcode)
6422     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
6423       .addReg(Incr2Reg).addReg(TmpDestReg);
6424   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
6425     .addReg(TmpDestReg).addReg(MaskReg);
6426   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
6427     .addReg(TmpReg).addReg(MaskReg);
6428   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
6429     .addReg(Tmp3Reg).addReg(Tmp2Reg);
6430   BuildMI(BB, dl, TII->get(PPC::STWCX))
6431     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
6432   BuildMI(BB, dl, TII->get(PPC::BCC))
6433     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
6434   BB->addSuccessor(loopMBB);
6435   BB->addSuccessor(exitMBB);
6436
6437   //  exitMBB:
6438   //   ...
6439   BB = exitMBB;
6440   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
6441     .addReg(ShiftReg);
6442   return BB;
6443 }
6444
6445 llvm::MachineBasicBlock*
6446 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
6447                                     MachineBasicBlock *MBB) const {
6448   DebugLoc DL = MI->getDebugLoc();
6449   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6450
6451   MachineFunction *MF = MBB->getParent();
6452   MachineRegisterInfo &MRI = MF->getRegInfo();
6453
6454   const BasicBlock *BB = MBB->getBasicBlock();
6455   MachineFunction::iterator I = MBB;
6456   ++I;
6457
6458   // Memory Reference
6459   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6460   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6461
6462   unsigned DstReg = MI->getOperand(0).getReg();
6463   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
6464   assert(RC->hasType(MVT::i32) && "Invalid destination!");
6465   unsigned mainDstReg = MRI.createVirtualRegister(RC);
6466   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
6467
6468   MVT PVT = getPointerTy();
6469   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6470          "Invalid Pointer Size!");
6471   // For v = setjmp(buf), we generate
6472   //
6473   // thisMBB:
6474   //  SjLjSetup mainMBB
6475   //  bl mainMBB
6476   //  v_restore = 1
6477   //  b sinkMBB
6478   //
6479   // mainMBB:
6480   //  buf[LabelOffset] = LR
6481   //  v_main = 0
6482   //
6483   // sinkMBB:
6484   //  v = phi(main, restore)
6485   //
6486
6487   MachineBasicBlock *thisMBB = MBB;
6488   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
6489   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
6490   MF->insert(I, mainMBB);
6491   MF->insert(I, sinkMBB);
6492
6493   MachineInstrBuilder MIB;
6494
6495   // Transfer the remainder of BB and its successor edges to sinkMBB.
6496   sinkMBB->splice(sinkMBB->begin(), MBB,
6497                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6498   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
6499
6500   // Note that the structure of the jmp_buf used here is not compatible
6501   // with that used by libc, and is not designed to be. Specifically, it
6502   // stores only those 'reserved' registers that LLVM does not otherwise
6503   // understand how to spill. Also, by convention, by the time this
6504   // intrinsic is called, Clang has already stored the frame address in the
6505   // first slot of the buffer and stack address in the third. Following the
6506   // X86 target code, we'll store the jump address in the second slot. We also
6507   // need to save the TOC pointer (R2) to handle jumps between shared
6508   // libraries, and that will be stored in the fourth slot. The thread
6509   // identifier (R13) is not affected.
6510
6511   // thisMBB:
6512   const int64_t LabelOffset = 1 * PVT.getStoreSize();
6513   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6514   const int64_t BPOffset    = 4 * PVT.getStoreSize();
6515
6516   // Prepare IP either in reg.
6517   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
6518   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
6519   unsigned BufReg = MI->getOperand(1).getReg();
6520
6521   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
6522     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
6523             .addReg(PPC::X2)
6524             .addImm(TOCOffset)
6525             .addReg(BufReg);
6526     MIB.setMemRefs(MMOBegin, MMOEnd);
6527   }
6528
6529   // Naked functions never have a base pointer, and so we use r1. For all
6530   // other functions, this decision must be delayed until during PEI.
6531   unsigned BaseReg;
6532   if (MF->getFunction()->getAttributes().hasAttribute(
6533           AttributeSet::FunctionIndex, Attribute::Naked))
6534     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
6535   else
6536     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
6537
6538   MIB = BuildMI(*thisMBB, MI, DL,
6539                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
6540           .addReg(BaseReg)
6541           .addImm(BPOffset)
6542           .addReg(BufReg);
6543   MIB.setMemRefs(MMOBegin, MMOEnd);
6544
6545   // Setup
6546   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
6547   const PPCRegisterInfo *TRI =
6548     static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo());
6549   MIB.addRegMask(TRI->getNoPreservedMask());
6550
6551   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
6552
6553   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
6554           .addMBB(mainMBB);
6555   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
6556
6557   thisMBB->addSuccessor(mainMBB, /* weight */ 0);
6558   thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
6559
6560   // mainMBB:
6561   //  mainDstReg = 0
6562   MIB = BuildMI(mainMBB, DL,
6563     TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
6564
6565   // Store IP
6566   if (Subtarget.isPPC64()) {
6567     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
6568             .addReg(LabelReg)
6569             .addImm(LabelOffset)
6570             .addReg(BufReg);
6571   } else {
6572     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
6573             .addReg(LabelReg)
6574             .addImm(LabelOffset)
6575             .addReg(BufReg);
6576   }
6577
6578   MIB.setMemRefs(MMOBegin, MMOEnd);
6579
6580   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
6581   mainMBB->addSuccessor(sinkMBB);
6582
6583   // sinkMBB:
6584   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
6585           TII->get(PPC::PHI), DstReg)
6586     .addReg(mainDstReg).addMBB(mainMBB)
6587     .addReg(restoreDstReg).addMBB(thisMBB);
6588
6589   MI->eraseFromParent();
6590   return sinkMBB;
6591 }
6592
6593 MachineBasicBlock *
6594 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
6595                                      MachineBasicBlock *MBB) const {
6596   DebugLoc DL = MI->getDebugLoc();
6597   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6598
6599   MachineFunction *MF = MBB->getParent();
6600   MachineRegisterInfo &MRI = MF->getRegInfo();
6601
6602   // Memory Reference
6603   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6604   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6605
6606   MVT PVT = getPointerTy();
6607   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6608          "Invalid Pointer Size!");
6609
6610   const TargetRegisterClass *RC =
6611     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6612   unsigned Tmp = MRI.createVirtualRegister(RC);
6613   // Since FP is only updated here but NOT referenced, it's treated as GPR.
6614   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
6615   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
6616   unsigned BP  = (PVT == MVT::i64) ? PPC::X30 : PPC::R30;
6617
6618   MachineInstrBuilder MIB;
6619
6620   const int64_t LabelOffset = 1 * PVT.getStoreSize();
6621   const int64_t SPOffset    = 2 * PVT.getStoreSize();
6622   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6623   const int64_t BPOffset    = 4 * PVT.getStoreSize();
6624
6625   unsigned BufReg = MI->getOperand(0).getReg();
6626
6627   // Reload FP (the jumped-to function may not have had a
6628   // frame pointer, and if so, then its r31 will be restored
6629   // as necessary).
6630   if (PVT == MVT::i64) {
6631     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
6632             .addImm(0)
6633             .addReg(BufReg);
6634   } else {
6635     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
6636             .addImm(0)
6637             .addReg(BufReg);
6638   }
6639   MIB.setMemRefs(MMOBegin, MMOEnd);
6640
6641   // Reload IP
6642   if (PVT == MVT::i64) {
6643     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
6644             .addImm(LabelOffset)
6645             .addReg(BufReg);
6646   } else {
6647     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
6648             .addImm(LabelOffset)
6649             .addReg(BufReg);
6650   }
6651   MIB.setMemRefs(MMOBegin, MMOEnd);
6652
6653   // Reload SP
6654   if (PVT == MVT::i64) {
6655     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
6656             .addImm(SPOffset)
6657             .addReg(BufReg);
6658   } else {
6659     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
6660             .addImm(SPOffset)
6661             .addReg(BufReg);
6662   }
6663   MIB.setMemRefs(MMOBegin, MMOEnd);
6664
6665   // Reload BP
6666   if (PVT == MVT::i64) {
6667     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
6668             .addImm(BPOffset)
6669             .addReg(BufReg);
6670   } else {
6671     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
6672             .addImm(BPOffset)
6673             .addReg(BufReg);
6674   }
6675   MIB.setMemRefs(MMOBegin, MMOEnd);
6676
6677   // Reload TOC
6678   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
6679     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
6680             .addImm(TOCOffset)
6681             .addReg(BufReg);
6682
6683     MIB.setMemRefs(MMOBegin, MMOEnd);
6684   }
6685
6686   // Jump
6687   BuildMI(*MBB, MI, DL,
6688           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
6689   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
6690
6691   MI->eraseFromParent();
6692   return MBB;
6693 }
6694
6695 MachineBasicBlock *
6696 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6697                                                MachineBasicBlock *BB) const {
6698   if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
6699       MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
6700     return emitEHSjLjSetJmp(MI, BB);
6701   } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
6702              MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
6703     return emitEHSjLjLongJmp(MI, BB);
6704   }
6705
6706   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6707
6708   // To "insert" these instructions we actually have to insert their
6709   // control-flow patterns.
6710   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6711   MachineFunction::iterator It = BB;
6712   ++It;
6713
6714   MachineFunction *F = BB->getParent();
6715
6716   if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6717                                  MI->getOpcode() == PPC::SELECT_CC_I8 ||
6718                                  MI->getOpcode() == PPC::SELECT_I4 ||
6719                                  MI->getOpcode() == PPC::SELECT_I8)) {
6720     SmallVector<MachineOperand, 2> Cond;
6721     if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6722         MI->getOpcode() == PPC::SELECT_CC_I8)
6723       Cond.push_back(MI->getOperand(4));
6724     else
6725       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
6726     Cond.push_back(MI->getOperand(1));
6727
6728     DebugLoc dl = MI->getDebugLoc();
6729     const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6730     TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
6731                       Cond, MI->getOperand(2).getReg(),
6732                       MI->getOperand(3).getReg());
6733   } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6734              MI->getOpcode() == PPC::SELECT_CC_I8 ||
6735              MI->getOpcode() == PPC::SELECT_CC_F4 ||
6736              MI->getOpcode() == PPC::SELECT_CC_F8 ||
6737              MI->getOpcode() == PPC::SELECT_CC_VRRC ||
6738              MI->getOpcode() == PPC::SELECT_I4 ||
6739              MI->getOpcode() == PPC::SELECT_I8 ||
6740              MI->getOpcode() == PPC::SELECT_F4 ||
6741              MI->getOpcode() == PPC::SELECT_F8 ||
6742              MI->getOpcode() == PPC::SELECT_VRRC) {
6743     // The incoming instruction knows the destination vreg to set, the
6744     // condition code register to branch on, the true/false values to
6745     // select between, and a branch opcode to use.
6746
6747     //  thisMBB:
6748     //  ...
6749     //   TrueVal = ...
