Register Data Flow: data flow graph
[oota-llvm.git] / lib / Target / PowerPC / PPCISelLowering.cpp
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCCallingConv.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCPerfectShuffle.h"
19 #include "PPCTargetMachine.h"
20 #include "PPCTargetObjectFile.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineLoopInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
42
43 using namespace llvm;
44
45 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
46 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
47
48 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
49 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
50
51 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
52 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
53
54 // FIXME: Remove this once the bug has been fixed!
55 extern cl::opt<bool> ANDIGlueBug;
56
57 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
58                                      const PPCSubtarget &STI)
59     : TargetLowering(TM), Subtarget(STI) {
60   // Use _setjmp/_longjmp instead of setjmp/longjmp.
61   setUseUnderscoreSetJmp(true);
62   setUseUnderscoreLongJmp(true);
63
64   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
65   // arguments are at least 4/8 bytes aligned.
66   bool isPPC64 = Subtarget.isPPC64();
67   setMinStackArgumentAlignment(isPPC64 ? 8:4);
68
69   // Set up the register classes.
70   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
71   if (!Subtarget.useSoftFloat()) {
72     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
73     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
74   }
75
76   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
77   for (MVT VT : MVT::integer_valuetypes()) {
78     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
79     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
80   }
81
82   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
83
84   // PowerPC has pre-inc load and store's.
85   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
86   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
87   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
88   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
89   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
90   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
91   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
92   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
93   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
94   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
95   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
96   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
97   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
98   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
99
100   if (Subtarget.useCRBits()) {
101     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
102
103     if (isPPC64 || Subtarget.hasFPCVT()) {
104       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
105       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
106                          isPPC64 ? MVT::i64 : MVT::i32);
107       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
108       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
109                         isPPC64 ? MVT::i64 : MVT::i32);
110     } else {
111       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
112       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
113     }
114
115     // PowerPC does not support direct load / store of condition registers
116     setOperationAction(ISD::LOAD, MVT::i1, Custom);
117     setOperationAction(ISD::STORE, MVT::i1, Custom);
118
119     // FIXME: Remove this once the ANDI glue bug is fixed:
120     if (ANDIGlueBug)
121       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
122
123     for (MVT VT : MVT::integer_valuetypes()) {
124       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
125       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
126       setTruncStoreAction(VT, MVT::i1, Expand);
127     }
128
129     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
130   }
131
132   // This is used in the ppcf128->int sequence.  Note it has different semantics
133   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
134   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
135
136   // We do not currently implement these libm ops for PowerPC.
137   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
138   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
139   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
140   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
141   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
142   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
143
144   // PowerPC has no SREM/UREM instructions
145   setOperationAction(ISD::SREM, MVT::i32, Expand);
146   setOperationAction(ISD::UREM, MVT::i32, Expand);
147   setOperationAction(ISD::SREM, MVT::i64, Expand);
148   setOperationAction(ISD::UREM, MVT::i64, Expand);
149
150   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
151   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
152   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
153   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
154   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
155   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
156   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
157   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
158   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
159
160   // We don't support sin/cos/sqrt/fmod/pow
161   setOperationAction(ISD::FSIN , MVT::f64, Expand);
162   setOperationAction(ISD::FCOS , MVT::f64, Expand);
163   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
164   setOperationAction(ISD::FREM , MVT::f64, Expand);
165   setOperationAction(ISD::FPOW , MVT::f64, Expand);
166   setOperationAction(ISD::FMA  , MVT::f64, Legal);
167   setOperationAction(ISD::FSIN , MVT::f32, Expand);
168   setOperationAction(ISD::FCOS , MVT::f32, Expand);
169   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
170   setOperationAction(ISD::FREM , MVT::f32, Expand);
171   setOperationAction(ISD::FPOW , MVT::f32, Expand);
172   setOperationAction(ISD::FMA  , MVT::f32, Legal);
173
174   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
175
176   // If we're enabling GP optimizations, use hardware square root
177   if (!Subtarget.hasFSQRT() &&
178       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
179         Subtarget.hasFRE()))
180     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
181
182   if (!Subtarget.hasFSQRT() &&
183       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
184         Subtarget.hasFRES()))
185     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
186
187   if (Subtarget.hasFCPSGN()) {
188     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
189     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
190   } else {
191     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
192     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
193   }
194
195   if (Subtarget.hasFPRND()) {
196     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
197     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
198     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
199     setOperationAction(ISD::FROUND, MVT::f64, Legal);
200
201     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
202     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
203     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
204     setOperationAction(ISD::FROUND, MVT::f32, Legal);
205   }
206
207   // PowerPC does not have BSWAP, CTPOP or CTTZ
208   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
209   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
210   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
211   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
212   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
213   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
214   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
215   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
216
217   if (Subtarget.hasPOPCNTD()) {
218     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
219     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
220   } else {
221     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
222     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
223   }
224
225   // PowerPC does not have ROTR
226   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
227   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
228
229   if (!Subtarget.useCRBits()) {
230     // PowerPC does not have Select
231     setOperationAction(ISD::SELECT, MVT::i32, Expand);
232     setOperationAction(ISD::SELECT, MVT::i64, Expand);
233     setOperationAction(ISD::SELECT, MVT::f32, Expand);
234     setOperationAction(ISD::SELECT, MVT::f64, Expand);
235   }
236
237   // PowerPC wants to turn select_cc of FP into fsel when possible.
238   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
239   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
240
241   // PowerPC wants to optimize integer setcc a bit
242   if (!Subtarget.useCRBits())
243     setOperationAction(ISD::SETCC, MVT::i32, Custom);
244
245   // PowerPC does not have BRCOND which requires SetCC
246   if (!Subtarget.useCRBits())
247     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
248
249   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
250
251   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
252   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
253
254   // PowerPC does not have [U|S]INT_TO_FP
255   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
256   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
257
258   if (Subtarget.hasDirectMove()) {
259     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
260     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
261     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
262     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
263   } else {
264     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
265     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
266     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
267     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
268   }
269
270   // We cannot sextinreg(i1).  Expand to shifts.
271   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
272
273   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
274   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
275   // support continuation, user-level threading, and etc.. As a result, no
276   // other SjLj exception interfaces are implemented and please don't build
277   // your own exception handling based on them.
278   // LLVM/Clang supports zero-cost DWARF exception handling.
279   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
280   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
281
282   // We want to legalize GlobalAddress and ConstantPool nodes into the
283   // appropriate instructions to materialize the address.
284   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
285   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
286   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
287   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
288   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
289   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
290   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
291   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
292   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
293   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
294
295   // TRAP is legal.
296   setOperationAction(ISD::TRAP, MVT::Other, Legal);
297
298   // TRAMPOLINE is custom lowered.
299   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
300   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
301
302   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
303   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
304
305   if (Subtarget.isSVR4ABI()) {
306     if (isPPC64) {
307       // VAARG always uses double-word chunks, so promote anything smaller.
308       setOperationAction(ISD::VAARG, MVT::i1, Promote);
309       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
310       setOperationAction(ISD::VAARG, MVT::i8, Promote);
311       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
312       setOperationAction(ISD::VAARG, MVT::i16, Promote);
313       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
314       setOperationAction(ISD::VAARG, MVT::i32, Promote);
315       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
316       setOperationAction(ISD::VAARG, MVT::Other, Expand);
317     } else {
318       // VAARG is custom lowered with the 32-bit SVR4 ABI.
319       setOperationAction(ISD::VAARG, MVT::Other, Custom);
320       setOperationAction(ISD::VAARG, MVT::i64, Custom);
321     }
322   } else
323     setOperationAction(ISD::VAARG, MVT::Other, Expand);
324
325   if (Subtarget.isSVR4ABI() && !isPPC64)
326     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
327     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
328   else
329     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
330
331   // Use the default implementation.
332   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
333   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
334   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
335   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
336   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
337   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
338   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
339
340   // We want to custom lower some of our intrinsics.
341   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
342
343   // To handle counter-based loop conditions.
344   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
345
346   // Comparisons that require checking two conditions.
347   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
348   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
349   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
350   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
351   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
352   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
353   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
354   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
355   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
356   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
357   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
358   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
359
360   if (Subtarget.has64BitSupport()) {
361     // They also have instructions for converting between i64 and fp.
362     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
363     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
364     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
365     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
366     // This is just the low 32 bits of a (signed) fp->i64 conversion.
367     // We cannot do this with Promote because i64 is not a legal type.
368     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
369
370     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
371       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
372   } else {
373     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
374     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
375   }
376
377   // With the instructions enabled under FPCVT, we can do everything.
378   if (Subtarget.hasFPCVT()) {
379     if (Subtarget.has64BitSupport()) {
380       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
381       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
382       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
383       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
384     }
385
386     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
387     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
388     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
389     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
390   }
391
392   if (Subtarget.use64BitRegs()) {
393     // 64-bit PowerPC implementations can support i64 types directly
394     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
395     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
396     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
397     // 64-bit PowerPC wants to expand i128 shifts itself.
398     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
399     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
400     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
401   } else {
402     // 32-bit PowerPC wants to expand i64 shifts itself.
403     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
404     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
405     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
406   }
407
408   if (Subtarget.hasAltivec()) {
409     // First set operation action for all vector types to expand. Then we
410     // will selectively turn on ones that can be effectively codegen'd.
411     for (MVT VT : MVT::vector_valuetypes()) {
412       // add/sub are legal for all supported vector VT's.
413       setOperationAction(ISD::ADD, VT, Legal);
414       setOperationAction(ISD::SUB, VT, Legal);
415
416       // Vector instructions introduced in P8
417       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
418         setOperationAction(ISD::CTPOP, VT, Legal);
419         setOperationAction(ISD::CTLZ, VT, Legal);
420       }
421       else {
422         setOperationAction(ISD::CTPOP, VT, Expand);
423         setOperationAction(ISD::CTLZ, VT, Expand);
424       }
425
426       // We promote all shuffles to v16i8.
427       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
428       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
429
430       // We promote all non-typed operations to v4i32.
431       setOperationAction(ISD::AND   , VT, Promote);
432       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
433       setOperationAction(ISD::OR    , VT, Promote);
434       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
435       setOperationAction(ISD::XOR   , VT, Promote);
436       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
437       setOperationAction(ISD::LOAD  , VT, Promote);
438       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
439       setOperationAction(ISD::SELECT, VT, Promote);
440       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
441       setOperationAction(ISD::SELECT_CC, VT, Promote);
442       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
443       setOperationAction(ISD::STORE, VT, Promote);
444       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
445
446       // No other operations are legal.
447       setOperationAction(ISD::MUL , VT, Expand);
448       setOperationAction(ISD::SDIV, VT, Expand);
449       setOperationAction(ISD::SREM, VT, Expand);
450       setOperationAction(ISD::UDIV, VT, Expand);
451       setOperationAction(ISD::UREM, VT, Expand);
452       setOperationAction(ISD::FDIV, VT, Expand);
453       setOperationAction(ISD::FREM, VT, Expand);
454       setOperationAction(ISD::FNEG, VT, Expand);
455       setOperationAction(ISD::FSQRT, VT, Expand);
456       setOperationAction(ISD::FLOG, VT, Expand);
457       setOperationAction(ISD::FLOG10, VT, Expand);
458       setOperationAction(ISD::FLOG2, VT, Expand);
459       setOperationAction(ISD::FEXP, VT, Expand);
460       setOperationAction(ISD::FEXP2, VT, Expand);
461       setOperationAction(ISD::FSIN, VT, Expand);
462       setOperationAction(ISD::FCOS, VT, Expand);
463       setOperationAction(ISD::FABS, VT, Expand);
464       setOperationAction(ISD::FPOWI, VT, Expand);
465       setOperationAction(ISD::FFLOOR, VT, Expand);
466       setOperationAction(ISD::FCEIL,  VT, Expand);
467       setOperationAction(ISD::FTRUNC, VT, Expand);
468       setOperationAction(ISD::FRINT,  VT, Expand);
469       setOperationAction(ISD::FNEARBYINT, VT, Expand);
470       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
471       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
472       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
473       setOperationAction(ISD::MULHU, VT, Expand);
474       setOperationAction(ISD::MULHS, VT, Expand);
475       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
476       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
477       setOperationAction(ISD::UDIVREM, VT, Expand);
478       setOperationAction(ISD::SDIVREM, VT, Expand);
479       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
480       setOperationAction(ISD::FPOW, VT, Expand);
481       setOperationAction(ISD::BSWAP, VT, Expand);
482       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
483       setOperationAction(ISD::CTTZ, VT, Expand);
484       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
485       setOperationAction(ISD::VSELECT, VT, Expand);
486       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
487       setOperationAction(ISD::ROTL, VT, Expand);
488       setOperationAction(ISD::ROTR, VT, Expand);
489
490       for (MVT InnerVT : MVT::vector_valuetypes()) {
491         setTruncStoreAction(VT, InnerVT, Expand);
492         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
493         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
494         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
495       }
496     }
497
498     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
499     // with merges, splats, etc.
500     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
501
502     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
503     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
504     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
505     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
506     setOperationAction(ISD::SELECT, MVT::v4i32,
507                        Subtarget.useCRBits() ? Legal : Expand);
508     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
509     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
510     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
511     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
512     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
513     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
514     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
515     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
516     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
517
518     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
519     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
520     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
521     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
522
523     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
524     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
525
526     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
527       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
528       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
529     }
530
531     if (Subtarget.hasP8Altivec())
532       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
533     else
534       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
535
536     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
537     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
538
539     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
540     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
541
542     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
543     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
544     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
545     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
546
547     // Altivec does not contain unordered floating-point compare instructions
548     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
549     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
550     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
551     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
552
553     if (Subtarget.hasVSX()) {
554       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
555       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
556       if (Subtarget.hasP8Vector()) {
557         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
558         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
559       }
560       if (Subtarget.hasDirectMove()) {
561         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
562         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
563         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
564         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
565         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
566         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
567         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
568         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
569       }
570       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
571
572       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
573       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
574       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
575       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
576       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
577
578       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
579
580       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
581       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
582
583       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
584       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
585
586       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
587       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
588       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
589       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
590       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
591
592       // Share the Altivec comparison restrictions.
593       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
594       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
595       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
596       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
597
598       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
599       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
600
601       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
602
603       if (Subtarget.hasP8Vector())
604         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
605
606       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
607
608       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
609       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
610       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
611
612       if (Subtarget.hasP8Altivec()) {
613         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
614         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
615         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
616
617         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
618       }
619       else {
620         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
621         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
622         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
623
624         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
625
626         // VSX v2i64 only supports non-arithmetic operations.
627         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
628         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
629       }
630
631       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
632       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
633       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
634       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
635
636       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
637
638       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
639       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
640       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
641       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
642
643       // Vector operation legalization checks the result type of
644       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
645       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
646       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
647       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
648       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
649
650       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
651     }
652
653     if (Subtarget.hasP8Altivec()) {
654       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
655       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
656     }
657   }
658
659   if (Subtarget.hasQPX()) {
660     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
661     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
662     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
663     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
664
665     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
666     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
667
668     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
669     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
670
671     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
672     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
673
674     if (!Subtarget.useCRBits())
675       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
676     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
677
678     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
679     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
680     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
681     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
682     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
683     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
684     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
685
686     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
687     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
688
689     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
690     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
691     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
692
693     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
694     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
695     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
696     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
697     setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
698     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
699     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
700     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
701     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
702     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
703     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
704
705     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
706     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
707
708     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
709     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
710
711     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
712
713     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
714     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
715     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
716     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
717
718     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
719     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
720
721     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
722     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
723
724     if (!Subtarget.useCRBits())
725       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
726     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
727
728     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
729     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
730     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
731     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
732     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
733     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
734     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
735
736     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
737     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
738
739     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
740     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
741     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
742     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
743     setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
744     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
745     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
746     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
747     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
748     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
749     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
750
751     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
752     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
753
754     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
755     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
756
757     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
758
759     setOperationAction(ISD::AND , MVT::v4i1, Legal);
760     setOperationAction(ISD::OR , MVT::v4i1, Legal);
761     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
762
763     if (!Subtarget.useCRBits())
764       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
765     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
766
767     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
768     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
769
770     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
771     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
772     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
773     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
774     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
775     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
776     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
777
778     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
779     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
780
781     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
782
783     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
784     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
785     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
786     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
787
788     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
789     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
790     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
791     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
792
793     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
794     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
795
796     // These need to set FE_INEXACT, and so cannot be vectorized here.
797     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
798     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
799
800     if (TM.Options.UnsafeFPMath) {
801       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
802       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
803
804       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
805       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
806     } else {
807       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
808       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
809
810       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
811       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
812     }
813   }
814
815   if (Subtarget.has64BitSupport())
816     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
817
818   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
819
820   if (!isPPC64) {
821     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
822     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
823   }
824
825   setBooleanContents(ZeroOrOneBooleanContent);
826
827   if (Subtarget.hasAltivec()) {
828     // Altivec instructions set fields to all zeros or all ones.
829     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
830   }
831
832   if (!isPPC64) {
833     // These libcalls are not available in 32-bit.
834     setLibcallName(RTLIB::SHL_I128, nullptr);
835     setLibcallName(RTLIB::SRL_I128, nullptr);
836     setLibcallName(RTLIB::SRA_I128, nullptr);
837   }
838
839   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
840
841   // We have target-specific dag combine patterns for the following nodes:
842   setTargetDAGCombine(ISD::SINT_TO_FP);
843   if (Subtarget.hasFPCVT())
844     setTargetDAGCombine(ISD::UINT_TO_FP);
845   setTargetDAGCombine(ISD::LOAD);
846   setTargetDAGCombine(ISD::STORE);
847   setTargetDAGCombine(ISD::BR_CC);
848   if (Subtarget.useCRBits())
849     setTargetDAGCombine(ISD::BRCOND);
850   setTargetDAGCombine(ISD::BSWAP);
851   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
852   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
853   setTargetDAGCombine(ISD::INTRINSIC_VOID);
854
855   setTargetDAGCombine(ISD::SIGN_EXTEND);
856   setTargetDAGCombine(ISD::ZERO_EXTEND);
857   setTargetDAGCombine(ISD::ANY_EXTEND);
858
859   if (Subtarget.useCRBits()) {
860     setTargetDAGCombine(ISD::TRUNCATE);
861     setTargetDAGCombine(ISD::SETCC);
862     setTargetDAGCombine(ISD::SELECT_CC);
863   }
864
865   // Use reciprocal estimates.
866   if (TM.Options.UnsafeFPMath) {
867     setTargetDAGCombine(ISD::FDIV);
868     setTargetDAGCombine(ISD::FSQRT);
869   }
870
871   // Darwin long double math library functions have $LDBL128 appended.
872   if (Subtarget.isDarwin()) {
873     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
874     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
875     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
876     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
877     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
878     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
879     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
880     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
881     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
882     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
883   }
884
885   // With 32 condition bits, we don't need to sink (and duplicate) compares
886   // aggressively in CodeGenPrep.
887   if (Subtarget.useCRBits()) {
888     setHasMultipleConditionRegisters();
889     setJumpIsExpensive();
890   }
891
892   setMinFunctionAlignment(2);
893   if (Subtarget.isDarwin())
894     setPrefFunctionAlignment(4);
895
896   switch (Subtarget.getDarwinDirective()) {
897   default: break;
898   case PPC::DIR_970:
899   case PPC::DIR_A2:
900   case PPC::DIR_E500mc:
901   case PPC::DIR_E5500:
902   case PPC::DIR_PWR4:
903   case PPC::DIR_PWR5:
904   case PPC::DIR_PWR5X:
905   case PPC::DIR_PWR6:
906   case PPC::DIR_PWR6X:
907   case PPC::DIR_PWR7:
908   case PPC::DIR_PWR8:
909     setPrefFunctionAlignment(4);
910     setPrefLoopAlignment(4);
911     break;
912   }
913
914   setInsertFencesForAtomic(true);
915
916   if (Subtarget.enableMachineScheduler())
917     setSchedulingPreference(Sched::Source);
918   else
919     setSchedulingPreference(Sched::Hybrid);
920
921   computeRegisterProperties(STI.getRegisterInfo());
922
923   // The Freescale cores do better with aggressive inlining of memcpy and
924   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
925   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
926       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
927     MaxStoresPerMemset = 32;
928     MaxStoresPerMemsetOptSize = 16;
929     MaxStoresPerMemcpy = 32;
930     MaxStoresPerMemcpyOptSize = 8;
931     MaxStoresPerMemmove = 32;
932     MaxStoresPerMemmoveOptSize = 8;
933   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
934     // The A2 also benefits from (very) aggressive inlining of memcpy and
935     // friends. The overhead of a the function call, even when warm, can be
936     // over one hundred cycles.
937     MaxStoresPerMemset = 128;
938     MaxStoresPerMemcpy = 128;
939     MaxStoresPerMemmove = 128;
940   }
941 }
942
943 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
944 /// the desired ByVal argument alignment.
945 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
946                              unsigned MaxMaxAlign) {
947   if (MaxAlign == MaxMaxAlign)
948     return;
949   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
950     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
951       MaxAlign = 32;
952     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
953       MaxAlign = 16;
954   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
955     unsigned EltAlign = 0;
956     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
957     if (EltAlign > MaxAlign)
958       MaxAlign = EltAlign;
959   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
960     for (auto *EltTy : STy->elements()) {
961       unsigned EltAlign = 0;
962       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
963       if (EltAlign > MaxAlign)
964         MaxAlign = EltAlign;
965       if (MaxAlign == MaxMaxAlign)
966         break;
967     }
968   }
969 }
970
971 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
972 /// function arguments in the caller parameter area.
973 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
974                                                   const DataLayout &DL) const {
975   // Darwin passes everything on 4 byte boundary.
976   if (Subtarget.isDarwin())
977     return 4;
978
979   // 16byte and wider vectors are passed on 16byte boundary.
980   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
981   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
982   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
983     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
984   return Align;
985 }
986
987 bool PPCTargetLowering::useSoftFloat() const {
988   return Subtarget.useSoftFloat();
989 }
990
991 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
992   switch ((PPCISD::NodeType)Opcode) {
993   case PPCISD::FIRST_NUMBER:    break;
994   case PPCISD::FSEL:            return "PPCISD::FSEL";
995   case PPCISD::FCFID:           return "PPCISD::FCFID";
996   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
997   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
998   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
999   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1000   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1001   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1002   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1003   case PPCISD::FRE:             return "PPCISD::FRE";
1004   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1005   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1006   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1007   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1008   case PPCISD::VPERM:           return "PPCISD::VPERM";
1009   case PPCISD::CMPB:            return "PPCISD::CMPB";
1010   case PPCISD::Hi:              return "PPCISD::Hi";
1011   case PPCISD::Lo:              return "PPCISD::Lo";
1012   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1013   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1014   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1015   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1016   case PPCISD::SRL:             return "PPCISD::SRL";
1017   case PPCISD::SRA:             return "PPCISD::SRA";
1018   case PPCISD::SHL:             return "PPCISD::SHL";
1019   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1020   case PPCISD::CALL:            return "PPCISD::CALL";
1021   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1022   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1023   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1024   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1025   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1026   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1027   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1028   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1029   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1030   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1031   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1032   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1033   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1034   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1035   case PPCISD::VCMP:            return "PPCISD::VCMP";
1036   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1037   case PPCISD::LBRX:            return "PPCISD::LBRX";
1038   case PPCISD::STBRX:           return "PPCISD::STBRX";
1039   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1040   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1041   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1042   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1043   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1044   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1045   case PPCISD::BDZ:             return "PPCISD::BDZ";
1046   case PPCISD::MFFS:            return "PPCISD::MFFS";
1047   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1048   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1049   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1050   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1051   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1052   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1053   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1054   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1055   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1056   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1057   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1058   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1059   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1060   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1061   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1062   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1063   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1064   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1065   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1066   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1067   case PPCISD::SC:              return "PPCISD::SC";
1068   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1069   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1070   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1071   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1072   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1073   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1074   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1075   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1076   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1077   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1078   }
1079   return nullptr;
1080 }
1081
1082 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1083                                           EVT VT) const {
1084   if (!VT.isVector())
1085     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1086
1087   if (Subtarget.hasQPX())
1088     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1089
1090   return VT.changeVectorElementTypeToInteger();
1091 }
1092
1093 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1094   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1095   return true;
1096 }
1097
1098 //===----------------------------------------------------------------------===//
1099 // Node matching predicates, for use by the tblgen matching code.
1100 //===----------------------------------------------------------------------===//
1101
1102 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1103 static bool isFloatingPointZero(SDValue Op) {
1104   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1105     return CFP->getValueAPF().isZero();
1106   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1107     // Maybe this has already been legalized into the constant pool?
1108     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1109       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1110         return CFP->getValueAPF().isZero();
1111   }
1112   return false;
1113 }
1114
1115 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1116 /// true if Op is undef or if it matches the specified value.
1117 static bool isConstantOrUndef(int Op, int Val) {
1118   return Op < 0 || Op == Val;
1119 }
1120
1121 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1122 /// VPKUHUM instruction.
1123 /// The ShuffleKind distinguishes between big-endian operations with
1124 /// two different inputs (0), either-endian operations with two identical
1125 /// inputs (1), and little-endian operations with two different inputs (2).
1126 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1127 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1128                                SelectionDAG &DAG) {
1129   bool IsLE = DAG.getDataLayout().isLittleEndian();
1130   if (ShuffleKind == 0) {
1131     if (IsLE)
1132       return false;
1133     for (unsigned i = 0; i != 16; ++i)
1134       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1135         return false;
1136   } else if (ShuffleKind == 2) {
1137     if (!IsLE)
1138       return false;
1139     for (unsigned i = 0; i != 16; ++i)
1140       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1141         return false;
1142   } else if (ShuffleKind == 1) {
1143     unsigned j = IsLE ? 0 : 1;
1144     for (unsigned i = 0; i != 8; ++i)
1145       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1146           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1147         return false;
1148   }
1149   return true;
1150 }
1151
1152 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1153 /// VPKUWUM instruction.
1154 /// The ShuffleKind distinguishes between big-endian operations with
1155 /// two different inputs (0), either-endian operations with two identical
1156 /// inputs (1), and little-endian operations with two different inputs (2).
1157 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1158 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1159                                SelectionDAG &DAG) {
1160   bool IsLE = DAG.getDataLayout().isLittleEndian();
1161   if (ShuffleKind == 0) {
1162     if (IsLE)
1163       return false;
1164     for (unsigned i = 0; i != 16; i += 2)
1165       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1166           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1167         return false;
1168   } else if (ShuffleKind == 2) {
1169     if (!IsLE)
1170       return false;
1171     for (unsigned i = 0; i != 16; i += 2)
1172       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1173           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1174         return false;
1175   } else if (ShuffleKind == 1) {
1176     unsigned j = IsLE ? 0 : 2;
1177     for (unsigned i = 0; i != 8; i += 2)
1178       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1179           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1180           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1181           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1182         return false;
1183   }
1184   return true;
1185 }
1186
1187 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1188 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1189 /// current subtarget.
1190 ///
1191 /// The ShuffleKind distinguishes between big-endian operations with
1192 /// two different inputs (0), either-endian operations with two identical
1193 /// inputs (1), and little-endian operations with two different inputs (2).
1194 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1195 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1196                                SelectionDAG &DAG) {
1197   const PPCSubtarget& Subtarget =
1198     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1199   if (!Subtarget.hasP8Vector())
1200     return false;
1201
1202   bool IsLE = DAG.getDataLayout().isLittleEndian();
1203   if (ShuffleKind == 0) {
1204     if (IsLE)
1205       return false;
1206     for (unsigned i = 0; i != 16; i += 4)
1207       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1208           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1209           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1210           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1211         return false;
1212   } else if (ShuffleKind == 2) {
1213     if (!IsLE)
1214       return false;
1215     for (unsigned i = 0; i != 16; i += 4)
1216       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1217           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1218           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1219           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1220         return false;
1221   } else if (ShuffleKind == 1) {
1222     unsigned j = IsLE ? 0 : 4;
1223     for (unsigned i = 0; i != 8; i += 4)
1224       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1225           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1226           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1227           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1228           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1229           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1230           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1231           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1232         return false;
1233   }
1234   return true;
1235 }
1236
1237 /// isVMerge - Common function, used to match vmrg* shuffles.
1238 ///
1239 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1240                      unsigned LHSStart, unsigned RHSStart) {
1241   if (N->getValueType(0) != MVT::v16i8)
1242     return false;
1243   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1244          "Unsupported merge size!");
1245
1246   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1247     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1248       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1249                              LHSStart+j+i*UnitSize) ||
1250           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1251                              RHSStart+j+i*UnitSize))
1252         return false;
1253     }
1254   return true;
1255 }
1256
1257 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1258 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1259 /// The ShuffleKind distinguishes between big-endian merges with two
1260 /// different inputs (0), either-endian merges with two identical inputs (1),
1261 /// and little-endian merges with two different inputs (2).  For the latter,
1262 /// the input operands are swapped (see PPCInstrAltivec.td).
1263 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1264                              unsigned ShuffleKind, SelectionDAG &DAG) {
1265   if (DAG.getDataLayout().isLittleEndian()) {
1266     if (ShuffleKind == 1) // unary
1267       return isVMerge(N, UnitSize, 0, 0);
1268     else if (ShuffleKind == 2) // swapped
1269       return isVMerge(N, UnitSize, 0, 16);
1270     else
1271       return false;
1272   } else {
1273     if (ShuffleKind == 1) // unary
1274       return isVMerge(N, UnitSize, 8, 8);
1275     else if (ShuffleKind == 0) // normal
1276       return isVMerge(N, UnitSize, 8, 24);
1277     else
1278       return false;
1279   }
1280 }
1281
1282 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1283 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1284 /// The ShuffleKind distinguishes between big-endian merges with two
1285 /// different inputs (0), either-endian merges with two identical inputs (1),
1286 /// and little-endian merges with two different inputs (2).  For the latter,
1287 /// the input operands are swapped (see PPCInstrAltivec.td).
1288 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1289                              unsigned ShuffleKind, SelectionDAG &DAG) {
1290   if (DAG.getDataLayout().isLittleEndian()) {
1291     if (ShuffleKind == 1) // unary
1292       return isVMerge(N, UnitSize, 8, 8);
1293     else if (ShuffleKind == 2) // swapped
1294       return isVMerge(N, UnitSize, 8, 24);
1295     else
1296       return false;
1297   } else {
1298     if (ShuffleKind == 1) // unary
1299       return isVMerge(N, UnitSize, 0, 0);
1300     else if (ShuffleKind == 0) // normal
1301       return isVMerge(N, UnitSize, 0, 16);
1302     else
1303       return false;
1304   }
1305 }
1306
1307 /**
1308  * \brief Common function used to match vmrgew and vmrgow shuffles
1309  *
1310  * The indexOffset determines whether to look for even or odd words in
1311  * the shuffle mask. This is based on the of the endianness of the target
1312  * machine.
1313  *   - Little Endian:
1314  *     - Use offset of 0 to check for odd elements
1315  *     - Use offset of 4 to check for even elements
1316  *   - Big Endian:
1317  *     - Use offset of 0 to check for even elements
1318  *     - Use offset of 4 to check for odd elements
1319  * A detailed description of the vector element ordering for little endian and
1320  * big endian can be found at
1321  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1322  * Targeting your applications - what little endian and big endian IBM XL C/C++
1323  * compiler differences mean to you
1324  *
1325  * The mask to the shuffle vector instruction specifies the indices of the
1326  * elements from the two input vectors to place in the result. The elements are
1327  * numbered in array-access order, starting with the first vector. These vectors
1328  * are always of type v16i8, thus each vector will contain 16 elements of size
1329  * 8. More info on the shuffle vector can be found in the
1330  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1331  * Language Reference.
1332  *
1333  * The RHSStartValue indicates whether the same input vectors are used (unary)
1334  * or two different input vectors are used, based on the following:
1335  *   - If the instruction uses the same vector for both inputs, the range of the
1336  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1337  *     be 0.
1338  *   - If the instruction has two different vectors then the range of the
1339  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1340  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1341  *     to 31 specify elements in the second vector).
1342  *
1343  * \param[in] N The shuffle vector SD Node to analyze
1344  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1345  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1346  * vector to the shuffle_vector instruction
1347  * \return true iff this shuffle vector represents an even or odd word merge
1348  */
1349 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1350                      unsigned RHSStartValue) {
1351   if (N->getValueType(0) != MVT::v16i8)
1352     return false;
1353
1354   for (unsigned i = 0; i < 2; ++i)
1355     for (unsigned j = 0; j < 4; ++j)
1356       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1357                              i*RHSStartValue+j+IndexOffset) ||
1358           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1359                              i*RHSStartValue+j+IndexOffset+8))
1360         return false;
1361   return true;
1362 }
1363
1364 /**
1365  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
1366  * vmrgow instructions.
1367  *
1368  * \param[in] N The shuffle vector SD Node to analyze
1369  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1370  * \param[in] ShuffleKind Identify the type of merge:
1371  *   - 0 = big-endian merge with two different inputs;
1372  *   - 1 = either-endian merge with two identical inputs;
1373  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1374  *     little-endian merges).
1375  * \param[in] DAG The current SelectionDAG
1376  * \return true iff this shuffle mask
1377  */
1378 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1379                               unsigned ShuffleKind, SelectionDAG &DAG) {
1380   if (DAG.getDataLayout().isLittleEndian()) {
1381     unsigned indexOffset = CheckEven ? 4 : 0;
1382     if (ShuffleKind == 1) // Unary
1383       return isVMerge(N, indexOffset, 0);
1384     else if (ShuffleKind == 2) // swapped
1385       return isVMerge(N, indexOffset, 16);
1386     else
1387       return false;
1388   }
1389   else {
1390     unsigned indexOffset = CheckEven ? 0 : 4;
1391     if (ShuffleKind == 1) // Unary
1392       return isVMerge(N, indexOffset, 0);
1393     else if (ShuffleKind == 0) // Normal
1394       return isVMerge(N, indexOffset, 16);
1395     else
1396       return false;
1397   }
1398   return false;
1399 }
1400
1401 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1402 /// amount, otherwise return -1.
1403 /// The ShuffleKind distinguishes between big-endian operations with two
1404 /// different inputs (0), either-endian operations with two identical inputs
1405 /// (1), and little-endian operations with two different inputs (2).  For the
1406 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1407 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1408                              SelectionDAG &DAG) {
1409   if (N->getValueType(0) != MVT::v16i8)
1410     return -1;
1411
1412   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1413
1414   // Find the first non-undef value in the shuffle mask.
1415   unsigned i;
1416   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1417     /*search*/;
1418
1419   if (i == 16) return -1;  // all undef.
1420
1421   // Otherwise, check to see if the rest of the elements are consecutively
1422   // numbered from this value.
1423   unsigned ShiftAmt = SVOp->getMaskElt(i);
1424   if (ShiftAmt < i) return -1;
1425
1426   ShiftAmt -= i;
1427   bool isLE = DAG.getDataLayout().isLittleEndian();
1428
1429   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1430     // Check the rest of the elements to see if they are consecutive.
1431     for (++i; i != 16; ++i)
1432       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1433         return -1;
1434   } else if (ShuffleKind == 1) {
1435     // Check the rest of the elements to see if they are consecutive.
1436     for (++i; i != 16; ++i)
1437       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1438         return -1;
1439   } else
1440     return -1;
1441
1442   if (isLE)
1443     ShiftAmt = 16 - ShiftAmt;
1444
1445   return ShiftAmt;
1446 }
1447
1448 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1449 /// specifies a splat of a single element that is suitable for input to
1450 /// VSPLTB/VSPLTH/VSPLTW.
1451 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1452   assert(N->getValueType(0) == MVT::v16i8 &&
1453          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1454
1455   // The consecutive indices need to specify an element, not part of two
1456   // different elements.  So abandon ship early if this isn't the case.
1457   if (N->getMaskElt(0) % EltSize != 0)
1458     return false;
1459
1460   // This is a splat operation if each element of the permute is the same, and
1461   // if the value doesn't reference the second vector.
1462   unsigned ElementBase = N->getMaskElt(0);
1463
1464   // FIXME: Handle UNDEF elements too!
1465   if (ElementBase >= 16)
1466     return false;
1467
1468   // Check that the indices are consecutive, in the case of a multi-byte element
1469   // splatted with a v16i8 mask.
1470   for (unsigned i = 1; i != EltSize; ++i)
1471     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1472       return false;
1473
1474   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1475     if (N->getMaskElt(i) < 0) continue;
1476     for (unsigned j = 0; j != EltSize; ++j)
1477       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1478         return false;
1479   }
1480   return true;
1481 }
1482
1483 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1484 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1485 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1486                                 SelectionDAG &DAG) {
1487   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1488   assert(isSplatShuffleMask(SVOp, EltSize));
1489   if (DAG.getDataLayout().isLittleEndian())
1490     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1491   else
1492     return SVOp->getMaskElt(0) / EltSize;
1493 }
1494
1495 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1496 /// by using a vspltis[bhw] instruction of the specified element size, return
1497 /// the constant being splatted.  The ByteSize field indicates the number of
1498 /// bytes of each element [124] -> [bhw].
1499 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1500   SDValue OpVal(nullptr, 0);
1501
1502   // If ByteSize of the splat is bigger than the element size of the
1503   // build_vector, then we have a case where we are checking for a splat where
1504   // multiple elements of the buildvector are folded together into a single
1505   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1506   unsigned EltSize = 16/N->getNumOperands();
1507   if (EltSize < ByteSize) {
1508     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1509     SDValue UniquedVals[4];
1510     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1511
1512     // See if all of the elements in the buildvector agree across.
1513     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1514       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1515       // If the element isn't a constant, bail fully out.
1516       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1517
1518
1519       if (!UniquedVals[i&(Multiple-1)].getNode())
1520         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1521       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1522         return SDValue();  // no match.
1523     }
1524
1525     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1526     // either constant or undef values that are identical for each chunk.  See
1527     // if these chunks can form into a larger vspltis*.
1528
1529     // Check to see if all of the leading entries are either 0 or -1.  If
1530     // neither, then this won't fit into the immediate field.
1531     bool LeadingZero = true;
1532     bool LeadingOnes = true;
1533     for (unsigned i = 0; i != Multiple-1; ++i) {
1534       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1535
1536       LeadingZero &= isNullConstant(UniquedVals[i]);
1537       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
1538     }
1539     // Finally, check the least significant entry.
1540     if (LeadingZero) {
1541       if (!UniquedVals[Multiple-1].getNode())
1542         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
1543       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1544       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
1545         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1546     }
1547     if (LeadingOnes) {
1548       if (!UniquedVals[Multiple-1].getNode())
1549         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1550       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1551       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1552         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1553     }
1554
1555     return SDValue();
1556   }
1557
1558   // Check to see if this buildvec has a single non-undef value in its elements.
1559   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1560     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1561     if (!OpVal.getNode())
1562       OpVal = N->getOperand(i);
1563     else if (OpVal != N->getOperand(i))
1564       return SDValue();
1565   }
1566
1567   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1568
1569   unsigned ValSizeInBytes = EltSize;
1570   uint64_t Value = 0;
1571   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1572     Value = CN->getZExtValue();
1573   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1574     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1575     Value = FloatToBits(CN->getValueAPF().convertToFloat());
1576   }
1577
1578   // If the splat value is larger than the element value, then we can never do
1579   // this splat.  The only case that we could fit the replicated bits into our
1580   // immediate field for would be zero, and we prefer to use vxor for it.
1581   if (ValSizeInBytes < ByteSize) return SDValue();
1582
1583   // If the element value is larger than the splat value, check if it consists
1584   // of a repeated bit pattern of size ByteSize.
1585   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
1586     return SDValue();
1587
1588   // Properly sign extend the value.
1589   int MaskVal = SignExtend32(Value, ByteSize * 8);
1590
1591   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1592   if (MaskVal == 0) return SDValue();
1593
1594   // Finally, if this value fits in a 5 bit sext field, return it
1595   if (SignExtend32<5>(MaskVal) == MaskVal)
1596     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
1597   return SDValue();
1598 }
1599
1600 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
1601 /// amount, otherwise return -1.
1602 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
1603   EVT VT = N->getValueType(0);
1604   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
1605     return -1;
1606
1607   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1608
1609   // Find the first non-undef value in the shuffle mask.
1610   unsigned i;
1611   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
1612     /*search*/;
1613
1614   if (i == 4) return -1;  // all undef.
1615
1616   // Otherwise, check to see if the rest of the elements are consecutively
1617   // numbered from this value.
1618   unsigned ShiftAmt = SVOp->getMaskElt(i);
1619   if (ShiftAmt < i) return -1;
1620   ShiftAmt -= i;
1621
1622   // Check the rest of the elements to see if they are consecutive.
1623   for (++i; i != 4; ++i)
1624     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1625       return -1;
1626
1627   return ShiftAmt;
1628 }
1629
1630 //===----------------------------------------------------------------------===//
1631 //  Addressing Mode Selection
1632 //===----------------------------------------------------------------------===//
1633
1634 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
1635 /// or 64-bit immediate, and if the value can be accurately represented as a
1636 /// sign extension from a 16-bit value.  If so, this returns true and the
1637 /// immediate.
1638 static bool isIntS16Immediate(SDNode *N, short &Imm) {
1639   if (!isa<ConstantSDNode>(N))
1640     return false;
1641
1642   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1643   if (N->getValueType(0) == MVT::i32)
1644     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1645   else
1646     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1647 }
1648 static bool isIntS16Immediate(SDValue Op, short &Imm) {
1649   return isIntS16Immediate(Op.getNode(), Imm);
1650 }
1651
1652 /// SelectAddressRegReg - Given the specified addressed, check to see if it
1653 /// can be represented as an indexed [r+r] operation.  Returns false if it
1654 /// can be more efficiently represented with [r+imm].
1655 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1656                                             SDValue &Index,
1657                                             SelectionDAG &DAG) const {
1658   short imm = 0;
1659   if (N.getOpcode() == ISD::ADD) {
1660     if (isIntS16Immediate(N.getOperand(1), imm))
1661       return false;    // r+i
1662     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1663       return false;    // r+i
1664
1665     Base = N.getOperand(0);
1666     Index = N.getOperand(1);
1667     return true;
1668   } else if (N.getOpcode() == ISD::OR) {
1669     if (isIntS16Immediate(N.getOperand(1), imm))
1670       return false;    // r+i can fold it if we can.
1671
1672     // If this is an or of disjoint bitfields, we can codegen this as an add
1673     // (for better address arithmetic) if the LHS and RHS of the OR are provably
1674     // disjoint.
1675     APInt LHSKnownZero, LHSKnownOne;
1676     APInt RHSKnownZero, RHSKnownOne;
1677     DAG.computeKnownBits(N.getOperand(0),
1678                          LHSKnownZero, LHSKnownOne);
1679
1680     if (LHSKnownZero.getBoolValue()) {
1681       DAG.computeKnownBits(N.getOperand(1),
1682                            RHSKnownZero, RHSKnownOne);
1683       // If all of the bits are known zero on the LHS or RHS, the add won't
1684       // carry.
1685       if (~(LHSKnownZero | RHSKnownZero) == 0) {
1686         Base = N.getOperand(0);
1687         Index = N.getOperand(1);
1688         return true;
1689       }
1690     }
1691   }
1692
1693   return false;
1694 }
1695
1696 // If we happen to be doing an i64 load or store into a stack slot that has
1697 // less than a 4-byte alignment, then the frame-index elimination may need to
1698 // use an indexed load or store instruction (because the offset may not be a
1699 // multiple of 4). The extra register needed to hold the offset comes from the
1700 // register scavenger, and it is possible that the scavenger will need to use
1701 // an emergency spill slot. As a result, we need to make sure that a spill slot
1702 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1703 // stack slot.
1704 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1705   // FIXME: This does not handle the LWA case.
1706   if (VT != MVT::i64)
1707     return;
1708
1709   // NOTE: We'll exclude negative FIs here, which come from argument
1710   // lowering, because there are no known test cases triggering this problem
1711   // using packed structures (or similar). We can remove this exclusion if
1712   // we find such a test case. The reason why this is so test-case driven is
1713   // because this entire 'fixup' is only to prevent crashes (from the
1714   // register scavenger) on not-really-valid inputs. For example, if we have:
1715   //   %a = alloca i1
1716   //   %b = bitcast i1* %a to i64*
1717   //   store i64* a, i64 b
1718   // then the store should really be marked as 'align 1', but is not. If it
1719   // were marked as 'align 1' then the indexed form would have been
1720   // instruction-selected initially, and the problem this 'fixup' is preventing
1721   // won't happen regardless.
1722   if (FrameIdx < 0)
1723     return;
1724
1725   MachineFunction &MF = DAG.getMachineFunction();
1726   MachineFrameInfo *MFI = MF.getFrameInfo();
1727
1728   unsigned Align = MFI->getObjectAlignment(FrameIdx);
1729   if (Align >= 4)
1730     return;
1731
1732   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1733   FuncInfo->setHasNonRISpills();
1734 }
1735
1736 /// Returns true if the address N can be represented by a base register plus
1737 /// a signed 16-bit displacement [r+imm], and if it is not better
1738 /// represented as reg+reg.  If Aligned is true, only accept displacements
1739 /// suitable for STD and friends, i.e. multiples of 4.
1740 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1741                                             SDValue &Base,
1742                                             SelectionDAG &DAG,
1743                                             bool Aligned) const {
1744   // FIXME dl should come from parent load or store, not from address
1745   SDLoc dl(N);
1746   // If this can be more profitably realized as r+r, fail.
1747   if (SelectAddressRegReg(N, Disp, Base, DAG))
1748     return false;
1749
1750   if (N.getOpcode() == ISD::ADD) {
1751     short imm = 0;
1752     if (isIntS16Immediate(N.getOperand(1), imm) &&
1753         (!Aligned || (imm & 3) == 0)) {
1754       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1755       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1756         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1757         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1758       } else {
1759         Base = N.getOperand(0);
1760       }
1761       return true; // [r+i]
1762     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1763       // Match LOAD (ADD (X, Lo(G))).
1764       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1765              && "Cannot handle constant offsets yet!");
1766       Disp = N.getOperand(1).getOperand(0);  // The global address.
1767       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1768              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1769              Disp.getOpcode() == ISD::TargetConstantPool ||
1770              Disp.getOpcode() == ISD::TargetJumpTable);
1771       Base = N.getOperand(0);
1772       return true;  // [&g+r]
1773     }
1774   } else if (N.getOpcode() == ISD::OR) {
1775     short imm = 0;
1776     if (isIntS16Immediate(N.getOperand(1), imm) &&
1777         (!Aligned || (imm & 3) == 0)) {
1778       // If this is an or of disjoint bitfields, we can codegen this as an add
1779       // (for better address arithmetic) if the LHS and RHS of the OR are
1780       // provably disjoint.
1781       APInt LHSKnownZero, LHSKnownOne;
1782       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1783
1784       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1785         // If all of the bits are known zero on the LHS or RHS, the add won't
1786         // carry.
1787         if (FrameIndexSDNode *FI =
1788               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1789           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1790           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1791         } else {
1792           Base = N.getOperand(0);
1793         }
1794         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1795         return true;
1796       }
1797     }
1798   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1799     // Loading from a constant address.
1800
1801     // If this address fits entirely in a 16-bit sext immediate field, codegen
1802     // this as "d, 0"
1803     short Imm;
1804     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1805       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
1806       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1807                              CN->getValueType(0));
1808       return true;
1809     }
1810
1811     // Handle 32-bit sext immediates with LIS + addr mode.
1812     if ((CN->getValueType(0) == MVT::i32 ||
1813          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1814         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1815       int Addr = (int)CN->getZExtValue();
1816
1817       // Otherwise, break this down into an LIS + disp.
1818       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
1819
1820       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
1821                                    MVT::i32);
1822       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1823       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1824       return true;
1825     }
1826   }
1827
1828   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
1829   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
1830     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1831     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1832   } else
1833     Base = N;
1834   return true;      // [r+0]
1835 }
1836
1837 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1838 /// represented as an indexed [r+r] operation.
1839 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1840                                                 SDValue &Index,
1841                                                 SelectionDAG &DAG) const {
1842   // Check to see if we can easily represent this as an [r+r] address.  This
1843   // will fail if it thinks that the address is more profitably represented as
1844   // reg+imm, e.g. where imm = 0.
1845   if (SelectAddressRegReg(N, Base, Index, DAG))
1846     return true;
1847
1848   // If the operand is an addition, always emit this as [r+r], since this is
1849   // better (for code size, and execution, as the memop does the add for free)
1850   // than emitting an explicit add.
1851   if (N.getOpcode() == ISD::ADD) {
1852     Base = N.getOperand(0);
1853     Index = N.getOperand(1);
1854     return true;
1855   }
1856
1857   // Otherwise, do it the hard way, using R0 as the base register.
1858   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1859                          N.getValueType());
1860   Index = N;
1861   return true;
1862 }
1863
1864 /// getPreIndexedAddressParts - returns true by value, base pointer and
1865 /// offset pointer and addressing mode by reference if the node's address
1866 /// can be legally represented as pre-indexed load / store address.
1867 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1868                                                   SDValue &Offset,
1869                                                   ISD::MemIndexedMode &AM,
1870                                                   SelectionDAG &DAG) const {
1871   if (DisablePPCPreinc) return false;
1872
1873   bool isLoad = true;
1874   SDValue Ptr;
1875   EVT VT;
1876   unsigned Alignment;
1877   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1878     Ptr = LD->getBasePtr();
1879     VT = LD->getMemoryVT();
1880     Alignment = LD->getAlignment();
1881   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1882     Ptr = ST->getBasePtr();
1883     VT  = ST->getMemoryVT();
1884     Alignment = ST->getAlignment();
1885     isLoad = false;
1886   } else
1887     return false;
1888
1889   // PowerPC doesn't have preinc load/store instructions for vectors (except
1890   // for QPX, which does have preinc r+r forms).
1891   if (VT.isVector()) {
1892     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
1893       return false;
1894     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
1895       AM = ISD::PRE_INC;
1896       return true;
1897     }
1898   }
1899
1900   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1901
1902     // Common code will reject creating a pre-inc form if the base pointer
1903     // is a frame index, or if N is a store and the base pointer is either
1904     // the same as or a predecessor of the value being stored.  Check for
1905     // those situations here, and try with swapped Base/Offset instead.
1906     bool Swap = false;
1907
1908     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1909       Swap = true;
1910     else if (!isLoad) {
1911       SDValue Val = cast<StoreSDNode>(N)->getValue();
1912       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1913         Swap = true;
1914     }
1915
1916     if (Swap)
1917       std::swap(Base, Offset);
1918
1919     AM = ISD::PRE_INC;
1920     return true;
1921   }
1922
1923   // LDU/STU can only handle immediates that are a multiple of 4.
1924   if (VT != MVT::i64) {
1925     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
1926       return false;
1927   } else {
1928     // LDU/STU need an address with at least 4-byte alignment.
1929     if (Alignment < 4)
1930       return false;
1931
1932     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
1933       return false;
1934   }
1935
1936   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1937     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1938     // sext i32 to i64 when addr mode is r+i.
1939     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1940         LD->getExtensionType() == ISD::SEXTLOAD &&
1941         isa<ConstantSDNode>(Offset))
1942       return false;
1943   }
1944
1945   AM = ISD::PRE_INC;
1946   return true;
1947 }
1948
1949 //===----------------------------------------------------------------------===//
1950 //  LowerOperation implementation
1951 //===----------------------------------------------------------------------===//
1952
1953 /// GetLabelAccessInfo - Return true if we should reference labels using a
1954 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1955 static bool GetLabelAccessInfo(const TargetMachine &TM,
1956                                const PPCSubtarget &Subtarget,
1957                                unsigned &HiOpFlags, unsigned &LoOpFlags,
1958                                const GlobalValue *GV = nullptr) {
1959   HiOpFlags = PPCII::MO_HA;
1960   LoOpFlags = PPCII::MO_LO;
1961
1962   // Don't use the pic base if not in PIC relocation model.
1963   bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
1964
1965   if (isPIC) {
1966     HiOpFlags |= PPCII::MO_PIC_FLAG;
1967     LoOpFlags |= PPCII::MO_PIC_FLAG;
1968   }
1969
1970   // If this is a reference to a global value that requires a non-lazy-ptr, make
1971   // sure that instruction lowering adds it.
1972   if (GV && Subtarget.hasLazyResolverStub(GV)) {
1973     HiOpFlags |= PPCII::MO_NLP_FLAG;
1974     LoOpFlags |= PPCII::MO_NLP_FLAG;
1975
1976     if (GV->hasHiddenVisibility()) {
1977       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1978       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1979     }
1980   }
1981
1982   return isPIC;
1983 }
1984
1985 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1986                              SelectionDAG &DAG) {
1987   SDLoc DL(HiPart);
1988   EVT PtrVT = HiPart.getValueType();
1989   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
1990
1991   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1992   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1993
1994   // With PIC, the first instruction is actually "GR+hi(&G)".
1995   if (isPIC)
1996     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1997                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1998
1999   // Generate non-pic code that has direct accesses to the constant pool.
2000   // The address of the global is just (hi(&g)+lo(&g)).
2001   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2002 }
2003
2004 static void setUsesTOCBasePtr(MachineFunction &MF) {
2005   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2006   FuncInfo->setUsesTOCBasePtr();
2007 }
2008
2009 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2010   setUsesTOCBasePtr(DAG.getMachineFunction());
2011 }
2012
2013 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit,
2014                            SDValue GA) {
2015   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2016   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2017                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2018
2019   SDValue Ops[] = { GA, Reg };
2020   return DAG.getMemIntrinsicNode(
2021       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2022       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true,
2023       false, 0);
2024 }
2025
2026 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2027                                              SelectionDAG &DAG) const {
2028   EVT PtrVT = Op.getValueType();
2029   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2030   const Constant *C = CP->getConstVal();
2031
2032   // 64-bit SVR4 ABI code is always position-independent.
2033   // The actual address of the GlobalValue is stored in the TOC.
2034   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2035     setUsesTOCBasePtr(DAG);
2036     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2037     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2038   }
2039
2040   unsigned MOHiFlag, MOLoFlag;
2041   bool isPIC =
2042       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2043
2044   if (isPIC && Subtarget.isSVR4ABI()) {
2045     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2046                                            PPCII::MO_PIC_FLAG);
2047     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2048   }
2049
2050   SDValue CPIHi =
2051     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2052   SDValue CPILo =
2053     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2054   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
2055 }
2056
2057 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2058   EVT PtrVT = Op.getValueType();
2059   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2060
2061   // 64-bit SVR4 ABI code is always position-independent.
2062   // The actual address of the GlobalValue is stored in the TOC.
2063   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2064     setUsesTOCBasePtr(DAG);
2065     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2066     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2067   }
2068
2069   unsigned MOHiFlag, MOLoFlag;
2070   bool isPIC =
2071       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2072
2073   if (isPIC && Subtarget.isSVR4ABI()) {
2074     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2075                                         PPCII::MO_PIC_FLAG);
2076     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2077   }
2078
2079   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2080   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2081   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
2082 }
2083
2084 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2085                                              SelectionDAG &DAG) const {
2086   EVT PtrVT = Op.getValueType();
2087   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2088   const BlockAddress *BA = BASDN->getBlockAddress();
2089
2090   // 64-bit SVR4 ABI code is always position-independent.
2091   // The actual BlockAddress is stored in the TOC.
2092   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2093     setUsesTOCBasePtr(DAG);
2094     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2095     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2096   }
2097
2098   unsigned MOHiFlag, MOLoFlag;
2099   bool isPIC =
2100       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2101   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2102   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2103   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
2104 }
2105
2106 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2107                                               SelectionDAG &DAG) const {
2108
2109   // FIXME: TLS addresses currently use medium model code sequences,
2110   // which is the most useful form.  Eventually support for small and
2111   // large models could be added if users need it, at the cost of
2112   // additional complexity.
2113   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2114   if (DAG.getTarget().Options.EmulatedTLS)
2115     return LowerToTLSEmulatedModel(GA, DAG);
2116
2117   SDLoc dl(GA);
2118   const GlobalValue *GV = GA->getGlobal();
2119   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2120   bool is64bit = Subtarget.isPPC64();
2121   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
2122   PICLevel::Level picLevel = M->getPICLevel();
2123
2124   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2125
2126   if (Model == TLSModel::LocalExec) {
2127     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2128                                                PPCII::MO_TPREL_HA);
2129     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2130                                                PPCII::MO_TPREL_LO);
2131     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
2132                                      is64bit ? MVT::i64 : MVT::i32);
2133     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2134     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2135   }
2136
2137   if (Model == TLSModel::InitialExec) {
2138     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2139     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2140                                                 PPCII::MO_TLS);
2141     SDValue GOTPtr;
2142     if (is64bit) {
2143       setUsesTOCBasePtr(DAG);
2144       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2145       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2146                            PtrVT, GOTReg, TGA);
2147     } else
2148       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2149     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2150                                    PtrVT, TGA, GOTPtr);
2151     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2152   }
2153
2154   if (Model == TLSModel::GeneralDynamic) {
2155     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2156     SDValue GOTPtr;
2157     if (is64bit) {
2158       setUsesTOCBasePtr(DAG);
2159       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2160       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2161                                    GOTReg, TGA);
2162     } else {
2163       if (picLevel == PICLevel::Small)
2164         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2165       else
2166         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2167     }
2168     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2169                        GOTPtr, TGA, TGA);
2170   }
2171
2172   if (Model == TLSModel::LocalDynamic) {
2173     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2174     SDValue GOTPtr;
2175     if (is64bit) {
2176       setUsesTOCBasePtr(DAG);
2177       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2178       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2179                            GOTReg, TGA);
2180     } else {
2181       if (picLevel == PICLevel::Small)
2182         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2183       else
2184         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2185     }
2186     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2187                                   PtrVT, GOTPtr, TGA, TGA);
2188     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2189                                       PtrVT, TLSAddr, TGA);
2190     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2191   }
2192
2193   llvm_unreachable("Unknown TLS model!");
2194 }
2195
2196 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2197                                               SelectionDAG &DAG) const {
2198   EVT PtrVT = Op.getValueType();
2199   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2200   SDLoc DL(GSDN);
2201   const GlobalValue *GV = GSDN->getGlobal();
2202
2203   // 64-bit SVR4 ABI code is always position-independent.
2204   // The actual address of the GlobalValue is stored in the TOC.
2205   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2206     setUsesTOCBasePtr(DAG);
2207     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2208     return getTOCEntry(DAG, DL, true, GA);
2209   }
2210
2211   unsigned MOHiFlag, MOLoFlag;
2212   bool isPIC =
2213       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV);
2214
2215   if (isPIC && Subtarget.isSVR4ABI()) {
2216     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2217                                             GSDN->getOffset(),
2218                                             PPCII::MO_PIC_FLAG);
2219     return getTOCEntry(DAG, DL, false, GA);
2220   }
2221
2222   SDValue GAHi =
2223     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2224   SDValue GALo =
2225     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2226
2227   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
2228
2229   // If the global reference is actually to a non-lazy-pointer, we have to do an
2230   // extra load to get the address of the global.
2231   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2232     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
2233                       false, false, false, 0);
2234   return Ptr;
2235 }
2236
2237 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2238   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2239   SDLoc dl(Op);
2240
2241   if (Op.getValueType() == MVT::v2i64) {
2242     // When the operands themselves are v2i64 values, we need to do something
2243     // special because VSX has no underlying comparison operations for these.
2244     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2245       // Equality can be handled by casting to the legal type for Altivec
2246       // comparisons, everything else needs to be expanded.
2247       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2248         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2249                  DAG.getSetCC(dl, MVT::v4i32,
2250                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2251                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2252                    CC));
2253       }
2254
2255       return SDValue();
2256     }
2257
2258     // We handle most of these in the usual way.
2259     return Op;
2260   }
2261
2262   // If we're comparing for equality to zero, expose the fact that this is
2263   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
2264   // fold the new nodes.
2265   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2266     if (C->isNullValue() && CC == ISD::SETEQ) {
2267       EVT VT = Op.getOperand(0).getValueType();
2268       SDValue Zext = Op.getOperand(0);
2269       if (VT.bitsLT(MVT::i32)) {
2270         VT = MVT::i32;
2271         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
2272       }
2273       unsigned Log2b = Log2_32(VT.getSizeInBits());
2274       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
2275       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
2276                                 DAG.getConstant(Log2b, dl, MVT::i32));
2277       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
2278     }
2279     // Leave comparisons against 0 and -1 alone for now, since they're usually
2280     // optimized.  FIXME: revisit this when we can custom lower all setcc
2281     // optimizations.
2282     if (C->isAllOnesValue() || C->isNullValue())
2283       return SDValue();
2284   }
2285
2286   // If we have an integer seteq/setne, turn it into a compare against zero
2287   // by xor'ing the rhs with the lhs, which is faster than setting a
2288   // condition register, reading it back out, and masking the correct bit.  The
2289   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2290   // the result to other bit-twiddling opportunities.
2291   EVT LHSVT = Op.getOperand(0).getValueType();
2292   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2293     EVT VT = Op.getValueType();
2294     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2295                                 Op.getOperand(1));
2296     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2297   }
2298   return SDValue();
2299 }
2300
2301 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
2302                                       const PPCSubtarget &Subtarget) const {
2303   SDNode *Node = Op.getNode();
2304   EVT VT = Node->getValueType(0);
2305   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2306   SDValue InChain = Node->getOperand(0);
2307   SDValue VAListPtr = Node->getOperand(1);
2308   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2309   SDLoc dl(Node);
2310
2311   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2312
2313   // gpr_index
2314   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2315                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
2316                                     false, false, false, 0);
2317   InChain = GprIndex.getValue(1);
2318
2319   if (VT == MVT::i64) {
2320     // Check if GprIndex is even
2321     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2322                                  DAG.getConstant(1, dl, MVT::i32));
2323     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2324                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2325     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2326                                           DAG.getConstant(1, dl, MVT::i32));
2327     // Align GprIndex to be even if it isn't
2328     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2329                            GprIndex);
2330   }
2331
2332   // fpr index is 1 byte after gpr
2333   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2334                                DAG.getConstant(1, dl, MVT::i32));
2335
2336   // fpr
2337   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2338                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
2339                                     false, false, false, 0);
2340   InChain = FprIndex.getValue(1);
2341
2342   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2343                                        DAG.getConstant(8, dl, MVT::i32));
2344
2345   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2346                                         DAG.getConstant(4, dl, MVT::i32));
2347
2348   // areas
2349   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
2350                                      MachinePointerInfo(), false, false,
2351                                      false, 0);
2352   InChain = OverflowArea.getValue(1);
2353
2354   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
2355                                     MachinePointerInfo(), false, false,
2356                                     false, 0);
2357   InChain = RegSaveArea.getValue(1);
2358
2359   // select overflow_area if index > 8
2360   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2361                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2362
2363   // adjustment constant gpr_index * 4/8
2364   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2365                                     VT.isInteger() ? GprIndex : FprIndex,
2366                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2367                                                     MVT::i32));
2368
2369   // OurReg = RegSaveArea + RegConstant
2370   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2371                                RegConstant);
2372
2373   // Floating types are 32 bytes into RegSaveArea
2374   if (VT.isFloatingPoint())
2375     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2376                          DAG.getConstant(32, dl, MVT::i32));
2377
2378   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2379   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2380                                    VT.isInteger() ? GprIndex : FprIndex,
2381                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2382                                                    MVT::i32));
2383
2384   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2385                               VT.isInteger() ? VAListPtr : FprPtr,
2386                               MachinePointerInfo(SV),
2387                               MVT::i8, false, false, 0);
2388
2389   // determine if we should load from reg_save_area or overflow_area
2390   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2391
2392   // increase overflow_area by 4/8 if gpr/fpr > 8
2393   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2394                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2395                                           dl, MVT::i32));
2396
2397   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2398                              OverflowAreaPlusN);
2399
2400   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
2401                               OverflowAreaPtr,
2402                               MachinePointerInfo(),
2403                               MVT::i32, false, false, 0);
2404
2405   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
2406                      false, false, false, 0);
2407 }
2408
2409 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
2410                                        const PPCSubtarget &Subtarget) const {
2411   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2412
2413   // We have to copy the entire va_list struct:
2414   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2415   return DAG.getMemcpy(Op.getOperand(0), Op,
2416                        Op.getOperand(1), Op.getOperand(2),
2417                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2418                        false, MachinePointerInfo(), MachinePointerInfo());
2419 }
2420
2421 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2422                                                   SelectionDAG &DAG) const {
2423   return Op.getOperand(0);
2424 }
2425
2426 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2427                                                 SelectionDAG &DAG) const {
2428   SDValue Chain = Op.getOperand(0);
2429   SDValue Trmp = Op.getOperand(1); // trampoline
2430   SDValue FPtr = Op.getOperand(2); // nested function
2431   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2432   SDLoc dl(Op);
2433
2434   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2435   bool isPPC64 = (PtrVT == MVT::i64);
2436   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2437
2438   TargetLowering::ArgListTy Args;
2439   TargetLowering::ArgListEntry Entry;
2440
2441   Entry.Ty = IntPtrTy;
2442   Entry.Node = Trmp; Args.push_back(Entry);
2443
2444   // TrampSize == (isPPC64 ? 48 : 40);
2445   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2446                                isPPC64 ? MVT::i64 : MVT::i32);
2447   Args.push_back(Entry);
2448
2449   Entry.Node = FPtr; Args.push_back(Entry);
2450   Entry.Node = Nest; Args.push_back(Entry);
2451
2452   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2453   TargetLowering::CallLoweringInfo CLI(DAG);
2454   CLI.setDebugLoc(dl).setChain(Chain)
2455     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2456                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
2457                std::move(Args), 0);
2458
2459   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2460   return CallResult.second;
2461 }
2462
2463 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
2464                                         const PPCSubtarget &Subtarget) const {
2465   MachineFunction &MF = DAG.getMachineFunction();
2466   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2467
2468   SDLoc dl(Op);
2469
2470   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2471     // vastart just stores the address of the VarArgsFrameIndex slot into the
2472     // memory location argument.
2473     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2474     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2475     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2476     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2477                         MachinePointerInfo(SV),
2478                         false, false, 0);
2479   }
2480
2481   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2482   // We suppose the given va_list is already allocated.
2483   //
2484   // typedef struct {
2485   //  char gpr;     /* index into the array of 8 GPRs
2486   //                 * stored in the register save area
2487   //                 * gpr=0 corresponds to r3,
2488   //                 * gpr=1 to r4, etc.
2489   //                 */
2490   //  char fpr;     /* index into the array of 8 FPRs
2491   //                 * stored in the register save area
2492   //                 * fpr=0 corresponds to f1,
2493   //                 * fpr=1 to f2, etc.
2494   //                 */
2495   //  char *overflow_arg_area;
2496   //                /* location on stack that holds
2497   //                 * the next overflow argument
2498   //                 */
2499   //  char *reg_save_area;
2500   //               /* where r3:r10 and f1:f8 (if saved)
2501   //                * are stored
2502   //                */
2503   // } va_list[1];
2504
2505   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2506   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2507
2508   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2509
2510   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2511                                             PtrVT);
2512   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2513                                  PtrVT);
2514
2515   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2516   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2517
2518   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2519   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2520
2521   uint64_t FPROffset = 1;
2522   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2523
2524   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2525
2526   // Store first byte : number of int regs
2527   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
2528                                          Op.getOperand(1),
2529                                          MachinePointerInfo(SV),
2530                                          MVT::i8, false, false, 0);
2531   uint64_t nextOffset = FPROffset;
2532   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2533                                   ConstFPROffset);
2534
2535   // Store second byte : number of float regs
2536   SDValue secondStore =
2537     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2538                       MachinePointerInfo(SV, nextOffset), MVT::i8,
2539                       false, false, 0);
2540   nextOffset += StackOffset;
2541   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2542
2543   // Store second word : arguments given on stack
2544   SDValue thirdStore =
2545     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2546                  MachinePointerInfo(SV, nextOffset),
2547                  false, false, 0);
2548   nextOffset += FrameOffset;
2549   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2550
2551   // Store third word : arguments given in registers
2552   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2553                       MachinePointerInfo(SV, nextOffset),
2554                       false, false, 0);
2555
2556 }
2557
2558 #include "PPCGenCallingConv.inc"
2559
2560 // Function whose sole purpose is to kill compiler warnings
2561 // stemming from unused functions included from PPCGenCallingConv.inc.
2562 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2563   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2564 }
2565
2566 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2567                                       CCValAssign::LocInfo &LocInfo,
2568                                       ISD::ArgFlagsTy &ArgFlags,
2569                                       CCState &State) {
2570   return true;
2571 }
2572
2573 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2574                                              MVT &LocVT,
2575                                              CCValAssign::LocInfo &LocInfo,
2576                                              ISD::ArgFlagsTy &ArgFlags,
2577                                              CCState &State) {
2578   static const MCPhysReg ArgRegs[] = {
2579     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2580     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2581   };
2582   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2583
2584   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2585
2586   // Skip one register if the first unallocated register has an even register
2587   // number and there are still argument registers available which have not been
2588   // allocated yet. RegNum is actually an index into ArgRegs, which means we
2589   // need to skip a register if RegNum is odd.
2590   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
2591     State.AllocateReg(ArgRegs[RegNum]);
2592   }
2593
2594   // Always return false here, as this function only makes sure that the first
2595   // unallocated register has an odd register number and does not actually
2596   // allocate a register for the current argument.
2597   return false;
2598 }
2599
2600 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
2601                                                MVT &LocVT,
2602                                                CCValAssign::LocInfo &LocInfo,
2603                                                ISD::ArgFlagsTy &ArgFlags,
2604                                                CCState &State) {
2605   static const MCPhysReg ArgRegs[] = {
2606     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2607     PPC::F8
2608   };
2609
2610   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2611
2612   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2613
2614   // If there is only one Floating-point register left we need to put both f64
2615   // values of a split ppc_fp128 value on the stack.
2616   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
2617     State.AllocateReg(ArgRegs[RegNum]);
2618   }
2619
2620   // Always return false here, as this function only makes sure that the two f64
2621   // values a ppc_fp128 value is split into are both passed in registers or both
2622   // passed on the stack and does not actually allocate a register for the
2623   // current argument.
2624   return false;
2625 }
2626
2627 /// FPR - The set of FP registers that should be allocated for arguments,
2628 /// on Darwin.
2629 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
2630                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
2631                                 PPC::F11, PPC::F12, PPC::F13};
2632
2633 /// QFPR - The set of QPX registers that should be allocated for arguments.
2634 static const MCPhysReg QFPR[] = {
2635     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
2636     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
2637
2638 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
2639 /// the stack.
2640 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
2641                                        unsigned PtrByteSize) {
2642   unsigned ArgSize = ArgVT.getStoreSize();
2643   if (Flags.isByVal())
2644     ArgSize = Flags.getByValSize();
2645
2646   // Round up to multiples of the pointer size, except for array members,
2647   // which are always packed.
2648   if (!Flags.isInConsecutiveRegs())
2649     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2650
2651   return ArgSize;
2652 }
2653
2654 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
2655 /// on the stack.