6750     //   cmpTY ccX, r1, r2
6751     //   bCC copy1MBB
6752     //   fallthrough --> copy0MBB
6753     MachineBasicBlock *thisMBB = BB;
6754     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6755     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6756     DebugLoc dl = MI->getDebugLoc();
6757     F->insert(It, copy0MBB);
6758     F->insert(It, sinkMBB);
6759
6760     // Transfer the remainder of BB and its successor edges to sinkMBB.
6761     sinkMBB->splice(sinkMBB->begin(), BB,
6762                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
6763     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6764
6765     // Next, add the true and fallthrough blocks as its successors.
6766     BB->addSuccessor(copy0MBB);
6767     BB->addSuccessor(sinkMBB);
6768
6769     if (MI->getOpcode() == PPC::SELECT_I4 ||
6770         MI->getOpcode() == PPC::SELECT_I8 ||
6771         MI->getOpcode() == PPC::SELECT_F4 ||
6772         MI->getOpcode() == PPC::SELECT_F8 ||
6773         MI->getOpcode() == PPC::SELECT_VRRC) {
6774       BuildMI(BB, dl, TII->get(PPC::BC))
6775         .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
6776     } else {
6777       unsigned SelectPred = MI->getOperand(4).getImm();
6778       BuildMI(BB, dl, TII->get(PPC::BCC))
6779         .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
6780     }
6781
6782     //  copy0MBB:
6783     //   %FalseValue = ...
6784     //   # fallthrough to sinkMBB
6785     BB = copy0MBB;
6786
6787     // Update machine-CFG edges
6788     BB->addSuccessor(sinkMBB);
6789
6790     //  sinkMBB:
6791     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6792     //  ...
6793     BB = sinkMBB;
6794     BuildMI(*BB, BB->begin(), dl,
6795             TII->get(PPC::PHI), MI->getOperand(0).getReg())
6796       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
6797       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6798   }
6799   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
6800     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
6801   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
6802     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
6803   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
6804     BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
6805   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
6806     BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
6807
6808   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
6809     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
6810   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
6811     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
6812   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
6813     BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
6814   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
6815     BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
6816
6817   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
6818     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
6819   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
6820     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
6821   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
6822     BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
6823   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
6824     BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
6825
6826   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
6827     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
6828   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
6829     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
6830   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
6831     BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
6832   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
6833     BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
6834
6835   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
6836     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
6837   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
6838     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
6839   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6840     BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
6841   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6842     BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
6843
6844   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6845     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6846   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6847     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6848   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6849     BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6850   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6851     BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6852
6853   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6854     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6855   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6856     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6857   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6858     BB = EmitAtomicBinary(MI, BB, false, 0);
6859   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6860     BB = EmitAtomicBinary(MI, BB, true, 0);
6861
6862   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6863            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6864     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6865
6866     unsigned dest   = MI->getOperand(0).getReg();
6867     unsigned ptrA   = MI->getOperand(1).getReg();
6868     unsigned ptrB   = MI->getOperand(2).getReg();
6869     unsigned oldval = MI->getOperand(3).getReg();
6870     unsigned newval = MI->getOperand(4).getReg();
6871     DebugLoc dl     = MI->getDebugLoc();
6872
6873     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6874     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6875     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6876     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6877     F->insert(It, loop1MBB);
6878     F->insert(It, loop2MBB);
6879     F->insert(It, midMBB);
6880     F->insert(It, exitMBB);
6881     exitMBB->splice(exitMBB->begin(), BB,
6882                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
6883     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6884
6885     //  thisMBB:
6886     //   ...
6887     //   fallthrough --> loopMBB
6888     BB->addSuccessor(loop1MBB);
6889
6890     // loop1MBB:
6891     //   l[wd]arx dest, ptr
6892     //   cmp[wd] dest, oldval
6893     //   bne- midMBB
6894     // loop2MBB:
6895     //   st[wd]cx. newval, ptr
6896     //   bne- loopMBB
6897     //   b exitBB
6898     // midMBB:
6899     //   st[wd]cx. dest, ptr
6900     // exitBB:
6901     BB = loop1MBB;
6902     BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6903       .addReg(ptrA).addReg(ptrB);
6904     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6905       .addReg(oldval).addReg(dest);
6906     BuildMI(BB, dl, TII->get(PPC::BCC))
6907       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6908     BB->addSuccessor(loop2MBB);
6909     BB->addSuccessor(midMBB);
6910
6911     BB = loop2MBB;
6912     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6913       .addReg(newval).addReg(ptrA).addReg(ptrB);
6914     BuildMI(BB, dl, TII->get(PPC::BCC))
6915       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6916     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6917     BB->addSuccessor(loop1MBB);
6918     BB->addSuccessor(exitMBB);
6919
6920     BB = midMBB;
6921     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6922       .addReg(dest).addReg(ptrA).addReg(ptrB);
6923     BB->addSuccessor(exitMBB);
6924
6925     //  exitMBB:
6926     //   ...
6927     BB = exitMBB;
6928   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6929              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6930     // We must use 64-bit registers for addresses when targeting 64-bit,
6931     // since we're actually doing arithmetic on them.  Other registers
6932     // can be 32-bit.
6933     bool is64bit = Subtarget.isPPC64();
6934     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6935
6936     unsigned dest   = MI->getOperand(0).getReg();
6937     unsigned ptrA   = MI->getOperand(1).getReg();
6938     unsigned ptrB   = MI->getOperand(2).getReg();
6939     unsigned oldval = MI->getOperand(3).getReg();
6940     unsigned newval = MI->getOperand(4).getReg();
6941     DebugLoc dl     = MI->getDebugLoc();
6942
6943     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6944     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6945     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6946     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6947     F->insert(It, loop1MBB);
6948     F->insert(It, loop2MBB);
6949     F->insert(It, midMBB);
6950     F->insert(It, exitMBB);
6951     exitMBB->splice(exitMBB->begin(), BB,
6952                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
6953     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6954
6955     MachineRegisterInfo &RegInfo = F->getRegInfo();
6956     const TargetRegisterClass *RC =
6957       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6958                 (const TargetRegisterClass *) &PPC::GPRCRegClass;
6959     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6960     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6961     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6962     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6963     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6964     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6965     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6966     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6967     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6968     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6969     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6970     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6971     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6972     unsigned Ptr1Reg;
6973     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6974     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
6975     //  thisMBB:
6976     //   ...
6977     //   fallthrough --> loopMBB
6978     BB->addSuccessor(loop1MBB);
6979
6980     // The 4-byte load must be aligned, while a char or short may be
6981     // anywhere in the word.  Hence all this nasty bookkeeping code.
6982     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6983     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6984     //   xori shift, shift1, 24 [16]
6985     //   rlwinm ptr, ptr1, 0, 0, 29
6986     //   slw newval2, newval, shift
6987     //   slw oldval2, oldval,shift
6988     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6989     //   slw mask, mask2, shift
6990     //   and newval3, newval2, mask
6991     //   and oldval3, oldval2, mask
6992     // loop1MBB:
6993     //   lwarx tmpDest, ptr
6994     //   and tmp, tmpDest, mask
6995     //   cmpw tmp, oldval3
6996     //   bne- midMBB
6997     // loop2MBB:
6998     //   andc tmp2, tmpDest, mask
6999     //   or tmp4, tmp2, newval3
7000     //   stwcx. tmp4, ptr
7001     //   bne- loop1MBB
7002     //   b exitBB
7003     // midMBB:
7004     //   stwcx. tmpDest, ptr
7005     // exitBB:
7006     //   srw dest, tmpDest, shift
7007     if (ptrA != ZeroReg) {
7008       Ptr1Reg = RegInfo.createVirtualRegister(RC);
7009       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
7010         .addReg(ptrA).addReg(ptrB);
7011     } else {
7012       Ptr1Reg = ptrB;
7013     }
7014     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
7015         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
7016     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
7017         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
7018     if (is64bit)
7019       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
7020         .addReg(Ptr1Reg).addImm(0).addImm(61);
7021     else
7022       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
7023         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
7024     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
7025         .addReg(newval).addReg(ShiftReg);
7026     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
7027         .addReg(oldval).addReg(ShiftReg);
7028     if (is8bit)
7029       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
7030     else {
7031       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
7032       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
7033         .addReg(Mask3Reg).addImm(65535);
7034     }
7035     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
7036         .addReg(Mask2Reg).addReg(ShiftReg);
7037     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
7038         .addReg(NewVal2Reg).addReg(MaskReg);
7039     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
7040         .addReg(OldVal2Reg).addReg(MaskReg);
7041
7042     BB = loop1MBB;
7043     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
7044         .addReg(ZeroReg).addReg(PtrReg);
7045     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
7046         .addReg(TmpDestReg).addReg(MaskReg);
7047     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
7048         .addReg(TmpReg).addReg(OldVal3Reg);
7049     BuildMI(BB, dl, TII->get(PPC::BCC))
7050         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
7051     BB->addSuccessor(loop2MBB);
7052     BB->addSuccessor(midMBB);
7053
7054     BB = loop2MBB;
7055     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
7056         .addReg(TmpDestReg).addReg(MaskReg);
7057     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
7058         .addReg(Tmp2Reg).addReg(NewVal3Reg);
7059     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
7060         .addReg(ZeroReg).addReg(PtrReg);
7061     BuildMI(BB, dl, TII->get(PPC::BCC))
7062       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
7063     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
7064     BB->addSuccessor(loop1MBB);
7065     BB->addSuccessor(exitMBB);
7066
7067     BB = midMBB;
7068     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
7069       .addReg(ZeroReg).addReg(PtrReg);
7070     BB->addSuccessor(exitMBB);
7071
7072     //  exitMBB:
7073     //   ...
7074     BB = exitMBB;
7075     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
7076       .addReg(ShiftReg);
7077   } else if (MI->getOpcode() == PPC::FADDrtz) {
7078     // This pseudo performs an FADD with rounding mode temporarily forced
7079     // to round-to-zero.  We emit this via custom inserter since the FPSCR
7080     // is not modeled at the SelectionDAG level.
7081     unsigned Dest = MI->getOperand(0).getReg();
7082     unsigned Src1 = MI->getOperand(1).getReg();
7083     unsigned Src2 = MI->getOperand(2).getReg();
7084     DebugLoc dl   = MI->getDebugLoc();
7085
7086     MachineRegisterInfo &RegInfo = F->getRegInfo();
7087     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
7088
7089     // Save FPSCR value.
7090     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
7091
7092     // Set rounding mode to round-to-zero.
7093     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
7094     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
7095
7096     // Perform addition.
7097     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
7098
7099     // Restore FPSCR value.