2656 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
2657                                             ISD::ArgFlagsTy Flags,
2658                                             unsigned PtrByteSize) {
2659   unsigned Align = PtrByteSize;
2660
2661   // Altivec parameters are padded to a 16 byte boundary.
2662   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2663       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2664       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2665       ArgVT == MVT::v1i128)
2666     Align = 16;
2667   // QPX vector types stored in double-precision are padded to a 32 byte
2668   // boundary.
2669   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
2670     Align = 32;
2671
2672   // ByVal parameters are aligned as requested.
2673   if (Flags.isByVal()) {
2674     unsigned BVAlign = Flags.getByValAlign();
2675     if (BVAlign > PtrByteSize) {
2676       if (BVAlign % PtrByteSize != 0)
2677           llvm_unreachable(
2678             "ByVal alignment is not a multiple of the pointer size");
2679
2680       Align = BVAlign;
2681     }
2682   }
2683
2684   // Array members are always packed to their original alignment.
2685   if (Flags.isInConsecutiveRegs()) {
2686     // If the array member was split into multiple registers, the first
2687     // needs to be aligned to the size of the full type.  (Except for
2688     // ppcf128, which is only aligned as its f64 components.)
2689     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
2690       Align = OrigVT.getStoreSize();
2691     else
2692       Align = ArgVT.getStoreSize();
2693   }
2694
2695   return Align;
2696 }
2697
2698 /// CalculateStackSlotUsed - Return whether this argument will use its
2699 /// stack slot (instead of being passed in registers).  ArgOffset,
2700 /// AvailableFPRs, and AvailableVRs must hold the current argument
2701 /// position, and will be updated to account for this argument.
2702 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
2703                                    ISD::ArgFlagsTy Flags,
2704                                    unsigned PtrByteSize,
2705                                    unsigned LinkageSize,
2706                                    unsigned ParamAreaSize,
2707                                    unsigned &ArgOffset,
2708                                    unsigned &AvailableFPRs,
2709                                    unsigned &AvailableVRs, bool HasQPX) {
2710   bool UseMemory = false;
2711
2712   // Respect alignment of argument on the stack.
2713   unsigned Align =
2714     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
2715   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
2716   // If there's no space left in the argument save area, we must
2717   // use memory (this check also catches zero-sized arguments).
2718   if (ArgOffset >= LinkageSize + ParamAreaSize)
2719     UseMemory = true;
2720
2721   // Allocate argument on the stack.
2722   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2723   if (Flags.isInConsecutiveRegsLast())
2724     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2725   // If we overran the argument save area, we must use memory
2726   // (this check catches arguments passed partially in memory)
2727   if (ArgOffset > LinkageSize + ParamAreaSize)
2728     UseMemory = true;
2729
2730   // However, if the argument is actually passed in an FPR or a VR,
2731   // we don't use memory after all.
2732   if (!Flags.isByVal()) {
2733     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
2734         // QPX registers overlap with the scalar FP registers.
2735         (HasQPX && (ArgVT == MVT::v4f32 ||
2736                     ArgVT == MVT::v4f64 ||
2737                     ArgVT == MVT::v4i1)))
2738       if (AvailableFPRs > 0) {
2739         --AvailableFPRs;
2740         return false;
2741       }
2742     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2743         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2744         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2745         ArgVT == MVT::v1i128)
2746       if (AvailableVRs > 0) {
2747         --AvailableVRs;
2748         return false;
2749       }
2750   }
2751
2752   return UseMemory;
2753 }
2754
2755 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
2756 /// ensure minimum alignment required for target.
2757 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
2758                                      unsigned NumBytes) {
2759   unsigned TargetAlign = Lowering->getStackAlignment();
2760   unsigned AlignMask = TargetAlign - 1;
2761   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2762   return NumBytes;
2763 }
2764
2765 SDValue
2766 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
2767                                         CallingConv::ID CallConv, bool isVarArg,
2768                                         const SmallVectorImpl<ISD::InputArg>
2769                                           &Ins,
2770                                         SDLoc dl, SelectionDAG &DAG,
2771                                         SmallVectorImpl<SDValue> &InVals)
2772                                           const {
2773   if (Subtarget.isSVR4ABI()) {
2774     if (Subtarget.isPPC64())
2775       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
2776                                          dl, DAG, InVals);
2777     else
2778       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
2779                                          dl, DAG, InVals);
2780   } else {
2781     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
2782                                        dl, DAG, InVals);
2783   }
2784 }
2785
2786 SDValue
2787 PPCTargetLowering::LowerFormalArguments_32SVR4(
2788                                       SDValue Chain,
2789                                       CallingConv::ID CallConv, bool isVarArg,
2790                                       const SmallVectorImpl<ISD::InputArg>
2791                                         &Ins,
2792                                       SDLoc dl, SelectionDAG &DAG,
2793                                       SmallVectorImpl<SDValue> &InVals) const {
2794
2795   // 32-bit SVR4 ABI Stack Frame Layout:
2796   //              +-----------------------------------+
2797   //        +-->  |            Back chain             |
2798   //        |     +-----------------------------------+
2799   //        |     | Floating-point register save area |
2800   //        |     +-----------------------------------+
2801   //        |     |    General register save area     |
2802   //        |     +-----------------------------------+
2803   //        |     |          CR save word             |
2804   //        |     +-----------------------------------+
2805   //        |     |         VRSAVE save word          |
2806   //        |     +-----------------------------------+
2807   //        |     |         Alignment padding         |
2808   //        |     +-----------------------------------+
2809   //        |     |     Vector register save area     |
2810   //        |     +-----------------------------------+
2811   //        |     |       Local variable space        |
2812   //        |     +-----------------------------------+
2813   //        |     |        Parameter list area        |
2814   //        |     +-----------------------------------+
2815   //        |     |           LR save word            |
2816   //        |     +-----------------------------------+
2817   // SP-->  +---  |            Back chain             |
2818   //              +-----------------------------------+
2819   //
2820   // Specifications:
2821   //   System V Application Binary Interface PowerPC Processor Supplement
2822   //   AltiVec Technology Programming Interface Manual
2823
2824   MachineFunction &MF = DAG.getMachineFunction();
2825   MachineFrameInfo *MFI = MF.getFrameInfo();
2826   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2827
2828   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2829   // Potential tail calls could cause overwriting of argument stack slots.
2830   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2831                        (CallConv == CallingConv::Fast));
2832   unsigned PtrByteSize = 4;
2833
2834   // Assign locations to all of the incoming arguments.
2835   SmallVector<CCValAssign, 16> ArgLocs;
2836   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2837                  *DAG.getContext());
2838
2839   // Reserve space for the linkage area on the stack.
2840   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
2841   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
2842
2843   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
2844
2845   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2846     CCValAssign &VA = ArgLocs[i];
2847
2848     // Arguments stored in registers.
2849     if (VA.isRegLoc()) {
2850       const TargetRegisterClass *RC;
2851       EVT ValVT = VA.getValVT();
2852
2853       switch (ValVT.getSimpleVT().SimpleTy) {
2854         default:
2855           llvm_unreachable("ValVT not supported by formal arguments Lowering");
2856         case MVT::i1:
2857         case MVT::i32:
2858           RC = &PPC::GPRCRegClass;
2859           break;
2860         case MVT::f32:
2861           if (Subtarget.hasP8Vector())
2862             RC = &PPC::VSSRCRegClass;
2863           else
2864             RC = &PPC::F4RCRegClass;
2865           break;
2866         case MVT::f64:
2867           if (Subtarget.hasVSX())
2868             RC = &PPC::VSFRCRegClass;
2869           else
2870             RC = &PPC::F8RCRegClass;
2871           break;
2872         case MVT::v16i8:
2873         case MVT::v8i16:
2874         case MVT::v4i32:
2875           RC = &PPC::VRRCRegClass;
2876           break;
2877         case MVT::v4f32:
2878           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
2879           break;
2880         case MVT::v2f64:
2881         case MVT::v2i64:
2882           RC = &PPC::VSHRCRegClass;
2883           break;
2884         case MVT::v4f64:
2885           RC = &PPC::QFRCRegClass;
2886           break;
2887         case MVT::v4i1:
2888           RC = &PPC::QBRCRegClass;
2889           break;
2890       }
2891
2892       // Transform the arguments stored in physical registers into virtual ones.
2893       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2894       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2895                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
2896
2897       if (ValVT == MVT::i1)
2898         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
2899
2900       InVals.push_back(ArgValue);
2901     } else {
2902       // Argument stored in memory.
2903       assert(VA.isMemLoc());
2904
2905       unsigned ArgSize = VA.getLocVT().getStoreSize();
2906       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2907                                       isImmutable);
2908
2909       // Create load nodes to retrieve arguments from the stack.
2910       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2911       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2912                                    MachinePointerInfo(),
2913                                    false, false, false, 0));
2914     }
2915   }
2916
2917   // Assign locations to all of the incoming aggregate by value arguments.
2918   // Aggregates passed by value are stored in the local variable space of the
2919   // caller's stack frame, right above the parameter list area.
2920   SmallVector<CCValAssign, 16> ByValArgLocs;
2921   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2922                       ByValArgLocs, *DAG.getContext());
2923
2924   // Reserve stack space for the allocations in CCInfo.
2925   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2926
2927   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2928
2929   // Area that is at least reserved in the caller of this function.
2930   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2931   MinReservedArea = std::max(MinReservedArea, LinkageSize);
2932
2933   // Set the size that is at least reserved in caller of this function.  Tail
2934   // call optimized function's reserved stack space needs to be aligned so that
2935   // taking the difference between two stack areas will result in an aligned
2936   // stack.
2937   MinReservedArea =
2938       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
2939   FuncInfo->setMinReservedArea(MinReservedArea);
2940
2941   SmallVector<SDValue, 8> MemOps;
2942
2943   // If the function takes variable number of arguments, make a frame index for
2944   // the start of the first vararg value... for expansion of llvm.va_start.
2945   if (isVarArg) {
2946     static const MCPhysReg GPArgRegs[] = {
2947       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2948       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2949     };
2950     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2951
2952     static const MCPhysReg FPArgRegs[] = {
2953       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2954       PPC::F8
2955     };
2956     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2957
2958     if (Subtarget.useSoftFloat())
2959        NumFPArgRegs = 0;
2960
2961     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
2962     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
2963
2964     // Make room for NumGPArgRegs and NumFPArgRegs.
2965     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2966                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
2967
2968     FuncInfo->setVarArgsStackOffset(
2969       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2970                              CCInfo.getNextStackOffset(), true));
2971
2972     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2973     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2974
2975     // The fixed integer arguments of a variadic function are stored to the
2976     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2977     // the result of va_next.
2978     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2979       // Get an existing live-in vreg, or add a new one.
2980       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2981       if (!VReg)
2982         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2983
2984       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2985       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2986                                    MachinePointerInfo(), false, false, 0);
2987       MemOps.push_back(Store);
2988       // Increment the address by four for the next argument to store
2989       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
2990       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2991     }
2992
2993     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2994     // is set.
2995     // The double arguments are stored to the VarArgsFrameIndex
2996     // on the stack.
2997     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2998       // Get an existing live-in vreg, or add a new one.
2999       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3000       if (!VReg)
3001         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3002
3003       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3004       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3005                                    MachinePointerInfo(), false, false, 0);
3006       MemOps.push_back(Store);
3007       // Increment the address by eight for the next argument to store
3008       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3009                                          PtrVT);
3010       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3011     }
3012   }
3013
3014   if (!MemOps.empty())
3015     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3016
3017   return Chain;
3018 }
3019
3020 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3021 // value to MVT::i64 and then truncate to the correct register size.
3022 SDValue
3023 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
3024                                      SelectionDAG &DAG, SDValue ArgVal,
3025                                      SDLoc dl) const {
3026   if (Flags.isSExt())
3027     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3028                          DAG.getValueType(ObjectVT));
3029   else if (Flags.isZExt())
3030     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3031                          DAG.getValueType(ObjectVT));
3032
3033   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3034 }
3035
3036 SDValue
3037 PPCTargetLowering::LowerFormalArguments_64SVR4(
3038                                       SDValue Chain,
3039                                       CallingConv::ID CallConv, bool isVarArg,
3040                                       const SmallVectorImpl<ISD::InputArg>
3041                                         &Ins,
3042                                       SDLoc dl, SelectionDAG &DAG,
3043                                       SmallVectorImpl<SDValue> &InVals) const {
3044   // TODO: add description of PPC stack frame format, or at least some docs.
3045   //
3046   bool isELFv2ABI = Subtarget.isELFv2ABI();
3047   bool isLittleEndian = Subtarget.isLittleEndian();
3048   MachineFunction &MF = DAG.getMachineFunction();
3049   MachineFrameInfo *MFI = MF.getFrameInfo();
3050   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3051
3052   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3053          "fastcc not supported on varargs functions");
3054
3055   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
3056   // Potential tail calls could cause overwriting of argument stack slots.
3057   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3058                        (CallConv == CallingConv::Fast));
3059   unsigned PtrByteSize = 8;
3060   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3061
3062   static const MCPhysReg GPR[] = {
3063     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3064     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3065   };
3066   static const MCPhysReg VR[] = {
3067     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3068     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3069   };
3070   static const MCPhysReg VSRH[] = {
3071     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
3072     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
3073   };
3074
3075   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3076   const unsigned Num_FPR_Regs = 13;
3077   const unsigned Num_VR_Regs  = array_lengthof(VR);
3078   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3079
3080   // Do a first pass over the arguments to determine whether the ABI
3081   // guarantees that our caller has allocated the parameter save area
3082   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3083   // in the ELFv2 ABI, it is true if this is a vararg function or if
3084   // any parameter is located in a stack slot.
3085
3086   bool HasParameterArea = !isELFv2ABI || isVarArg;
3087   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3088   unsigned NumBytes = LinkageSize;
3089   unsigned AvailableFPRs = Num_FPR_Regs;
3090   unsigned AvailableVRs = Num_VR_Regs;
3091   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3092     if (Ins[i].Flags.isNest())
3093       continue;
3094
3095     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3096                                PtrByteSize, LinkageSize, ParamAreaSize,
3097                                NumBytes, AvailableFPRs, AvailableVRs,
3098                                Subtarget.hasQPX()))
3099       HasParameterArea = true;
3100   }
3101
3102   // Add DAG nodes to load the arguments or copy them out of registers.  On
3103   // entry to a function on PPC, the arguments start after the linkage area,
3104   // although the first ones are often in registers.
3105
3106   unsigned ArgOffset = LinkageSize;
3107   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3108   unsigned &QFPR_idx = FPR_idx;
3109   SmallVector<SDValue, 8> MemOps;
3110   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3111   unsigned CurArgIdx = 0;
3112   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3113     SDValue ArgVal;
3114     bool needsLoad = false;
3115     EVT ObjectVT = Ins[ArgNo].VT;
3116     EVT OrigVT = Ins[ArgNo].ArgVT;
3117     unsigned ObjSize = ObjectVT.getStoreSize();
3118     unsigned ArgSize = ObjSize;
3119     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3120     if (Ins[ArgNo].isOrigArg()) {
3121       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3122       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3123     }
3124     // We re-align the argument offset for each argument, except when using the
3125     // fast calling convention, when we need to make sure we do that only when
3126     // we'll actually use a stack slot.
3127     unsigned CurArgOffset, Align;
3128     auto ComputeArgOffset = [&]() {
3129       /* Respect alignment of argument on the stack.  */
3130       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3131       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3132       CurArgOffset = ArgOffset;
3133     };
3134
3135     if (CallConv != CallingConv::Fast) {
3136       ComputeArgOffset();
3137
3138       /* Compute GPR index associated with argument offset.  */
3139       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3140       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3141     }
3142
3143     // FIXME the codegen can be much improved in some cases.
3144     // We do not have to keep everything in memory.
3145     if (Flags.isByVal()) {
3146       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3147
3148       if (CallConv == CallingConv::Fast)
3149         ComputeArgOffset();
3150
3151       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3152       ObjSize = Flags.getByValSize();
3153       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3154       // Empty aggregate parameters do not take up registers.  Examples:
3155       //   struct { } a;
3156       //   union  { } b;
3157       //   int c[0];
3158       // etc.  However, we have to provide a place-holder in InVals, so
3159       // pretend we have an 8-byte item at the current address for that
3160       // purpose.
3161       if (!ObjSize) {
3162         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3163         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3164         InVals.push_back(FIN);
3165         continue;
3166       }
3167
3168       // Create a stack object covering all stack doublewords occupied
3169       // by the argument.  If the argument is (fully or partially) on
3170       // the stack, or if the argument is fully in registers but the
3171       // caller has allocated the parameter save anyway, we can refer
3172       // directly to the caller's stack frame.  Otherwise, create a
3173       // local copy in our own frame.
3174       int FI;
3175       if (HasParameterArea ||
3176           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3177         FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
3178       else
3179         FI = MFI->CreateStackObject(ArgSize, Align, false);
3180       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3181
3182       // Handle aggregates smaller than 8 bytes.
3183       if (ObjSize < PtrByteSize) {
3184         // The value of the object is its address, which differs from the
3185         // address of the enclosing doubleword on big-endian systems.
3186         SDValue Arg = FIN;
3187         if (!isLittleEndian) {
3188           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3189           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3190         }
3191         InVals.push_back(Arg);
3192
3193         if (GPR_idx != Num_GPR_Regs) {
3194           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3195           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3196           SDValue Store;
3197
3198           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3199             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3200                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3201             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3202                                       MachinePointerInfo(&*FuncArg), ObjType,
3203                                       false, false, 0);
3204           } else {
3205             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3206             // store the whole register as-is to the parameter save area
3207             // slot.
3208             Store =
3209                 DAG.getStore(Val.getValue(1), dl, Val, FIN,
3210                              MachinePointerInfo(&*FuncArg), false, false, 0);
3211           }
3212
3213           MemOps.push_back(Store);
3214         }
3215         // Whether we copied from a register or not, advance the offset
3216         // into the parameter save area by a full doubleword.
3217         ArgOffset += PtrByteSize;
3218         continue;
3219       }
3220
3221       // The value of the object is its address, which is the address of
3222       // its first stack doubleword.
3223       InVals.push_back(FIN);
3224
3225       // Store whatever pieces of the object are in registers to memory.
3226       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3227         if (GPR_idx == Num_GPR_Regs)
3228           break;
3229
3230         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3231         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3232         SDValue Addr = FIN;
3233         if (j) {
3234           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3235           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3236         }
3237         SDValue Store =
3238             DAG.getStore(Val.getValue(1), dl, Val, Addr,
3239                          MachinePointerInfo(&*FuncArg, j), false, false, 0);
3240         MemOps.push_back(Store);
3241         ++GPR_idx;
3242       }
3243       ArgOffset += ArgSize;
3244       continue;
3245     }
3246
3247     switch (ObjectVT.getSimpleVT().SimpleTy) {
3248     default: llvm_unreachable("Unhandled argument type!");
3249     case MVT::i1:
3250     case MVT::i32:
3251     case MVT::i64:
3252       if (Flags.isNest()) {
3253         // The 'nest' parameter, if any, is passed in R11.
3254         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3255         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3256
3257         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3258           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3259
3260         break;
3261       }
3262
3263       // These can be scalar arguments or elements of an integer array type
3264       // passed directly.  Clang may use those instead of "byval" aggregate
3265       // types to avoid forcing arguments to memory unnecessarily.
3266       if (GPR_idx != Num_GPR_Regs) {
3267         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3268         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3269
3270         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3271           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3272           // value to MVT::i64 and then truncate to the correct register size.
3273           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3274       } else {
3275         if (CallConv == CallingConv::Fast)
3276           ComputeArgOffset();
3277
3278         needsLoad = true;
3279         ArgSize = PtrByteSize;
3280       }
3281       if (CallConv != CallingConv::Fast || needsLoad)
3282         ArgOffset += 8;
3283       break;
3284
3285     case MVT::f32:
3286     case MVT::f64:
3287       // These can be scalar arguments or elements of a float array type
3288       // passed directly.  The latter are used to implement ELFv2 homogenous
3289       // float aggregates.
3290       if (FPR_idx != Num_FPR_Regs) {
3291         unsigned VReg;
3292
3293         if (ObjectVT == MVT::f32)
3294           VReg = MF.addLiveIn(FPR[FPR_idx],
3295                               Subtarget.hasP8Vector()
3296                                   ? &PPC::VSSRCRegClass
3297                                   : &PPC::F4RCRegClass);
3298         else
3299           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3300                                                 ? &PPC::VSFRCRegClass
3301                                                 : &PPC::F8RCRegClass);
3302
3303         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3304         ++FPR_idx;
3305       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3306         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3307         // once we support fp <-> gpr moves.
3308
3309         // This can only ever happen in the presence of f32 array types,
3310         // since otherwise we never run out of FPRs before running out
3311         // of GPRs.
3312         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3313         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3314
3315         if (ObjectVT == MVT::f32) {
3316           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3317             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3318                                  DAG.getConstant(32, dl, MVT::i32));
3319           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3320         }
3321
3322         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3323       } else {
3324         if (CallConv == CallingConv::Fast)
3325           ComputeArgOffset();
3326
3327         needsLoad = true;
3328       }
3329
3330       // When passing an array of floats, the array occupies consecutive
3331       // space in the argument area; only round up to the next doubleword
3332       // at the end of the array.  Otherwise, each float takes 8 bytes.
3333       if (CallConv != CallingConv::Fast || needsLoad) {
3334         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3335         ArgOffset += ArgSize;
3336         if (Flags.isInConsecutiveRegsLast())
3337           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3338       }
3339       break;
3340     case MVT::v4f32:
3341     case MVT::v4i32:
3342     case MVT::v8i16:
3343     case MVT::v16i8:
3344     case MVT::v2f64:
3345     case MVT::v2i64:
3346     case MVT::v1i128:
3347       if (!Subtarget.hasQPX()) {
3348       // These can be scalar arguments or elements of a vector array type
3349       // passed directly.  The latter are used to implement ELFv2 homogenous
3350       // vector aggregates.
3351       if (VR_idx != Num_VR_Regs) {
3352         unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
3353                         MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
3354                         MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3355         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3356         ++VR_idx;
3357       } else {
3358         if (CallConv == CallingConv::Fast)
3359           ComputeArgOffset();
3360
3361         needsLoad = true;
3362       }
3363       if (CallConv != CallingConv::Fast || needsLoad)
3364         ArgOffset += 16;
3365       break;
3366       } // not QPX
3367
3368       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3369              "Invalid QPX parameter type");
3370       /* fall through */
3371
3372     case MVT::v4f64:
3373     case MVT::v4i1:
3374       // QPX vectors are treated like their scalar floating-point subregisters
3375       // (except that they're larger).
3376       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3377       if (QFPR_idx != Num_QFPR_Regs) {
3378         const TargetRegisterClass *RC;
3379         switch (ObjectVT.getSimpleVT().SimpleTy) {
3380         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3381         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3382         default:         RC = &PPC::QBRCRegClass; break;
3383         }
3384
3385         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3386         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3387         ++QFPR_idx;
3388       } else {
3389         if (CallConv == CallingConv::Fast)
3390           ComputeArgOffset();
3391         needsLoad = true;
3392       }
3393       if (CallConv != CallingConv::Fast || needsLoad)
3394         ArgOffset += Sz;
3395       break;
3396     }
3397
3398     // We need to load the argument to a virtual register if we determined
3399     // above that we ran out of physical registers of the appropriate type.
3400     if (needsLoad) {
3401       if (ObjSize < ArgSize && !isLittleEndian)
3402         CurArgOffset += ArgSize - ObjSize;
3403       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3404       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3405       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3406                            false, false, false, 0);
3407     }
3408
3409     InVals.push_back(ArgVal);
3410   }
3411
3412   // Area that is at least reserved in the caller of this function.
3413   unsigned MinReservedArea;
3414   if (HasParameterArea)
3415     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3416   else
3417     MinReservedArea = LinkageSize;
3418
3419   // Set the size that is at least reserved in caller of this function.  Tail
3420   // call optimized functions' reserved stack space needs to be aligned so that
3421   // taking the difference between two stack areas will result in an aligned
3422   // stack.
3423   MinReservedArea =
3424       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3425   FuncInfo->setMinReservedArea(MinReservedArea);
3426
3427   // If the function takes variable number of arguments, make a frame index for
3428   // the start of the first vararg value... for expansion of llvm.va_start.
3429   if (isVarArg) {
3430     int Depth = ArgOffset;
3431
3432     FuncInfo->setVarArgsFrameIndex(
3433       MFI->CreateFixedObject(PtrByteSize, Depth, true));
3434     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3435
3436     // If this function is vararg, store any remaining integer argument regs
3437     // to their spots on the stack so that they may be loaded by deferencing the
3438     // result of va_next.
3439     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3440          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3441       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3442       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3443       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3444                                    MachinePointerInfo(), false, false, 0);
3445       MemOps.push_back(Store);
3446       // Increment the address by four for the next argument to store
3447       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3448       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3449     }
3450   }
3451
3452   if (!MemOps.empty())
3453     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3454
3455   return Chain;
3456 }
3457
3458 SDValue
3459 PPCTargetLowering::LowerFormalArguments_Darwin(
3460                                       SDValue Chain,
3461                                       CallingConv::ID CallConv, bool isVarArg,
3462                                       const SmallVectorImpl<ISD::InputArg>
3463                                         &Ins,
3464                                       SDLoc dl, SelectionDAG &DAG,
3465                                       SmallVectorImpl<SDValue> &InVals) const {
3466   // TODO: add description of PPC stack frame format, or at least some docs.
3467   //
3468   MachineFunction &MF = DAG.getMachineFunction();
3469   MachineFrameInfo *MFI = MF.getFrameInfo();
3470   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3471
3472   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
3473   bool isPPC64 = PtrVT == MVT::i64;
3474   // Potential tail calls could cause overwriting of argument stack slots.
3475   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3476                        (CallConv == CallingConv::Fast));
3477   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3478   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3479   unsigned ArgOffset = LinkageSize;
3480   // Area that is at least reserved in caller of this function.
3481   unsigned MinReservedArea = ArgOffset;
3482
3483   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3484     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3485     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3486   };
3487   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3488     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3489     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3490   };
3491   static const MCPhysReg VR[] = {
3492     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3493     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3494   };
3495
3496   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3497   const unsigned Num_FPR_Regs = 13;
3498   const unsigned Num_VR_Regs  = array_lengthof( VR);
3499
3500   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3501
3502   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3503
3504   // In 32-bit non-varargs functions, the stack space for vectors is after the
3505   // stack space for non-vectors.  We do not use this space unless we have
3506   // too many vectors to fit in registers, something that only occurs in
3507   // constructed examples:), but we have to walk the arglist to figure
3508   // that out...for the pathological case, compute VecArgOffset as the
3509   // start of the vector parameter area.  Computing VecArgOffset is the
3510   // entire point of the following loop.
3511   unsigned VecArgOffset = ArgOffset;
3512   if (!isVarArg && !isPPC64) {
3513     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3514          ++ArgNo) {
3515       EVT ObjectVT = Ins[ArgNo].VT;
3516       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3517
3518       if (Flags.isByVal()) {
3519         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3520         unsigned ObjSize = Flags.getByValSize();
3521         unsigned ArgSize =
3522                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3523         VecArgOffset += ArgSize;
3524         continue;
3525       }
3526
3527       switch(ObjectVT.getSimpleVT().SimpleTy) {
3528       default: llvm_unreachable("Unhandled argument type!");
3529       case MVT::i1:
3530       case MVT::i32:
3531       case MVT::f32:
3532         VecArgOffset += 4;
3533         break;
3534       case MVT::i64:  // PPC64
3535       case MVT::f64:
3536         // FIXME: We are guaranteed to be !isPPC64 at this point.
3537         // Does MVT::i64 apply?
3538         VecArgOffset += 8;
3539         break;
3540       case MVT::v4f32:
3541       case MVT::v4i32:
3542       case MVT::v8i16:
3543       case MVT::v16i8:
3544         // Nothing to do, we're only looking at Nonvector args here.
3545         break;
3546       }
3547     }
3548   }
3549   // We've found where the vector parameter area in memory is.  Skip the
3550   // first 12 parameters; these don't use that memory.
3551   VecArgOffset = ((VecArgOffset+15)/16)*16;
3552   VecArgOffset += 12*16;
3553
3554   // Add DAG nodes to load the arguments or copy them out of registers.  On
3555   // entry to a function on PPC, the arguments start after the linkage area,
3556   // although the first ones are often in registers.
3557
3558   SmallVector<SDValue, 8> MemOps;
3559   unsigned nAltivecParamsAtEnd = 0;
3560   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3561   unsigned CurArgIdx = 0;
3562   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3563     SDValue ArgVal;
3564     bool needsLoad = false;
3565     EVT ObjectVT = Ins[ArgNo].VT;
3566     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
3567     unsigned ArgSize = ObjSize;
3568     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3569     if (Ins[ArgNo].isOrigArg()) {
3570       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3571       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3572     }
3573     unsigned CurArgOffset = ArgOffset;
3574
3575     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
3576     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
3577         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
3578       if (isVarArg || isPPC64) {
3579         MinReservedArea = ((MinReservedArea+15)/16)*16;
3580         MinReservedArea += CalculateStackSlotSize(ObjectVT,
3581                                                   Flags,
3582                                                   PtrByteSize);
3583       } else  nAltivecParamsAtEnd++;
3584     } else
3585       // Calculate min reserved area.
3586       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
3587                                                 Flags,
3588                                                 PtrByteSize);
3589
3590     // FIXME the codegen can be much improved in some cases.
3591     // We do not have to keep everything in memory.
3592     if (Flags.isByVal()) {
3593       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3594
3595       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3596       ObjSize = Flags.getByValSize();
3597       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3598       // Objects of size 1 and 2 are right justified, everything else is
3599       // left justified.  This means the memory address is adjusted forwards.
3600       if (ObjSize==1 || ObjSize==2) {
3601         CurArgOffset = CurArgOffset + (4 - ObjSize);
3602       }
3603       // The value of the object is its address.
3604       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
3605       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3606       InVals.push_back(FIN);
3607       if (ObjSize==1 || ObjSize==2) {
3608         if (GPR_idx != Num_GPR_Regs) {
3609           unsigned VReg;
3610           if (isPPC64)
3611             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3612           else
3613             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3614           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3615           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
3616           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
3617                                             MachinePointerInfo(&*FuncArg),
3618                                             ObjType, false, false, 0);
3619           MemOps.push_back(Store);
3620           ++GPR_idx;
3621         }
3622
3623         ArgOffset += PtrByteSize;
3624
3625         continue;
3626       }
3627       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3628         // Store whatever pieces of the object are in registers
3629         // to memory.  ArgOffset will be the address of the beginning
3630         // of the object.
3631         if (GPR_idx != Num_GPR_Regs) {
3632           unsigned VReg;
3633           if (isPPC64)
3634             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3635           else
3636             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3637           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3638           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3639           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3640           SDValue Store =
3641               DAG.getStore(Val.getValue(1), dl, Val, FIN,
3642                            MachinePointerInfo(&*FuncArg, j), false, false, 0);
3643           MemOps.push_back(Store);
3644           ++GPR_idx;
3645           ArgOffset += PtrByteSize;
3646         } else {
3647           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
3648           break;
3649         }
3650       }
3651       continue;
3652     }
3653
3654     switch (ObjectVT.getSimpleVT().SimpleTy) {
3655     default: llvm_unreachable("Unhandled argument type!");
3656     case MVT::i1:
3657     case MVT::i32:
3658       if (!isPPC64) {
3659         if (GPR_idx != Num_GPR_Regs) {
3660           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3661           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3662
3663           if (ObjectVT == MVT::i1)
3664             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
3665
3666           ++GPR_idx;
3667         } else {
3668           needsLoad = true;
3669           ArgSize = PtrByteSize;
3670         }
3671         // All int arguments reserve stack space in the Darwin ABI.
3672         ArgOffset += PtrByteSize;
3673         break;
3674       }
3675       // FALLTHROUGH
3676     case MVT::i64:  // PPC64
3677       if (GPR_idx != Num_GPR_Regs) {
3678         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3679         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3680
3681         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3682           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3683           // value to MVT::i64 and then truncate to the correct register size.
3684           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3685
3686         ++GPR_idx;
3687       } else {
3688         needsLoad = true;
3689         ArgSize = PtrByteSize;
3690       }
3691       // All int arguments reserve stack space in the Darwin ABI.
3692       ArgOffset += 8;
3693       break;
3694
3695     case MVT::f32:
3696     case MVT::f64:
3697       // Every 4 bytes of argument space consumes one of the GPRs available for
3698       // argument passing.
3699       if (GPR_idx != Num_GPR_Regs) {
3700         ++GPR_idx;
3701         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
3702           ++GPR_idx;
3703       }
3704       if (FPR_idx != Num_FPR_Regs) {
3705         unsigned VReg;
3706
3707         if (ObjectVT == MVT::f32)
3708           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
3709         else
3710           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
3711
3712         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3713         ++FPR_idx;
3714       } else {
3715         needsLoad = true;
3716       }
3717
3718       // All FP arguments reserve stack space in the Darwin ABI.
3719       ArgOffset += isPPC64 ? 8 : ObjSize;
3720       break;
3721     case MVT::v4f32:
3722     case MVT::v4i32:
3723     case MVT::v8i16:
3724     case MVT::v16i8:
3725       // Note that vector arguments in registers don't reserve stack space,
3726       // except in varargs functions.
3727       if (VR_idx != Num_VR_Regs) {
3728         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3729         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3730         if (isVarArg) {
3731           while ((ArgOffset % 16) != 0) {
3732             ArgOffset += PtrByteSize;
3733             if (GPR_idx != Num_GPR_Regs)
3734               GPR_idx++;
3735           }
3736           ArgOffset += 16;
3737           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
3738         }
3739         ++VR_idx;
3740       } else {
3741         if (!isVarArg && !isPPC64) {
3742           // Vectors go after all the nonvectors.
3743           CurArgOffset = VecArgOffset;
3744           VecArgOffset += 16;
3745         } else {
3746           // Vectors are aligned.
3747           ArgOffset = ((ArgOffset+15)/16)*16;
3748           CurArgOffset = ArgOffset;
3749           ArgOffset += 16;
3750         }
3751         needsLoad = true;
3752       }
3753       break;
3754     }
3755
3756     // We need to load the argument to a virtual register if we determined above
3757     // that we ran out of physical registers of the appropriate type.
3758     if (needsLoad) {
3759       int FI = MFI->CreateFixedObject(ObjSize,
3760                                       CurArgOffset + (ArgSize - ObjSize),
3761                                       isImmutable);
3762       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3763       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3764                            false, false, false, 0);
3765     }
3766
3767     InVals.push_back(ArgVal);
3768   }
3769
3770   // Allow for Altivec parameters at the end, if needed.
3771   if (nAltivecParamsAtEnd) {
3772     MinReservedArea = ((MinReservedArea+15)/16)*16;
3773     MinReservedArea += 16*nAltivecParamsAtEnd;
3774   }
3775
3776   // Area that is at least reserved in the caller of this function.
3777   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
3778
3779   // Set the size that is at least reserved in caller of this function.  Tail
3780   // call optimized functions' reserved stack space needs to be aligned so that
3781   // taking the difference between two stack areas will result in an aligned
3782   // stack.
3783   MinReservedArea =
3784       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3785   FuncInfo->setMinReservedArea(MinReservedArea);
3786
3787   // If the function takes variable number of arguments, make a frame index for
3788   // the start of the first vararg value... for expansion of llvm.va_start.
3789   if (isVarArg) {
3790     int Depth = ArgOffset;
3791
3792     FuncInfo->setVarArgsFrameIndex(
3793       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
3794                              Depth, true));
3795     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3796
3797     // If this function is vararg, store any remaining integer argument regs
3798     // to their spots on the stack so that they may be loaded by deferencing the
3799     // result of va_next.
3800     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
3801       unsigned VReg;
3802
3803       if (isPPC64)
3804         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3805       else
3806         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3807
3808       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3809       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3810                                    MachinePointerInfo(), false, false, 0);
3811       MemOps.push_back(Store);
3812       // Increment the address by four for the next argument to store
3813       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3814       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3815     }
3816   }
3817
3818   if (!MemOps.empty())
3819     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3820
3821   return Chain;
3822 }
3823
3824 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
3825 /// adjusted to accommodate the arguments for the tailcall.
3826 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
3827                                    unsigned ParamSize) {
3828
3829   if (!isTailCall) return 0;
3830
3831   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
3832   unsigned CallerMinReservedArea = FI->getMinReservedArea();
3833   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
3834   // Remember only if the new adjustement is bigger.
3835   if (SPDiff < FI->getTailCallSPDelta())
3836     FI->setTailCallSPDelta(SPDiff);
3837
3838   return SPDiff;
3839 }
3840
3841 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3842 /// for tail call optimization. Targets which want to do tail call
3843 /// optimization should implement this function.
3844 bool
3845 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3846                                                      CallingConv::ID CalleeCC,
3847                                                      bool isVarArg,
3848                                       const SmallVectorImpl<ISD::InputArg> &Ins,
3849                                                      SelectionDAG& DAG) const {
3850   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
3851     return false;
3852
3853   // Variable argument functions are not supported.
3854   if (isVarArg)
3855     return false;
3856
3857   MachineFunction &MF = DAG.getMachineFunction();
3858   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
3859   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
3860     // Functions containing by val parameters are not supported.
3861     for (unsigned i = 0; i != Ins.size(); i++) {
3862        ISD::ArgFlagsTy Flags = Ins[i].Flags;
3863        if (Flags.isByVal()) return false;
3864     }
3865
3866     // Non-PIC/GOT tail calls are supported.
3867     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
3868       return true;
3869
3870     // At the moment we can only do local tail calls (in same module, hidden
3871     // or protected) if we are generating PIC.
3872     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3873       return G->getGlobal()->hasHiddenVisibility()
3874           || G->getGlobal()->hasProtectedVisibility();
3875   }
3876
3877   return false;
3878 }
3879
3880 /// isCallCompatibleAddress - Return the immediate to use if the specified
3881 /// 32-bit value is representable in the immediate field of a BxA instruction.
3882 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
3883   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3884   if (!C) return nullptr;
3885
3886   int Addr = C->getZExtValue();
3887   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
3888       SignExtend32<26>(Addr) != Addr)
3889     return nullptr;  // Top 6 bits have to be sext of immediate.
3890
3891   return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op),
3892                          DAG.getTargetLoweringInfo().getPointerTy(
3893                              DAG.getDataLayout())).getNode();
3894 }
3895
3896 namespace {
3897
3898 struct TailCallArgumentInfo {
3899   SDValue Arg;
3900   SDValue FrameIdxOp;
3901   int       FrameIdx;
3902
3903   TailCallArgumentInfo() : FrameIdx(0) {}
3904 };
3905 }
3906
3907 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
3908 static void
3909 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
3910                                            SDValue Chain,
3911                    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
3912                    SmallVectorImpl<SDValue> &MemOpChains,
3913                    SDLoc dl) {
3914   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
3915     SDValue Arg = TailCallArgs[i].Arg;
3916     SDValue FIN = TailCallArgs[i].FrameIdxOp;
3917     int FI = TailCallArgs[i].FrameIdx;
3918     // Store relative to framepointer.
3919     MemOpChains.push_back(DAG.getStore(
3920         Chain, dl, Arg, FIN,
3921         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
3922         false, 0));
3923   }
3924 }
3925
3926 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
3927 /// the appropriate stack slot for the tail call optimized function call.
3928 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
3929                                                MachineFunction &MF,
3930                                                SDValue Chain,
3931                                                SDValue OldRetAddr,
3932                                                SDValue OldFP,
3933                                                int SPDiff,
3934                                                bool isPPC64,
3935                                                bool isDarwinABI,
3936                                                SDLoc dl) {
3937   if (SPDiff) {
3938     // Calculate the new stack slot for the return address.
3939     int SlotSize = isPPC64 ? 8 : 4;
3940     const PPCFrameLowering *FL =
3941         MF.getSubtarget<PPCSubtarget>().getFrameLowering();
3942     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
3943     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3944                                                           NewRetAddrLoc, true);
3945     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3946     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
3947     Chain = DAG.getStore(
3948         Chain, dl, OldRetAddr, NewRetAddrFrIdx,
3949         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr),
3950         false, false, 0);
3951
3952     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
3953     // slot as the FP is never overwritten.
3954     if (isDarwinABI) {
3955       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
3956       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
3957                                                           true);
3958       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
3959       Chain = DAG.getStore(
3960           Chain, dl, OldFP, NewFramePtrIdx,
3961           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx),
3962           false, false, 0);
3963     }
3964   }
3965   return Chain;
3966 }
3967
3968 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
3969 /// the position of the argument.
3970 static void
3971 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
3972                          SDValue Arg, int SPDiff, unsigned ArgOffset,
3973                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
3974   int Offset = ArgOffset + SPDiff;
3975   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
3976   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3977   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3978   SDValue FIN = DAG.getFrameIndex(FI, VT);
3979   TailCallArgumentInfo Info;
3980   Info.Arg = Arg;
3981   Info.FrameIdxOp = FIN;
3982   Info.FrameIdx = FI;
3983   TailCallArguments.push_back(Info);
3984 }
3985
3986 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
3987 /// stack slot. Returns the chain as result and the loaded frame pointers in
3988 /// LROpOut/FPOpout. Used when tail calling.
3989 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
3990                                                         int SPDiff,
3991                                                         SDValue Chain,
3992                                                         SDValue &LROpOut,
3993                                                         SDValue &FPOpOut,
3994                                                         bool isDarwinABI,
3995                                                         SDLoc dl) const {
3996   if (SPDiff) {
3997     // Load the LR and FP stack slot for later adjusting.
3998     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
3999     LROpOut = getReturnAddrFrameIndex(DAG);
4000     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
4001                           false, false, false, 0);
4002     Chain = SDValue(LROpOut.getNode(), 1);
4003
4004     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4005     // slot as the FP is never overwritten.
4006     if (isDarwinABI) {
4007       FPOpOut = getFramePointerFrameIndex(DAG);
4008       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
4009                             false, false, false, 0);
4010       Chain = SDValue(FPOpOut.getNode(), 1);
4011     }
4012   }
4013   return Chain;
4014 }
4015
4016 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4017 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4018 /// specified by the specific parameter attribute. The copy will be passed as
4019 /// a byval function parameter.
4020 /// Sometimes what we are copying is the end of a larger object, the part that
4021 /// does not fit in registers.
4022 static SDValue
4023 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
4024                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
4025                           SDLoc dl) {
4026   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4027   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4028                        false, false, false, MachinePointerInfo(),
4029                        MachinePointerInfo());
4030 }
4031
4032 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4033 /// tail calls.
4034 static void
4035 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
4036                  SDValue Arg, SDValue PtrOff, int SPDiff,
4037                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
4038                  bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4039                  SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
4040                  SDLoc dl) {
4041   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4042   if (!isTailCall) {
4043     if (isVector) {
4044       SDValue StackPtr;
4045       if (isPPC64)
4046         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4047       else
4048         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4049       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4050                            DAG.getConstant(ArgOffset, dl, PtrVT));
4051     }
4052     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4053                                        MachinePointerInfo(), false, false, 0));
4054   // Calculate and remember argument location.
4055   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4056                                   TailCallArguments);
4057 }
4058
4059 static
4060 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4061                      SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
4062                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
4063                      SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4064   MachineFunction &MF = DAG.getMachineFunction();
4065
4066   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4067   // might overwrite each other in case of tail call optimization.
4068   SmallVector<SDValue, 8> MemOpChains2;
4069   // Do not flag preceding copytoreg stuff together with the following stuff.
4070   InFlag = SDValue();
4071   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4072                                     MemOpChains2, dl);
4073   if (!MemOpChains2.empty())
4074     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4075
4076   // Store the return address to the appropriate stack slot.
4077   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
4078                                         isPPC64, isDarwinABI, dl);
4079
4080   // Emit callseq_end just before tailcall node.
4081   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4082                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4083   InFlag = Chain.getValue(1);
4084 }
4085
4086 // Is this global address that of a function that can be called by name? (as
4087 // opposed to something that must hold a descriptor for an indirect call).
4088 static bool isFunctionGlobalAddress(SDValue Callee) {
4089   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4090     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4091         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4092       return false;
4093
4094     return G->getGlobal()->getType()->getElementType()->isFunctionTy();
4095   }
4096
4097   return false;
4098 }
4099
4100 static
4101 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
4102                      SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff,
4103                      bool isTailCall, bool IsPatchPoint, bool hasNest,
4104                      SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
4105                      SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4106                      ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
4107
4108   bool isPPC64 = Subtarget.isPPC64();
4109   bool isSVR4ABI = Subtarget.isSVR4ABI();
4110   bool isELFv2ABI = Subtarget.isELFv2ABI();
4111
4112   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4113   NodeTys.push_back(MVT::Other);   // Returns a chain
4114   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4115
4116   unsigned CallOpc = PPCISD::CALL;
4117
4118   bool needIndirectCall = true;
4119   if (!isSVR4ABI || !isPPC64)
4120     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4121       // If this is an absolute destination address, use the munged value.
4122       Callee = SDValue(Dest, 0);
4123       needIndirectCall = false;
4124     }
4125
4126   if (isFunctionGlobalAddress(Callee)) {
4127     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4128     // A call to a TLS address is actually an indirect call to a
4129     // thread-specific pointer.
4130     unsigned OpFlags = 0;
4131     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
4132          (Subtarget.getTargetTriple().isMacOSX() &&
4133           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
4134          !G->getGlobal()->isStrongDefinitionForLinker()) ||
4135         (Subtarget.isTargetELF() && !isPPC64 &&
4136          !G->getGlobal()->hasLocalLinkage() &&
4137          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
4138       // PC-relative references to external symbols should go through $stub,
4139       // unless we're building with the leopard linker or later, which
4140       // automatically synthesizes these stubs.
4141       OpFlags = PPCII::MO_PLT_OR_STUB;
4142     }
4143
4144     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4145     // every direct call is) turn it into a TargetGlobalAddress /
4146     // TargetExternalSymbol node so that legalize doesn't hack it.
4147     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4148                                         Callee.getValueType(), 0, OpFlags);
4149     needIndirectCall = false;
4150   }
4151
4152   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4153     unsigned char OpFlags = 0;
4154
4155     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
4156          (Subtarget.getTargetTriple().isMacOSX() &&
4157           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) ||
4158         (Subtarget.isTargetELF() && !isPPC64 &&
4159          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
4160       // PC-relative references to external symbols should go through $stub,
4161       // unless we're building with the leopard linker or later, which
4162       // automatically synthesizes these stubs.
4163       OpFlags = PPCII::MO_PLT_OR_STUB;
4164     }
4165
4166     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4167                                          OpFlags);
4168     needIndirectCall = false;
4169   }
4170
4171   if (IsPatchPoint) {
4172     // We'll form an invalid direct call when lowering a patchpoint; the full
4173     // sequence for an indirect call is complicated, and many of the
4174     // instructions introduced might have side effects (and, thus, can't be
4175     // removed later). The call itself will be removed as soon as the
4176     // argument/return lowering is complete, so the fact that it has the wrong
4177     // kind of operands should not really matter.
4178     needIndirectCall = false;
4179   }
4180
4181   if (needIndirectCall) {
4182     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4183     // to do the call, we can't use PPCISD::CALL.
4184     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4185
4186     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4187       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4188       // entry point, but to the function descriptor (the function entry point
4189       // address is part of the function descriptor though).
4190       // The function descriptor is a three doubleword structure with the
4191       // following fields: function entry point, TOC base address and
4192       // environment pointer.
4193       // Thus for a call through a function pointer, the following actions need
4194       // to be performed:
4195       //   1. Save the TOC of the caller in the TOC save area of its stack
4196       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4197       //   2. Load the address of the function entry point from the function
4198       //      descriptor.
4199       //   3. Load the TOC of the callee from the function descriptor into r2.
4200       //   4. Load the environment pointer from the function descriptor into
4201       //      r11.
4202       //   5. Branch to the function entry point address.
4203       //   6. On return of the callee, the TOC of the caller needs to be
4204       //      restored (this is done in FinishCall()).
4205       //
4206       // The loads are scheduled at the beginning of the call sequence, and the
4207       // register copies are flagged together to ensure that no other
4208       // operations can be scheduled in between. E.g. without flagging the
4209       // copies together, a TOC access in the caller could be scheduled between
4210       // the assignment of the callee TOC and the branch to the callee, which
4211       // results in the TOC access going through the TOC of the callee instead
4212       // of going through the TOC of the caller, which leads to incorrect code.
4213
4214       // Load the address of the function entry point from the function
4215       // descriptor.
4216       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4217       if (LDChain.getValueType() == MVT::Glue)
4218         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4219
4220       bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
4221
4222       MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
4223       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4224                                         false, false, LoadsInv, 8);
4225
4226       // Load environment pointer into r11.
4227       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4228       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4229       SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
4230                                        MPI.getWithOffset(16), false, false,
4231                                        LoadsInv, 8);
4232
4233       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4234       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4235       SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
4236                                    MPI.getWithOffset(8), false, false,
4237                                    LoadsInv, 8);
4238
4239       setUsesTOCBasePtr(DAG);
4240       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4241                                         InFlag);
4242       Chain = TOCVal.getValue(0);
4243       InFlag = TOCVal.getValue(1);
4244
4245       // If the function call has an explicit 'nest' parameter, it takes the
4246       // place of the environment pointer.
4247       if (!hasNest) {
4248         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4249                                           InFlag);
4250
4251         Chain = EnvVal.getValue(0);
4252         InFlag = EnvVal.getValue(1);
4253       }
4254
4255       MTCTROps[0] = Chain;
4256       MTCTROps[1] = LoadFuncPtr;
4257       MTCTROps[2] = InFlag;
4258     }
4259
4260     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4261                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4262     InFlag = Chain.getValue(1);
4263
4264     NodeTys.clear();
4265     NodeTys.push_back(MVT::Other);
4266     NodeTys.push_back(MVT::Glue);
4267     Ops.push_back(Chain);
4268     CallOpc = PPCISD::BCTRL;
4269     Callee.setNode(nullptr);
4270     // Add use of X11 (holding environment pointer)
4271     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4272       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4273     // Add CTR register as callee so a bctr can be emitted later.
4274     if (isTailCall)
4275       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4276   }
4277
4278   // If this is a direct call, pass the chain and the callee.
4279   if (Callee.getNode()) {
4280     Ops.push_back(Chain);
4281     Ops.push_back(Callee);
4282   }
4283   // If this is a tail call add stack pointer delta.
4284   if (isTailCall)
4285     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4286
4287   // Add argument registers to the end of the list so that they are known live
4288   // into the call.
4289   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4290     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4291                                   RegsToPass[i].second.getValueType()));
4292
4293   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4294   // into the call.
4295   if (isSVR4ABI && isPPC64 && !IsPatchPoint) {
4296     setUsesTOCBasePtr(DAG);
4297     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4298   }
4299
4300   return CallOpc;
4301 }
4302
4303 static
4304 bool isLocalCall(const SDValue &Callee)
4305 {
4306   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4307     return G->getGlobal()->isStrongDefinitionForLinker();
4308   return false;
4309 }
4310
4311 SDValue
4312 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
4313                                    CallingConv::ID CallConv, bool isVarArg,
4314                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4315                                    SDLoc dl, SelectionDAG &DAG,
4316                                    SmallVectorImpl<SDValue> &InVals) const {
4317
4318   SmallVector<CCValAssign, 16> RVLocs;
4319   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4320                     *DAG.getContext());
4321   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
4322
4323   // Copy all of the result registers out of their specified physreg.
4324   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4325     CCValAssign &VA = RVLocs[i];
4326     assert(VA.isRegLoc() && "Can only return in registers!");
4327
4328     SDValue Val = DAG.getCopyFromReg(Chain, dl,
4329                                      VA.getLocReg(), VA.getLocVT(), InFlag);
4330     Chain = Val.getValue(1);
4331     InFlag = Val.getValue(2);
4332
4333     switch (VA.getLocInfo()) {
4334     default: llvm_unreachable("Unknown loc info!");
4335     case CCValAssign::Full: break;
4336     case CCValAssign::AExt:
4337       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4338       break;
4339     case CCValAssign::ZExt:
4340       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4341                         DAG.getValueType(VA.getValVT()));
4342       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4343       break;
4344     case CCValAssign::SExt:
4345       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4346                         DAG.getValueType(VA.getValVT()));
4347       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4348       break;
4349     }
4350
4351     InVals.push_back(Val);
4352   }
4353
4354   return Chain;
4355 }
4356
4357 SDValue
4358 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
4359                               bool isTailCall, bool isVarArg, bool IsPatchPoint,
4360                               bool hasNest, SelectionDAG &DAG,
4361                               SmallVector<std::pair<unsigned, SDValue>, 8>
4362                                 &RegsToPass,
4363                               SDValue InFlag, SDValue Chain,
4364                               SDValue CallSeqStart, SDValue &Callee,
4365                               int SPDiff, unsigned NumBytes,
4366                               const SmallVectorImpl<ISD::InputArg> &Ins,
4367                               SmallVectorImpl<SDValue> &InVals,
4368                               ImmutableCallSite *CS) const {
4369
4370   std::vector<EVT> NodeTys;
4371   SmallVector<SDValue, 8> Ops;
4372   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4373                                  SPDiff, isTailCall, IsPatchPoint, hasNest,
4374                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
4375
4376   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
4377   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
4378     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
4379
4380   // When performing tail call optimization the callee pops its arguments off
4381   // the stack. Account for this here so these bytes can be pushed back on in
4382   // PPCFrameLowering::eliminateCallFramePseudoInstr.
4383   int BytesCalleePops =
4384     (CallConv == CallingConv::Fast &&
4385      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
4386
4387   // Add a register mask operand representing the call-preserved registers.
4388   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
4389   const uint32_t *Mask =
4390       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
4391   assert(Mask && "Missing call preserved mask for calling convention");
4392   Ops.push_back(DAG.getRegisterMask(Mask));
4393
4394   if (InFlag.getNode())
4395     Ops.push_back(InFlag);
4396
4397   // Emit tail call.
4398   if (isTailCall) {
4399     assert(((Callee.getOpcode() == ISD::Register &&
4400              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
4401             Callee.getOpcode() == ISD::TargetExternalSymbol ||
4402             Callee.getOpcode() == ISD::TargetGlobalAddress ||
4403             isa<ConstantSDNode>(Callee)) &&
4404     "Expecting an global address, external symbol, absolute value or register");
4405
4406     DAG.getMachineFunction().getFrameInfo()->setHasTailCall();
4407     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
4408   }
4409
4410   // Add a NOP immediately after the branch instruction when using the 64-bit
4411   // SVR4 ABI. At link time, if caller and callee are in a different module and
4412   // thus have a different TOC, the call will be replaced with a call to a stub
4413   // function which saves the current TOC, loads the TOC of the callee and
4414   // branches to the callee. The NOP will be replaced with a load instruction
4415   // which restores the TOC of the caller from the TOC save slot of the current
4416   // stack frame. If caller and callee belong to the same module (and have the
4417   // same TOC), the NOP will remain unchanged.
4418
4419   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
4420       !IsPatchPoint) {
4421     if (CallOpc == PPCISD::BCTRL) {
4422       // This is a call through a function pointer.
4423       // Restore the caller TOC from the save area into R2.
4424       // See PrepareCall() for more information about calls through function
4425       // pointers in the 64-bit SVR4 ABI.
4426       // We are using a target-specific load with r2 hard coded, because the
4427       // result of a target-independent load would never go directly into r2,
4428       // since r2 is a reserved register (which prevents the register allocator
4429       // from allocating it), resulting in an additional register being
4430       // allocated and an unnecessary move instruction being generated.
4431       CallOpc = PPCISD::BCTRL_LOAD_TOC;
4432
4433       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4434       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
4435       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4436       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
4437       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
4438
4439       // The address needs to go after the chain input but before the flag (or
4440       // any other variadic arguments).
4441       Ops.insert(std::next(Ops.begin()), AddTOC);
4442     } else if ((CallOpc == PPCISD::CALL) &&
4443                (!isLocalCall(Callee) ||
4444                 DAG.getTarget().getRelocationModel() == Reloc::PIC_))
4445       // Otherwise insert NOP for non-local calls.
4446       CallOpc = PPCISD::CALL_NOP;
4447   }
4448
4449   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
4450   InFlag = Chain.getValue(1);
4451
4452   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4453                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
4454                              InFlag, dl);
4455   if (!Ins.empty())
4456     InFlag = Chain.getValue(1);
4457
4458   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
4459                          Ins, dl, DAG, InVals);
4460 }
4461
4462 SDValue
4463 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
4464                              SmallVectorImpl<SDValue> &InVals) const {
4465   SelectionDAG &DAG                     = CLI.DAG;
4466   SDLoc &dl                             = CLI.DL;
4467   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
4468   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
4469   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
4470   SDValue Chain                         = CLI.Chain;
4471   SDValue Callee                        = CLI.Callee;
4472   bool &isTailCall                      = CLI.IsTailCall;
4473   CallingConv::ID CallConv              = CLI.CallConv;
4474   bool isVarArg                         = CLI.IsVarArg;
4475   bool IsPatchPoint                     = CLI.IsPatchPoint;
4476   ImmutableCallSite *CS                 = CLI.CS;
4477
4478   if (isTailCall)
4479     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
4480                                                    Ins, DAG);
4481
4482   if (!isTailCall && CS && CS->isMustTailCall())
4483     report_fatal_error("failed to perform tail call elimination on a call "
4484                        "site marked musttail");
4485
4486   if (Subtarget.isSVR4ABI()) {
4487     if (Subtarget.isPPC64())
4488       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
4489                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4490                               dl, DAG, InVals, CS);
4491     else
4492       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
4493                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4494                               dl, DAG, InVals, CS);
4495   }
4496
4497   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
4498                           isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4499                           dl, DAG, InVals, CS);
4500 }
4501
4502 SDValue
4503 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
4504                                     CallingConv::ID CallConv, bool isVarArg,
4505                                     bool isTailCall, bool IsPatchPoint,
4506                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4507                                     const SmallVectorImpl<SDValue> &OutVals,
4508                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4509                                     SDLoc dl, SelectionDAG &DAG,
4510                                     SmallVectorImpl<SDValue> &InVals,
4511                                     ImmutableCallSite *CS) const {
4512   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
4513   // of the 32-bit SVR4 ABI stack frame layout.
4514
4515   assert((CallConv == CallingConv::C ||
4516           CallConv == CallingConv::Fast) && "Unknown calling convention!");
4517
4518   unsigned PtrByteSize = 4;
4519
4520   MachineFunction &MF = DAG.getMachineFunction();
4521
4522   // Mark this function as potentially containing a function that contains a
4523   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4524   // and restoring the callers stack pointer in this functions epilog. This is
4525   // done because by tail calling the called function might overwrite the value
4526   // in this function's (MF) stack pointer stack slot 0(SP).
4527   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4528       CallConv == CallingConv::Fast)
4529     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4530
4531   // Count how many bytes are to be pushed on the stack, including the linkage
4532   // area, parameter list area and the part of the local variable space which
4533   // contains copies of aggregates which are passed by value.
4534
4535   // Assign locations to all of the outgoing arguments.
4536   SmallVector<CCValAssign, 16> ArgLocs;
4537   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4538                  *DAG.getContext());
4539
4540   // Reserve space for the linkage area on the stack.
4541   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
4542                        PtrByteSize);
4543
4544   if (isVarArg) {
4545     // Handle fixed and variable vector arguments differently.
4546     // Fixed vector arguments go into registers as long as registers are
4547     // available. Variable vector arguments always go into memory.
4548     unsigned NumArgs = Outs.size();
4549
4550     for (unsigned i = 0; i != NumArgs; ++i) {
4551       MVT ArgVT = Outs[i].VT;
4552       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
4553       bool Result;
4554
4555       if (Outs[i].IsFixed) {
4556         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
4557                                CCInfo);
4558       } else {
4559         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
4560                                       ArgFlags, CCInfo);
4561       }
4562
4563       if (Result) {
4564 #ifndef NDEBUG
4565         errs() << "Call operand #" << i << " has unhandled type "
4566              << EVT(ArgVT).getEVTString() << "\n";
4567 #endif
4568         llvm_unreachable(nullptr);
4569       }
4570     }
4571   } else {
4572     // All arguments are treated the same.
4573     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
4574   }
4575
4576   // Assign locations to all of the outgoing aggregate by value arguments.
4577   SmallVector<CCValAssign, 16> ByValArgLocs;
4578   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4579                       ByValArgLocs, *DAG.getContext());
4580
4581   // Reserve stack space for the allocations in CCInfo.
4582   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
4583
4584   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
4585
4586   // Size of the linkage area, parameter list area and the part of the local
4587   // space variable where copies of aggregates which are passed by value are
4588   // stored.
4589   unsigned NumBytes = CCByValInfo.getNextStackOffset();
4590
4591   // Calculate by how many bytes the stack has to be adjusted in case of tail
4592   // call optimization.
4593   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4594
4595   // Adjust the stack pointer for the new arguments...
4596   // These operations are automatically eliminated by the prolog/epilog pass
4597   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4598                                dl);
4599   SDValue CallSeqStart = Chain;
4600
4601   // Load the return address and frame pointer so it can be moved somewhere else
4602   // later.
4603   SDValue LROp, FPOp;
4604   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
4605                                        dl);
4606
4607   // Set up a copy of the stack pointer for use loading and storing any
4608   // arguments that may not fit in the registers available for argument
4609   // passing.
4610   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4611
4612   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4613   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4614   SmallVector<SDValue, 8> MemOpChains;
4615
4616   bool seenFloatArg = false;
4617   // Walk the register/memloc assignments, inserting copies/loads.
4618   for (unsigned i = 0, j = 0, e = ArgLocs.size();
4619        i != e;
4620        ++i) {
4621     CCValAssign &VA = ArgLocs[i];
4622     SDValue Arg = OutVals[i];
4623     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4624
4625     if (Flags.isByVal()) {
4626       // Argument is an aggregate which is passed by value, thus we need to
4627       // create a copy of it in the local variable space of the current stack
4628       // frame (which is the stack frame of the caller) and pass the address of
4629       // this copy to the callee.
4630       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
4631       CCValAssign &ByValVA = ByValArgLocs[j++];
4632       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
4633
4634       // Memory reserved in the local variable space of the callers stack frame.
4635       unsigned LocMemOffset = ByValVA.getLocMemOffset();
4636
4637       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4638       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4639                            StackPtr, PtrOff);
4640
4641       // Create a copy of the argument in the local area of the current
4642       // stack frame.
4643       SDValue MemcpyCall =
4644         CreateCopyOfByValArgument(Arg, PtrOff,
4645                                   CallSeqStart.getNode()->getOperand(0),
4646                                   Flags, DAG, dl);
4647
4648       // This must go outside the CALLSEQ_START..END.
4649       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4650                            CallSeqStart.getNode()->getOperand(1),
4651                            SDLoc(MemcpyCall));
4652       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4653                              NewCallSeqStart.getNode());
4654       Chain = CallSeqStart = NewCallSeqStart;
4655
4656       // Pass the address of the aggregate copy on the stack either in a
4657       // physical register or in the parameter list area of the current stack
4658       // frame to the callee.
4659       Arg = PtrOff;
4660     }
4661
4662     if (VA.isRegLoc()) {
4663       if (Arg.getValueType() == MVT::i1)
4664         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
4665
4666       seenFloatArg |= VA.getLocVT().isFloatingPoint();
4667       // Put argument in a physical register.
4668       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
4669     } else {
4670       // Put argument in the parameter list area of the current stack frame.
4671       assert(VA.isMemLoc());
4672       unsigned LocMemOffset = VA.getLocMemOffset();
4673
4674       if (!isTailCall) {
4675         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4676         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4677                              StackPtr, PtrOff);
4678
4679         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4680                                            MachinePointerInfo(),
4681                                            false, false, 0));
4682       } else {
4683         // Calculate and remember argument location.
4684         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
4685                                  TailCallArguments);
4686       }
4687     }
4688   }
4689
4690   if (!MemOpChains.empty())
4691     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4692
4693   // Build a sequence of copy-to-reg nodes chained together with token chain
4694   // and flag operands which copy the outgoing args into the appropriate regs.
4695   SDValue InFlag;
4696   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4697     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4698                              RegsToPass[i].second, InFlag);
4699     InFlag = Chain.getValue(1);
4700   }
4701
4702   // Set CR bit 6 to true if this is a vararg call with floating args passed in
4703   // registers.
4704   if (isVarArg) {
4705     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
4706     SDValue Ops[] = { Chain, InFlag };
4707
4708     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
4709                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
4710
4711     InFlag = Chain.getValue(1);
4712   }
4713
4714   if (isTailCall)
4715     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
4716                     false, TailCallArguments);
4717
4718   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
4719                     /* unused except on PPC64 ELFv1 */ false, DAG,
4720                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
4721                     NumBytes, Ins, InVals, CS);
4722 }
4723
4724 // Copy an argument into memory, being careful to do this outside the
4725 // call sequence for the call to which the argument belongs.
4726 SDValue
4727 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
4728                                               SDValue CallSeqStart,
4729                                               ISD::ArgFlagsTy Flags,
4730                                               SelectionDAG &DAG,
4731                                               SDLoc dl) const {
4732   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
4733                         CallSeqStart.getNode()->getOperand(0),
4734                         Flags, DAG, dl);
4735   // The MEMCPY must go outside the CALLSEQ_START..END.
4736   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4737                              CallSeqStart.getNode()->getOperand(1),
4738                              SDLoc(MemcpyCall));
4739   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4740                          NewCallSeqStart.getNode());
4741   return NewCallSeqStart;
4742 }
4743
4744 SDValue
4745 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
4746                                     CallingConv::ID CallConv, bool isVarArg,
4747                                     bool isTailCall, bool IsPatchPoint,
4748                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4749                                     const SmallVectorImpl<SDValue> &OutVals,
4750                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4751                                     SDLoc dl, SelectionDAG &DAG,
4752                                     SmallVectorImpl<SDValue> &InVals,
4753                                     ImmutableCallSite *CS) const {
4754
4755   bool isELFv2ABI = Subtarget.isELFv2ABI();
4756   bool isLittleEndian = Subtarget.isLittleEndian();
4757   unsigned NumOps = Outs.size();
4758   bool hasNest = false;
4759
4760   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4761   unsigned PtrByteSize = 8;
4762
4763   MachineFunction &MF = DAG.getMachineFunction();
4764
4765   // Mark this function as potentially containing a function that contains a
4766   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4767   // and restoring the callers stack pointer in this functions epilog. This is
4768   // done because by tail calling the called function might overwrite the value
4769   // in this function's (MF) stack pointer stack slot 0(SP).
4770   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4771       CallConv == CallingConv::Fast)
4772     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4773
4774   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4775          "fastcc not supported on varargs functions");
4776
4777   // Count how many bytes are to be pushed on the stack, including the linkage
4778   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
4779   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
4780   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
4781   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4782   unsigned NumBytes = LinkageSize;
4783   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4784   unsigned &QFPR_idx = FPR_idx;
4785
4786   static const MCPhysReg GPR[] = {
4787     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4788     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4789   };
4790   static const MCPhysReg VR[] = {
4791     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4792     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4793   };
4794   static const MCPhysReg VSRH[] = {
4795     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
4796     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
4797   };
4798
4799   const unsigned NumGPRs = array_lengthof(GPR);
4800   const unsigned NumFPRs = 13;
4801   const unsigned NumVRs  = array_lengthof(VR);
4802   const unsigned NumQFPRs = NumFPRs;
4803
4804   // When using the fast calling convention, we don't provide backing for
4805   // arguments that will be in registers.
4806   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
4807
4808   // Add up all the space actually used.
4809   for (unsigned i = 0; i != NumOps; ++i) {
4810     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4811     EVT ArgVT = Outs[i].VT;
4812     EVT OrigVT = Outs[i].ArgVT;
4813
4814     if (Flags.isNest())
4815       continue;
4816
4817     if (CallConv == CallingConv::Fast) {
4818       if (Flags.isByVal())
4819         NumGPRsUsed += (Flags.getByValSize()+7)/8;
4820       else
4821         switch (ArgVT.getSimpleVT().SimpleTy) {
4822         default: llvm_unreachable("Unexpected ValueType for argument!");
4823         case MVT::i1:
4824         case MVT::i32:
4825         case MVT::i64:
4826           if (++NumGPRsUsed <= NumGPRs)
4827             continue;
4828           break;
4829         case MVT::v4i32:
4830         case MVT::v8i16:
4831         case MVT::v16i8:
4832         case MVT::v2f64:
4833         case MVT::v2i64:
4834         case MVT::v1i128:
4835           if (++NumVRsUsed <= NumVRs)
4836             continue;
4837           break;
4838         case MVT::v4f32:
4839           // When using QPX, this is handled like a FP register, otherwise, it
4840           // is an Altivec register.
4841           if (Subtarget.hasQPX()) {
4842             if (++NumFPRsUsed <= NumFPRs)
4843               continue;
4844           } else {
4845             if (++NumVRsUsed <= NumVRs)
4846               continue;
4847           }
4848           break;
4849         case MVT::f32:
4850         case MVT::f64:
4851         case MVT::v4f64: // QPX
4852         case MVT::v4i1:  // QPX
4853           if (++NumFPRsUsed <= NumFPRs)
4854             continue;
4855           break;
4856         }
4857     }
4858
4859     /* Respect alignment of argument on the stack.  */
4860     unsigned Align =
4861       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
4862     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
4863
4864     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
4865     if (Flags.isInConsecutiveRegsLast())
4866       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4867   }
4868
4869   unsigned NumBytesActuallyUsed = NumBytes;
4870
4871   // The prolog code of the callee may store up to 8 GPR argument registers to
4872   // the stack, allowing va_start to index over them in memory if its varargs.
4873   // Because we cannot tell if this is needed on the caller side, we have to
4874   // conservatively assume that it is needed.  As such, make sure we have at
4875   // least enough stack space for the caller to store the 8 GPRs.
4876   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
4877   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
4878
4879   // Tail call needs the stack to be aligned.
4880   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4881       CallConv == CallingConv::Fast)
4882     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
4883
4884   // Calculate by how many bytes the stack has to be adjusted in case of tail
4885   // call optimization.
4886   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4887
4888   // To protect arguments on the stack from being clobbered in a tail call,
4889   // force all the loads to happen before doing any other lowering.
4890   if (isTailCall)
4891     Chain = DAG.getStackArgumentTokenFactor(Chain);
4892
4893   // Adjust the stack pointer for the new arguments...
4894   // These operations are automatically eliminated by the prolog/epilog pass
4895   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4896                                dl);
4897   SDValue CallSeqStart = Chain;
4898
4899   // Load the return address and frame pointer so it can be move somewhere else
4900   // later.
4901   SDValue LROp, FPOp;
4902   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4903                                        dl);
4904
4905   // Set up a copy of the stack pointer for use loading and storing any
4906   // arguments that may not fit in the registers available for argument
4907   // passing.