7100     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
7101   } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
7102              MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
7103              MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
7104              MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
7105     unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
7106                        MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
7107                       PPC::ANDIo8 : PPC::ANDIo;
7108     bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
7109                  MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
7110
7111     MachineRegisterInfo &RegInfo = F->getRegInfo();
7112     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
7113                                                   &PPC::GPRCRegClass :
7114                                                   &PPC::G8RCRegClass);
7115
7116     DebugLoc dl   = MI->getDebugLoc();
7117     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
7118       .addReg(MI->getOperand(1).getReg()).addImm(1);
7119     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
7120             MI->getOperand(0).getReg())
7121       .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
7122   } else {
7123     llvm_unreachable("Unexpected instr type to insert");
7124   }
7125
7126   MI->eraseFromParent();   // The pseudo instruction is gone now.
7127   return BB;
7128 }
7129
7130 //===----------------------------------------------------------------------===//
7131 // Target Optimization Hooks
7132 //===----------------------------------------------------------------------===//
7133
7134 SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
7135                                                DAGCombinerInfo &DCI) const {
7136   if (DCI.isAfterLegalizeVectorOps())
7137     return SDValue();
7138
7139   EVT VT = Op.getValueType();
7140
7141   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
7142       (VT == MVT::f64 && Subtarget.hasFRE())  ||
7143       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
7144       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
7145
7146     // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
7147     // For the reciprocal, we need to find the zero of the function:
7148     //   F(X) = A X - 1 [which has a zero at X = 1/A]
7149     //     =>
7150     //   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
7151     //     does not require additional intermediate precision]
7152
7153     // Convergence is quadratic, so we essentially double the number of digits
7154     // correct after every iteration. The minimum architected relative
7155     // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
7156     // 23 digits and double has 52 digits.
7157     int Iterations = Subtarget.hasRecipPrec() ? 1 : 3;
7158     if (VT.getScalarType() == MVT::f64)
7159       ++Iterations;
7160
7161     SelectionDAG &DAG = DCI.DAG;
7162     SDLoc dl(Op);
7163
7164     SDValue FPOne =
7165       DAG.getConstantFP(1.0, VT.getScalarType());
7166     if (VT.isVector()) {
7167       assert(VT.getVectorNumElements() == 4 &&
7168              "Unknown vector type");
7169       FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
7170                           FPOne, FPOne, FPOne, FPOne);
7171     }
7172
7173     SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
7174     DCI.AddToWorklist(Est.getNode());
7175
7176     // Newton iterations: Est = Est + Est (1 - Arg * Est)
7177     for (int i = 0; i < Iterations; ++i) {
7178       SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
7179       DCI.AddToWorklist(NewEst.getNode());
7180
7181       NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
7182       DCI.AddToWorklist(NewEst.getNode());
7183
7184       NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
7185       DCI.AddToWorklist(NewEst.getNode());
7186
7187       Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
7188       DCI.AddToWorklist(Est.getNode());
7189     }
7190
7191     return Est;
7192   }
7193
7194   return SDValue();
7195 }
7196
7197 SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
7198                                              DAGCombinerInfo &DCI) const {
7199   if (DCI.isAfterLegalizeVectorOps())
7200     return SDValue();
7201
7202   EVT VT = Op.getValueType();
7203
7204   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
7205       (VT == MVT::f64 && Subtarget.hasFRSQRTE())  ||
7206       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
7207       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
7208
7209     // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
7210     // For the reciprocal sqrt, we need to find the zero of the function:
7211     //   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
7212     //     =>
7213     //   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
7214     // As a result, we precompute A/2 prior to the iteration loop.
7215
7216     // Convergence is quadratic, so we essentially double the number of digits
7217     // correct after every iteration. The minimum architected relative
7218     // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
7219     // 23 digits and double has 52 digits.
7220     int Iterations = Subtarget.hasRecipPrec() ? 1 : 3;
7221     if (VT.getScalarType() == MVT::f64)
7222       ++Iterations;
7223
7224     SelectionDAG &DAG = DCI.DAG;
7225     SDLoc dl(Op);
7226
7227     SDValue FPThreeHalves =
7228       DAG.getConstantFP(1.5, VT.getScalarType());
7229     if (VT.isVector()) {
7230       assert(VT.getVectorNumElements() == 4 &&
7231              "Unknown vector type");
7232       FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
7233                                   FPThreeHalves, FPThreeHalves,
7234                                   FPThreeHalves, FPThreeHalves);
7235     }
7236
7237     SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
7238     DCI.AddToWorklist(Est.getNode());
7239
7240     // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
7241     // this entire sequence requires only one FP constant.
7242     SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
7243     DCI.AddToWorklist(HalfArg.getNode());
7244
7245     HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
7246     DCI.AddToWorklist(HalfArg.getNode());
7247
7248     // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
7249     for (int i = 0; i < Iterations; ++i) {
7250       SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
7251       DCI.AddToWorklist(NewEst.getNode());
7252
7253       NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
7254       DCI.AddToWorklist(NewEst.getNode());
7255
7256       NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
7257       DCI.AddToWorklist(NewEst.getNode());
7258
7259       Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
7260       DCI.AddToWorklist(Est.getNode());
7261     }
7262
7263     return Est;
7264   }
7265
7266   return SDValue();
7267 }
7268
7269 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
7270 // not enforce equality of the chain operands.
7271 static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
7272                             unsigned Bytes, int Dist,
7273                             SelectionDAG &DAG) {
7274   EVT VT = LS->getMemoryVT();
7275   if (VT.getSizeInBits() / 8 != Bytes)
7276     return false;
7277
7278   SDValue Loc = LS->getBasePtr();
7279   SDValue BaseLoc = Base->getBasePtr();
7280   if (Loc.getOpcode() == ISD::FrameIndex) {
7281     if (BaseLoc.getOpcode() != ISD::FrameIndex)
7282       return false;
7283     const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7284     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
7285     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
7286     int FS  = MFI->getObjectSize(FI);
7287     int BFS = MFI->getObjectSize(BFI);
7288     if (FS != BFS || FS != (int)Bytes) return false;
7289     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
7290   }
7291
7292   // Handle X+C
7293   if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
7294       cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
7295     return true;
7296
7297   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7298   const GlobalValue *GV1 = nullptr;
7299   const GlobalValue *GV2 = nullptr;
7300   int64_t Offset1 = 0;
7301   int64_t Offset2 = 0;
7302   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
7303   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
7304   if (isGA1 && isGA2 && GV1 == GV2)
7305     return Offset1 == (Offset2 + Dist*Bytes);
7306   return false;
7307 }
7308
7309 // Return true is there is a nearyby consecutive load to the one provided
7310 // (regardless of alignment). We search up and down the chain, looking though
7311 // token factors and other loads (but nothing else). As a result, a true
7312 // results indicates that it is safe to create a new consecutive load adjacent
7313 // to the load provided.
7314 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
7315   SDValue Chain = LD->getChain();
7316   EVT VT = LD->getMemoryVT();
7317
7318   SmallSet<SDNode *, 16> LoadRoots;
7319   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
7320   SmallSet<SDNode *, 16> Visited;
7321
7322   // First, search up the chain, branching to follow all token-factor operands.
7323   // If we find a consecutive load, then we're done, otherwise, record all
7324   // nodes just above the top-level loads and token factors.
7325   while (!Queue.empty()) {
7326     SDNode *ChainNext = Queue.pop_back_val();
7327     if (!Visited.insert(ChainNext))
7328       continue;
7329
7330     if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) {
7331       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
7332         return true;
7333
7334       if (!Visited.count(ChainLD->getChain().getNode()))
7335         Queue.push_back(ChainLD->getChain().getNode());
7336     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
7337       for (const SDUse &O : ChainNext->ops())
7338         if (!Visited.count(O.getNode()))
7339           Queue.push_back(O.getNode());
7340     } else
7341       LoadRoots.insert(ChainNext);
7342   }
7343
7344   // Second, search down the chain, starting from the top-level nodes recorded
7345   // in the first phase. These top-level nodes are the nodes just above all
7346   // loads and token factors. Starting with their uses, recursively look though
7347   // all loads (just the chain uses) and token factors to find a consecutive
7348   // load.
7349   Visited.clear();
7350   Queue.clear();
7351
7352   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
7353        IE = LoadRoots.end(); I != IE; ++I) {
7354     Queue.push_back(*I);
7355        
7356     while (!Queue.empty()) {
7357       SDNode *LoadRoot = Queue.pop_back_val();
7358       if (!Visited.insert(LoadRoot))
7359         continue;
7360
7361       if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot))
7362         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
7363           return true;
7364
7365       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
7366            UE = LoadRoot->use_end(); UI != UE; ++UI)
7367         if (((isa<LoadSDNode>(*UI) &&
7368             cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
7369             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
7370           Queue.push_back(*UI);
7371     }
7372   }
7373
7374   return false;
7375 }
7376
7377 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
7378                                                   DAGCombinerInfo &DCI) const {
7379   SelectionDAG &DAG = DCI.DAG;
7380   SDLoc dl(N);
7381
7382   assert(Subtarget.useCRBits() &&
7383          "Expecting to be tracking CR bits");
7384   // If we're tracking CR bits, we need to be careful that we don't have:
7385   //   trunc(binary-ops(zext(x), zext(y)))
7386   // or
7387   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
7388   // such that we're unnecessarily moving things into GPRs when it would be
7389   // better to keep them in CR bits.
7390
7391   // Note that trunc here can be an actual i1 trunc, or can be the effective
7392   // truncation that comes from a setcc or select_cc.
7393   if (N->getOpcode() == ISD::TRUNCATE &&
7394       N->getValueType(0) != MVT::i1)
7395     return SDValue();
7396
7397   if (N->getOperand(0).getValueType() != MVT::i32 &&
7398       N->getOperand(0).getValueType() != MVT::i64)
7399     return SDValue();
7400
7401   if (N->getOpcode() == ISD::SETCC ||
7402       N->getOpcode() == ISD::SELECT_CC) {
7403     // If we're looking at a comparison, then we need to make sure that the
7404     // high bits (all except for the first) don't matter the result.
7405     ISD::CondCode CC =
7406       cast<CondCodeSDNode>(N->getOperand(
7407         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
7408     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
7409
7410     if (ISD::isSignedIntSetCC(CC)) {
7411       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
7412           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
7413         return SDValue();
7414     } else if (ISD::isUnsignedIntSetCC(CC)) {
7415       if (!DAG.MaskedValueIsZero(N->getOperand(0),
7416                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
7417           !DAG.MaskedValueIsZero(N->getOperand(1),
7418                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
7419         return SDValue();
7420     } else {
7421       // This is neither a signed nor an unsigned comparison, just make sure
7422       // that the high bits are equal.
7423       APInt Op1Zero, Op1One;
7424       APInt Op2Zero, Op2One;
7425       DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
7426       DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
7427
7428       // We don't really care about what is known about the first bit (if
7429       // anything), so clear it in all masks prior to comparing them.
7430       Op1Zero.clearBit(0); Op1One.clearBit(0);
7431       Op2Zero.clearBit(0); Op2One.clearBit(0);
7432
7433       if (Op1Zero != Op2Zero || Op1One != Op2One)
7434         return SDValue();
7435     }
7436   }
7437
7438   // We now know that the higher-order bits are irrelevant, we just need to
7439   // make sure that all of the intermediate operations are bit operations, and
7440   // all inputs are extensions.