4908   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4909
4910   // Figure out which arguments are going to go in registers, and which in
4911   // memory.  Also, if this is a vararg function, floating point operations
4912   // must be stored to our stack, and loaded into integer regs as well, if
4913   // any integer regs are available for argument passing.
4914   unsigned ArgOffset = LinkageSize;
4915
4916   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4917   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4918
4919   SmallVector<SDValue, 8> MemOpChains;
4920   for (unsigned i = 0; i != NumOps; ++i) {
4921     SDValue Arg = OutVals[i];
4922     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4923     EVT ArgVT = Outs[i].VT;
4924     EVT OrigVT = Outs[i].ArgVT;
4925
4926     // PtrOff will be used to store the current argument to the stack if a
4927     // register cannot be found for it.
4928     SDValue PtrOff;
4929
4930     // We re-align the argument offset for each argument, except when using the
4931     // fast calling convention, when we need to make sure we do that only when
4932     // we'll actually use a stack slot.
4933     auto ComputePtrOff = [&]() {
4934       /* Respect alignment of argument on the stack.  */
4935       unsigned Align =
4936         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
4937       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
4938
4939       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
4940
4941       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4942     };
4943
4944     if (CallConv != CallingConv::Fast) {
4945       ComputePtrOff();
4946
4947       /* Compute GPR index associated with argument offset.  */
4948       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4949       GPR_idx = std::min(GPR_idx, NumGPRs);
4950     }
4951
4952     // Promote integers to 64-bit values.
4953     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
4954       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4955       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4956       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4957     }
4958
4959     // FIXME memcpy is used way more than necessary.  Correctness first.
4960     // Note: "by value" is code for passing a structure by value, not
4961     // basic types.
4962     if (Flags.isByVal()) {
4963       // Note: Size includes alignment padding, so
4964       //   struct x { short a; char b; }
4965       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
4966       // These are the proper values we need for right-justifying the
4967       // aggregate in a parameter register.
4968       unsigned Size = Flags.getByValSize();
4969
4970       // An empty aggregate parameter takes up no storage and no
4971       // registers.
4972       if (Size == 0)
4973         continue;
4974
4975       if (CallConv == CallingConv::Fast)
4976         ComputePtrOff();
4977
4978       // All aggregates smaller than 8 bytes must be passed right-justified.
4979       if (Size==1 || Size==2 || Size==4) {
4980         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
4981         if (GPR_idx != NumGPRs) {
4982           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4983                                         MachinePointerInfo(), VT,
4984                                         false, false, false, 0);
4985           MemOpChains.push_back(Load.getValue(1));
4986           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4987
4988           ArgOffset += PtrByteSize;
4989           continue;
4990         }
4991       }
4992
4993       if (GPR_idx == NumGPRs && Size < 8) {
4994         SDValue AddPtr = PtrOff;
4995         if (!isLittleEndian) {
4996           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
4997                                           PtrOff.getValueType());
4998           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4999         }
5000         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5001                                                           CallSeqStart,
5002                                                           Flags, DAG, dl);
5003         ArgOffset += PtrByteSize;
5004         continue;
5005       }
5006       // Copy entire object into memory.  There are cases where gcc-generated
5007       // code assumes it is there, even if it could be put entirely into
5008       // registers.  (This is not what the doc says.)
5009
5010       // FIXME: The above statement is likely due to a misunderstanding of the
5011       // documents.  All arguments must be copied into the parameter area BY
5012       // THE CALLEE in the event that the callee takes the address of any
5013       // formal argument.  That has not yet been implemented.  However, it is
5014       // reasonable to use the stack area as a staging area for the register
5015       // load.
5016
5017       // Skip this for small aggregates, as we will use the same slot for a
5018       // right-justified copy, below.
5019       if (Size >= 8)
5020         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5021                                                           CallSeqStart,
5022                                                           Flags, DAG, dl);
5023
5024       // When a register is available, pass a small aggregate right-justified.
5025       if (Size < 8 && GPR_idx != NumGPRs) {
5026         // The easiest way to get this right-justified in a register
5027         // is to copy the structure into the rightmost portion of a
5028         // local variable slot, then load the whole slot into the
5029         // register.
5030         // FIXME: The memcpy seems to produce pretty awful code for
5031         // small aggregates, particularly for packed ones.
5032         // FIXME: It would be preferable to use the slot in the
5033         // parameter save area instead of a new local variable.
5034         SDValue AddPtr = PtrOff;
5035         if (!isLittleEndian) {
5036           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5037           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5038         }
5039         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5040                                                           CallSeqStart,
5041                                                           Flags, DAG, dl);
5042
5043         // Load the slot into the register.
5044         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
5045                                    MachinePointerInfo(),
5046                                    false, false, false, 0);
5047         MemOpChains.push_back(Load.getValue(1));
5048         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5049
5050         // Done with this argument.
5051         ArgOffset += PtrByteSize;
5052         continue;
5053       }
5054
5055       // For aggregates larger than PtrByteSize, copy the pieces of the
5056       // object that fit into registers from the parameter save area.
5057       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5058         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5059         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5060         if (GPR_idx != NumGPRs) {
5061           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5062                                      MachinePointerInfo(),
5063                                      false, false, false, 0);
5064           MemOpChains.push_back(Load.getValue(1));
5065           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5066           ArgOffset += PtrByteSize;
5067         } else {
5068           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5069           break;
5070         }
5071       }
5072       continue;
5073     }
5074
5075     switch (Arg.getSimpleValueType().SimpleTy) {
5076     default: llvm_unreachable("Unexpected ValueType for argument!");
5077     case MVT::i1:
5078     case MVT::i32:
5079     case MVT::i64:
5080       if (Flags.isNest()) {
5081         // The 'nest' parameter, if any, is passed in R11.
5082         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5083         hasNest = true;
5084         break;
5085       }
5086
5087       // These can be scalar arguments or elements of an integer array type
5088       // passed directly.  Clang may use those instead of "byval" aggregate
5089       // types to avoid forcing arguments to memory unnecessarily.
5090       if (GPR_idx != NumGPRs) {
5091         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5092       } else {
5093         if (CallConv == CallingConv::Fast)
5094           ComputePtrOff();
5095
5096         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5097                          true, isTailCall, false, MemOpChains,
5098                          TailCallArguments, dl);
5099         if (CallConv == CallingConv::Fast)
5100           ArgOffset += PtrByteSize;
5101       }
5102       if (CallConv != CallingConv::Fast)
5103         ArgOffset += PtrByteSize;
5104       break;
5105     case MVT::f32:
5106     case MVT::f64: {
5107       // These can be scalar arguments or elements of a float array type
5108       // passed directly.  The latter are used to implement ELFv2 homogenous
5109       // float aggregates.
5110
5111       // Named arguments go into FPRs first, and once they overflow, the
5112       // remaining arguments go into GPRs and then the parameter save area.
5113       // Unnamed arguments for vararg functions always go to GPRs and
5114       // then the parameter save area.  For now, put all arguments to vararg
5115       // routines always in both locations (FPR *and* GPR or stack slot).
5116       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5117       bool NeededLoad = false;
5118
5119       // First load the argument into the next available FPR.
5120       if (FPR_idx != NumFPRs)
5121         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5122
5123       // Next, load the argument into GPR or stack slot if needed.
5124       if (!NeedGPROrStack)
5125         ;
5126       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5127         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5128         // once we support fp <-> gpr moves.
5129
5130         // In the non-vararg case, this can only ever happen in the
5131         // presence of f32 array types, since otherwise we never run
5132         // out of FPRs before running out of GPRs.
5133         SDValue ArgVal;
5134
5135         // Double values are always passed in a single GPR.
5136         if (Arg.getValueType() != MVT::f32) {
5137           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5138
5139         // Non-array float values are extended and passed in a GPR.
5140         } else if (!Flags.isInConsecutiveRegs()) {
5141           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5142           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5143
5144         // If we have an array of floats, we collect every odd element
5145         // together with its predecessor into one GPR.
5146         } else if (ArgOffset % PtrByteSize != 0) {
5147           SDValue Lo, Hi;
5148           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5149           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5150           if (!isLittleEndian)
5151             std::swap(Lo, Hi);
5152           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5153
5154         // The final element, if even, goes into the first half of a GPR.
5155         } else if (Flags.isInConsecutiveRegsLast()) {
5156           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5157           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5158           if (!isLittleEndian)
5159             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5160                                  DAG.getConstant(32, dl, MVT::i32));
5161
5162         // Non-final even elements are skipped; they will be handled
5163         // together the with subsequent argument on the next go-around.
5164         } else
5165           ArgVal = SDValue();
5166
5167         if (ArgVal.getNode())
5168           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5169       } else {
5170         if (CallConv == CallingConv::Fast)
5171           ComputePtrOff();
5172
5173         // Single-precision floating-point values are mapped to the
5174         // second (rightmost) word of the stack doubleword.
5175         if (Arg.getValueType() == MVT::f32 &&
5176             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5177           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5178           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5179         }
5180
5181         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5182                          true, isTailCall, false, MemOpChains,
5183                          TailCallArguments, dl);
5184
5185         NeededLoad = true;
5186       }
5187       // When passing an array of floats, the array occupies consecutive
5188       // space in the argument area; only round up to the next doubleword
5189       // at the end of the array.  Otherwise, each float takes 8 bytes.
5190       if (CallConv != CallingConv::Fast || NeededLoad) {
5191         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5192                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5193         if (Flags.isInConsecutiveRegsLast())
5194           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5195       }
5196       break;
5197     }
5198     case MVT::v4f32:
5199     case MVT::v4i32:
5200     case MVT::v8i16:
5201     case MVT::v16i8:
5202     case MVT::v2f64:
5203     case MVT::v2i64:
5204     case MVT::v1i128:
5205       if (!Subtarget.hasQPX()) {
5206       // These can be scalar arguments or elements of a vector array type
5207       // passed directly.  The latter are used to implement ELFv2 homogenous
5208       // vector aggregates.
5209
5210       // For a varargs call, named arguments go into VRs or on the stack as
5211       // usual; unnamed arguments always go to the stack or the corresponding
5212       // GPRs when within range.  For now, we always put the value in both
5213       // locations (or even all three).
5214       if (isVarArg) {
5215         // We could elide this store in the case where the object fits
5216         // entirely in R registers.  Maybe later.
5217         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5218                                      MachinePointerInfo(), false, false, 0);
5219         MemOpChains.push_back(Store);
5220         if (VR_idx != NumVRs) {
5221           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5222                                      MachinePointerInfo(),
5223                                      false, false, false, 0);
5224           MemOpChains.push_back(Load.getValue(1));
5225
5226           unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5227                            Arg.getSimpleValueType() == MVT::v2i64) ?
5228                           VSRH[VR_idx] : VR[VR_idx];
5229           ++VR_idx;
5230
5231           RegsToPass.push_back(std::make_pair(VReg, Load));
5232         }
5233         ArgOffset += 16;
5234         for (unsigned i=0; i<16; i+=PtrByteSize) {
5235           if (GPR_idx == NumGPRs)
5236             break;
5237           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5238                                    DAG.getConstant(i, dl, PtrVT));
5239           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5240                                      false, false, false, 0);
5241           MemOpChains.push_back(Load.getValue(1));
5242           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5243         }
5244         break;
5245       }
5246
5247       // Non-varargs Altivec params go into VRs or on the stack.
5248       if (VR_idx != NumVRs) {
5249         unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5250                          Arg.getSimpleValueType() == MVT::v2i64) ?
5251                         VSRH[VR_idx] : VR[VR_idx];
5252         ++VR_idx;
5253
5254         RegsToPass.push_back(std::make_pair(VReg, Arg));
5255       } else {
5256         if (CallConv == CallingConv::Fast)
5257           ComputePtrOff();
5258
5259         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5260                          true, isTailCall, true, MemOpChains,
5261                          TailCallArguments, dl);
5262         if (CallConv == CallingConv::Fast)
5263           ArgOffset += 16;
5264       }
5265
5266       if (CallConv != CallingConv::Fast)
5267         ArgOffset += 16;
5268       break;
5269       } // not QPX
5270
5271       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5272              "Invalid QPX parameter type");
5273
5274       /* fall through */
5275     case MVT::v4f64:
5276     case MVT::v4i1: {
5277       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5278       if (isVarArg) {
5279         // We could elide this store in the case where the object fits
5280         // entirely in R registers.  Maybe later.
5281         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5282                                      MachinePointerInfo(), false, false, 0);
5283         MemOpChains.push_back(Store);
5284         if (QFPR_idx != NumQFPRs) {
5285           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl,
5286                                      Store, PtrOff, MachinePointerInfo(),
5287                                      false, false, false, 0);
5288           MemOpChains.push_back(Load.getValue(1));
5289           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5290         }
5291         ArgOffset += (IsF32 ? 16 : 32);
5292         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5293           if (GPR_idx == NumGPRs)
5294             break;
5295           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5296                                    DAG.getConstant(i, dl, PtrVT));
5297           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5298                                      false, false, false, 0);
5299           MemOpChains.push_back(Load.getValue(1));
5300           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5301         }
5302         break;
5303       }
5304
5305       // Non-varargs QPX params go into registers or on the stack.
5306       if (QFPR_idx != NumQFPRs) {
5307         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5308       } else {
5309         if (CallConv == CallingConv::Fast)
5310           ComputePtrOff();
5311
5312         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5313                          true, isTailCall, true, MemOpChains,
5314                          TailCallArguments, dl);
5315         if (CallConv == CallingConv::Fast)
5316           ArgOffset += (IsF32 ? 16 : 32);
5317       }
5318
5319       if (CallConv != CallingConv::Fast)
5320         ArgOffset += (IsF32 ? 16 : 32);
5321       break;
5322       }
5323     }
5324   }
5325
5326   assert(NumBytesActuallyUsed == ArgOffset);
5327   (void)NumBytesActuallyUsed;
5328
5329   if (!MemOpChains.empty())
5330     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5331
5332   // Check if this is an indirect call (MTCTR/BCTRL).
5333   // See PrepareCall() for more information about calls through function
5334   // pointers in the 64-bit SVR4 ABI.
5335   if (!isTailCall && !IsPatchPoint &&
5336       !isFunctionGlobalAddress(Callee) &&
5337       !isa<ExternalSymbolSDNode>(Callee)) {
5338     // Load r2 into a virtual register and store it to the TOC save area.
5339     setUsesTOCBasePtr(DAG);
5340     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
5341     // TOC save area offset.
5342     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5343     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5344     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5345     Chain = DAG.getStore(
5346         Val.getValue(1), dl, Val, AddPtr,
5347         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset),
5348         false, false, 0);
5349     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
5350     // This does not mean the MTCTR instruction must use R12; it's easier
5351     // to model this as an extra parameter, so do that.
5352     if (isELFv2ABI && !IsPatchPoint)
5353       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
5354   }
5355
5356   // Build a sequence of copy-to-reg nodes chained together with token chain
5357   // and flag operands which copy the outgoing args into the appropriate regs.
5358   SDValue InFlag;
5359   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5360     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5361                              RegsToPass[i].second, InFlag);
5362     InFlag = Chain.getValue(1);
5363   }
5364
5365   if (isTailCall)
5366     PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
5367                     FPOp, true, TailCallArguments);
5368
5369   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest,
5370                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
5371                     SPDiff, NumBytes, Ins, InVals, CS);
5372 }
5373
5374 SDValue
5375 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
5376                                     CallingConv::ID CallConv, bool isVarArg,
5377                                     bool isTailCall, bool IsPatchPoint,
5378                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
5379                                     const SmallVectorImpl<SDValue> &OutVals,
5380                                     const SmallVectorImpl<ISD::InputArg> &Ins,
5381                                     SDLoc dl, SelectionDAG &DAG,
5382                                     SmallVectorImpl<SDValue> &InVals,
5383                                     ImmutableCallSite *CS) const {
5384
5385   unsigned NumOps = Outs.size();
5386
5387   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5388   bool isPPC64 = PtrVT == MVT::i64;
5389   unsigned PtrByteSize = isPPC64 ? 8 : 4;
5390
5391   MachineFunction &MF = DAG.getMachineFunction();
5392
5393   // Mark this function as potentially containing a function that contains a
5394   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5395   // and restoring the callers stack pointer in this functions epilog. This is
5396   // done because by tail calling the called function might overwrite the value
5397   // in this function's (MF) stack pointer stack slot 0(SP).
5398   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5399       CallConv == CallingConv::Fast)
5400     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5401
5402   // Count how many bytes are to be pushed on the stack, including the linkage
5403   // area, and parameter passing area.  We start with 24/48 bytes, which is
5404   // prereserved space for [SP][CR][LR][3 x unused].
5405   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5406   unsigned NumBytes = LinkageSize;
5407
5408   // Add up all the space actually used.
5409   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
5410   // they all go in registers, but we must reserve stack space for them for
5411   // possible use by the caller.  In varargs or 64-bit calls, parameters are
5412   // assigned stack space in order, with padding so Altivec parameters are
5413   // 16-byte aligned.
5414   unsigned nAltivecParamsAtEnd = 0;
5415   for (unsigned i = 0; i != NumOps; ++i) {
5416     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5417     EVT ArgVT = Outs[i].VT;
5418     // Varargs Altivec parameters are padded to a 16 byte boundary.
5419     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
5420         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
5421         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
5422       if (!isVarArg && !isPPC64) {
5423         // Non-varargs Altivec parameters go after all the non-Altivec
5424         // parameters; handle those later so we know how much padding we need.
5425         nAltivecParamsAtEnd++;
5426         continue;
5427       }
5428       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
5429       NumBytes = ((NumBytes+15)/16)*16;
5430     }
5431     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5432   }
5433
5434   // Allow for Altivec parameters at the end, if needed.
5435   if (nAltivecParamsAtEnd) {
5436     NumBytes = ((NumBytes+15)/16)*16;
5437     NumBytes += 16*nAltivecParamsAtEnd;
5438   }
5439
5440   // The prolog code of the callee may store up to 8 GPR argument registers to
5441   // the stack, allowing va_start to index over them in memory if its varargs.
5442   // Because we cannot tell if this is needed on the caller side, we have to
5443   // conservatively assume that it is needed.  As such, make sure we have at
5444   // least enough stack space for the caller to store the 8 GPRs.
5445   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5446
5447   // Tail call needs the stack to be aligned.
5448   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5449       CallConv == CallingConv::Fast)
5450     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5451
5452   // Calculate by how many bytes the stack has to be adjusted in case of tail
5453   // call optimization.
5454   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5455
5456   // To protect arguments on the stack from being clobbered in a tail call,
5457   // force all the loads to happen before doing any other lowering.
5458   if (isTailCall)
5459     Chain = DAG.getStackArgumentTokenFactor(Chain);
5460
5461   // Adjust the stack pointer for the new arguments...
5462   // These operations are automatically eliminated by the prolog/epilog pass
5463   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5464                                dl);
5465   SDValue CallSeqStart = Chain;
5466
5467   // Load the return address and frame pointer so it can be move somewhere else
5468   // later.
5469   SDValue LROp, FPOp;
5470   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
5471                                        dl);
5472
5473   // Set up a copy of the stack pointer for use loading and storing any
5474   // arguments that may not fit in the registers available for argument
5475   // passing.
5476   SDValue StackPtr;
5477   if (isPPC64)
5478     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5479   else
5480     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5481
5482   // Figure out which arguments are going to go in registers, and which in
5483   // memory.  Also, if this is a vararg function, floating point operations
5484   // must be stored to our stack, and loaded into integer regs as well, if
5485   // any integer regs are available for argument passing.
5486   unsigned ArgOffset = LinkageSize;
5487   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5488
5489   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
5490     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
5491     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
5492   };
5493   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
5494     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5495     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5496   };
5497   static const MCPhysReg VR[] = {
5498     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5499     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5500   };
5501   const unsigned NumGPRs = array_lengthof(GPR_32);
5502   const unsigned NumFPRs = 13;
5503   const unsigned NumVRs  = array_lengthof(VR);
5504
5505   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
5506
5507   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5508   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5509
5510   SmallVector<SDValue, 8> MemOpChains;
5511   for (unsigned i = 0; i != NumOps; ++i) {
5512     SDValue Arg = OutVals[i];
5513     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5514
5515     // PtrOff will be used to store the current argument to the stack if a
5516     // register cannot be found for it.
5517     SDValue PtrOff;
5518
5519     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5520
5521     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5522
5523     // On PPC64, promote integers to 64-bit values.
5524     if (isPPC64 && Arg.getValueType() == MVT::i32) {
5525       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5526       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5527       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5528     }
5529
5530     // FIXME memcpy is used way more than necessary.  Correctness first.
5531     // Note: "by value" is code for passing a structure by value, not
5532     // basic types.
5533     if (Flags.isByVal()) {
5534       unsigned Size = Flags.getByValSize();
5535       // Very small objects are passed right-justified.  Everything else is
5536       // passed left-justified.
5537       if (Size==1 || Size==2) {
5538         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
5539         if (GPR_idx != NumGPRs) {
5540           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5541                                         MachinePointerInfo(), VT,
5542                                         false, false, false, 0);
5543           MemOpChains.push_back(Load.getValue(1));
5544           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5545
5546           ArgOffset += PtrByteSize;
5547         } else {
5548           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5549                                           PtrOff.getValueType());
5550           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5551           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5552                                                             CallSeqStart,
5553                                                             Flags, DAG, dl);
5554           ArgOffset += PtrByteSize;
5555         }
5556         continue;
5557       }
5558       // Copy entire object into memory.  There are cases where gcc-generated
5559       // code assumes it is there, even if it could be put entirely into
5560       // registers.  (This is not what the doc says.)
5561       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5562                                                         CallSeqStart,
5563                                                         Flags, DAG, dl);
5564
5565       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
5566       // copy the pieces of the object that fit into registers from the
5567       // parameter save area.
5568       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5569         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5570         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5571         if (GPR_idx != NumGPRs) {
5572           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5573                                      MachinePointerInfo(),
5574                                      false, false, false, 0);
5575           MemOpChains.push_back(Load.getValue(1));
5576           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5577           ArgOffset += PtrByteSize;
5578         } else {
5579           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5580           break;
5581         }
5582       }
5583       continue;
5584     }
5585
5586     switch (Arg.getSimpleValueType().SimpleTy) {
5587     default: llvm_unreachable("Unexpected ValueType for argument!");
5588     case MVT::i1:
5589     case MVT::i32:
5590     case MVT::i64:
5591       if (GPR_idx != NumGPRs) {
5592         if (Arg.getValueType() == MVT::i1)
5593           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
5594
5595         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5596       } else {
5597         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5598                          isPPC64, isTailCall, false, MemOpChains,
5599                          TailCallArguments, dl);
5600       }
5601       ArgOffset += PtrByteSize;
5602       break;
5603     case MVT::f32:
5604     case MVT::f64:
5605       if (FPR_idx != NumFPRs) {
5606         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5607
5608         if (isVarArg) {
5609           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5610                                        MachinePointerInfo(), false, false, 0);
5611           MemOpChains.push_back(Store);
5612
5613           // Float varargs are always shadowed in available integer registers
5614           if (GPR_idx != NumGPRs) {
5615             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5616                                        MachinePointerInfo(), false, false,
5617                                        false, 0);
5618             MemOpChains.push_back(Load.getValue(1));
5619             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5620           }
5621           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
5622             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5623             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5624             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5625                                        MachinePointerInfo(),
5626                                        false, false, false, 0);
5627             MemOpChains.push_back(Load.getValue(1));
5628             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5629           }
5630         } else {
5631           // If we have any FPRs remaining, we may also have GPRs remaining.
5632           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
5633           // GPRs.
5634           if (GPR_idx != NumGPRs)
5635             ++GPR_idx;
5636           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
5637               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
5638             ++GPR_idx;
5639         }
5640       } else
5641         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5642                          isPPC64, isTailCall, false, MemOpChains,
5643                          TailCallArguments, dl);
5644       if (isPPC64)
5645         ArgOffset += 8;
5646       else
5647         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
5648       break;
5649     case MVT::v4f32:
5650     case MVT::v4i32:
5651     case MVT::v8i16:
5652     case MVT::v16i8:
5653       if (isVarArg) {
5654         // These go aligned on the stack, or in the corresponding R registers
5655         // when within range.  The Darwin PPC ABI doc claims they also go in
5656         // V registers; in fact gcc does this only for arguments that are
5657         // prototyped, not for those that match the ...  We do it for all
5658         // arguments, seems to work.
5659         while (ArgOffset % 16 !=0) {
5660           ArgOffset += PtrByteSize;
5661           if (GPR_idx != NumGPRs)
5662             GPR_idx++;
5663         }
5664         // We could elide this store in the case where the object fits
5665         // entirely in R registers.  Maybe later.
5666         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5667                              DAG.getConstant(ArgOffset, dl, PtrVT));
5668         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5669                                      MachinePointerInfo(), false, false, 0);
5670         MemOpChains.push_back(Store);
5671         if (VR_idx != NumVRs) {
5672           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5673                                      MachinePointerInfo(),
5674                                      false, false, false, 0);
5675           MemOpChains.push_back(Load.getValue(1));
5676           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5677         }
5678         ArgOffset += 16;
5679         for (unsigned i=0; i<16; i+=PtrByteSize) {
5680           if (GPR_idx == NumGPRs)
5681             break;
5682           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5683                                    DAG.getConstant(i, dl, PtrVT));
5684           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5685                                      false, false, false, 0);
5686           MemOpChains.push_back(Load.getValue(1));
5687           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5688         }
5689         break;
5690       }
5691
5692       // Non-varargs Altivec params generally go in registers, but have
5693       // stack space allocated at the end.
5694       if (VR_idx != NumVRs) {
5695         // Doesn't have GPR space allocated.
5696         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5697       } else if (nAltivecParamsAtEnd==0) {
5698         // We are emitting Altivec params in order.
5699         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5700                          isPPC64, isTailCall, true, MemOpChains,
5701                          TailCallArguments, dl);
5702         ArgOffset += 16;
5703       }
5704       break;
5705     }
5706   }
5707   // If all Altivec parameters fit in registers, as they usually do,
5708   // they get stack space following the non-Altivec parameters.  We
5709   // don't track this here because nobody below needs it.
5710   // If there are more Altivec parameters than fit in registers emit
5711   // the stores here.
5712   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
5713     unsigned j = 0;
5714     // Offset is aligned; skip 1st 12 params which go in V registers.
5715     ArgOffset = ((ArgOffset+15)/16)*16;
5716     ArgOffset += 12*16;
5717     for (unsigned i = 0; i != NumOps; ++i) {
5718       SDValue Arg = OutVals[i];
5719       EVT ArgType = Outs[i].VT;
5720       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
5721           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
5722         if (++j > NumVRs) {
5723           SDValue PtrOff;
5724           // We are emitting Altivec params in order.
5725           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5726                            isPPC64, isTailCall, true, MemOpChains,
5727                            TailCallArguments, dl);
5728           ArgOffset += 16;
5729         }
5730       }
5731     }
5732   }
5733
5734   if (!MemOpChains.empty())
5735     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5736
5737   // On Darwin, R12 must contain the address of an indirect callee.  This does
5738   // not mean the MTCTR instruction must use R12; it's easier to model this as
5739   // an extra parameter, so do that.
5740   if (!isTailCall &&
5741       !isFunctionGlobalAddress(Callee) &&
5742       !isa<ExternalSymbolSDNode>(Callee) &&
5743       !isBLACompatibleAddress(Callee, DAG))
5744     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
5745                                                    PPC::R12), Callee));
5746
5747   // Build a sequence of copy-to-reg nodes chained together with token chain
5748   // and flag operands which copy the outgoing args into the appropriate regs.
5749   SDValue InFlag;
5750   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5751     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5752                              RegsToPass[i].second, InFlag);
5753     InFlag = Chain.getValue(1);
5754   }
5755
5756   if (isTailCall)
5757     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
5758                     FPOp, true, TailCallArguments);
5759
5760   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
5761                     /* unused except on PPC64 ELFv1 */ false, DAG,
5762                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5763                     NumBytes, Ins, InVals, CS);
5764 }
5765
5766 bool
5767 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
5768                                   MachineFunction &MF, bool isVarArg,
5769                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
5770                                   LLVMContext &Context) const {
5771   SmallVector<CCValAssign, 16> RVLocs;
5772   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
5773   return CCInfo.CheckReturn(Outs, RetCC_PPC);
5774 }
5775
5776 SDValue
5777 PPCTargetLowering::LowerReturn(SDValue Chain,
5778                                CallingConv::ID CallConv, bool isVarArg,
5779                                const SmallVectorImpl<ISD::OutputArg> &Outs,
5780                                const SmallVectorImpl<SDValue> &OutVals,
5781                                SDLoc dl, SelectionDAG &DAG) const {
5782
5783   SmallVector<CCValAssign, 16> RVLocs;
5784   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5785                  *DAG.getContext());
5786   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
5787
5788   SDValue Flag;
5789   SmallVector<SDValue, 4> RetOps(1, Chain);
5790
5791   // Copy the result values into the output registers.
5792   for (unsigned i = 0; i != RVLocs.size(); ++i) {
5793     CCValAssign &VA = RVLocs[i];
5794     assert(VA.isRegLoc() && "Can only return in registers!");
5795
5796     SDValue Arg = OutVals[i];
5797
5798     switch (VA.getLocInfo()) {
5799     default: llvm_unreachable("Unknown loc info!");
5800     case CCValAssign::Full: break;
5801     case CCValAssign::AExt:
5802       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
5803       break;
5804     case CCValAssign::ZExt:
5805       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
5806       break;
5807     case CCValAssign::SExt:
5808       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
5809       break;
5810     }
5811
5812     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
5813     Flag = Chain.getValue(1);
5814     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
5815   }
5816
5817   RetOps[0] = Chain;  // Update chain.
5818
5819   // Add the flag if we have it.
5820   if (Flag.getNode())
5821     RetOps.push_back(Flag);
5822
5823   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
5824 }
5825
5826 SDValue PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(
5827     SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const {
5828   SDLoc dl(Op);
5829
5830   // Get the corect type for integers.
5831   EVT IntVT = Op.getValueType();
5832
5833   // Get the inputs.
5834   SDValue Chain = Op.getOperand(0);
5835   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
5836   // Build a DYNAREAOFFSET node.
5837   SDValue Ops[2] = {Chain, FPSIdx};
5838   SDVTList VTs = DAG.getVTList(IntVT);
5839   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
5840 }
5841
5842 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
5843                                    const PPCSubtarget &Subtarget) const {
5844   // When we pop the dynamic allocation we need to restore the SP link.
5845   SDLoc dl(Op);
5846
5847   // Get the corect type for pointers.
5848   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5849
5850   // Construct the stack pointer operand.
5851   bool isPPC64 = Subtarget.isPPC64();
5852   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
5853   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
5854
5855   // Get the operands for the STACKRESTORE.
5856   SDValue Chain = Op.getOperand(0);
5857   SDValue SaveSP = Op.getOperand(1);
5858
5859   // Load the old link SP.
5860   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
5861                                    MachinePointerInfo(),
5862                                    false, false, false, 0);
5863
5864   // Restore the stack pointer.
5865   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
5866
5867   // Store the old link SP.
5868   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
5869                       false, false, 0);
5870 }
5871
5872 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
5873   MachineFunction &MF = DAG.getMachineFunction();
5874   bool isPPC64 = Subtarget.isPPC64();
5875   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
5876
5877   // Get current frame pointer save index.  The users of this index will be
5878   // primarily DYNALLOC instructions.
5879   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
5880   int RASI = FI->getReturnAddrSaveIndex();
5881
5882   // If the frame pointer save index hasn't been defined yet.
5883   if (!RASI) {
5884     // Find out what the fix offset of the frame pointer save area.
5885     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
5886     // Allocate the frame index for frame pointer save area.
5887     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
5888     // Save the result.
5889     FI->setReturnAddrSaveIndex(RASI);
5890   }
5891   return DAG.getFrameIndex(RASI, PtrVT);
5892 }
5893
5894 SDValue
5895 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
5896   MachineFunction &MF = DAG.getMachineFunction();
5897   bool isPPC64 = Subtarget.isPPC64();
5898   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
5899
5900   // Get current frame pointer save index.  The users of this index will be
5901   // primarily DYNALLOC instructions.
5902   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
5903   int FPSI = FI->getFramePointerSaveIndex();
5904
5905   // If the frame pointer save index hasn't been defined yet.
5906   if (!FPSI) {
5907     // Find out what the fix offset of the frame pointer save area.
5908     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
5909     // Allocate the frame index for frame pointer save area.
5910     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
5911     // Save the result.
5912     FI->setFramePointerSaveIndex(FPSI);
5913   }
5914   return DAG.getFrameIndex(FPSI, PtrVT);
5915 }
5916
5917 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5918                                          SelectionDAG &DAG,
5919                                          const PPCSubtarget &Subtarget) const {
5920   // Get the inputs.
5921   SDValue Chain = Op.getOperand(0);
5922   SDValue Size  = Op.getOperand(1);
5923   SDLoc dl(Op);
5924
5925   // Get the corect type for pointers.
5926   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5927   // Negate the size.
5928   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
5929                                 DAG.getConstant(0, dl, PtrVT), Size);
5930   // Construct a node for the frame pointer save index.
5931   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
5932   // Build a DYNALLOC node.
5933   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
5934   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
5935   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
5936 }
5937
5938 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
5939                                                SelectionDAG &DAG) const {
5940   SDLoc DL(Op);
5941   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
5942                      DAG.getVTList(MVT::i32, MVT::Other),
5943                      Op.getOperand(0), Op.getOperand(1));
5944 }
5945
5946 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
5947                                                 SelectionDAG &DAG) const {
5948   SDLoc DL(Op);
5949   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
5950                      Op.getOperand(0), Op.getOperand(1));
5951 }
5952
5953 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
5954   if (Op.getValueType().isVector())
5955     return LowerVectorLoad(Op, DAG);
5956
5957   assert(Op.getValueType() == MVT::i1 &&
5958          "Custom lowering only for i1 loads");
5959
5960   // First, load 8 bits into 32 bits, then truncate to 1 bit.
5961
5962   SDLoc dl(Op);
5963   LoadSDNode *LD = cast<LoadSDNode>(Op);
5964
5965   SDValue Chain = LD->getChain();
5966   SDValue BasePtr = LD->getBasePtr();
5967   MachineMemOperand *MMO = LD->getMemOperand();
5968
5969   SDValue NewLD =
5970       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
5971                      BasePtr, MVT::i8, MMO);
5972   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
5973
5974   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
5975   return DAG.getMergeValues(Ops, dl);
5976 }
5977
5978 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
5979   if (Op.getOperand(1).getValueType().isVector())
5980     return LowerVectorStore(Op, DAG);
5981
5982   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
5983          "Custom lowering only for i1 stores");
5984
5985   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
5986
5987   SDLoc dl(Op);
5988   StoreSDNode *ST = cast<StoreSDNode>(Op);
5989
5990   SDValue Chain = ST->getChain();
5991   SDValue BasePtr = ST->getBasePtr();
5992   SDValue Value = ST->getValue();
5993   MachineMemOperand *MMO = ST->getMemOperand();
5994
5995   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
5996                       Value);
5997   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
5998 }
5999
6000 // FIXME: Remove this once the ANDI glue bug is fixed:
6001 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6002   assert(Op.getValueType() == MVT::i1 &&
6003          "Custom lowering only for i1 results");
6004
6005   SDLoc DL(Op);
6006   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6007                      Op.getOperand(0));
6008 }
6009
6010 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6011 /// possible.
6012 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6013   // Not FP? Not a fsel.