7441   if (N->getOperand(0).getOpcode() != ISD::AND &&
7442       N->getOperand(0).getOpcode() != ISD::OR  &&
7443       N->getOperand(0).getOpcode() != ISD::XOR &&
7444       N->getOperand(0).getOpcode() != ISD::SELECT &&
7445       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
7446       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
7447       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
7448       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
7449       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
7450     return SDValue();
7451
7452   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
7453       N->getOperand(1).getOpcode() != ISD::AND &&
7454       N->getOperand(1).getOpcode() != ISD::OR  &&
7455       N->getOperand(1).getOpcode() != ISD::XOR &&
7456       N->getOperand(1).getOpcode() != ISD::SELECT &&
7457       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
7458       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
7459       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
7460       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
7461       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
7462     return SDValue();
7463
7464   SmallVector<SDValue, 4> Inputs;
7465   SmallVector<SDValue, 8> BinOps, PromOps;
7466   SmallPtrSet<SDNode *, 16> Visited;
7467
7468   for (unsigned i = 0; i < 2; ++i) {
7469     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
7470           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
7471           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
7472           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
7473         isa<ConstantSDNode>(N->getOperand(i)))
7474       Inputs.push_back(N->getOperand(i));
7475     else
7476       BinOps.push_back(N->getOperand(i));
7477
7478     if (N->getOpcode() == ISD::TRUNCATE)
7479       break;
7480   }
7481
7482   // Visit all inputs, collect all binary operations (and, or, xor and
7483   // select) that are all fed by extensions. 
7484   while (!BinOps.empty()) {
7485     SDValue BinOp = BinOps.back();
7486     BinOps.pop_back();
7487
7488     if (!Visited.insert(BinOp.getNode()))
7489       continue;
7490
7491     PromOps.push_back(BinOp);
7492
7493     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
7494       // The condition of the select is not promoted.
7495       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
7496         continue;
7497       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
7498         continue;
7499
7500       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
7501             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
7502             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
7503            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
7504           isa<ConstantSDNode>(BinOp.getOperand(i))) {
7505         Inputs.push_back(BinOp.getOperand(i)); 
7506       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
7507                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
7508                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
7509                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
7510                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
7511                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
7512                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
7513                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
7514                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
7515         BinOps.push_back(BinOp.getOperand(i));
7516       } else {
7517         // We have an input that is not an extension or another binary
7518         // operation; we'll abort this transformation.
7519         return SDValue();
7520       }
7521     }
7522   }
7523
7524   // Make sure that this is a self-contained cluster of operations (which
7525   // is not quite the same thing as saying that everything has only one
7526   // use).
7527   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7528     if (isa<ConstantSDNode>(Inputs[i]))
7529       continue;
7530
7531     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
7532                               UE = Inputs[i].getNode()->use_end();
7533          UI != UE; ++UI) {
7534       SDNode *User = *UI;
7535       if (User != N && !Visited.count(User))
7536         return SDValue();
7537
7538       // Make sure that we're not going to promote the non-output-value
7539       // operand(s) or SELECT or SELECT_CC.
7540       // FIXME: Although we could sometimes handle this, and it does occur in
7541       // practice that one of the condition inputs to the select is also one of
7542       // the outputs, we currently can't deal with this.
7543       if (User->getOpcode() == ISD::SELECT) {
7544         if (User->getOperand(0) == Inputs[i])
7545           return SDValue();
7546       } else if (User->getOpcode() == ISD::SELECT_CC) {
7547         if (User->getOperand(0) == Inputs[i] ||
7548             User->getOperand(1) == Inputs[i])
7549           return SDValue();
7550       }
7551     }
7552   }
7553
7554   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
7555     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
7556                               UE = PromOps[i].getNode()->use_end();
7557          UI != UE; ++UI) {
7558       SDNode *User = *UI;
7559       if (User != N && !Visited.count(User))
7560         return SDValue();
7561
7562       // Make sure that we're not going to promote the non-output-value
7563       // operand(s) or SELECT or SELECT_CC.
7564       // FIXME: Although we could sometimes handle this, and it does occur in
7565       // practice that one of the condition inputs to the select is also one of
7566       // the outputs, we currently can't deal with this.
7567       if (User->getOpcode() == ISD::SELECT) {
7568         if (User->getOperand(0) == PromOps[i])
7569           return SDValue();
7570       } else if (User->getOpcode() == ISD::SELECT_CC) {
7571         if (User->getOperand(0) == PromOps[i] ||
7572             User->getOperand(1) == PromOps[i])
7573           return SDValue();
7574       }
7575     }
7576   }
7577
7578   // Replace all inputs with the extension operand.
7579   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7580     // Constants may have users outside the cluster of to-be-promoted nodes,
7581     // and so we need to replace those as we do the promotions.
7582     if (isa<ConstantSDNode>(Inputs[i]))
7583       continue;
7584     else
7585       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 
7586   }
7587
7588   // Replace all operations (these are all the same, but have a different
7589   // (i1) return type). DAG.getNode will validate that the types of
7590   // a binary operator match, so go through the list in reverse so that
7591   // we've likely promoted both operands first. Any intermediate truncations or
7592   // extensions disappear.
7593   while (!PromOps.empty()) {
7594     SDValue PromOp = PromOps.back();
7595     PromOps.pop_back();
7596
7597     if (PromOp.getOpcode() == ISD::TRUNCATE ||
7598         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
7599         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
7600         PromOp.getOpcode() == ISD::ANY_EXTEND) {
7601       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
7602           PromOp.getOperand(0).getValueType() != MVT::i1) {
7603         // The operand is not yet ready (see comment below).
7604         PromOps.insert(PromOps.begin(), PromOp);
7605         continue;
7606       }
7607
7608       SDValue RepValue = PromOp.getOperand(0);
7609       if (isa<ConstantSDNode>(RepValue))
7610         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
7611
7612       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
7613       continue;
7614     }
7615
7616     unsigned C;
7617     switch (PromOp.getOpcode()) {
7618     default:             C = 0; break;
7619     case ISD::SELECT:    C = 1; break;
7620     case ISD::SELECT_CC: C = 2; break;
7621     }
7622
7623     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
7624          PromOp.getOperand(C).getValueType() != MVT::i1) ||
7625         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
7626          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
7627       // The to-be-promoted operands of this node have not yet been
7628       // promoted (this should be rare because we're going through the
7629       // list backward, but if one of the operands has several users in
7630       // this cluster of to-be-promoted nodes, it is possible).
7631       PromOps.insert(PromOps.begin(), PromOp);
7632       continue;
7633     }
7634
7635     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
7636                                 PromOp.getNode()->op_end());
7637
7638     // If there are any constant inputs, make sure they're replaced now.
7639     for (unsigned i = 0; i < 2; ++i)
7640       if (isa<ConstantSDNode>(Ops[C+i]))
7641         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
7642
7643     DAG.ReplaceAllUsesOfValueWith(PromOp,
7644       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
7645   }
7646
7647   // Now we're left with the initial truncation itself.
7648   if (N->getOpcode() == ISD::TRUNCATE)
7649     return N->getOperand(0);
7650
7651   // Otherwise, this is a comparison. The operands to be compared have just
7652   // changed type (to i1), but everything else is the same.
7653   return SDValue(N, 0);
7654 }
7655
7656 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
7657                                                   DAGCombinerInfo &DCI) const {
7658   SelectionDAG &DAG = DCI.DAG;
7659   SDLoc dl(N);
7660
7661   // If we're tracking CR bits, we need to be careful that we don't have:
7662   //   zext(binary-ops(trunc(x), trunc(y)))
7663   // or
7664   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
7665   // such that we're unnecessarily moving things into CR bits that can more
7666   // efficiently stay in GPRs. Note that if we're not certain that the high
7667   // bits are set as required by the final extension, we still may need to do
7668   // some masking to get the proper behavior.
7669
7670   // This same functionality is important on PPC64 when dealing with
7671   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
7672   // the return values of functions. Because it is so similar, it is handled
7673   // here as well.
7674
7675   if (N->getValueType(0) != MVT::i32 &&
7676       N->getValueType(0) != MVT::i64)
7677     return SDValue();
7678
7679   if (!((N->getOperand(0).getValueType() == MVT::i1 &&
7680         Subtarget.useCRBits()) ||
7681        (N->getOperand(0).getValueType() == MVT::i32 &&
7682         Subtarget.isPPC64())))
7683     return SDValue();
7684
7685   if (N->getOperand(0).getOpcode() != ISD::AND &&
7686       N->getOperand(0).getOpcode() != ISD::OR  &&
7687       N->getOperand(0).getOpcode() != ISD::XOR &&
7688       N->getOperand(0).getOpcode() != ISD::SELECT &&
7689       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
7690     return SDValue();
7691
7692   SmallVector<SDValue, 4> Inputs;
7693   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
7694   SmallPtrSet<SDNode *, 16> Visited;
7695
7696   // Visit all inputs, collect all binary operations (and, or, xor and
7697   // select) that are all fed by truncations. 
7698   while (!BinOps.empty()) {
7699     SDValue BinOp = BinOps.back();
7700     BinOps.pop_back();
7701
7702     if (!Visited.insert(BinOp.getNode()))
7703       continue;
7704
7705     PromOps.push_back(BinOp);
7706
7707     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
7708       // The condition of the select is not promoted.
7709       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
7710         continue;
7711       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
7712         continue;
7713
7714       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
7715           isa<ConstantSDNode>(BinOp.getOperand(i))) {
7716         Inputs.push_back(BinOp.getOperand(i)); 
7717       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
7718                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
7719                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
7720                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
7721                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
7722         BinOps.push_back(BinOp.getOperand(i));
7723       } else {
7724         // We have an input that is not a truncation or another binary
7725         // operation; we'll abort this transformation.
7726         return SDValue();
7727       }
7728     }
7729   }
7730
7731   // Make sure that this is a self-contained cluster of operations (which
7732   // is not quite the same thing as saying that everything has only one
7733   // use).
7734   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7735     if (isa<ConstantSDNode>(Inputs[i]))
7736       continue;
7737
7738     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
7739                               UE = Inputs[i].getNode()->use_end();
7740          UI != UE; ++UI) {
7741       SDNode *User = *UI;
7742       if (User != N && !Visited.count(User))
7743         return SDValue();
7744
7745       // Make sure that we're not going to promote the non-output-value
7746       // operand(s) or SELECT or SELECT_CC.
7747       // FIXME: Although we could sometimes handle this, and it does occur in
7748       // practice that one of the condition inputs to the select is also one of
7749       // the outputs, we currently can't deal with this.
7750       if (User->getOpcode() == ISD::SELECT) {
7751         if (User->getOperand(0) == Inputs[i])
7752           return SDValue();
7753       } else if (User->getOpcode() == ISD::SELECT_CC) {
7754         if (User->getOperand(0) == Inputs[i] ||
7755             User->getOperand(1) == Inputs[i])
7756           return SDValue();
7757       }
7758     }
7759   }
7760
7761   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
7762     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
7763                               UE = PromOps[i].getNode()->use_end();
7764          UI != UE; ++UI) {
7765       SDNode *User = *UI;
7766       if (User != N && !Visited.count(User))
7767         return SDValue();
7768
7769       // Make sure that we're not going to promote the non-output-value
7770       // operand(s) or SELECT or SELECT_CC.
7771       // FIXME: Although we could sometimes handle this, and it does occur in
7772       // practice that one of the condition inputs to the select is also one of
7773       // the outputs, we currently can't deal with this.
7774       if (User->getOpcode() == ISD::SELECT) {
7775         if (User->getOperand(0) == PromOps[i])
7776           return SDValue();
7777       } else if (User->getOpcode() == ISD::SELECT_CC) {
7778         if (User->getOperand(0) == PromOps[i] ||
7779             User->getOperand(1) == PromOps[i])
7780           return SDValue();
7781       }
7782     }
7783   }
7784
7785   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
7786   bool ReallyNeedsExt = false;
7787   if (N->getOpcode() != ISD::ANY_EXTEND) {
7788     // If all of the inputs are not already sign/zero extended, then
7789     // we'll still need to do that at the end.
7790     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7791       if (isa<ConstantSDNode>(Inputs[i]))
7792         continue;
7793
7794       unsigned OpBits =
7795         Inputs[i].getOperand(0).getValueSizeInBits();
7796       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
7797
7798       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
7799            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
7800                                   APInt::getHighBitsSet(OpBits,
7801                                                         OpBits-PromBits))) ||
7802           (N->getOpcode() == ISD::SIGN_EXTEND &&
7803            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
7804              (OpBits-(PromBits-1)))) {
7805         ReallyNeedsExt = true;
7806         break;
7807       }
7808     }
7809   }
7810
7811   // Replace all inputs, either with the truncation operand, or a
7812   // truncation or extension to the final output type.
7813   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7814     // Constant inputs need to be replaced with the to-be-promoted nodes that
7815     // use them because they might have users outside of the cluster of
7816     // promoted nodes.
7817     if (isa<ConstantSDNode>(Inputs[i]))
7818       continue;
7819
7820     SDValue InSrc = Inputs[i].getOperand(0);
7821     if (Inputs[i].getValueType() == N->getValueType(0))
7822       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
7823     else if (N->getOpcode() == ISD::SIGN_EXTEND)
7824       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
7825         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
7826     else if (N->getOpcode() == ISD::ZERO_EXTEND)
7827       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
7828         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
7829     else
7830       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
7831         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
7832   }
7833
7834   // Replace all operations (these are all the same, but have a different
7835   // (promoted) return type). DAG.getNode will validate that the types of
7836   // a binary operator match, so go through the list in reverse so that
7837   // we've likely promoted both operands first.
7838   while (!PromOps.empty()) {
7839     SDValue PromOp = PromOps.back();
7840     PromOps.pop_back();
7841
7842     unsigned C;
7843     switch (PromOp.getOpcode()) {
7844     default:             C = 0; break;
7845     case ISD::SELECT:    C = 1; break;
7846     case ISD::SELECT_CC: C = 2; break;
7847     }
7848
7849     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
7850          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
7851         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
7852          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
7853       // The to-be-promoted operands of this node have not yet been
7854       // promoted (this should be rare because we're going through the
7855       // list backward, but if one of the operands has several users in
7856       // this cluster of to-be-promoted nodes, it is possible).
7857       PromOps.insert(PromOps.begin(), PromOp);
7858       continue;
7859     }
7860
7861     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
7862                                 PromOp.getNode()->op_end());
7863
7864     // If this node has constant inputs, then they'll need to be promoted here.
7865     for (unsigned i = 0; i < 2; ++i) {
7866       if (!isa<ConstantSDNode>(Ops[C+i]))
7867         continue;
7868       if (Ops[C+i].getValueType() == N->getValueType(0))
7869         continue;
7870
7871       if (N->getOpcode() == ISD::SIGN_EXTEND)
7872         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
7873       else if (N->getOpcode() == ISD::ZERO_EXTEND)
7874         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
7875       else
7876         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
7877     }
7878
7879     DAG.ReplaceAllUsesOfValueWith(PromOp,
7880       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
7881   }
7882
7883   // Now we're left with the initial extension itself.
7884   if (!ReallyNeedsExt)
7885     return N->getOperand(0);
7886
7887   // To zero extend, just mask off everything except for the first bit (in the
7888   // i1 case).
7889   if (N->getOpcode() == ISD::ZERO_EXTEND)
7890     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
7891                        DAG.getConstant(APInt::getLowBitsSet(
7892                                          N->getValueSizeInBits(0), PromBits),
7893                                        N->getValueType(0)));
7894
7895   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
7896          "Invalid extension type");
7897   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0));
7898   SDValue ShiftCst =
7899     DAG.getConstant(N->getValueSizeInBits(0)-PromBits, ShiftAmountTy);
7900   return DAG.getNode(ISD::SRA, dl, N->getValueType(0), 
7901                      DAG.getNode(ISD::SHL, dl, N->getValueType(0),
7902                                  N->getOperand(0), ShiftCst), ShiftCst);
7903 }
7904
7905 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
7906                                              DAGCombinerInfo &DCI) const {
7907   const TargetMachine &TM = getTargetMachine();
7908   SelectionDAG &DAG = DCI.DAG;
7909   SDLoc dl(N);
7910   switch (N->getOpcode()) {
7911   default: break;
7912   case PPCISD::SHL:
7913     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
7914       if (C->isNullValue())   // 0 << V -> 0.
7915         return N->getOperand(0);
7916     }
7917     break;
7918   case PPCISD::SRL:
7919     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
7920       if (C->isNullValue())   // 0 >>u V -> 0.
7921         return N->getOperand(0);
7922     }
7923     break;
7924   case PPCISD::SRA:
7925     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
7926       if (C->isNullValue() ||   //  0 >>s V -> 0.
7927           C->isAllOnesValue())    // -1 >>s V -> -1.
7928         return N->getOperand(0);
7929     }
7930     break;
7931   case ISD::SIGN_EXTEND:
7932   case ISD::ZERO_EXTEND:
7933   case ISD::ANY_EXTEND: 
7934     return DAGCombineExtBoolTrunc(N, DCI);
7935   case ISD::TRUNCATE:
7936   case ISD::SETCC:
7937   case ISD::SELECT_CC:
7938     return DAGCombineTruncBoolExt(N, DCI);
7939   case ISD::FDIV: {
7940     assert(TM.Options.UnsafeFPMath &&
7941            "Reciprocal estimates require UnsafeFPMath");
7942
7943     if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
7944       SDValue RV =
7945         DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
7946       if (RV.getNode()) {
7947         DCI.AddToWorklist(RV.getNode());
7948         return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7949                            N->getOperand(0), RV);
7950       }
7951     } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
7952                N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
7953       SDValue RV =
7954         DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
7955                                  DCI);
7956       if (RV.getNode()) {
7957         DCI.AddToWorklist(RV.getNode());
7958         RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)),
7959                          N->getValueType(0), RV);
7960         DCI.AddToWorklist(RV.getNode());
7961         return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7962                            N->getOperand(0), RV);
7963       }
7964     } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
7965                N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
7966       SDValue RV =
7967         DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
7968                                  DCI);
7969       if (RV.getNode()) {
7970         DCI.AddToWorklist(RV.getNode());
7971         RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)),
7972                          N->getValueType(0), RV,
7973                          N->getOperand(1).getOperand(1));
7974         DCI.AddToWorklist(RV.getNode());
7975         return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7976                            N->getOperand(0), RV);
7977       }
7978     }
7979
7980     SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
7981     if (RV.getNode()) {
7982       DCI.AddToWorklist(RV.getNode());
7983       return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7984                          N->getOperand(0), RV);
7985     }
7986
7987     }
7988     break;
7989   case ISD::FSQRT: {
7990     assert(TM.Options.UnsafeFPMath &&
7991            "Reciprocal estimates require UnsafeFPMath");
7992
7993     // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
7994     // reciprocal sqrt.
7995     SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
7996     if (RV.getNode()) {
7997       DCI.AddToWorklist(RV.getNode());
7998       RV = DAGCombineFastRecip(RV, DCI);
7999       if (RV.getNode()) {
8000         // Unfortunately, RV is now NaN if the input was exactly 0. Select out
8001         // this case and force the answer to 0.
8002
8003         EVT VT = RV.getValueType();
8004
8005         SDValue Zero = DAG.getConstantFP(0.0, VT.getScalarType());
8006         if (VT.isVector()) {
8007           assert(VT.getVectorNumElements() == 4 && "Unknown vector type");
8008           Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Zero, Zero, Zero, Zero);
8009         }
8010
8011         SDValue ZeroCmp =
8012           DAG.getSetCC(dl, getSetCCResultType(*DAG.getContext(), VT),
8013                        N->getOperand(0), Zero, ISD::SETEQ);
8014         DCI.AddToWorklist(ZeroCmp.getNode());
8015         DCI.AddToWorklist(RV.getNode());
8016
8017         RV = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, dl, VT,
8018                          ZeroCmp, Zero, RV);
8019         return RV;
8020       }
8021     }
8022
8023     }
8024     break;
8025   case ISD::SINT_TO_FP:
8026     if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
8027       if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
8028         // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
8029         // We allow the src/dst to be either f32/f64, but the intermediate
8030         // type must be i64.
8031         if (N->getOperand(0).getValueType() == MVT::i64 &&
8032             N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
8033           SDValue Val = N->getOperand(0).getOperand(0);
8034           if (Val.getValueType() == MVT::f32) {
8035             Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
8036             DCI.AddToWorklist(Val.getNode());
8037           }
8038
8039           Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
8040           DCI.AddToWorklist(Val.getNode());
8041           Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
8042           DCI.AddToWorklist(Val.getNode());
8043           if (N->getValueType(0) == MVT::f32) {
8044             Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
8045                               DAG.getIntPtrConstant(0));
8046             DCI.AddToWorklist(Val.getNode());
8047           }
8048           return Val;
8049         } else if (N->getOperand(0).getValueType() == MVT::i32) {
8050           // If the intermediate type is i32, we can avoid the load/store here
8051           // too.