6014   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6015       !Op.getOperand(2).getValueType().isFloatingPoint())
6016     return Op;
6017
6018   // We might be able to do better than this under some circumstances, but in
6019   // general, fsel-based lowering of select is a finite-math-only optimization.
6020   // For more information, see section F.3 of the 2.06 ISA specification.
6021   if (!DAG.getTarget().Options.NoInfsFPMath ||
6022       !DAG.getTarget().Options.NoNaNsFPMath)
6023     return Op;
6024   // TODO: Propagate flags from the select rather than global settings.
6025   SDNodeFlags Flags;
6026   Flags.setNoInfs(true);
6027   Flags.setNoNaNs(true);
6028
6029   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6030
6031   EVT ResVT = Op.getValueType();
6032   EVT CmpVT = Op.getOperand(0).getValueType();
6033   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6034   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6035   SDLoc dl(Op);
6036
6037   // If the RHS of the comparison is a 0.0, we don't need to do the
6038   // subtraction at all.
6039   SDValue Sel1;
6040   if (isFloatingPointZero(RHS))
6041     switch (CC) {
6042     default: break;       // SETUO etc aren't handled by fsel.
6043     case ISD::SETNE:
6044       std::swap(TV, FV);
6045     case ISD::SETEQ:
6046       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6047         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6048       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6049       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6050         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6051       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6052                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6053     case ISD::SETULT:
6054     case ISD::SETLT:
6055       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6056     case ISD::SETOGE:
6057     case ISD::SETGE:
6058       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6059         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6060       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6061     case ISD::SETUGT:
6062     case ISD::SETGT:
6063       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6064     case ISD::SETOLE:
6065     case ISD::SETLE:
6066       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6067         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6068       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6069                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6070     }
6071
6072   SDValue Cmp;
6073   switch (CC) {
6074   default: break;       // SETUO etc aren't handled by fsel.
6075   case ISD::SETNE:
6076     std::swap(TV, FV);
6077   case ISD::SETEQ:
6078     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6079     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6080       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6081     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6082     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6083       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6084     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6085                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6086   case ISD::SETULT:
6087   case ISD::SETLT:
6088     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6089     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6090       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6091     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6092   case ISD::SETOGE:
6093   case ISD::SETGE:
6094     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6095     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6096       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6097     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6098   case ISD::SETUGT:
6099   case ISD::SETGT:
6100     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6101     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6102       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6103     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6104   case ISD::SETOLE:
6105   case ISD::SETLE:
6106     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6107     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6108       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6109     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6110   }
6111   return Op;
6112 }
6113
6114 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6115                                                SelectionDAG &DAG,
6116                                                SDLoc dl) const {
6117   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6118   SDValue Src = Op.getOperand(0);
6119   if (Src.getValueType() == MVT::f32)
6120     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6121
6122   SDValue Tmp;
6123   switch (Op.getSimpleValueType().SimpleTy) {
6124   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6125   case MVT::i32:
6126     Tmp = DAG.getNode(
6127         Op.getOpcode() == ISD::FP_TO_SINT
6128             ? PPCISD::FCTIWZ
6129             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6130         dl, MVT::f64, Src);
6131     break;
6132   case MVT::i64:
6133     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6134            "i64 FP_TO_UINT is supported only with FPCVT");
6135     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6136                                                         PPCISD::FCTIDUZ,
6137                       dl, MVT::f64, Src);
6138     break;
6139   }
6140
6141   // Convert the FP value to an int value through memory.
6142   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6143     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6144   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6145   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6146   MachinePointerInfo MPI =
6147       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6148
6149   // Emit a store to the stack slot.
6150   SDValue Chain;
6151   if (i32Stack) {
6152     MachineFunction &MF = DAG.getMachineFunction();
6153     MachineMemOperand *MMO =
6154       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6155     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6156     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6157               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6158   } else
6159     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
6160                          MPI, false, false, 0);
6161
6162   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6163   // add in a bias.
6164   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6165     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6166                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6167     MPI = MPI.getWithOffset(4);
6168   }
6169
6170   RLI.Chain = Chain;
6171   RLI.Ptr = FIPtr;
6172   RLI.MPI = MPI;
6173 }
6174
6175 /// \brief Custom lowers floating point to integer conversions to use
6176 /// the direct move instructions available in ISA 2.07 to avoid the
6177 /// need for load/store combinations.
6178 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6179                                                     SelectionDAG &DAG,
6180                                                     SDLoc dl) const {
6181   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6182   SDValue Src = Op.getOperand(0);
6183
6184   if (Src.getValueType() == MVT::f32)
6185     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6186
6187   SDValue Tmp;
6188   switch (Op.getSimpleValueType().SimpleTy) {
6189   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6190   case MVT::i32:
6191     Tmp = DAG.getNode(
6192         Op.getOpcode() == ISD::FP_TO_SINT
6193             ? PPCISD::FCTIWZ
6194             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6195         dl, MVT::f64, Src);
6196     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6197     break;
6198   case MVT::i64:
6199     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6200            "i64 FP_TO_UINT is supported only with FPCVT");
6201     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6202                                                         PPCISD::FCTIDUZ,
6203                       dl, MVT::f64, Src);
6204     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6205     break;
6206   }
6207   return Tmp;
6208 }
6209
6210 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6211                                           SDLoc dl) const {
6212   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6213     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6214
6215   ReuseLoadInfo RLI;
6216   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6217
6218   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6219                      false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6220                      RLI.Ranges);
6221 }
6222
6223 // We're trying to insert a regular store, S, and then a load, L. If the
6224 // incoming value, O, is a load, we might just be able to have our load use the
6225 // address used by O. However, we don't know if anything else will store to
6226 // that address before we can load from it. To prevent this situation, we need
6227 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6228 // the same chain operand as O, we create a token factor from the chain results
6229 // of O and L, and we replace all uses of O's chain result with that token
6230 // factor (see spliceIntoChain below for this last part).
6231 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6232                                             ReuseLoadInfo &RLI,
6233                                             SelectionDAG &DAG,
6234                                             ISD::LoadExtType ET) const {
6235   SDLoc dl(Op);
6236   if (ET == ISD::NON_EXTLOAD &&
6237       (Op.getOpcode() == ISD::FP_TO_UINT ||
6238        Op.getOpcode() == ISD::FP_TO_SINT) &&
6239       isOperationLegalOrCustom(Op.getOpcode(),
6240                                Op.getOperand(0).getValueType())) {
6241
6242     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6243     return true;
6244   }
6245
6246   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
6247   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
6248       LD->isNonTemporal())
6249     return false;
6250   if (LD->getMemoryVT() != MemVT)
6251     return false;
6252
6253   RLI.Ptr = LD->getBasePtr();
6254   if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) {
6255     assert(LD->getAddressingMode() == ISD::PRE_INC &&
6256            "Non-pre-inc AM on PPC?");
6257     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
6258                           LD->getOffset());
6259   }
6260
6261   RLI.Chain = LD->getChain();
6262   RLI.MPI = LD->getPointerInfo();
6263   RLI.IsInvariant = LD->isInvariant();
6264   RLI.Alignment = LD->getAlignment();
6265   RLI.AAInfo = LD->getAAInfo();
6266   RLI.Ranges = LD->getRanges();
6267
6268   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
6269   return true;
6270 }
6271
6272 // Given the head of the old chain, ResChain, insert a token factor containing
6273 // it and NewResChain, and make users of ResChain now be users of that token
6274 // factor.
6275 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
6276                                         SDValue NewResChain,
6277                                         SelectionDAG &DAG) const {
6278   if (!ResChain)
6279     return;
6280
6281   SDLoc dl(NewResChain);
6282
6283   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6284                            NewResChain, DAG.getUNDEF(MVT::Other));
6285   assert(TF.getNode() != NewResChain.getNode() &&
6286          "A new TF really is required here");
6287
6288   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
6289   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
6290 }
6291
6292 /// \brief Custom lowers integer to floating point conversions to use
6293 /// the direct move instructions available in ISA 2.07 to avoid the
6294 /// need for load/store combinations.
6295 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
6296                                                     SelectionDAG &DAG,
6297                                                     SDLoc dl) const {
6298   assert((Op.getValueType() == MVT::f32 ||
6299           Op.getValueType() == MVT::f64) &&
6300          "Invalid floating point type as target of conversion");
6301   assert(Subtarget.hasFPCVT() &&
6302          "Int to FP conversions with direct moves require FPCVT");
6303   SDValue FP;
6304   SDValue Src = Op.getOperand(0);
6305   bool SinglePrec = Op.getValueType() == MVT::f32;
6306   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
6307   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
6308   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
6309                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
6310
6311   if (WordInt) {
6312     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
6313                      dl, MVT::f64, Src);
6314     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6315   }
6316   else {
6317     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
6318     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6319   }
6320
6321   return FP;
6322 }
6323
6324 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
6325                                           SelectionDAG &DAG) const {
6326   SDLoc dl(Op);
6327
6328   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
6329     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
6330       return SDValue();
6331
6332     SDValue Value = Op.getOperand(0);
6333     // The values are now known to be -1 (false) or 1 (true). To convert this
6334     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
6335     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
6336     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
6337
6338     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64);
6339     FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, FPHalfs, FPHalfs,
6340                           FPHalfs, FPHalfs);
6341
6342     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
6343
6344     if (Op.getValueType() != MVT::v4f64)
6345       Value = DAG.getNode(ISD::FP_ROUND, dl,
6346                           Op.getValueType(), Value,
6347                           DAG.getIntPtrConstant(1, dl));
6348     return Value;
6349   }
6350
6351   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
6352   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
6353     return SDValue();
6354
6355   if (Op.getOperand(0).getValueType() == MVT::i1)
6356     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
6357                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
6358                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
6359
6360   // If we have direct moves, we can do all the conversion, skip the store/load
6361   // however, without FPCVT we can't do most conversions.
6362   if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT())
6363     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
6364
6365   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
6366          "UINT_TO_FP is supported only with FPCVT");
6367
6368   // If we have FCFIDS, then use it when converting to single-precision.
6369   // Otherwise, convert to double-precision and then round.
6370   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6371                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
6372                                                             : PPCISD::FCFIDS)
6373                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
6374                                                             : PPCISD::FCFID);
6375   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6376                   ? MVT::f32
6377                   : MVT::f64;
6378
6379   if (Op.getOperand(0).getValueType() == MVT::i64) {
6380     SDValue SINT = Op.getOperand(0);
6381     // When converting to single-precision, we actually need to convert
6382     // to double-precision first and then round to single-precision.
6383     // To avoid double-rounding effects during that operation, we have
6384     // to prepare the input operand.  Bits that might be truncated when
6385     // converting to double-precision are replaced by a bit that won't
6386     // be lost at this stage, but is below the single-precision rounding
6387     // position.
6388     //
6389     // However, if -enable-unsafe-fp-math is in effect, accept double
6390     // rounding to avoid the extra overhead.
6391     if (Op.getValueType() == MVT::f32 &&
6392         !Subtarget.hasFPCVT() &&
6393         !DAG.getTarget().Options.UnsafeFPMath) {
6394
6395       // Twiddle input to make sure the low 11 bits are zero.  (If this
6396       // is the case, we are guaranteed the value will fit into the 53 bit
6397       // mantissa of an IEEE double-precision value without rounding.)
6398       // If any of those low 11 bits were not zero originally, make sure
6399       // bit 12 (value 2048) is set instead, so that the final rounding
6400       // to single-precision gets the correct result.
6401       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6402                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
6403       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
6404                           Round, DAG.getConstant(2047, dl, MVT::i64));
6405       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
6406       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6407                           Round, DAG.getConstant(-2048, dl, MVT::i64));
6408
6409       // However, we cannot use that value unconditionally: if the magnitude
6410       // of the input value is small, the bit-twiddling we did above might
6411       // end up visibly changing the output.  Fortunately, in that case, we
6412       // don't need to twiddle bits since the original input will convert
6413       // exactly to double-precision floating-point already.  Therefore,
6414       // construct a conditional to use the original value if the top 11
6415       // bits are all sign-bit copies, and use the rounded value computed
6416       // above otherwise.
6417       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
6418                                  SINT, DAG.getConstant(53, dl, MVT::i32));
6419       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
6420                          Cond, DAG.getConstant(1, dl, MVT::i64));
6421       Cond = DAG.getSetCC(dl, MVT::i32,
6422                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
6423
6424       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
6425     }
6426
6427     ReuseLoadInfo RLI;
6428     SDValue Bits;
6429
6430     MachineFunction &MF = DAG.getMachineFunction();
6431     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
6432       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6433                          false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6434                          RLI.Ranges);
6435       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6436     } else if (Subtarget.hasLFIWAX() &&
6437                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
6438       MachineMemOperand *MMO =
6439         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6440                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6441       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6442       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
6443                                      DAG.getVTList(MVT::f64, MVT::Other),
6444                                      Ops, MVT::i32, MMO);
6445       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6446     } else if (Subtarget.hasFPCVT() &&
6447                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
6448       MachineMemOperand *MMO =
6449         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6450                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6451       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6452       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
6453                                      DAG.getVTList(MVT::f64, MVT::Other),
6454                                      Ops, MVT::i32, MMO);
6455       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6456     } else if (((Subtarget.hasLFIWAX() &&
6457                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
6458                 (Subtarget.hasFPCVT() &&
6459                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
6460                SINT.getOperand(0).getValueType() == MVT::i32) {
6461       MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6462       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
6463
6464       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6465       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6466
6467       SDValue Store = DAG.getStore(
6468           DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
6469           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6470           false, false, 0);
6471
6472       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6473              "Expected an i32 store");
6474
6475       RLI.Ptr = FIdx;
6476       RLI.Chain = Store;
6477       RLI.MPI =
6478           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6479       RLI.Alignment = 4;
6480
6481       MachineMemOperand *MMO =
6482         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6483                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6484       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6485       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
6486                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
6487                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
6488                                      Ops, MVT::i32, MMO);
6489     } else
6490       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
6491
6492     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
6493
6494     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6495       FP = DAG.getNode(ISD::FP_ROUND, dl,
6496                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
6497     return FP;
6498   }
6499
6500   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
6501          "Unhandled INT_TO_FP type in custom expander!");
6502   // Since we only generate this in 64-bit mode, we can take advantage of
6503   // 64-bit registers.  In particular, sign extend the input value into the
6504   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
6505   // then lfd it and fcfid it.
6506   MachineFunction &MF = DAG.getMachineFunction();
6507   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6508   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6509
6510   SDValue Ld;
6511   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
6512     ReuseLoadInfo RLI;
6513     bool ReusingLoad;
6514     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
6515                                             DAG))) {
6516       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6517       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6518
6519       SDValue Store = DAG.getStore(
6520           DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
6521           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6522           false, false, 0);
6523
6524       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6525              "Expected an i32 store");
6526
6527       RLI.Ptr = FIdx;
6528       RLI.Chain = Store;
6529       RLI.MPI =
6530           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6531       RLI.Alignment = 4;
6532     }
6533
6534     MachineMemOperand *MMO =
6535       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6536                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6537     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6538     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
6539                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
6540                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
6541                                  Ops, MVT::i32, MMO);
6542     if (ReusingLoad)
6543       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
6544   } else {
6545     assert(Subtarget.isPPC64() &&
6546            "i32->FP without LFIWAX supported only on PPC64");
6547
6548     int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
6549     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6550
6551     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
6552                                 Op.getOperand(0));
6553
6554     // STD the extended value into the stack slot.
6555     SDValue Store = DAG.getStore(
6556         DAG.getEntryNode(), dl, Ext64, FIdx,
6557         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6558         false, false, 0);
6559
6560     // Load the value as a double.
6561     Ld = DAG.getLoad(
6562         MVT::f64, dl, Store, FIdx,
6563         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6564         false, false, false, 0);
6565   }
6566
6567   // FCFID it and return it.
6568   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
6569   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6570     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
6571                      DAG.getIntPtrConstant(0, dl));
6572   return FP;
6573 }
6574
6575 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6576                                             SelectionDAG &DAG) const {
6577   SDLoc dl(Op);
6578   /*
6579    The rounding mode is in bits 30:31 of FPSR, and has the following
6580    settings:
6581      00 Round to nearest
6582      01 Round to 0
6583      10 Round to +inf
6584      11 Round to -inf
6585
6586   FLT_ROUNDS, on the other hand, expects the following:
6587     -1 Undefined
6588      0 Round to 0
6589      1 Round to nearest
6590      2 Round to +inf
6591      3 Round to -inf
6592
6593   To perform the conversion, we do:
6594     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
6595   */
6596
6597   MachineFunction &MF = DAG.getMachineFunction();
6598   EVT VT = Op.getValueType();
6599   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6600
6601   // Save FP Control Word to register
6602   EVT NodeTys[] = {
6603     MVT::f64,    // return register
6604     MVT::Glue    // unused in this context
6605   };
6606   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
6607
6608   // Save FP register to stack slot
6609   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
6610   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
6611   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
6612                                StackSlot, MachinePointerInfo(), false, false,0);
6613
6614   // Load FP Control Word from low 32 bits of stack slot.
6615   SDValue Four = DAG.getConstant(4, dl, PtrVT);
6616   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
6617   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
6618                             false, false, false, 0);
6619
6620   // Transform as necessary
6621   SDValue CWD1 =
6622     DAG.getNode(ISD::AND, dl, MVT::i32,
6623                 CWD, DAG.getConstant(3, dl, MVT::i32));
6624   SDValue CWD2 =
6625     DAG.getNode(ISD::SRL, dl, MVT::i32,
6626                 DAG.getNode(ISD::AND, dl, MVT::i32,
6627                             DAG.getNode(ISD::XOR, dl, MVT::i32,
6628                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
6629                             DAG.getConstant(3, dl, MVT::i32)),
6630                 DAG.getConstant(1, dl, MVT::i32));
6631
6632   SDValue RetVal =
6633     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
6634
6635   return DAG.getNode((VT.getSizeInBits() < 16 ?
6636                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6637 }
6638
6639 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6640   EVT VT = Op.getValueType();
6641   unsigned BitWidth = VT.getSizeInBits();
6642   SDLoc dl(Op);
6643   assert(Op.getNumOperands() == 3 &&
6644          VT == Op.getOperand(1).getValueType() &&
6645          "Unexpected SHL!");
6646
6647   // Expand into a bunch of logical ops.  Note that these ops
6648   // depend on the PPC behavior for oversized shift amounts.
6649   SDValue Lo = Op.getOperand(0);
6650   SDValue Hi = Op.getOperand(1);
6651   SDValue Amt = Op.getOperand(2);
6652   EVT AmtVT = Amt.getValueType();
6653
6654   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6655                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6656   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
6657   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
6658   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
6659   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6660                              DAG.getConstant(-BitWidth, dl, AmtVT));
6661   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
6662   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6663   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
6664   SDValue OutOps[] = { OutLo, OutHi };
6665   return DAG.getMergeValues(OutOps, dl);
6666 }
6667
6668 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6669   EVT VT = Op.getValueType();
6670   SDLoc dl(Op);
6671   unsigned BitWidth = VT.getSizeInBits();
6672   assert(Op.getNumOperands() == 3 &&
6673          VT == Op.getOperand(1).getValueType() &&
6674          "Unexpected SRL!");
6675
6676   // Expand into a bunch of logical ops.  Note that these ops
6677   // depend on the PPC behavior for oversized shift amounts.
6678   SDValue Lo = Op.getOperand(0);
6679   SDValue Hi = Op.getOperand(1);
6680   SDValue Amt = Op.getOperand(2);
6681   EVT AmtVT = Amt.getValueType();
6682
6683   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6684                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6685   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6686   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6687   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6688   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6689                              DAG.getConstant(-BitWidth, dl, AmtVT));
6690   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
6691   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6692   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
6693   SDValue OutOps[] = { OutLo, OutHi };
6694   return DAG.getMergeValues(OutOps, dl);
6695 }
6696
6697 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
6698   SDLoc dl(Op);
6699   EVT VT = Op.getValueType();
6700   unsigned BitWidth = VT.getSizeInBits();
6701   assert(Op.getNumOperands() == 3 &&
6702          VT == Op.getOperand(1).getValueType() &&
6703          "Unexpected SRA!");
6704
6705   // Expand into a bunch of logical ops, followed by a select_cc.
6706   SDValue Lo = Op.getOperand(0);
6707   SDValue Hi = Op.getOperand(1);
6708   SDValue Amt = Op.getOperand(2);
6709   EVT AmtVT = Amt.getValueType();
6710
6711   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6712                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6713   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6714   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6715   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6716   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6717                              DAG.getConstant(-BitWidth, dl, AmtVT));
6718   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
6719   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
6720   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
6721                                   Tmp4, Tmp6, ISD::SETLE);
6722   SDValue OutOps[] = { OutLo, OutHi };
6723   return DAG.getMergeValues(OutOps, dl);
6724 }
6725
6726 //===----------------------------------------------------------------------===//
6727 // Vector related lowering.
6728 //
6729
6730 /// BuildSplatI - Build a canonical splati of Val with an element size of
6731 /// SplatSize.  Cast the result to VT.
6732 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
6733                              SelectionDAG &DAG, SDLoc dl) {
6734   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
6735
6736   static const MVT VTys[] = { // canonical VT to use for each size.
6737     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
6738   };
6739
6740   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
6741
6742   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
6743   if (Val == -1)
6744     SplatSize = 1;
6745
6746   EVT CanonicalVT = VTys[SplatSize-1];
6747
6748   // Build a canonical splat for this value.
6749   SDValue Elt = DAG.getConstant(Val, dl, MVT::i32);
6750   SmallVector<SDValue, 8> Ops;
6751   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
6752   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops);
6753   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
6754 }
6755
6756 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
6757 /// specified intrinsic ID.
6758 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
6759                                 SelectionDAG &DAG, SDLoc dl,
6760                                 EVT DestVT = MVT::Other) {
6761   if (DestVT == MVT::Other) DestVT = Op.getValueType();
6762   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6763                      DAG.getConstant(IID, dl, MVT::i32), Op);
6764 }
6765
6766 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
6767 /// specified intrinsic ID.
6768 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
6769                                 SelectionDAG &DAG, SDLoc dl,
6770                                 EVT DestVT = MVT::Other) {
6771   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
6772   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6773                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
6774 }
6775
6776 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
6777 /// specified intrinsic ID.
6778 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
6779                                 SDValue Op2, SelectionDAG &DAG,
6780                                 SDLoc dl, EVT DestVT = MVT::Other) {
6781   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
6782   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6783                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
6784 }
6785
6786 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
6787 /// amount.  The result has the specified value type.
6788 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
6789                              EVT VT, SelectionDAG &DAG, SDLoc dl) {
6790   // Force LHS/RHS to be the right type.
6791   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
6792   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
6793
6794   int Ops[16];
6795   for (unsigned i = 0; i != 16; ++i)
6796     Ops[i] = i + Amt;
6797   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
6798   return DAG.getNode(ISD::BITCAST, dl, VT, T);
6799 }
6800
6801 // If this is a case we can't handle, return null and let the default
6802 // expansion code take care of it.  If we CAN select this case, and if it
6803 // selects to a single instruction, return Op.  Otherwise, if we can codegen
6804 // this case more efficiently than a constant pool load, lower it to the
6805 // sequence of ops that should be used.
6806 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
6807                                              SelectionDAG &DAG) const {
6808   SDLoc dl(Op);
6809   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6810   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
6811
6812   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
6813     // We first build an i32 vector, load it into a QPX register,
6814     // then convert it to a floating-point vector and compare it
6815     // to a zero vector to get the boolean result.
6816     MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
6817     int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
6818     MachinePointerInfo PtrInfo =
6819         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6820     EVT PtrVT = getPointerTy(DAG.getDataLayout());
6821     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6822
6823     assert(BVN->getNumOperands() == 4 &&
6824       "BUILD_VECTOR for v4i1 does not have 4 operands");
6825
6826     bool IsConst = true;
6827     for (unsigned i = 0; i < 4; ++i) {
6828       if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
6829       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
6830         IsConst = false;
6831         break;
6832       }
6833     }
6834
6835     if (IsConst) {
6836       Constant *One =
6837         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
6838       Constant *NegOne =
6839         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
6840
6841       SmallVector<Constant*, 4> CV(4, NegOne);
6842       for (unsigned i = 0; i < 4; ++i) {
6843         if (BVN->getOperand(i).getOpcode() == ISD::UNDEF)
6844           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
6845         else if (isNullConstant(BVN->getOperand(i)))
6846           continue;
6847         else
6848           CV[i] = One;
6849       }
6850
6851       Constant *CP = ConstantVector::get(CV);
6852       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
6853                                           16 /* alignment */);
6854
6855       SmallVector<SDValue, 2> Ops;
6856       Ops.push_back(DAG.getEntryNode());
6857       Ops.push_back(CPIdx);
6858
6859       SmallVector<EVT, 2> ValueVTs;
6860       ValueVTs.push_back(MVT::v4i1);
6861       ValueVTs.push_back(MVT::Other); // chain
6862       SDVTList VTs = DAG.getVTList(ValueVTs);
6863
6864       return DAG.getMemIntrinsicNode(
6865           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
6866           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
6867     }
6868
6869     SmallVector<SDValue, 4> Stores;
6870     for (unsigned i = 0; i < 4; ++i) {
6871       if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
6872
6873       unsigned Offset = 4*i;
6874       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
6875       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
6876
6877       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
6878       if (StoreSize > 4) {
6879         Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
6880                                            BVN->getOperand(i), Idx,
6881                                            PtrInfo.getWithOffset(Offset),
6882                                            MVT::i32, false, false, 0));
6883       } else {
6884         SDValue StoreValue = BVN->getOperand(i);
6885         if (StoreSize < 4)
6886           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
6887
6888         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
6889                                       StoreValue, Idx,
6890                                       PtrInfo.getWithOffset(Offset),
6891                                       false, false, 0));
6892       }
6893     }
6894
6895     SDValue StoreChain;
6896     if (!Stores.empty())
6897       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6898     else
6899       StoreChain = DAG.getEntryNode();
6900
6901     // Now load from v4i32 into the QPX register; this will extend it to
6902     // v4i64 but not yet convert it to a floating point. Nevertheless, this
6903     // is typed as v4f64 because the QPX register integer states are not
6904     // explicitly represented.
6905
6906     SmallVector<SDValue, 2> Ops;
6907     Ops.push_back(StoreChain);
6908     Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32));
6909     Ops.push_back(FIdx);
6910
6911     SmallVector<EVT, 2> ValueVTs;
6912     ValueVTs.push_back(MVT::v4f64);
6913     ValueVTs.push_back(MVT::Other); // chain
6914     SDVTList VTs = DAG.getVTList(ValueVTs);
6915
6916     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
6917       dl, VTs, Ops, MVT::v4i32, PtrInfo);
6918     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
6919       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
6920       LoadedVect);
6921
6922     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::f64);
6923     FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
6924                           FPZeros, FPZeros, FPZeros, FPZeros);
6925
6926     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
6927   }
6928
6929   // All other QPX vectors are handled by generic code.
6930   if (Subtarget.hasQPX())
6931     return SDValue();
6932
6933   // Check if this is a splat of a constant value.
6934   APInt APSplatBits, APSplatUndef;
6935   unsigned SplatBitSize;
6936   bool HasAnyUndefs;
6937   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
6938                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
6939       SplatBitSize > 32)
6940     return SDValue();
6941
6942   unsigned SplatBits = APSplatBits.getZExtValue();
6943   unsigned SplatUndef = APSplatUndef.getZExtValue();
6944   unsigned SplatSize = SplatBitSize / 8;
6945
6946   // First, handle single instruction cases.
6947
6948   // All zeros?
6949   if (SplatBits == 0) {
6950     // Canonicalize all zero vectors to be v4i32.
6951     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
6952       SDValue Z = DAG.getConstant(0, dl, MVT::i32);
6953       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
6954       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
6955     }
6956     return Op;
6957   }
6958
6959   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
6960   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
6961                     (32-SplatBitSize));
6962   if (SextVal >= -16 && SextVal <= 15)
6963     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
6964
6965   // Two instruction sequences.
6966
6967   // If this value is in the range [-32,30] and is even, use:
6968   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
6969   // If this value is in the range [17,31] and is odd, use:
6970   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
6971   // If this value is in the range [-31,-17] and is odd, use:
6972   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
6973   // Note the last two are three-instruction sequences.
6974   if (SextVal >= -32 && SextVal <= 31) {
6975     // To avoid having these optimizations undone by constant folding,
6976     // we convert to a pseudo that will be expanded later into one of
6977     // the above forms.
6978     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
6979     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
6980               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
6981     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
6982     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
6983     if (VT == Op.getValueType())
6984       return RetVal;
6985     else
6986       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
6987   }
6988
6989   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
6990   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
6991   // for fneg/fabs.
6992   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
6993     // Make -1 and vspltisw -1:
6994     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
6995
6996     // Make the VSLW intrinsic, computing 0x8000_0000.
6997     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
6998                                    OnesV, DAG, dl);
6999
7000     // xor by OnesV to invert it.
7001     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
7002     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7003   }
7004
7005   // Check to see if this is a wide variety of vsplti*, binop self cases.
7006   static const signed char SplatCsts[] = {
7007     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7008     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7009   };
7010
7011   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7012     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7013     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
7014     int i = SplatCsts[idx];
7015
7016     // Figure out what shift amount will be used by altivec if shifted by i in
7017     // this splat size.
7018     unsigned TypeShiftAmt = i & (SplatBitSize-1);
7019
7020     // vsplti + shl self.
7021     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
7022       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7023       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7024         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
7025         Intrinsic::ppc_altivec_vslw
7026       };
7027       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7028       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7029     }
7030
7031     // vsplti + srl self.
7032     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7033       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7034       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7035         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
7036         Intrinsic::ppc_altivec_vsrw
7037       };
7038       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7039       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7040     }
7041
7042     // vsplti + sra self.
7043     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7044       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7045       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7046         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7047         Intrinsic::ppc_altivec_vsraw
7048       };
7049       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7050       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7051     }
7052
7053     // vsplti + rol self.
7054     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7055                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7056       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7057       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7058         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7059         Intrinsic::ppc_altivec_vrlw
7060       };
7061       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7062       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7063     }
7064
7065     // t = vsplti c, result = vsldoi t, t, 1
7066     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7067       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7068       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7069       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7070     }
7071     // t = vsplti c, result = vsldoi t, t, 2
7072     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7073       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7074       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7075       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7076     }
7077     // t = vsplti c, result = vsldoi t, t, 3
7078     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7079       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7080       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7081       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7082     }
7083   }
7084
7085   return SDValue();
7086 }
7087
7088 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7089 /// the specified operations to build the shuffle.
7090 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7091                                       SDValue RHS, SelectionDAG &DAG,
7092                                       SDLoc dl) {
7093   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7094   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7095   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7096
7097   enum {
7098     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7099     OP_VMRGHW,
7100     OP_VMRGLW,
7101     OP_VSPLTISW0,
7102     OP_VSPLTISW1,
7103     OP_VSPLTISW2,
7104     OP_VSPLTISW3,
7105     OP_VSLDOI4,
7106     OP_VSLDOI8,
7107     OP_VSLDOI12
7108   };
7109
7110   if (OpNum == OP_COPY) {
7111     if (LHSID == (1*9+2)*9+3) return LHS;
7112     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7113     return RHS;
7114   }
7115
7116   SDValue OpLHS, OpRHS;
7117   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7118   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7119
7120   int ShufIdxs[16];
7121   switch (OpNum) {
7122   default: llvm_unreachable("Unknown i32 permute!");
7123   case OP_VMRGHW:
7124     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
7125     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7126     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
7127     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7128     break;
7129   case OP_VMRGLW:
7130     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7131     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7132     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7133     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7134     break;
7135   case OP_VSPLTISW0:
7136     for (unsigned i = 0; i != 16; ++i)
7137       ShufIdxs[i] = (i&3)+0;
7138     break;
7139   case OP_VSPLTISW1:
7140     for (unsigned i = 0; i != 16; ++i)
7141       ShufIdxs[i] = (i&3)+4;
7142     break;
7143   case OP_VSPLTISW2:
7144     for (unsigned i = 0; i != 16; ++i)
7145       ShufIdxs[i] = (i&3)+8;
7146     break;
7147   case OP_VSPLTISW3:
7148     for (unsigned i = 0; i != 16; ++i)
7149       ShufIdxs[i] = (i&3)+12;
7150     break;
7151   case OP_VSLDOI4:
7152     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
7153   case OP_VSLDOI8:
7154     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
7155   case OP_VSLDOI12:
7156     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
7157   }
7158   EVT VT = OpLHS.getValueType();
7159   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
7160   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
7161   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
7162   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7163 }
7164
7165 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
7166 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
7167 /// return the code it can be lowered into.  Worst case, it can always be
7168 /// lowered into a vperm.
7169 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
7170                                                SelectionDAG &DAG) const {
7171   SDLoc dl(Op);
7172   SDValue V1 = Op.getOperand(0);
7173   SDValue V2 = Op.getOperand(1);
7174   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7175   EVT VT = Op.getValueType();
7176   bool isLittleEndian = Subtarget.isLittleEndian();
7177
7178   if (Subtarget.hasQPX()) {
7179     if (VT.getVectorNumElements() != 4)
7180       return SDValue();
7181
7182     if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
7183
7184     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
7185     if (AlignIdx != -1) {
7186       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
7187                          DAG.getConstant(AlignIdx, dl, MVT::i32));
7188     } else if (SVOp->isSplat()) {
7189       int SplatIdx = SVOp->getSplatIndex();
7190       if (SplatIdx >= 4) {
7191         std::swap(V1, V2);
7192         SplatIdx -= 4;
7193       }
7194
7195       // FIXME: If SplatIdx == 0 and the input came from a load, then there is
7196       // nothing to do.
7197
7198       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
7199                          DAG.getConstant(SplatIdx, dl, MVT::i32));
7200     }
7201
7202     // Lower this into a qvgpci/qvfperm pair.
7203
7204     // Compute the qvgpci literal
7205     unsigned idx = 0;
7206     for (unsigned i = 0; i < 4; ++i) {
7207       int m = SVOp->getMaskElt(i);
7208       unsigned mm = m >= 0 ? (unsigned) m : i;
7209       idx |= mm << (3-i)*3;
7210     }
7211
7212     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
7213                              DAG.getConstant(idx, dl, MVT::i32));
7214     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
7215   }
7216
7217   // Cases that are handled by instructions that take permute immediates
7218   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
7219   // selected by the instruction selector.
7220   if (V2.getOpcode() == ISD::UNDEF) {
7221     if (PPC::isSplatShuffleMask(SVOp, 1) ||
7222         PPC::isSplatShuffleMask(SVOp, 2) ||
7223         PPC::isSplatShuffleMask(SVOp, 4) ||
7224         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
7225         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
7226         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
7227         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
7228         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
7229         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
7230         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
7231         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
7232         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
7233         (Subtarget.hasP8Altivec() && (
7234          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
7235          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
7236          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
7237       return Op;
7238     }
7239   }
7240
7241   // Altivec has a variety of "shuffle immediates" that take two vector inputs
7242   // and produce a fixed permutation.  If any of these match, do not lower to
7243   // VPERM.
7244   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
7245   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7246       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7247       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
7248       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7249       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7250       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7251       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7252       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7253       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7254       (Subtarget.hasP8Altivec() && (
7255        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7256        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
7257        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
7258     return Op;
7259
7260   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
7261   // perfect shuffle table to emit an optimal matching sequence.
7262   ArrayRef<int> PermMask = SVOp->getMask();
7263
7264   unsigned PFIndexes[4];
7265   bool isFourElementShuffle = true;
7266   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
7267     unsigned EltNo = 8;   // Start out undef.