8052         }
8053       }
8054     }
8055     break;
8056   case ISD::STORE:
8057     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
8058     if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
8059         !cast<StoreSDNode>(N)->isTruncatingStore() &&
8060         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
8061         N->getOperand(1).getValueType() == MVT::i32 &&
8062         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
8063       SDValue Val = N->getOperand(1).getOperand(0);
8064       if (Val.getValueType() == MVT::f32) {
8065         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
8066         DCI.AddToWorklist(Val.getNode());
8067       }
8068       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
8069       DCI.AddToWorklist(Val.getNode());
8070
8071       SDValue Ops[] = {
8072         N->getOperand(0), Val, N->getOperand(2),
8073         DAG.getValueType(N->getOperand(1).getValueType())
8074       };
8075
8076       Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8077               DAG.getVTList(MVT::Other), Ops,
8078               cast<StoreSDNode>(N)->getMemoryVT(),
8079               cast<StoreSDNode>(N)->getMemOperand());
8080       DCI.AddToWorklist(Val.getNode());
8081       return Val;
8082     }
8083
8084     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
8085     if (cast<StoreSDNode>(N)->isUnindexed() &&
8086         N->getOperand(1).getOpcode() == ISD::BSWAP &&
8087         N->getOperand(1).getNode()->hasOneUse() &&
8088         (N->getOperand(1).getValueType() == MVT::i32 ||
8089          N->getOperand(1).getValueType() == MVT::i16 ||
8090          (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
8091           TM.getSubtarget<PPCSubtarget>().isPPC64() &&
8092           N->getOperand(1).getValueType() == MVT::i64))) {
8093       SDValue BSwapOp = N->getOperand(1).getOperand(0);
8094       // Do an any-extend to 32-bits if this is a half-word input.
8095       if (BSwapOp.getValueType() == MVT::i16)
8096         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
8097
8098       SDValue Ops[] = {
8099         N->getOperand(0), BSwapOp, N->getOperand(2),
8100         DAG.getValueType(N->getOperand(1).getValueType())
8101       };
8102       return
8103         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
8104                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
8105                                 cast<StoreSDNode>(N)->getMemOperand());
8106     }
8107     break;
8108   case ISD::LOAD: {
8109     LoadSDNode *LD = cast<LoadSDNode>(N);
8110     EVT VT = LD->getValueType(0);
8111     Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
8112     unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
8113     if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
8114         TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
8115         (VT == MVT::v16i8 || VT == MVT::v8i16 ||
8116          VT == MVT::v4i32 || VT == MVT::v4f32) &&
8117         LD->getAlignment() < ABIAlignment) {
8118       // This is a type-legal unaligned Altivec load.
8119       SDValue Chain = LD->getChain();
8120       SDValue Ptr = LD->getBasePtr();
8121       bool isLittleEndian = Subtarget.isLittleEndian();
8122
8123       // This implements the loading of unaligned vectors as described in
8124       // the venerable Apple Velocity Engine overview. Specifically:
8125       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
8126       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
8127       //
8128       // The general idea is to expand a sequence of one or more unaligned
8129       // loads into an alignment-based permutation-control instruction (lvsl
8130       // or lvsr), a series of regular vector loads (which always truncate
8131       // their input address to an aligned address), and a series of
8132       // permutations.  The results of these permutations are the requested
8133       // loaded values.  The trick is that the last "extra" load is not taken
8134       // from the address you might suspect (sizeof(vector) bytes after the
8135       // last requested load), but rather sizeof(vector) - 1 bytes after the
8136       // last requested vector. The point of this is to avoid a page fault if
8137       // the base address happened to be aligned. This works because if the
8138       // base address is aligned, then adding less than a full vector length
8139       // will cause the last vector in the sequence to be (re)loaded.
8140       // Otherwise, the next vector will be fetched as you might suspect was
8141       // necessary.
8142
8143       // We might be able to reuse the permutation generation from
8144       // a different base address offset from this one by an aligned amount.
8145       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
8146       // optimization later.
8147       Intrinsic::ID Intr = (isLittleEndian ?
8148                             Intrinsic::ppc_altivec_lvsr :
8149                             Intrinsic::ppc_altivec_lvsl);
8150       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, MVT::v16i8);
8151
8152       // Refine the alignment of the original load (a "new" load created here
8153       // which was identical to the first except for the alignment would be
8154       // merged with the existing node regardless).
8155       MachineFunction &MF = DAG.getMachineFunction();
8156       MachineMemOperand *MMO =
8157         MF.getMachineMemOperand(LD->getPointerInfo(),
8158                                 LD->getMemOperand()->getFlags(),
8159                                 LD->getMemoryVT().getStoreSize(),
8160                                 ABIAlignment);
8161       LD->refineAlignment(MMO);
8162       SDValue BaseLoad = SDValue(LD, 0);
8163
8164       // Note that the value of IncOffset (which is provided to the next
8165       // load's pointer info offset value, and thus used to calculate the
8166       // alignment), and the value of IncValue (which is actually used to
8167       // increment the pointer value) are different! This is because we
8168       // require the next load to appear to be aligned, even though it
8169       // is actually offset from the base pointer by a lesser amount.
8170       int IncOffset = VT.getSizeInBits() / 8;
8171       int IncValue = IncOffset;
8172
8173       // Walk (both up and down) the chain looking for another load at the real
8174       // (aligned) offset (the alignment of the other load does not matter in
8175       // this case). If found, then do not use the offset reduction trick, as
8176       // that will prevent the loads from being later combined (as they would
8177       // otherwise be duplicates).
8178       if (!findConsecutiveLoad(LD, DAG))
8179         --IncValue;
8180
8181       SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
8182       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
8183
8184       SDValue ExtraLoad =
8185         DAG.getLoad(VT, dl, Chain, Ptr,
8186                     LD->getPointerInfo().getWithOffset(IncOffset),
8187                     LD->isVolatile(), LD->isNonTemporal(),
8188                     LD->isInvariant(), ABIAlignment);
8189
8190       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8191         BaseLoad.getValue(1), ExtraLoad.getValue(1));
8192
8193       if (BaseLoad.getValueType() != MVT::v4i32)
8194         BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad);
8195
8196       if (ExtraLoad.getValueType() != MVT::v4i32)
8197         ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
8198
8199       // Because vperm has a big-endian bias, we must reverse the order
8200       // of the input vectors and complement the permute control vector
8201       // when generating little endian code.  We have already handled the
8202       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
8203       // and ExtraLoad here.
8204       SDValue Perm;
8205       if (isLittleEndian)
8206         Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
8207                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
8208       else
8209         Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
8210                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
8211
8212       if (VT != MVT::v4i32)
8213         Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
8214
8215       // Now we need to be really careful about how we update the users of the
8216       // original load. We cannot just call DCI.CombineTo (or
8217       // DAG.ReplaceAllUsesWith for that matter), because the load still has
8218       // uses created here (the permutation for example) that need to stay.
8219       SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8220       while (UI != UE) {
8221         SDUse &Use = UI.getUse();
8222         SDNode *User = *UI;
8223         // Note: BaseLoad is checked here because it might not be N, but a
8224         // bitcast of N.
8225         if (User == Perm.getNode() || User == BaseLoad.getNode() ||
8226             User == TF.getNode() || Use.getResNo() > 1) {
8227           ++UI;
8228           continue;
8229         }
8230
8231         SDValue To = Use.getResNo() ? TF : Perm;
8232         ++UI;
8233
8234         SmallVector<SDValue, 8> Ops;
8235         for (const SDUse &O : User->ops()) {
8236           if (O == Use)
8237             Ops.push_back(To);
8238           else
8239             Ops.push_back(O);
8240         }
8241
8242         DAG.UpdateNodeOperands(User, Ops);
8243       }
8244
8245       return SDValue(N, 0);
8246     }
8247     }
8248     break;
8249   case ISD::INTRINSIC_WO_CHAIN: {
8250     bool isLittleEndian = Subtarget.isLittleEndian();
8251     Intrinsic::ID Intr = (isLittleEndian ?
8252                           Intrinsic::ppc_altivec_lvsr :
8253                           Intrinsic::ppc_altivec_lvsl);
8254     if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() == Intr &&
8255         N->getOperand(1)->getOpcode() == ISD::ADD) {
8256       SDValue Add = N->getOperand(1);
8257
8258       if (DAG.MaskedValueIsZero(Add->getOperand(1),
8259             APInt::getAllOnesValue(4 /* 16 byte alignment */).zext(
8260               Add.getValueType().getScalarType().getSizeInBits()))) {
8261         SDNode *BasePtr = Add->getOperand(0).getNode();
8262         for (SDNode::use_iterator UI = BasePtr->use_begin(),
8263              UE = BasePtr->use_end(); UI != UE; ++UI) {
8264           if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
8265               cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
8266                 Intr) {
8267             // We've found another LVSL/LVSR, and this address is an aligned
8268             // multiple of that one. The results will be the same, so use the
8269             // one we've just found instead.
8270
8271             return SDValue(*UI, 0);
8272           }
8273         }
8274       }
8275     }
8276     }
8277
8278     break;
8279   case ISD::BSWAP:
8280     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
8281     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
8282         N->getOperand(0).hasOneUse() &&
8283         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
8284          (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
8285           TM.getSubtarget<PPCSubtarget>().isPPC64() &&
8286           N->getValueType(0) == MVT::i64))) {
8287       SDValue Load = N->getOperand(0);
8288       LoadSDNode *LD = cast<LoadSDNode>(Load);
8289       // Create the byte-swapping load.
8290       SDValue Ops[] = {
8291         LD->getChain(),    // Chain
8292         LD->getBasePtr(),  // Ptr
8293         DAG.getValueType(N->getValueType(0)) // VT
8294       };
8295       SDValue BSLoad =
8296         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
8297                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
8298                                               MVT::i64 : MVT::i32, MVT::Other),
8299                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
8300
8301       // If this is an i16 load, insert the truncate.
8302       SDValue ResVal = BSLoad;
8303       if (N->getValueType(0) == MVT::i16)
8304         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
8305
8306       // First, combine the bswap away.  This makes the value produced by the
8307       // load dead.
8308       DCI.CombineTo(N, ResVal);
8309
8310       // Next, combine the load away, we give it a bogus result value but a real
8311       // chain result.  The result value is dead because the bswap is dead.
8312       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
8313
8314       // Return N so it doesn't get rechecked!
8315       return SDValue(N, 0);
8316     }
8317
8318     break;
8319   case PPCISD::VCMP: {
8320     // If a VCMPo node already exists with exactly the same operands as this
8321     // node, use its result instead of this node (VCMPo computes both a CR6 and
8322     // a normal output).
8323     //
8324     if (!N->getOperand(0).hasOneUse() &&
8325         !N->getOperand(1).hasOneUse() &&
8326         !N->getOperand(2).hasOneUse()) {
8327
8328       // Scan all of the users of the LHS, looking for VCMPo's that match.
8329       SDNode *VCMPoNode = nullptr;
8330
8331       SDNode *LHSN = N->getOperand(0).getNode();
8332       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
8333            UI != E; ++UI)
8334         if (UI->getOpcode() == PPCISD::VCMPo &&
8335             UI->getOperand(1) == N->getOperand(1) &&
8336             UI->getOperand(2) == N->getOperand(2) &&
8337             UI->getOperand(0) == N->getOperand(0)) {
8338           VCMPoNode = *UI;
8339           break;
8340         }
8341
8342       // If there is no VCMPo node, or if the flag value has a single use, don't
8343       // transform this.