7268     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
7269       if (PermMask[i*4+j] < 0)
7270         continue;   // Undef, ignore it.
7271
7272       unsigned ByteSource = PermMask[i*4+j];
7273       if ((ByteSource & 3) != j) {
7274         isFourElementShuffle = false;
7275         break;
7276       }
7277
7278       if (EltNo == 8) {
7279         EltNo = ByteSource/4;
7280       } else if (EltNo != ByteSource/4) {
7281         isFourElementShuffle = false;
7282         break;
7283       }
7284     }
7285     PFIndexes[i] = EltNo;
7286   }
7287
7288   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
7289   // perfect shuffle vector to determine if it is cost effective to do this as
7290   // discrete instructions, or whether we should use a vperm.
7291   // For now, we skip this for little endian until such time as we have a
7292   // little-endian perfect shuffle table.
7293   if (isFourElementShuffle && !isLittleEndian) {
7294     // Compute the index in the perfect shuffle table.
7295     unsigned PFTableIndex =
7296       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7297
7298     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7299     unsigned Cost  = (PFEntry >> 30);
7300
7301     // Determining when to avoid vperm is tricky.  Many things affect the cost
7302     // of vperm, particularly how many times the perm mask needs to be computed.
7303     // For example, if the perm mask can be hoisted out of a loop or is already
7304     // used (perhaps because there are multiple permutes with the same shuffle
7305     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
7306     // the loop requires an extra register.
7307     //
7308     // As a compromise, we only emit discrete instructions if the shuffle can be
7309     // generated in 3 or fewer operations.  When we have loop information
7310     // available, if this block is within a loop, we should avoid using vperm
7311     // for 3-operation perms and use a constant pool load instead.
7312     if (Cost < 3)
7313       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7314   }
7315
7316   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
7317   // vector that will get spilled to the constant pool.
7318   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
7319
7320   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
7321   // that it is in input element units, not in bytes.  Convert now.
7322
7323   // For little endian, the order of the input vectors is reversed, and
7324   // the permutation mask is complemented with respect to 31.  This is
7325   // necessary to produce proper semantics with the big-endian-biased vperm
7326   // instruction.
7327   EVT EltVT = V1.getValueType().getVectorElementType();
7328   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
7329
7330   SmallVector<SDValue, 16> ResultMask;
7331   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
7332     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
7333
7334     for (unsigned j = 0; j != BytesPerElement; ++j)
7335       if (isLittleEndian)
7336         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
7337                                              dl, MVT::i32));
7338       else
7339         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
7340                                              MVT::i32));
7341   }
7342
7343   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
7344                                   ResultMask);
7345   if (isLittleEndian)
7346     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7347                        V2, V1, VPermMask);
7348   else
7349     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7350                        V1, V2, VPermMask);
7351 }
7352
7353 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
7354 /// vector comparison.  If it is, return true and fill in Opc/isDot with
7355 /// information about the intrinsic.
7356 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
7357                                  bool &isDot, const PPCSubtarget &Subtarget) {
7358   unsigned IntrinsicID =
7359     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
7360   CompareOpc = -1;
7361   isDot = false;
7362   switch (IntrinsicID) {
7363   default: return false;
7364     // Comparison predicates.
7365   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
7366   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
7367   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
7368   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
7369   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
7370   case Intrinsic::ppc_altivec_vcmpequd_p:
7371     if (Subtarget.hasP8Altivec()) {
7372       CompareOpc = 199;
7373       isDot = 1;
7374     } else
7375       return false;
7376
7377     break;
7378   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
7379   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
7380   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
7381   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
7382   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
7383   case Intrinsic::ppc_altivec_vcmpgtsd_p:
7384     if (Subtarget.hasP8Altivec()) {
7385       CompareOpc = 967;
7386       isDot = 1;
7387     } else
7388       return false;
7389
7390     break;
7391   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
7392   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
7393   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
7394   case Intrinsic::ppc_altivec_vcmpgtud_p:
7395     if (Subtarget.hasP8Altivec()) {
7396       CompareOpc = 711;
7397       isDot = 1;
7398     } else
7399       return false;
7400
7401     break;
7402     // VSX predicate comparisons use the same infrastructure
7403   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
7404   case Intrinsic::ppc_vsx_xvcmpgedp_p:
7405   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
7406   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
7407   case Intrinsic::ppc_vsx_xvcmpgesp_p:
7408   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
7409     if (Subtarget.hasVSX()) {
7410       switch (IntrinsicID) {
7411       case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break;
7412       case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break;
7413       case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break;
7414       case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break;
7415       case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break;
7416       case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break;
7417       }
7418       isDot = 1;
7419     }
7420     else
7421       return false;
7422
7423     break;
7424
7425     // Normal Comparisons.
7426   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
7427   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
7428   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
7429   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
7430   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
7431   case Intrinsic::ppc_altivec_vcmpequd:
7432     if (Subtarget.hasP8Altivec()) {
7433       CompareOpc = 199;
7434       isDot = 0;
7435     } else
7436       return false;
7437
7438     break;
7439   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
7440   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
7441   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
7442   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
7443   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
7444   case Intrinsic::ppc_altivec_vcmpgtsd:
7445     if (Subtarget.hasP8Altivec()) {
7446       CompareOpc = 967;
7447       isDot = 0;
7448     } else
7449       return false;
7450
7451     break;
7452   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
7453   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
7454   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
7455   case Intrinsic::ppc_altivec_vcmpgtud:
7456     if (Subtarget.hasP8Altivec()) {
7457       CompareOpc = 711;
7458       isDot = 0;
7459     } else
7460       return false;
7461
7462     break;
7463   }
7464   return true;
7465 }
7466
7467 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
7468 /// lower, do it, otherwise return null.
7469 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
7470                                                    SelectionDAG &DAG) const {
7471   // If this is a lowered altivec predicate compare, CompareOpc is set to the
7472   // opcode number of the comparison.
7473   SDLoc dl(Op);
7474   int CompareOpc;
7475   bool isDot;
7476   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
7477     return SDValue();    // Don't custom lower most intrinsics.
7478
7479   // If this is a non-dot comparison, make the VCMP node and we are done.
7480   if (!isDot) {
7481     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
7482                               Op.getOperand(1), Op.getOperand(2),
7483                               DAG.getConstant(CompareOpc, dl, MVT::i32));
7484     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
7485   }
7486
7487   // Create the PPCISD altivec 'dot' comparison node.
7488   SDValue Ops[] = {
7489     Op.getOperand(2),  // LHS
7490     Op.getOperand(3),  // RHS
7491     DAG.getConstant(CompareOpc, dl, MVT::i32)
7492   };
7493   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
7494   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
7495
7496   // Now that we have the comparison, emit a copy from the CR to a GPR.
7497   // This is flagged to the above dot comparison.
7498   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
7499                                 DAG.getRegister(PPC::CR6, MVT::i32),
7500                                 CompNode.getValue(1));
7501
7502   // Unpack the result based on how the target uses it.
7503   unsigned BitNo;   // Bit # of CR6.
7504   bool InvertBit;   // Invert result?
7505   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
7506   default:  // Can't happen, don't crash on invalid number though.
7507   case 0:   // Return the value of the EQ bit of CR6.
7508     BitNo = 0; InvertBit = false;
7509     break;
7510   case 1:   // Return the inverted value of the EQ bit of CR6.
7511     BitNo = 0; InvertBit = true;
7512     break;
7513   case 2:   // Return the value of the LT bit of CR6.
7514     BitNo = 2; InvertBit = false;
7515     break;
7516   case 3:   // Return the inverted value of the LT bit of CR6.
7517     BitNo = 2; InvertBit = true;
7518     break;
7519   }
7520
7521   // Shift the bit into the low position.
7522   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
7523                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
7524   // Isolate the bit.
7525   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
7526                       DAG.getConstant(1, dl, MVT::i32));
7527
7528   // If we are supposed to, toggle the bit.
7529   if (InvertBit)
7530     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
7531                         DAG.getConstant(1, dl, MVT::i32));
7532   return Flags;
7533 }
7534
7535 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
7536                                                   SelectionDAG &DAG) const {
7537   SDLoc dl(Op);
7538   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
7539   // instructions), but for smaller types, we need to first extend up to v2i32
7540   // before doing going farther.
7541   if (Op.getValueType() == MVT::v2i64) {
7542     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
7543     if (ExtVT != MVT::v2i32) {
7544       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
7545       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
7546                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
7547                                         ExtVT.getVectorElementType(), 4)));
7548       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
7549       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
7550                        DAG.getValueType(MVT::v2i32));
7551     }
7552
7553     return Op;
7554   }
7555
7556   return SDValue();
7557 }
7558
7559 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
7560                                                    SelectionDAG &DAG) const {
7561   SDLoc dl(Op);
7562   // Create a stack slot that is 16-byte aligned.
7563   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7564   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7565   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7566   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7567
7568   // Store the input value into Value#0 of the stack slot.
7569   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
7570                                Op.getOperand(0), FIdx, MachinePointerInfo(),
7571                                false, false, 0);
7572   // Load it out.
7573   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
7574                      false, false, false, 0);
7575 }
7576
7577 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7578                                                    SelectionDAG &DAG) const {
7579   SDLoc dl(Op);
7580   SDNode *N = Op.getNode();
7581
7582   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
7583          "Unknown extract_vector_elt type");
7584
7585   SDValue Value = N->getOperand(0);
7586
7587   // The first part of this is like the store lowering except that we don't
7588   // need to track the chain.
7589
7590   // The values are now known to be -1 (false) or 1 (true). To convert this
7591   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7592   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7593   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7594
7595   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
7596   // understand how to form the extending load.
7597   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64);
7598   FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
7599                         FPHalfs, FPHalfs, FPHalfs, FPHalfs);
7600
7601   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7602
7603   // Now convert to an integer and store.
7604   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7605     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
7606     Value);
7607
7608   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7609   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7610   MachinePointerInfo PtrInfo =
7611       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7612   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7613   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7614
7615   SDValue StoreChain = DAG.getEntryNode();
7616   SmallVector<SDValue, 2> Ops;
7617   Ops.push_back(StoreChain);
7618   Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32));
7619   Ops.push_back(Value);
7620   Ops.push_back(FIdx);
7621
7622   SmallVector<EVT, 2> ValueVTs;
7623   ValueVTs.push_back(MVT::Other); // chain
7624   SDVTList VTs = DAG.getVTList(ValueVTs);
7625
7626   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
7627     dl, VTs, Ops, MVT::v4i32, PtrInfo);
7628
7629   // Extract the value requested.
7630   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7631   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7632   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7633
7634   SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
7635                                PtrInfo.getWithOffset(Offset),
7636                                false, false, false, 0);
7637
7638   if (!Subtarget.useCRBits())
7639     return IntVal;
7640
7641   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
7642 }
7643
7644 /// Lowering for QPX v4i1 loads
7645 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
7646                                            SelectionDAG &DAG) const {
7647   SDLoc dl(Op);
7648   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
7649   SDValue LoadChain = LN->getChain();
7650   SDValue BasePtr = LN->getBasePtr();
7651
7652   if (Op.getValueType() == MVT::v4f64 ||
7653       Op.getValueType() == MVT::v4f32) {
7654     EVT MemVT = LN->getMemoryVT();
7655     unsigned Alignment = LN->getAlignment();
7656
7657     // If this load is properly aligned, then it is legal.
7658     if (Alignment >= MemVT.getStoreSize())
7659       return Op;
7660
7661     EVT ScalarVT = Op.getValueType().getScalarType(),
7662         ScalarMemVT = MemVT.getScalarType();
7663     unsigned Stride = ScalarMemVT.getStoreSize();
7664
7665     SmallVector<SDValue, 8> Vals, LoadChains;
7666     for (unsigned Idx = 0; Idx < 4; ++Idx) {
7667       SDValue Load;
7668       if (ScalarVT != ScalarMemVT)
7669         Load =
7670           DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
7671                          BasePtr,
7672                          LN->getPointerInfo().getWithOffset(Idx*Stride),
7673                          ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(),
7674                          LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7675                          LN->getAAInfo());
7676       else
7677         Load =
7678           DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
7679                        LN->getPointerInfo().getWithOffset(Idx*Stride),
7680                        LN->isVolatile(), LN->isNonTemporal(),
7681                        LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7682                        LN->getAAInfo());
7683
7684       if (Idx == 0 && LN->isIndexed()) {
7685         assert(LN->getAddressingMode() == ISD::PRE_INC &&
7686                "Unknown addressing mode on vector load");
7687         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
7688                                   LN->getAddressingMode());
7689       }
7690
7691       Vals.push_back(Load);
7692       LoadChains.push_back(Load.getValue(1));
7693
7694       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7695                             DAG.getConstant(Stride, dl,
7696                                             BasePtr.getValueType()));
7697     }
7698
7699     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7700     SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
7701                                 Op.getValueType(), Vals);
7702
7703     if (LN->isIndexed()) {
7704       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
7705       return DAG.getMergeValues(RetOps, dl);
7706     }
7707
7708     SDValue RetOps[] = { Value, TF };
7709     return DAG.getMergeValues(RetOps, dl);
7710   }
7711
7712   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
7713   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
7714
7715   // To lower v4i1 from a byte array, we load the byte elements of the
7716   // vector and then reuse the BUILD_VECTOR logic.
7717
7718   SmallVector<SDValue, 4> VectElmts, VectElmtChains;
7719   for (unsigned i = 0; i < 4; ++i) {
7720     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
7721     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
7722
7723     VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD,
7724                         dl, MVT::i32, LoadChain, Idx,
7725                         LN->getPointerInfo().getWithOffset(i),
7726                         MVT::i8 /* memory type */,
7727                         LN->isVolatile(), LN->isNonTemporal(),
7728                         LN->isInvariant(),
7729                         1 /* alignment */, LN->getAAInfo()));
7730     VectElmtChains.push_back(VectElmts[i].getValue(1));
7731   }
7732
7733   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
7734   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts);
7735
7736   SDValue RVals[] = { Value, LoadChain };
7737   return DAG.getMergeValues(RVals, dl);
7738 }
7739
7740 /// Lowering for QPX v4i1 stores
7741 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
7742                                             SelectionDAG &DAG) const {
7743   SDLoc dl(Op);
7744   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
7745   SDValue StoreChain = SN->getChain();
7746   SDValue BasePtr = SN->getBasePtr();
7747   SDValue Value = SN->getValue();
7748
7749   if (Value.getValueType() == MVT::v4f64 ||
7750       Value.getValueType() == MVT::v4f32) {
7751     EVT MemVT = SN->getMemoryVT();
7752     unsigned Alignment = SN->getAlignment();
7753
7754     // If this store is properly aligned, then it is legal.
7755     if (Alignment >= MemVT.getStoreSize())
7756       return Op;
7757
7758     EVT ScalarVT = Value.getValueType().getScalarType(),
7759         ScalarMemVT = MemVT.getScalarType();
7760     unsigned Stride = ScalarMemVT.getStoreSize();
7761
7762     SmallVector<SDValue, 8> Stores;
7763     for (unsigned Idx = 0; Idx < 4; ++Idx) {
7764       SDValue Ex = DAG.getNode(
7765           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
7766           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
7767       SDValue Store;
7768       if (ScalarVT != ScalarMemVT)
7769         Store =
7770           DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
7771                             SN->getPointerInfo().getWithOffset(Idx*Stride),
7772                             ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(),
7773                             MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
7774       else
7775         Store =
7776           DAG.getStore(StoreChain, dl, Ex, BasePtr,
7777                        SN->getPointerInfo().getWithOffset(Idx*Stride),
7778                        SN->isVolatile(), SN->isNonTemporal(),
7779                        MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
7780
7781       if (Idx == 0 && SN->isIndexed()) {
7782         assert(SN->getAddressingMode() == ISD::PRE_INC &&
7783                "Unknown addressing mode on vector store");
7784         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
7785                                     SN->getAddressingMode());
7786       }
7787
7788       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7789                             DAG.getConstant(Stride, dl,
7790                                             BasePtr.getValueType()));
7791       Stores.push_back(Store);
7792     }
7793
7794     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7795
7796     if (SN->isIndexed()) {
7797       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
7798       return DAG.getMergeValues(RetOps, dl);
7799     }
7800
7801     return TF;
7802   }
7803
7804   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
7805   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
7806
7807   // The values are now known to be -1 (false) or 1 (true). To convert this
7808   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7809   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7810   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7811
7812   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
7813   // understand how to form the extending load.
7814   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64);
7815   FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
7816                         FPHalfs, FPHalfs, FPHalfs, FPHalfs);
7817
7818   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7819
7820   // Now convert to an integer and store.
7821   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7822     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
7823     Value);
7824
7825   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7826   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7827   MachinePointerInfo PtrInfo =
7828       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7829   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7830   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7831
7832   SmallVector<SDValue, 2> Ops;
7833   Ops.push_back(StoreChain);
7834   Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32));
7835   Ops.push_back(Value);
7836   Ops.push_back(FIdx);
7837
7838   SmallVector<EVT, 2> ValueVTs;
7839   ValueVTs.push_back(MVT::Other); // chain
7840   SDVTList VTs = DAG.getVTList(ValueVTs);
7841
7842   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
7843     dl, VTs, Ops, MVT::v4i32, PtrInfo);
7844
7845   // Move data into the byte array.
7846   SmallVector<SDValue, 4> Loads, LoadChains;
7847   for (unsigned i = 0; i < 4; ++i) {
7848     unsigned Offset = 4*i;
7849     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7850     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7851
7852     Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
7853                                    PtrInfo.getWithOffset(Offset),
7854                                    false, false, false, 0));
7855     LoadChains.push_back(Loads[i].getValue(1));
7856   }
7857
7858   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7859
7860   SmallVector<SDValue, 4> Stores;
7861   for (unsigned i = 0; i < 4; ++i) {
7862     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
7863     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
7864
7865     Stores.push_back(DAG.getTruncStore(
7866         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
7867         MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(),
7868         1 /* alignment */, SN->getAAInfo()));
7869   }
7870
7871   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7872
7873   return StoreChain;
7874 }
7875
7876 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
7877   SDLoc dl(Op);
7878   if (Op.getValueType() == MVT::v4i32) {
7879     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7880
7881     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
7882     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
7883
7884     SDValue RHSSwap =   // = vrlw RHS, 16
7885       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
7886
7887     // Shrinkify inputs to v8i16.
7888     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
7889     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
7890     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
7891
7892     // Low parts multiplied together, generating 32-bit results (we ignore the
7893     // top parts).
7894     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
7895                                         LHS, RHS, DAG, dl, MVT::v4i32);
7896
7897     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
7898                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
7899     // Shift the high parts up 16 bits.
7900     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
7901                               Neg16, DAG, dl);
7902     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
7903   } else if (Op.getValueType() == MVT::v8i16) {
7904     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7905
7906     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
7907
7908     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
7909                             LHS, RHS, Zero, DAG, dl);
7910   } else if (Op.getValueType() == MVT::v16i8) {
7911     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7912     bool isLittleEndian = Subtarget.isLittleEndian();
7913
7914     // Multiply the even 8-bit parts, producing 16-bit sums.
7915     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
7916                                            LHS, RHS, DAG, dl, MVT::v8i16);
7917     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
7918
7919     // Multiply the odd 8-bit parts, producing 16-bit sums.
7920     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
7921                                           LHS, RHS, DAG, dl, MVT::v8i16);
7922     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
7923
7924     // Merge the results together.  Because vmuleub and vmuloub are
7925     // instructions with a big-endian bias, we must reverse the
7926     // element numbering and reverse the meaning of "odd" and "even"
7927     // when generating little endian code.
7928     int Ops[16];
7929     for (unsigned i = 0; i != 8; ++i) {
7930       if (isLittleEndian) {
7931         Ops[i*2  ] = 2*i;
7932         Ops[i*2+1] = 2*i+16;
7933       } else {
7934         Ops[i*2  ] = 2*i+1;
7935         Ops[i*2+1] = 2*i+1+16;
7936       }
7937     }
7938     if (isLittleEndian)
7939       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
7940     else
7941       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
7942   } else {
7943     llvm_unreachable("Unknown mul to lower!");
7944   }
7945 }
7946
7947 /// LowerOperation - Provide custom lowering hooks for some operations.
7948 ///
7949 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7950   switch (Op.getOpcode()) {
7951   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
7952   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7953   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7954   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7955   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7956   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7957   case ISD::SETCC:              return LowerSETCC(Op, DAG);
7958   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
7959   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
7960   case ISD::VASTART:
7961     return LowerVASTART(Op, DAG, Subtarget);
7962
7963   case ISD::VAARG:
7964     return LowerVAARG(Op, DAG, Subtarget);
7965
7966   case ISD::VACOPY:
7967     return LowerVACOPY(Op, DAG, Subtarget);
7968
7969   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, Subtarget);
7970   case ISD::DYNAMIC_STACKALLOC:
7971     return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
7972   case ISD::GET_DYNAMIC_AREA_OFFSET: return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG, Subtarget);
7973
7974   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
7975   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
7976
7977   case ISD::LOAD:               return LowerLOAD(Op, DAG);
7978   case ISD::STORE:              return LowerSTORE(Op, DAG);
7979   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
7980   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
7981   case ISD::FP_TO_UINT:
7982   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
7983                                                       SDLoc(Op));
7984   case ISD::UINT_TO_FP:
7985   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
7986   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7987
7988   // Lower 64-bit shifts.
7989   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
7990   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
7991   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
7992
7993   // Vector-related lowering.
7994   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7995   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7996   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7997   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7998   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
7999   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8000   case ISD::MUL:                return LowerMUL(Op, DAG);
8001
8002   // For counter-based loop handling.
8003   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
8004
8005   // Frame & Return address.
8006   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8007   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8008   }
8009 }
8010
8011 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
8012                                            SmallVectorImpl<SDValue>&Results,
8013                                            SelectionDAG &DAG) const {
8014   SDLoc dl(N);
8015   switch (N->getOpcode()) {
8016   default:
8017     llvm_unreachable("Do not know how to custom type legalize this operation!");
8018   case ISD::READCYCLECOUNTER: {
8019     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8020     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
8021
8022     Results.push_back(RTB);
8023     Results.push_back(RTB.getValue(1));
8024     Results.push_back(RTB.getValue(2));
8025     break;
8026   }
8027   case ISD::INTRINSIC_W_CHAIN: {
8028     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
8029         Intrinsic::ppc_is_decremented_ctr_nonzero)
8030       break;
8031
8032     assert(N->getValueType(0) == MVT::i1 &&
8033            "Unexpected result type for CTR decrement intrinsic");
8034     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
8035                                  N->getValueType(0));
8036     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
8037     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
8038                                  N->getOperand(1));
8039
8040     Results.push_back(NewInt);
8041     Results.push_back(NewInt.getValue(1));
8042     break;
8043   }
8044   case ISD::VAARG: {
8045     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
8046       return;
8047
8048     EVT VT = N->getValueType(0);
8049
8050     if (VT == MVT::i64) {
8051       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
8052
8053       Results.push_back(NewNode);
8054       Results.push_back(NewNode.getValue(1));
8055     }
8056     return;
8057   }
8058   case ISD::FP_ROUND_INREG: {
8059     assert(N->getValueType(0) == MVT::ppcf128);
8060     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
8061     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8062                              MVT::f64, N->getOperand(0),
8063                              DAG.getIntPtrConstant(0, dl));
8064     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8065                              MVT::f64, N->getOperand(0),
8066                              DAG.getIntPtrConstant(1, dl));
8067
8068     // Add the two halves of the long double in round-to-zero mode.
8069     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8070
8071     // We know the low half is about to be thrown away, so just use something
8072     // convenient.
8073     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
8074                                 FPreg, FPreg));
8075     return;
8076   }
8077   case ISD::FP_TO_SINT:
8078   case ISD::FP_TO_UINT:
8079     // LowerFP_TO_INT() can only handle f32 and f64.
8080     if (N->getOperand(0).getValueType() == MVT::ppcf128)
8081       return;
8082     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
8083     return;
8084   }
8085 }
8086
8087 //===----------------------------------------------------------------------===//
8088 //  Other Lowering Code
8089 //===----------------------------------------------------------------------===//
8090
8091 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
8092   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8093   Function *Func = Intrinsic::getDeclaration(M, Id);
8094   return Builder.CreateCall(Func, {});
8095 }
8096
8097 // The mappings for emitLeading/TrailingFence is taken from
8098 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
8099 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
8100                                          AtomicOrdering Ord, bool IsStore,
8101                                          bool IsLoad) const {
8102   if (Ord == SequentiallyConsistent)
8103     return callIntrinsic(Builder, Intrinsic::ppc_sync);
8104   if (isAtLeastRelease(Ord))
8105     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8106   return nullptr;
8107 }
8108
8109 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
8110                                           AtomicOrdering Ord, bool IsStore,
8111                                           bool IsLoad) const {
8112   if (IsLoad && isAtLeastAcquire(Ord))
8113     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8114   // FIXME: this is too conservative, a dependent branch + isync is enough.
8115   // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
8116   // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
8117   // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
8118   return nullptr;
8119 }
8120
8121 MachineBasicBlock *
8122 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
8123                                     unsigned AtomicSize,
8124                                     unsigned BinOpcode) const {
8125   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8126   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8127
8128   auto LoadMnemonic = PPC::LDARX;
8129   auto StoreMnemonic = PPC::STDCX;
8130   switch (AtomicSize) {
8131   default:
8132     llvm_unreachable("Unexpected size of atomic entity");
8133   case 1:
8134     LoadMnemonic = PPC::LBARX;
8135     StoreMnemonic = PPC::STBCX;
8136     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8137     break;
8138   case 2:
8139     LoadMnemonic = PPC::LHARX;
8140     StoreMnemonic = PPC::STHCX;
8141     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8142     break;
8143   case 4:
8144     LoadMnemonic = PPC::LWARX;
8145     StoreMnemonic = PPC::STWCX;
8146     break;
8147   case 8:
8148     LoadMnemonic = PPC::LDARX;
8149     StoreMnemonic = PPC::STDCX;
8150     break;
8151   }
8152
8153   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8154   MachineFunction *F = BB->getParent();
8155   MachineFunction::iterator It = ++BB->getIterator();
8156
8157   unsigned dest = MI->getOperand(0).getReg();
8158   unsigned ptrA = MI->getOperand(1).getReg();
8159   unsigned ptrB = MI->getOperand(2).getReg();
8160   unsigned incr = MI->getOperand(3).getReg();
8161   DebugLoc dl = MI->getDebugLoc();
8162
8163   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8164   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8165   F->insert(It, loopMBB);
8166   F->insert(It, exitMBB);
8167   exitMBB->splice(exitMBB->begin(), BB,
8168                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8169   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8170
8171   MachineRegisterInfo &RegInfo = F->getRegInfo();
8172   unsigned TmpReg = (!BinOpcode) ? incr :
8173     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
8174                                            : &PPC::GPRCRegClass);
8175
8176   //  thisMBB:
8177   //   ...
8178   //   fallthrough --> loopMBB
8179   BB->addSuccessor(loopMBB);
8180
8181   //  loopMBB:
8182   //   l[wd]arx dest, ptr
8183   //   add r0, dest, incr
8184   //   st[wd]cx. r0, ptr
8185   //   bne- loopMBB
8186   //   fallthrough --> exitMBB
8187   BB = loopMBB;
8188   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8189     .addReg(ptrA).addReg(ptrB);
8190   if (BinOpcode)
8191     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
8192   BuildMI(BB, dl, TII->get(StoreMnemonic))
8193     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
8194   BuildMI(BB, dl, TII->get(PPC::BCC))
8195     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8196   BB->addSuccessor(loopMBB);
8197   BB->addSuccessor(exitMBB);
8198
8199   //  exitMBB:
8200   //   ...
8201   BB = exitMBB;
8202   return BB;
8203 }
8204
8205 MachineBasicBlock *
8206 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
8207                                             MachineBasicBlock *BB,
8208                                             bool is8bit,    // operation
8209                                             unsigned BinOpcode) const {
8210   // If we support part-word atomic mnemonics, just use them
8211   if (Subtarget.hasPartwordAtomics())
8212     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode);
8213
8214   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8215   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8216   // In 64 bit mode we have to use 64 bits for addresses, even though the
8217   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
8218   // registers without caring whether they're 32 or 64, but here we're
8219   // doing actual arithmetic on the addresses.
8220   bool is64bit = Subtarget.isPPC64();
8221   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8222
8223   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8224   MachineFunction *F = BB->getParent();
8225   MachineFunction::iterator It = ++BB->getIterator();
8226
8227   unsigned dest = MI->getOperand(0).getReg();
8228   unsigned ptrA = MI->getOperand(1).getReg();
8229   unsigned ptrB = MI->getOperand(2).getReg();
8230   unsigned incr = MI->getOperand(3).getReg();
8231   DebugLoc dl = MI->getDebugLoc();
8232
8233   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8234   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8235   F->insert(It, loopMBB);
8236   F->insert(It, exitMBB);
8237   exitMBB->splice(exitMBB->begin(), BB,
8238                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8239   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8240
8241   MachineRegisterInfo &RegInfo = F->getRegInfo();
8242   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8243                                           : &PPC::GPRCRegClass;
8244   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8245   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8246   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
8247   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
8248   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8249   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8250   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8251   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8252   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
8253   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8254   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8255   unsigned Ptr1Reg;
8256   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
8257
8258   //  thisMBB:
8259   //   ...
8260   //   fallthrough --> loopMBB
8261   BB->addSuccessor(loopMBB);
8262
8263   // The 4-byte load must be aligned, while a char or short may be
8264   // anywhere in the word.  Hence all this nasty bookkeeping code.
8265   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
8266   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8267   //   xori shift, shift1, 24 [16]
8268   //   rlwinm ptr, ptr1, 0, 0, 29
8269   //   slw incr2, incr, shift
8270   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8271   //   slw mask, mask2, shift
8272   //  loopMBB:
8273   //   lwarx tmpDest, ptr
8274   //   add tmp, tmpDest, incr2
8275   //   andc tmp2, tmpDest, mask
8276   //   and tmp3, tmp, mask
8277   //   or tmp4, tmp3, tmp2
8278   //   stwcx. tmp4, ptr
8279   //   bne- loopMBB
8280   //   fallthrough --> exitMBB
8281   //   srw dest, tmpDest, shift
8282   if (ptrA != ZeroReg) {
8283     Ptr1Reg = RegInfo.createVirtualRegister(RC);
8284     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
8285       .addReg(ptrA).addReg(ptrB);
8286   } else {
8287     Ptr1Reg = ptrB;
8288   }
8289   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
8290       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
8291   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
8292       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
8293   if (is64bit)
8294     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
8295       .addReg(Ptr1Reg).addImm(0).addImm(61);
8296   else
8297     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
8298       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
8299   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
8300       .addReg(incr).addReg(ShiftReg);
8301   if (is8bit)
8302     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
8303   else {
8304     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
8305     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
8306   }
8307   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
8308       .addReg(Mask2Reg).addReg(ShiftReg);
8309
8310   BB = loopMBB;
8311   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
8312     .addReg(ZeroReg).addReg(PtrReg);
8313   if (BinOpcode)
8314     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
8315       .addReg(Incr2Reg).addReg(TmpDestReg);
8316   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
8317     .addReg(TmpDestReg).addReg(MaskReg);
8318   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
8319     .addReg(TmpReg).addReg(MaskReg);
8320   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
8321     .addReg(Tmp3Reg).addReg(Tmp2Reg);
8322   BuildMI(BB, dl, TII->get(PPC::STWCX))
8323     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
8324   BuildMI(BB, dl, TII->get(PPC::BCC))
8325     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8326   BB->addSuccessor(loopMBB);
8327   BB->addSuccessor(exitMBB);
8328
8329   //  exitMBB:
8330   //   ...
8331   BB = exitMBB;
8332   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
8333     .addReg(ShiftReg);
8334   return BB;
8335 }
8336
8337 llvm::MachineBasicBlock*
8338 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
8339                                     MachineBasicBlock *MBB) const {
8340   DebugLoc DL = MI->getDebugLoc();
8341   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8342
8343   MachineFunction *MF = MBB->getParent();
8344   MachineRegisterInfo &MRI = MF->getRegInfo();
8345
8346   const BasicBlock *BB = MBB->getBasicBlock();
8347   MachineFunction::iterator I = ++MBB->getIterator();
8348
8349   // Memory Reference
8350   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
8351   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
8352
8353   unsigned DstReg = MI->getOperand(0).getReg();
8354   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
8355   assert(RC->hasType(MVT::i32) && "Invalid destination!");
8356   unsigned mainDstReg = MRI.createVirtualRegister(RC);
8357   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
8358
8359   MVT PVT = getPointerTy(MF->getDataLayout());
8360   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8361          "Invalid Pointer Size!");
8362   // For v = setjmp(buf), we generate
8363   //
8364   // thisMBB:
8365   //  SjLjSetup mainMBB
8366   //  bl mainMBB
8367   //  v_restore = 1
8368   //  b sinkMBB
8369   //
8370   // mainMBB:
8371   //  buf[LabelOffset] = LR
8372   //  v_main = 0
8373   //
8374   // sinkMBB:
8375   //  v = phi(main, restore)
8376   //
8377
8378   MachineBasicBlock *thisMBB = MBB;
8379   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
8380   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
8381   MF->insert(I, mainMBB);
8382   MF->insert(I, sinkMBB);
8383
8384   MachineInstrBuilder MIB;
8385
8386   // Transfer the remainder of BB and its successor edges to sinkMBB.
8387   sinkMBB->splice(sinkMBB->begin(), MBB,
8388                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8389   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
8390
8391   // Note that the structure of the jmp_buf used here is not compatible
8392   // with that used by libc, and is not designed to be. Specifically, it
8393   // stores only those 'reserved' registers that LLVM does not otherwise
8394   // understand how to spill. Also, by convention, by the time this
8395   // intrinsic is called, Clang has already stored the frame address in the
8396   // first slot of the buffer and stack address in the third. Following the
8397   // X86 target code, we'll store the jump address in the second slot. We also
8398   // need to save the TOC pointer (R2) to handle jumps between shared
8399   // libraries, and that will be stored in the fourth slot. The thread
8400   // identifier (R13) is not affected.
8401
8402   // thisMBB:
8403   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8404   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8405   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8406
8407   // Prepare IP either in reg.
8408   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
8409   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
8410   unsigned BufReg = MI->getOperand(1).getReg();
8411
8412   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
8413     setUsesTOCBasePtr(*MBB->getParent());
8414     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
8415             .addReg(PPC::X2)
8416             .addImm(TOCOffset)
8417             .addReg(BufReg);
8418     MIB.setMemRefs(MMOBegin, MMOEnd);
8419   }
8420
8421   // Naked functions never have a base pointer, and so we use r1. For all
8422   // other functions, this decision must be delayed until during PEI.