8344       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
8345         break;
8346
8347       // Look at the (necessarily single) use of the flag value.  If it has a
8348       // chain, this transformation is more complex.  Note that multiple things
8349       // could use the value result, which we should ignore.
8350       SDNode *FlagUser = nullptr;
8351       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
8352            FlagUser == nullptr; ++UI) {
8353         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
8354         SDNode *User = *UI;
8355         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
8356           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
8357             FlagUser = User;
8358             break;
8359           }
8360         }
8361       }
8362
8363       // If the user is a MFOCRF instruction, we know this is safe.
8364       // Otherwise we give up for right now.
8365       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
8366         return SDValue(VCMPoNode, 0);
8367     }
8368     break;
8369   }
8370   case ISD::BRCOND: {
8371     SDValue Cond = N->getOperand(1);
8372     SDValue Target = N->getOperand(2);
8373  
8374     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
8375         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
8376           Intrinsic::ppc_is_decremented_ctr_nonzero) {
8377
8378       // We now need to make the intrinsic dead (it cannot be instruction
8379       // selected).
8380       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
8381       assert(Cond.getNode()->hasOneUse() &&
8382              "Counter decrement has more than one use");
8383
8384       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
8385                          N->getOperand(0), Target);
8386     }
8387   }
8388   break;
8389   case ISD::BR_CC: {
8390     // If this is a branch on an altivec predicate comparison, lower this so
8391     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
8392     // lowering is done pre-legalize, because the legalizer lowers the predicate
8393     // compare down to code that is difficult to reassemble.
8394     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
8395     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
8396
8397     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
8398     // value. If so, pass-through the AND to get to the intrinsic.
8399     if (LHS.getOpcode() == ISD::AND &&
8400         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
8401         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
8402           Intrinsic::ppc_is_decremented_ctr_nonzero &&
8403         isa<ConstantSDNode>(LHS.getOperand(1)) &&
8404         !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
8405           isZero())
8406       LHS = LHS.getOperand(0);
8407
8408     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
8409         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
8410           Intrinsic::ppc_is_decremented_ctr_nonzero &&
8411         isa<ConstantSDNode>(RHS)) {
8412       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
8413              "Counter decrement comparison is not EQ or NE");
8414
8415       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
8416       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
8417                     (CC == ISD::SETNE && !Val);
8418
8419       // We now need to make the intrinsic dead (it cannot be instruction
8420       // selected).
8421       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
8422       assert(LHS.getNode()->hasOneUse() &&
8423              "Counter decrement has more than one use");
8424
8425       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
8426                          N->getOperand(0), N->getOperand(4));
8427     }
8428
8429     int CompareOpc;
8430     bool isDot;
8431
8432     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
8433         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
8434         getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
8435       assert(isDot && "Can't compare against a vector result!");
8436
8437       // If this is a comparison against something other than 0/1, then we know
8438       // that the condition is never/always true.
8439       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
8440       if (Val != 0 && Val != 1) {
8441         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
8442           return N->getOperand(0);
8443         // Always !=, turn it into an unconditional branch.
8444         return DAG.getNode(ISD::BR, dl, MVT::Other,
8445                            N->getOperand(0), N->getOperand(4));
8446       }
8447
8448       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
8449
8450       // Create the PPCISD altivec 'dot' comparison node.
8451       SDValue Ops[] = {
8452         LHS.getOperand(2),  // LHS of compare
8453         LHS.getOperand(3),  // RHS of compare
8454         DAG.getConstant(CompareOpc, MVT::i32)
8455       };
8456       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
8457       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
8458
8459       // Unpack the result based on how the target uses it.
8460       PPC::Predicate CompOpc;
8461       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
8462       default:  // Can't happen, don't crash on invalid number though.
8463       case 0:   // Branch on the value of the EQ bit of CR6.
8464         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
8465         break;
8466       case 1:   // Branch on the inverted value of the EQ bit of CR6.
8467         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
8468         break;
8469       case 2:   // Branch on the value of the LT bit of CR6.
8470         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
8471         break;
8472       case 3:   // Branch on the inverted value of the LT bit of CR6.
8473         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
8474         break;
8475       }
8476
8477       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
8478                          DAG.getConstant(CompOpc, MVT::i32),
8479                          DAG.getRegister(PPC::CR6, MVT::i32),
8480                          N->getOperand(4), CompNode.getValue(1));
8481     }
8482     break;
8483   }
8484   }
8485
8486   return SDValue();
8487 }
8488
8489 //===----------------------------------------------------------------------===//
8490 // Inline Assembly Support
8491 //===----------------------------------------------------------------------===//
8492
8493 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8494                                                       APInt &KnownZero,
8495                                                       APInt &KnownOne,
8496                                                       const SelectionDAG &DAG,
8497                                                       unsigned Depth) const {
8498   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
8499   switch (Op.getOpcode()) {
8500   default: break;
8501   case PPCISD::LBRX: {
8502     // lhbrx is known to have the top bits cleared out.
8503     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
8504       KnownZero = 0xFFFF0000;
8505     break;
8506   }
8507   case ISD::INTRINSIC_WO_CHAIN: {
8508     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
8509     default: break;
8510     case Intrinsic::ppc_altivec_vcmpbfp_p:
8511     case Intrinsic::ppc_altivec_vcmpeqfp_p:
8512     case Intrinsic::ppc_altivec_vcmpequb_p:
8513     case Intrinsic::ppc_altivec_vcmpequh_p:
8514     case Intrinsic::ppc_altivec_vcmpequw_p:
8515     case Intrinsic::ppc_altivec_vcmpgefp_p:
8516     case Intrinsic::ppc_altivec_vcmpgtfp_p:
8517     case Intrinsic::ppc_altivec_vcmpgtsb_p:
8518     case Intrinsic::ppc_altivec_vcmpgtsh_p:
8519     case Intrinsic::ppc_altivec_vcmpgtsw_p:
8520     case Intrinsic::ppc_altivec_vcmpgtub_p:
8521     case Intrinsic::ppc_altivec_vcmpgtuh_p:
8522     case Intrinsic::ppc_altivec_vcmpgtuw_p:
8523       KnownZero = ~1U;  // All bits but the low one are known to be zero.
8524       break;
8525     }
8526   }
8527   }
8528 }
8529
8530
8531 /// getConstraintType - Given a constraint, return the type of
8532 /// constraint it is for this target.
8533 PPCTargetLowering::ConstraintType
8534 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
8535   if (Constraint.size() == 1) {
8536     switch (Constraint[0]) {
8537     default: break;
8538     case 'b':
8539     case 'r':
8540     case 'f':
8541     case 'v':
8542     case 'y':
8543       return C_RegisterClass;
8544     case 'Z':
8545       // FIXME: While Z does indicate a memory constraint, it specifically
8546       // indicates an r+r address (used in conjunction with the 'y' modifier
8547       // in the replacement string). Currently, we're forcing the base
8548       // register to be r0 in the asm printer (which is interpreted as zero)
8549       // and forming the complete address in the second register. This is
8550       // suboptimal.
8551       return C_Memory;
8552     }
8553   } else if (Constraint == "wc") { // individual CR bits.
8554     return C_RegisterClass;
8555   } else if (Constraint == "wa" || Constraint == "wd" ||
8556              Constraint == "wf" || Constraint == "ws") {
8557     return C_RegisterClass; // VSX registers.
8558   }
8559   return TargetLowering::getConstraintType(Constraint);
8560 }
8561
8562 /// Examine constraint type and operand type and determine a weight value.
8563 /// This object must already have been set up with the operand type
8564 /// and the current alternative constraint selected.
8565 TargetLowering::ConstraintWeight
8566 PPCTargetLowering::getSingleConstraintMatchWeight(
8567     AsmOperandInfo &info, const char *constraint) const {
8568   ConstraintWeight weight = CW_Invalid;
8569   Value *CallOperandVal = info.CallOperandVal;
8570     // If we don't have a value, we can't do a match,
8571     // but allow it at the lowest weight.
8572   if (!CallOperandVal)
8573     return CW_Default;
8574   Type *type = CallOperandVal->getType();
8575
8576   // Look at the constraint type.
8577   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
8578     return CW_Register; // an individual CR bit.
8579   else if ((StringRef(constraint) == "wa" ||
8580             StringRef(constraint) == "wd" ||
8581             StringRef(constraint) == "wf") &&
8582            type->isVectorTy())
8583     return CW_Register;
8584   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
8585     return CW_Register;
8586
8587   switch (*constraint) {
8588   default:
8589     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
8590     break;
8591   case 'b':
8592     if (type->isIntegerTy())
8593       weight = CW_Register;
8594     break;
8595   case 'f':
8596     if (type->isFloatTy())
8597       weight = CW_Register;
8598     break;
8599   case 'd':
8600     if (type->isDoubleTy())
8601       weight = CW_Register;
8602     break;
8603   case 'v':
8604     if (type->isVectorTy())
8605       weight = CW_Register;
8606     break;
8607   case 'y':
8608     weight = CW_Register;
8609     break;
8610   case 'Z':
8611     weight = CW_Memory;
8612     break;
8613   }
8614   return weight;
8615 }
8616
8617 std::pair<unsigned, const TargetRegisterClass*>
8618 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8619                                                 MVT VT) const {
8620   if (Constraint.size() == 1) {
8621     // GCC RS6000 Constraint Letters
8622     switch (Constraint[0]) {
8623     case 'b':   // R1-R31
8624       if (VT == MVT::i64 && Subtarget.isPPC64())
8625         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
8626       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
8627     case 'r':   // R0-R31
8628       if (VT == MVT::i64 && Subtarget.isPPC64())
8629         return std::make_pair(0U, &PPC::G8RCRegClass);
8630       return std::make_pair(0U, &PPC::GPRCRegClass);
8631     case 'f':
8632       if (VT == MVT::f32 || VT == MVT::i32)
8633         return std::make_pair(0U, &PPC::F4RCRegClass);
8634       if (VT == MVT::f64 || VT == MVT::i64)
8635         return std::make_pair(0U, &PPC::F8RCRegClass);
8636       break;
8637     case 'v':
8638       return std::make_pair(0U, &PPC::VRRCRegClass);
8639     case 'y':   // crrc
8640       return std::make_pair(0U, &PPC::CRRCRegClass);
8641     }
8642   } else if (Constraint == "wc") { // an individual CR bit.
8643     return std::make_pair(0U, &PPC::CRBITRCRegClass);
8644   } else if (Constraint == "wa" || Constraint == "wd" ||
8645              Constraint == "wf") {
8646     return std::make_pair(0U, &PPC::VSRCRegClass);
8647   } else if (Constraint == "ws") {
8648     return std::make_pair(0U, &PPC::VSFRCRegClass);
8649   }
8650
8651   std::pair<unsigned, const TargetRegisterClass*> R =
8652     TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8653
8654   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
8655   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
8656   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
8657   // register.
8658   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
8659   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
8660   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
8661       PPC::GPRCRegClass.contains(R.first)) {
8662     const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
8663     return std::make_pair(TRI->getMatchingSuperReg(R.first,
8664                             PPC::sub_32, &PPC::G8RCRegClass),
8665                           &PPC::G8RCRegClass);
8666   }
8667
8668   return R;
8669 }
8670
8671
8672 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8673 /// vector.  If it is invalid, don't add anything to Ops.
8674 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8675                                                      std::string &Constraint,
8676                                                      std::vector<SDValue>&Ops,
8677                                                      SelectionDAG &DAG) const {
8678   SDValue Result;
8679
8680   // Only support length 1 constraints.
8681   if (Constraint.length() > 1) return;
8682
8683   char Letter = Constraint[0];
8684   switch (Letter) {
8685   default: break;
8686   case 'I':
8687   case 'J':
8688   case 'K':
8689   case 'L':
8690   case 'M':
8691   case 'N':
8692   case 'O':
8693   case 'P': {
8694     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
8695     if (!CST) return; // Must be an immediate to match.
8696     unsigned Value = CST->getZExtValue();
8697     switch (Letter) {
8698     default: llvm_unreachable("Unknown constraint letter!");
8699     case 'I':  // "I" is a signed 16-bit constant.
8700       if ((short)Value == (int)Value)
8701         Result = DAG.getTargetConstant(Value, Op.getValueType());
8702       break;
8703     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
8704     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
8705       if ((short)Value == 0)
8706         Result = DAG.getTargetConstant(Value, Op.getValueType());
8707       break;
8708     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
8709       if ((Value >> 16) == 0)
8710         Result = DAG.getTargetConstant(Value, Op.getValueType());
8711       break;
8712     case 'M':  // "M" is a constant that is greater than 31.
8713       if (Value > 31)
8714         Result = DAG.getTargetConstant(Value, Op.getValueType());
8715       break;
8716     case 'N':  // "N" is a positive constant that is an exact power of two.
8717       if ((int)Value > 0 && isPowerOf2_32(Value))
8718         Result = DAG.getTargetConstant(Value, Op.getValueType());
8719       break;
8720     case 'O':  // "O" is the constant zero.
8721       if (Value == 0)
8722         Result = DAG.getTargetConstant(Value, Op.getValueType());
8723       break;
8724     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
8725       if ((short)-Value == (int)-Value)
8726         Result = DAG.getTargetConstant(Value, Op.getValueType());
8727       break;
8728     }
8729     break;
8730   }
8731   }
8732
8733   if (Result.getNode()) {
8734     Ops.push_back(Result);
8735     return;
8736   }
8737
8738   // Handle standard constraint letters.
8739   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8740 }
8741
8742 // isLegalAddressingMode - Return true if the addressing mode represented
8743 // by AM is legal for this target, for a load/store of the specified type.
8744 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8745                                               Type *Ty) const {
8746   // FIXME: PPC does not allow r+i addressing modes for vectors!
8747
8748   // PPC allows a sign-extended 16-bit immediate field.
8749   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
8750     return false;
8751
8752   // No global is ever allowed as a base.
8753   if (AM.BaseGV)
8754     return false;
8755
8756   // PPC only support r+r,
8757   switch (AM.Scale) {
8758   case 0:  // "r+i" or just "i", depending on HasBaseReg.
8759     break;
8760   case 1:
8761     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
8762       return false;
8763     // Otherwise we have r+r or r+i.
8764     break;
8765   case 2:
8766     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
8767       return false;
8768     // Allow 2*r as r+r.
8769     break;
8770   default:
8771     // No other scales are supported.
8772     return false;
8773   }
8774
8775   return true;
8776 }
8777
8778 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
8779                                            SelectionDAG &DAG) const {
8780   MachineFunction &MF = DAG.getMachineFunction();
8781   MachineFrameInfo *MFI = MF.getFrameInfo();
8782   MFI->setReturnAddressIsTaken(true);
8783
8784   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
8785     return SDValue();
8786
8787   SDLoc dl(Op);
8788   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8789
8790   // Make sure the function does not optimize away the store of the RA to
8791   // the stack.
8792   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
8793   FuncInfo->setLRStoreRequired();
8794   bool isPPC64 = Subtarget.isPPC64();
8795   bool isDarwinABI = Subtarget.isDarwinABI();
8796
8797   if (Depth > 0) {
8798     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8799     SDValue Offset =
8800
8801       DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
8802                       isPPC64? MVT::i64 : MVT::i32);
8803     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8804                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
8805                                    FrameAddr, Offset),
8806                        MachinePointerInfo(), false, false, false, 0);
8807   }
8808
8809   // Just load the return address off the stack.
8810   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
8811   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8812                      RetAddrFI, MachinePointerInfo(), false, false, false, 0);
8813 }
8814
8815 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
8816                                           SelectionDAG &DAG) const {
8817   SDLoc dl(Op);
8818   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8819
8820   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
8821   bool isPPC64 = PtrVT == MVT::i64;
8822
8823   MachineFunction &MF = DAG.getMachineFunction();
8824   MachineFrameInfo *MFI = MF.getFrameInfo();
8825   MFI->setFrameAddressIsTaken(true);
8826
8827   // Naked functions never have a frame pointer, and so we use r1. For all
8828   // other functions, this decision must be delayed until during PEI.
8829   unsigned FrameReg;
8830   if (MF.getFunction()->getAttributes().hasAttribute(
8831         AttributeSet::FunctionIndex, Attribute::Naked))
8832     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
8833   else
8834     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
8835
8836   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
8837                                          PtrVT);
8838   while (Depth--)
8839     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
8840                             FrameAddr, MachinePointerInfo(), false, false,
8841                             false, 0);
8842   return FrameAddr;
8843 }
8844
8845 // FIXME? Maybe this could be a TableGen attribute on some registers and
8846 // this table could be generated automatically from RegInfo.
8847 unsigned PPCTargetLowering::getRegisterByName(const char* RegName,
8848                                               EVT VT) const {
8849   bool isPPC64 = Subtarget.isPPC64();
8850   bool isDarwinABI = Subtarget.isDarwinABI();
8851
8852   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
8853       (!isPPC64 && VT != MVT::i32))
8854     report_fatal_error("Invalid register global variable type");
8855
8856   bool is64Bit = isPPC64 && VT == MVT::i64;
8857   unsigned Reg = StringSwitch<unsigned>(RegName)
8858                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
8859                    .Case("r2", isDarwinABI ? 0 : (is64Bit ? PPC::X2 : PPC::R2))
8860                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
8861                                   (is64Bit ? PPC::X13 : PPC::R13))
8862                    .Default(0);
8863
8864   if (Reg)
8865     return Reg;
8866   report_fatal_error("Invalid register name global variable");
8867 }
8868
8869 bool
8870 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
8871   // The PowerPC target isn't yet aware of offsets.
8872   return false;
8873 }
8874
8875 /// getOptimalMemOpType - Returns the target specific optimal type for load
8876 /// and store operations as a result of memset, memcpy, and memmove
8877 /// lowering. If DstAlign is zero that means it's safe to destination
8878 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
8879 /// means there isn't a need to check it against alignment requirement,
8880 /// probably because the source does not need to be loaded. If 'IsMemset' is
8881 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
8882 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
8883 /// source is constant so it does not need to be loaded.
8884 /// It returns EVT::Other if the type should be determined using generic
8885 /// target-independent logic.
8886 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
8887                                            unsigned DstAlign, unsigned SrcAlign,
8888                                            bool IsMemset, bool ZeroMemset,
8889                                            bool MemcpyStrSrc,
8890                                            MachineFunction &MF) const {
8891   if (Subtarget.isPPC64()) {
8892     return MVT::i64;
8893   } else {
8894     return MVT::i32;
8895   }
8896 }
8897
8898 /// \brief Returns true if it is beneficial to convert a load of a constant
8899 /// to just the constant itself.
8900 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
8901                                                           Type *Ty) const {
8902   assert(Ty->isIntegerTy());
8903
8904   unsigned BitSize = Ty->getPrimitiveSizeInBits();
8905   if (BitSize == 0 || BitSize > 64)
8906     return false;
8907   return true;
8908 }
8909
8910 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
8911   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8912     return false;
8913   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8914   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8915   return NumBits1 == 64 && NumBits2 == 32;
8916 }
8917
8918 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8919   if (!VT1.isInteger() || !VT2.isInteger())
8920     return false;
8921   unsigned NumBits1 = VT1.getSizeInBits();
8922   unsigned NumBits2 = VT2.getSizeInBits();
8923   return NumBits1 == 64 && NumBits2 == 32;
8924 }
8925
8926 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8927   return isInt<16>(Imm) || isUInt<16>(Imm);
8928 }
8929
8930 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8931   return isInt<16>(Imm) || isUInt<16>(Imm);
8932 }
8933
8934 bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
8935                                                       unsigned,
8936                                                       bool *Fast) const {
8937   if (DisablePPCUnaligned)
8938     return false;
8939
8940   // PowerPC supports unaligned memory access for simple non-vector types.
8941   // Although accessing unaligned addresses is not as efficient as accessing
8942   // aligned addresses, it is generally more efficient than manual expansion,
8943   // and generally only traps for software emulation when crossing page
8944   // boundaries.
8945
8946   if (!VT.isSimple())
8947     return false;
8948
8949   if (VT.getSimpleVT().isVector()) {
8950     if (Subtarget.hasVSX()) {
8951       if (VT != MVT::v2f64 && VT != MVT::v2i64)
8952         return false;
8953     } else {
8954       return false;
8955     }
8956   }
8957
8958   if (VT == MVT::ppcf128)
8959     return false;
8960
8961   if (Fast)
8962     *Fast = true;
8963
8964   return true;
8965 }
8966
8967 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
8968   VT = VT.getScalarType();
8969
8970   if (!VT.isSimple())
8971     return false;
8972
8973   switch (VT.getSimpleVT().SimpleTy) {
8974   case MVT::f32:
8975   case MVT::f64:
8976     return true;
8977   default:
8978     break;
8979   }
8980
8981   return false;
8982 }
8983
8984 bool
8985 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
8986                      EVT VT , unsigned DefinedValues) const {
8987   if (VT == MVT::v2i64)
8988     return false;
8989
8990   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
8991 }
8992
8993 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
8994   if (DisableILPPref || Subtarget.enableMachineScheduler())
8995     return TargetLowering::getSchedulingPreference(N);
8996
8997   return Sched::ILP;
8998 }
8999
9000 // Create a fast isel object.
9001 FastISel *
9002 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
9003                                   const TargetLibraryInfo *LibInfo) const {
9004   return PPC::createFastISel(FuncInfo, LibInfo);
9005 }