8423   unsigned BaseReg;
8424   if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
8425     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
8426   else
8427     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
8428
8429   MIB = BuildMI(*thisMBB, MI, DL,
8430                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
8431             .addReg(BaseReg)
8432             .addImm(BPOffset)
8433             .addReg(BufReg);
8434   MIB.setMemRefs(MMOBegin, MMOEnd);
8435
8436   // Setup
8437   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
8438   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
8439   MIB.addRegMask(TRI->getNoPreservedMask());
8440
8441   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
8442
8443   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
8444           .addMBB(mainMBB);
8445   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
8446
8447   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
8448   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
8449
8450   // mainMBB:
8451   //  mainDstReg = 0
8452   MIB =
8453       BuildMI(mainMBB, DL,
8454               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
8455
8456   // Store IP
8457   if (Subtarget.isPPC64()) {
8458     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
8459             .addReg(LabelReg)
8460             .addImm(LabelOffset)
8461             .addReg(BufReg);
8462   } else {
8463     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
8464             .addReg(LabelReg)
8465             .addImm(LabelOffset)
8466             .addReg(BufReg);
8467   }
8468
8469   MIB.setMemRefs(MMOBegin, MMOEnd);
8470
8471   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
8472   mainMBB->addSuccessor(sinkMBB);
8473
8474   // sinkMBB:
8475   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8476           TII->get(PPC::PHI), DstReg)
8477     .addReg(mainDstReg).addMBB(mainMBB)
8478     .addReg(restoreDstReg).addMBB(thisMBB);
8479
8480   MI->eraseFromParent();
8481   return sinkMBB;
8482 }
8483
8484 MachineBasicBlock *
8485 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
8486                                      MachineBasicBlock *MBB) const {
8487   DebugLoc DL = MI->getDebugLoc();
8488   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8489
8490   MachineFunction *MF = MBB->getParent();
8491   MachineRegisterInfo &MRI = MF->getRegInfo();
8492
8493   // Memory Reference
8494   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
8495   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
8496
8497   MVT PVT = getPointerTy(MF->getDataLayout());
8498   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8499          "Invalid Pointer Size!");
8500
8501   const TargetRegisterClass *RC =
8502     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
8503   unsigned Tmp = MRI.createVirtualRegister(RC);
8504   // Since FP is only updated here but NOT referenced, it's treated as GPR.
8505   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
8506   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
8507   unsigned BP =
8508       (PVT == MVT::i64)
8509           ? PPC::X30
8510           : (Subtarget.isSVR4ABI() &&
8511                      MF->getTarget().getRelocationModel() == Reloc::PIC_
8512                  ? PPC::R29
8513                  : PPC::R30);
8514
8515   MachineInstrBuilder MIB;
8516
8517   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8518   const int64_t SPOffset    = 2 * PVT.getStoreSize();
8519   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8520   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8521
8522   unsigned BufReg = MI->getOperand(0).getReg();
8523
8524   // Reload FP (the jumped-to function may not have had a
8525   // frame pointer, and if so, then its r31 will be restored
8526   // as necessary).
8527   if (PVT == MVT::i64) {
8528     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
8529             .addImm(0)
8530             .addReg(BufReg);
8531   } else {
8532     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
8533             .addImm(0)
8534             .addReg(BufReg);
8535   }
8536   MIB.setMemRefs(MMOBegin, MMOEnd);
8537
8538   // Reload IP
8539   if (PVT == MVT::i64) {
8540     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
8541             .addImm(LabelOffset)
8542             .addReg(BufReg);
8543   } else {
8544     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
8545             .addImm(LabelOffset)
8546             .addReg(BufReg);
8547   }
8548   MIB.setMemRefs(MMOBegin, MMOEnd);
8549
8550   // Reload SP
8551   if (PVT == MVT::i64) {
8552     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
8553             .addImm(SPOffset)
8554             .addReg(BufReg);
8555   } else {
8556     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
8557             .addImm(SPOffset)
8558             .addReg(BufReg);
8559   }
8560   MIB.setMemRefs(MMOBegin, MMOEnd);
8561
8562   // Reload BP
8563   if (PVT == MVT::i64) {
8564     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
8565             .addImm(BPOffset)
8566             .addReg(BufReg);
8567   } else {
8568     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
8569             .addImm(BPOffset)
8570             .addReg(BufReg);
8571   }
8572   MIB.setMemRefs(MMOBegin, MMOEnd);
8573
8574   // Reload TOC
8575   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
8576     setUsesTOCBasePtr(*MBB->getParent());
8577     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
8578             .addImm(TOCOffset)
8579             .addReg(BufReg);
8580
8581     MIB.setMemRefs(MMOBegin, MMOEnd);
8582   }
8583
8584   // Jump
8585   BuildMI(*MBB, MI, DL,
8586           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
8587   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
8588
8589   MI->eraseFromParent();
8590   return MBB;
8591 }
8592
8593 MachineBasicBlock *
8594 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8595                                                MachineBasicBlock *BB) const {
8596   if (MI->getOpcode() == TargetOpcode::STACKMAP ||
8597       MI->getOpcode() == TargetOpcode::PATCHPOINT) {
8598     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
8599         MI->getOpcode() == TargetOpcode::PATCHPOINT) {
8600       // Call lowering should have added an r2 operand to indicate a dependence
8601       // on the TOC base pointer value. It can't however, because there is no
8602       // way to mark the dependence as implicit there, and so the stackmap code
8603       // will confuse it with a regular operand. Instead, add the dependence
8604       // here.
8605       setUsesTOCBasePtr(*BB->getParent());
8606       MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
8607     }
8608
8609     return emitPatchPoint(MI, BB);
8610   }
8611
8612   if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
8613       MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
8614     return emitEHSjLjSetJmp(MI, BB);
8615   } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
8616              MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
8617     return emitEHSjLjLongJmp(MI, BB);
8618   }
8619
8620   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8621
8622   // To "insert" these instructions we actually have to insert their
8623   // control-flow patterns.
8624   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8625   MachineFunction::iterator It = ++BB->getIterator();
8626
8627   MachineFunction *F = BB->getParent();
8628
8629   if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8630                               MI->getOpcode() == PPC::SELECT_CC_I8 ||
8631                               MI->getOpcode() == PPC::SELECT_I4 ||
8632                               MI->getOpcode() == PPC::SELECT_I8)) {
8633     SmallVector<MachineOperand, 2> Cond;
8634     if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8635         MI->getOpcode() == PPC::SELECT_CC_I8)
8636       Cond.push_back(MI->getOperand(4));
8637     else
8638       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
8639     Cond.push_back(MI->getOperand(1));
8640
8641     DebugLoc dl = MI->getDebugLoc();
8642     TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
8643                       Cond, MI->getOperand(2).getReg(),
8644                       MI->getOperand(3).getReg());
8645   } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8646              MI->getOpcode() == PPC::SELECT_CC_I8 ||
8647              MI->getOpcode() == PPC::SELECT_CC_F4 ||
8648              MI->getOpcode() == PPC::SELECT_CC_F8 ||
8649              MI->getOpcode() == PPC::SELECT_CC_QFRC ||
8650              MI->getOpcode() == PPC::SELECT_CC_QSRC ||
8651              MI->getOpcode() == PPC::SELECT_CC_QBRC ||
8652              MI->getOpcode() == PPC::SELECT_CC_VRRC ||
8653              MI->getOpcode() == PPC::SELECT_CC_VSFRC ||
8654              MI->getOpcode() == PPC::SELECT_CC_VSSRC ||
8655              MI->getOpcode() == PPC::SELECT_CC_VSRC ||
8656              MI->getOpcode() == PPC::SELECT_I4 ||
8657              MI->getOpcode() == PPC::SELECT_I8 ||
8658              MI->getOpcode() == PPC::SELECT_F4 ||
8659              MI->getOpcode() == PPC::SELECT_F8 ||
8660              MI->getOpcode() == PPC::SELECT_QFRC ||
8661              MI->getOpcode() == PPC::SELECT_QSRC ||
8662              MI->getOpcode() == PPC::SELECT_QBRC ||
8663              MI->getOpcode() == PPC::SELECT_VRRC ||
8664              MI->getOpcode() == PPC::SELECT_VSFRC ||
8665              MI->getOpcode() == PPC::SELECT_VSSRC ||
8666              MI->getOpcode() == PPC::SELECT_VSRC) {
8667     // The incoming instruction knows the destination vreg to set, the
8668     // condition code register to branch on, the true/false values to
8669     // select between, and a branch opcode to use.
8670
8671     //  thisMBB:
8672     //  ...
8673     //   TrueVal = ...
8674     //   cmpTY ccX, r1, r2
8675     //   bCC copy1MBB
8676     //   fallthrough --> copy0MBB
8677     MachineBasicBlock *thisMBB = BB;
8678     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8679     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8680     DebugLoc dl = MI->getDebugLoc();
8681     F->insert(It, copy0MBB);
8682     F->insert(It, sinkMBB);
8683
8684     // Transfer the remainder of BB and its successor edges to sinkMBB.
8685     sinkMBB->splice(sinkMBB->begin(), BB,
8686                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8687     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8688
8689     // Next, add the true and fallthrough blocks as its successors.
8690     BB->addSuccessor(copy0MBB);
8691     BB->addSuccessor(sinkMBB);
8692
8693     if (MI->getOpcode() == PPC::SELECT_I4 ||
8694         MI->getOpcode() == PPC::SELECT_I8 ||
8695         MI->getOpcode() == PPC::SELECT_F4 ||
8696         MI->getOpcode() == PPC::SELECT_F8 ||
8697         MI->getOpcode() == PPC::SELECT_QFRC ||
8698         MI->getOpcode() == PPC::SELECT_QSRC ||
8699         MI->getOpcode() == PPC::SELECT_QBRC ||
8700         MI->getOpcode() == PPC::SELECT_VRRC ||
8701         MI->getOpcode() == PPC::SELECT_VSFRC ||
8702         MI->getOpcode() == PPC::SELECT_VSSRC ||
8703         MI->getOpcode() == PPC::SELECT_VSRC) {
8704       BuildMI(BB, dl, TII->get(PPC::BC))
8705         .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
8706     } else {
8707       unsigned SelectPred = MI->getOperand(4).getImm();
8708       BuildMI(BB, dl, TII->get(PPC::BCC))
8709         .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
8710     }
8711
8712     //  copy0MBB:
8713     //   %FalseValue = ...
8714     //   # fallthrough to sinkMBB
8715     BB = copy0MBB;
8716
8717     // Update machine-CFG edges
8718     BB->addSuccessor(sinkMBB);
8719
8720     //  sinkMBB:
8721     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8722     //  ...
8723     BB = sinkMBB;
8724     BuildMI(*BB, BB->begin(), dl,
8725             TII->get(PPC::PHI), MI->getOperand(0).getReg())
8726       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
8727       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8728   } else if (MI->getOpcode() == PPC::ReadTB) {
8729     // To read the 64-bit time-base register on a 32-bit target, we read the
8730     // two halves. Should the counter have wrapped while it was being read, we
8731     // need to try again.
8732     // ...
8733     // readLoop:
8734     // mfspr Rx,TBU # load from TBU
8735     // mfspr Ry,TB  # load from TB
8736     // mfspr Rz,TBU # load from TBU
8737     // cmpw crX,Rx,Rz # check if 'old'='new'
8738     // bne readLoop   # branch if they're not equal
8739     // ...
8740
8741     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
8742     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8743     DebugLoc dl = MI->getDebugLoc();
8744     F->insert(It, readMBB);
8745     F->insert(It, sinkMBB);
8746
8747     // Transfer the remainder of BB and its successor edges to sinkMBB.
8748     sinkMBB->splice(sinkMBB->begin(), BB,
8749                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8750     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8751
8752     BB->addSuccessor(readMBB);
8753     BB = readMBB;
8754
8755     MachineRegisterInfo &RegInfo = F->getRegInfo();
8756     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
8757     unsigned LoReg = MI->getOperand(0).getReg();
8758     unsigned HiReg = MI->getOperand(1).getReg();
8759
8760     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
8761     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
8762     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
8763
8764     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
8765
8766     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
8767       .addReg(HiReg).addReg(ReadAgainReg);
8768     BuildMI(BB, dl, TII->get(PPC::BCC))
8769       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
8770
8771     BB->addSuccessor(readMBB);
8772     BB->addSuccessor(sinkMBB);
8773   }
8774   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
8775     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
8776   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
8777     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
8778   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
8779     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
8780   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
8781     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
8782
8783   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
8784     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
8785   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
8786     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
8787   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
8788     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
8789   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
8790     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
8791
8792   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
8793     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
8794   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
8795     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
8796   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
8797     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
8798   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
8799     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
8800
8801   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
8802     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
8803   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
8804     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
8805   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
8806     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
8807   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
8808     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
8809
8810   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
8811     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
8812   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
8813     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
8814   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
8815     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
8816   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
8817     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
8818
8819   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
8820     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
8821   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
8822     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
8823   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
8824     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
8825   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
8826     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
8827
8828   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
8829     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
8830   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
8831     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
8832   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
8833     BB = EmitAtomicBinary(MI, BB, 4, 0);
8834   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
8835     BB = EmitAtomicBinary(MI, BB, 8, 0);
8836
8837   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
8838            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
8839            (Subtarget.hasPartwordAtomics() &&
8840             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
8841            (Subtarget.hasPartwordAtomics() &&
8842             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
8843     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
8844
8845     auto LoadMnemonic = PPC::LDARX;
8846     auto StoreMnemonic = PPC::STDCX;
8847     switch(MI->getOpcode()) {
8848     default:
8849       llvm_unreachable("Compare and swap of unknown size");
8850     case PPC::ATOMIC_CMP_SWAP_I8:
8851       LoadMnemonic = PPC::LBARX;
8852       StoreMnemonic = PPC::STBCX;
8853       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
8854       break;
8855     case PPC::ATOMIC_CMP_SWAP_I16:
8856       LoadMnemonic = PPC::LHARX;
8857       StoreMnemonic = PPC::STHCX;
8858       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
8859       break;
8860     case PPC::ATOMIC_CMP_SWAP_I32:
8861       LoadMnemonic = PPC::LWARX;
8862       StoreMnemonic = PPC::STWCX;
8863       break;
8864     case PPC::ATOMIC_CMP_SWAP_I64:
8865       LoadMnemonic = PPC::LDARX;
8866       StoreMnemonic = PPC::STDCX;
8867       break;
8868     }
8869     unsigned dest   = MI->getOperand(0).getReg();
8870     unsigned ptrA   = MI->getOperand(1).getReg();
8871     unsigned ptrB   = MI->getOperand(2).getReg();
8872     unsigned oldval = MI->getOperand(3).getReg();
8873     unsigned newval = MI->getOperand(4).getReg();
8874     DebugLoc dl     = MI->getDebugLoc();
8875
8876     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
8877     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
8878     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
8879     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8880     F->insert(It, loop1MBB);
8881     F->insert(It, loop2MBB);
8882     F->insert(It, midMBB);
8883     F->insert(It, exitMBB);
8884     exitMBB->splice(exitMBB->begin(), BB,
8885                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8886     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8887
8888     //  thisMBB:
8889     //   ...
8890     //   fallthrough --> loopMBB
8891     BB->addSuccessor(loop1MBB);
8892
8893     // loop1MBB:
8894     //   l[bhwd]arx dest, ptr
8895     //   cmp[wd] dest, oldval
8896     //   bne- midMBB
8897     // loop2MBB:
8898     //   st[bhwd]cx. newval, ptr
8899     //   bne- loopMBB
8900     //   b exitBB
8901     // midMBB:
8902     //   st[bhwd]cx. dest, ptr
8903     // exitBB:
8904     BB = loop1MBB;
8905     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8906       .addReg(ptrA).addReg(ptrB);
8907     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
8908       .addReg(oldval).addReg(dest);
8909     BuildMI(BB, dl, TII->get(PPC::BCC))
8910       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
8911     BB->addSuccessor(loop2MBB);
8912     BB->addSuccessor(midMBB);
8913
8914     BB = loop2MBB;
8915     BuildMI(BB, dl, TII->get(StoreMnemonic))
8916       .addReg(newval).addReg(ptrA).addReg(ptrB);
8917     BuildMI(BB, dl, TII->get(PPC::BCC))
8918       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
8919     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
8920     BB->addSuccessor(loop1MBB);
8921     BB->addSuccessor(exitMBB);
8922
8923     BB = midMBB;
8924     BuildMI(BB, dl, TII->get(StoreMnemonic))
8925       .addReg(dest).addReg(ptrA).addReg(ptrB);
8926     BB->addSuccessor(exitMBB);
8927
8928     //  exitMBB:
8929     //   ...
8930     BB = exitMBB;
8931   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
8932              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
8933     // We must use 64-bit registers for addresses when targeting 64-bit,
8934     // since we're actually doing arithmetic on them.  Other registers
8935     // can be 32-bit.
8936     bool is64bit = Subtarget.isPPC64();
8937     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
8938
8939     unsigned dest   = MI->getOperand(0).getReg();
8940     unsigned ptrA   = MI->getOperand(1).getReg();
8941     unsigned ptrB   = MI->getOperand(2).getReg();
8942     unsigned oldval = MI->getOperand(3).getReg();
8943     unsigned newval = MI->getOperand(4).getReg();
8944     DebugLoc dl     = MI->getDebugLoc();
8945
8946     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
8947     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
8948     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
8949     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8950     F->insert(It, loop1MBB);
8951     F->insert(It, loop2MBB);
8952     F->insert(It, midMBB);
8953     F->insert(It, exitMBB);
8954     exitMBB->splice(exitMBB->begin(), BB,
8955                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8956     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8957
8958     MachineRegisterInfo &RegInfo = F->getRegInfo();
8959     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8960                                             : &PPC::GPRCRegClass;
8961     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8962     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8963     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
8964     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
8965     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
8966     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
8967     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
8968     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8969     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8970     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8971     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8972     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8973     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8974     unsigned Ptr1Reg;
8975     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
8976     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8977     //  thisMBB:
8978     //   ...
8979     //   fallthrough --> loopMBB
8980     BB->addSuccessor(loop1MBB);
8981
8982     // The 4-byte load must be aligned, while a char or short may be
8983     // anywhere in the word.  Hence all this nasty bookkeeping code.
8984     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
8985     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8986     //   xori shift, shift1, 24 [16]
8987     //   rlwinm ptr, ptr1, 0, 0, 29
8988     //   slw newval2, newval, shift
8989     //   slw oldval2, oldval,shift
8990     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8991     //   slw mask, mask2, shift
8992     //   and newval3, newval2, mask
8993     //   and oldval3, oldval2, mask
8994     // loop1MBB:
8995     //   lwarx tmpDest, ptr
8996     //   and tmp, tmpDest, mask
8997     //   cmpw tmp, oldval3
8998     //   bne- midMBB
8999     // loop2MBB:
9000     //   andc tmp2, tmpDest, mask
9001     //   or tmp4, tmp2, newval3
9002     //   stwcx. tmp4, ptr
9003     //   bne- loop1MBB
9004     //   b exitBB
9005     // midMBB:
9006     //   stwcx. tmpDest, ptr
9007     // exitBB:
9008     //   srw dest, tmpDest, shift
9009     if (ptrA != ZeroReg) {
9010       Ptr1Reg = RegInfo.createVirtualRegister(RC);
9011       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9012         .addReg(ptrA).addReg(ptrB);
9013     } else {
9014       Ptr1Reg = ptrB;
9015     }
9016     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9017         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9018     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9019         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9020     if (is64bit)
9021       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9022         .addReg(Ptr1Reg).addImm(0).addImm(61);
9023     else
9024       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9025         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9026     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
9027         .addReg(newval).addReg(ShiftReg);
9028     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
9029         .addReg(oldval).addReg(ShiftReg);
9030     if (is8bit)
9031       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9032     else {
9033       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9034       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
9035         .addReg(Mask3Reg).addImm(65535);
9036     }
9037     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9038         .addReg(Mask2Reg).addReg(ShiftReg);
9039     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
9040         .addReg(NewVal2Reg).addReg(MaskReg);
9041     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
9042         .addReg(OldVal2Reg).addReg(MaskReg);
9043
9044     BB = loop1MBB;
9045     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9046         .addReg(ZeroReg).addReg(PtrReg);
9047     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
9048         .addReg(TmpDestReg).addReg(MaskReg);
9049     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
9050         .addReg(TmpReg).addReg(OldVal3Reg);
9051     BuildMI(BB, dl, TII->get(PPC::BCC))
9052         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9053     BB->addSuccessor(loop2MBB);
9054     BB->addSuccessor(midMBB);
9055
9056     BB = loop2MBB;
9057     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
9058         .addReg(TmpDestReg).addReg(MaskReg);
9059     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
9060         .addReg(Tmp2Reg).addReg(NewVal3Reg);
9061     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
9062         .addReg(ZeroReg).addReg(PtrReg);
9063     BuildMI(BB, dl, TII->get(PPC::BCC))
9064       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9065     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9066     BB->addSuccessor(loop1MBB);
9067     BB->addSuccessor(exitMBB);
9068
9069     BB = midMBB;
9070     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
9071       .addReg(ZeroReg).addReg(PtrReg);
9072     BB->addSuccessor(exitMBB);
9073
9074     //  exitMBB:
9075     //   ...
9076     BB = exitMBB;
9077     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
9078       .addReg(ShiftReg);
9079   } else if (MI->getOpcode() == PPC::FADDrtz) {
9080     // This pseudo performs an FADD with rounding mode temporarily forced
9081     // to round-to-zero.  We emit this via custom inserter since the FPSCR
9082     // is not modeled at the SelectionDAG level.
9083     unsigned Dest = MI->getOperand(0).getReg();
9084     unsigned Src1 = MI->getOperand(1).getReg();
9085     unsigned Src2 = MI->getOperand(2).getReg();
9086     DebugLoc dl   = MI->getDebugLoc();
9087
9088     MachineRegisterInfo &RegInfo = F->getRegInfo();
9089     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
9090
9091     // Save FPSCR value.
9092     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
9093
9094     // Set rounding mode to round-to-zero.
9095     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
9096     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
9097
9098     // Perform addition.
9099     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
9100
9101     // Restore FPSCR value.
9102     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
9103   } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9104              MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
9105              MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9106              MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
9107     unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9108                        MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
9109                       PPC::ANDIo8 : PPC::ANDIo;
9110     bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9111                  MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
9112
9113     MachineRegisterInfo &RegInfo = F->getRegInfo();
9114     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
9115                                                   &PPC::GPRCRegClass :
9116                                                   &PPC::G8RCRegClass);
9117
9118     DebugLoc dl   = MI->getDebugLoc();
9119     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
9120       .addReg(MI->getOperand(1).getReg()).addImm(1);
9121     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
9122             MI->getOperand(0).getReg())
9123       .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
9124   } else if (MI->getOpcode() == PPC::TCHECK_RET) {
9125     DebugLoc Dl = MI->getDebugLoc();
9126     MachineRegisterInfo &RegInfo = F->getRegInfo();
9127     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9128     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
9129     return BB;
9130   } else {
9131     llvm_unreachable("Unexpected instr type to insert");
9132   }
9133
9134   MI->eraseFromParent();   // The pseudo instruction is gone now.
9135   return BB;
9136 }
9137
9138 //===----------------------------------------------------------------------===//
9139 // Target Optimization Hooks
9140 //===----------------------------------------------------------------------===//
9141
9142 static std::string getRecipOp(const char *Base, EVT VT) {
9143   std::string RecipOp(Base);
9144   if (VT.getScalarType() == MVT::f64)
9145     RecipOp += "d";
9146   else
9147     RecipOp += "f";
9148
9149   if (VT.isVector())
9150     RecipOp = "vec-" + RecipOp;
9151
9152   return RecipOp;
9153 }
9154
9155 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
9156                                             DAGCombinerInfo &DCI,
9157                                             unsigned &RefinementSteps,
9158                                             bool &UseOneConstNR) const {
9159   EVT VT = Operand.getValueType();
9160   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
9161       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
9162       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9163       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9164       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9165       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9166     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9167     std::string RecipOp = getRecipOp("sqrt", VT);
9168     if (!Recips.isEnabled(RecipOp))
9169       return SDValue();
9170
9171     RefinementSteps = Recips.getRefinementSteps(RecipOp);
9172     UseOneConstNR = true;
9173     return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
9174   }
9175   return SDValue();
9176 }
9177
9178 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
9179                                             DAGCombinerInfo &DCI,
9180                                             unsigned &RefinementSteps) const {
9181   EVT VT = Operand.getValueType();
9182   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
9183       (VT == MVT::f64 && Subtarget.hasFRE()) ||
9184       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9185       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9186       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9187       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9188     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9189     std::string RecipOp = getRecipOp("div", VT);
9190     if (!Recips.isEnabled(RecipOp))
9191       return SDValue();
9192
9193     RefinementSteps = Recips.getRefinementSteps(RecipOp);
9194     return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
9195   }
9196   return SDValue();
9197 }
9198
9199 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
9200   // Note: This functionality is used only when unsafe-fp-math is enabled, and
9201   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
9202   // enabled for division), this functionality is redundant with the default
9203   // combiner logic (once the division -> reciprocal/multiply transformation
9204   // has taken place). As a result, this matters more for older cores than for
9205   // newer ones.
9206
9207   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9208   // reciprocal if there are two or more FDIVs (for embedded cores with only
9209   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
9210   switch (Subtarget.getDarwinDirective()) {
9211   default:
9212     return 3;
9213   case PPC::DIR_440:
9214   case PPC::DIR_A2:
9215   case PPC::DIR_E500mc:
9216   case PPC::DIR_E5500:
9217     return 2;
9218   }
9219 }
9220
9221 // isConsecutiveLSLoc needs to work even if all adds have not yet been
9222 // collapsed, and so we need to look through chains of them.
9223 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
9224                                      int64_t& Offset, SelectionDAG &DAG) {
9225   if (DAG.isBaseWithConstantOffset(Loc)) {
9226     Base = Loc.getOperand(0);
9227     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
9228
9229     // The base might itself be a base plus an offset, and if so, accumulate
9230     // that as well.
9231     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
9232   }
9233 }
9234
9235 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
9236                             unsigned Bytes, int Dist,
9237                             SelectionDAG &DAG) {
9238   if (VT.getSizeInBits() / 8 != Bytes)
9239     return false;
9240
9241   SDValue BaseLoc = Base->getBasePtr();
9242   if (Loc.getOpcode() == ISD::FrameIndex) {
9243     if (BaseLoc.getOpcode() != ISD::FrameIndex)
9244       return false;
9245     const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9246     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
9247     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
9248     int FS  = MFI->getObjectSize(FI);
9249     int BFS = MFI->getObjectSize(BFI);
9250     if (FS != BFS || FS != (int)Bytes) return false;
9251     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
9252   }
9253
9254   SDValue Base1 = Loc, Base2 = BaseLoc;
9255   int64_t Offset1 = 0, Offset2 = 0;
9256   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
9257   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
9258   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
9259     return true;
9260
9261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9262   const GlobalValue *GV1 = nullptr;
9263   const GlobalValue *GV2 = nullptr;
9264   Offset1 = 0;
9265   Offset2 = 0;
9266   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
9267   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
9268   if (isGA1 && isGA2 && GV1 == GV2)
9269     return Offset1 == (Offset2 + Dist*Bytes);
9270   return false;
9271 }
9272
9273 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
9274 // not enforce equality of the chain operands.
9275 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
9276                             unsigned Bytes, int Dist,
9277                             SelectionDAG &DAG) {
9278   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
9279     EVT VT = LS->getMemoryVT();
9280     SDValue Loc = LS->getBasePtr();
9281     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
9282   }
9283
9284   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
9285     EVT VT;
9286     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9287     default: return false;
9288     case Intrinsic::ppc_qpx_qvlfd:
9289     case Intrinsic::ppc_qpx_qvlfda:
9290       VT = MVT::v4f64;
9291       break;
9292     case Intrinsic::ppc_qpx_qvlfs:
9293     case Intrinsic::ppc_qpx_qvlfsa:
9294       VT = MVT::v4f32;
9295       break;
9296     case Intrinsic::ppc_qpx_qvlfcd:
9297     case Intrinsic::ppc_qpx_qvlfcda:
9298       VT = MVT::v2f64;
9299       break;
9300     case Intrinsic::ppc_qpx_qvlfcs:
9301     case Intrinsic::ppc_qpx_qvlfcsa:
9302       VT = MVT::v2f32;
9303       break;
9304     case Intrinsic::ppc_qpx_qvlfiwa:
9305     case Intrinsic::ppc_qpx_qvlfiwz:
9306     case Intrinsic::ppc_altivec_lvx:
9307     case Intrinsic::ppc_altivec_lvxl:
9308     case Intrinsic::ppc_vsx_lxvw4x:
9309       VT = MVT::v4i32;
9310       break;
9311     case Intrinsic::ppc_vsx_lxvd2x:
9312       VT = MVT::v2f64;
9313       break;
9314     case Intrinsic::ppc_altivec_lvebx:
9315       VT = MVT::i8;
9316       break;
9317     case Intrinsic::ppc_altivec_lvehx:
9318       VT = MVT::i16;
9319       break;
9320     case Intrinsic::ppc_altivec_lvewx:
9321       VT = MVT::i32;
9322       break;
9323     }
9324
9325     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
9326   }
9327
9328   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
9329     EVT VT;
9330     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9331     default: return false;
9332     case Intrinsic::ppc_qpx_qvstfd:
9333     case Intrinsic::ppc_qpx_qvstfda:
9334       VT = MVT::v4f64;
9335       break;
9336     case Intrinsic::ppc_qpx_qvstfs:
9337     case Intrinsic::ppc_qpx_qvstfsa:
9338       VT = MVT::v4f32;
9339       break;
9340     case Intrinsic::ppc_qpx_qvstfcd:
9341     case Intrinsic::ppc_qpx_qvstfcda:
9342       VT = MVT::v2f64;
9343       break;
9344     case Intrinsic::ppc_qpx_qvstfcs:
9345     case Intrinsic::ppc_qpx_qvstfcsa:
9346       VT = MVT::v2f32;
9347       break;
9348     case Intrinsic::ppc_qpx_qvstfiw:
9349     case Intrinsic::ppc_qpx_qvstfiwa:
9350     case Intrinsic::ppc_altivec_stvx:
9351     case Intrinsic::ppc_altivec_stvxl:
9352     case Intrinsic::ppc_vsx_stxvw4x:
9353       VT = MVT::v4i32;
9354       break;
9355     case Intrinsic::ppc_vsx_stxvd2x:
9356       VT = MVT::v2f64;
9357       break;
9358     case Intrinsic::ppc_altivec_stvebx:
9359       VT = MVT::i8;
9360       break;
9361     case Intrinsic::ppc_altivec_stvehx:
9362       VT = MVT::i16;
9363       break;
9364     case Intrinsic::ppc_altivec_stvewx:
9365       VT = MVT::i32;
9366       break;
9367     }
9368
9369     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
9370   }
9371
9372   return false;
9373 }
9374
9375 // Return true is there is a nearyby consecutive load to the one provided
9376 // (regardless of alignment). We search up and down the chain, looking though
9377 // token factors and other loads (but nothing else). As a result, a true result
9378 // indicates that it is safe to create a new consecutive load adjacent to the
9379 // load provided.
9380 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
9381   SDValue Chain = LD->getChain();
9382   EVT VT = LD->getMemoryVT();
9383
9384   SmallSet<SDNode *, 16> LoadRoots;
9385   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
9386   SmallSet<SDNode *, 16> Visited;
9387
9388   // First, search up the chain, branching to follow all token-factor operands.
9389   // If we find a consecutive load, then we're done, otherwise, record all
9390   // nodes just above the top-level loads and token factors.
9391   while (!Queue.empty()) {
9392     SDNode *ChainNext = Queue.pop_back_val();
9393     if (!Visited.insert(ChainNext).second)
9394       continue;
9395
9396     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
9397       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9398         return true;
9399
9400       if (!Visited.count(ChainLD->getChain().getNode()))
9401         Queue.push_back(ChainLD->getChain().getNode());
9402     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
9403       for (const SDUse &O : ChainNext->ops())
9404         if (!Visited.count(O.getNode()))
9405           Queue.push_back(O.getNode());
9406     } else
9407       LoadRoots.insert(ChainNext);
9408   }
9409
9410   // Second, search down the chain, starting from the top-level nodes recorded
9411   // in the first phase. These top-level nodes are the nodes just above all
9412   // loads and token factors. Starting with their uses, recursively look though
9413   // all loads (just the chain uses) and token factors to find a consecutive
9414   // load.
9415   Visited.clear();
9416   Queue.clear();
9417
9418   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
9419        IE = LoadRoots.end(); I != IE; ++I) {
9420     Queue.push_back(*I);
9421
9422     while (!Queue.empty()) {
9423       SDNode *LoadRoot = Queue.pop_back_val();
9424       if (!Visited.insert(LoadRoot).second)
9425         continue;
9426
9427       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
9428         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9429           return true;
9430
9431       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
9432            UE = LoadRoot->use_end(); UI != UE; ++UI)
9433         if (((isa<MemSDNode>(*UI) &&
9434             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
9435             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
9436           Queue.push_back(*UI);
9437     }
9438   }
9439
9440   return false;
9441 }
9442
9443 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
9444                                                   DAGCombinerInfo &DCI) const {
9445   SelectionDAG &DAG = DCI.DAG;
9446   SDLoc dl(N);
9447
9448   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
9449   // If we're tracking CR bits, we need to be careful that we don't have:
9450   //   trunc(binary-ops(zext(x), zext(y)))
9451   // or
9452   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
9453   // such that we're unnecessarily moving things into GPRs when it would be
9454   // better to keep them in CR bits.
9455
9456   // Note that trunc here can be an actual i1 trunc, or can be the effective
9457   // truncation that comes from a setcc or select_cc.
9458   if (N->getOpcode() == ISD::TRUNCATE &&
9459       N->getValueType(0) != MVT::i1)
9460     return SDValue();
9461
9462   if (N->getOperand(0).getValueType() != MVT::i32 &&
9463       N->getOperand(0).getValueType() != MVT::i64)
9464     return SDValue();
9465
9466   if (N->getOpcode() == ISD::SETCC ||
9467       N->getOpcode() == ISD::SELECT_CC) {
9468     // If we're looking at a comparison, then we need to make sure that the
9469     // high bits (all except for the first) don't matter the result.
9470     ISD::CondCode CC =
9471       cast<CondCodeSDNode>(N->getOperand(
9472         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
9473     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
9474
9475     if (ISD::isSignedIntSetCC(CC)) {
9476       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
9477           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
9478         return SDValue();
9479     } else if (ISD::isUnsignedIntSetCC(CC)) {
9480       if (!DAG.MaskedValueIsZero(N->getOperand(0),
9481                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
9482           !DAG.MaskedValueIsZero(N->getOperand(1),
9483                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
9484         return SDValue();
9485     } else {
9486       // This is neither a signed nor an unsigned comparison, just make sure
9487       // that the high bits are equal.
9488       APInt Op1Zero, Op1One;
9489       APInt Op2Zero, Op2One;
9490       DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
9491       DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
9492
9493       // We don't really care about what is known about the first bit (if
9494       // anything), so clear it in all masks prior to comparing them.
9495       Op1Zero.clearBit(0); Op1One.clearBit(0);
9496       Op2Zero.clearBit(0); Op2One.clearBit(0);
9497
9498       if (Op1Zero != Op2Zero || Op1One != Op2One)
9499         return SDValue();
9500     }
9501   }
9502
9503   // We now know that the higher-order bits are irrelevant, we just need to
9504   // make sure that all of the intermediate operations are bit operations, and
9505   // all inputs are extensions.
9506   if (N->getOperand(0).getOpcode() != ISD::AND &&
9507       N->getOperand(0).getOpcode() != ISD::OR  &&
9508       N->getOperand(0).getOpcode() != ISD::XOR &&
9509       N->getOperand(0).getOpcode() != ISD::SELECT &&
9510       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
9511       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
9512       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
9513       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
9514       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
9515     return SDValue();
9516
9517   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
9518       N->getOperand(1).getOpcode() != ISD::AND &&
9519       N->getOperand(1).getOpcode() != ISD::OR  &&
9520       N->getOperand(1).getOpcode() != ISD::XOR &&
9521       N->getOperand(1).getOpcode() != ISD::SELECT &&
9522       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
9523       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
9524       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
9525       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
9526       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
9527     return SDValue();
9528
9529   SmallVector<SDValue, 4> Inputs;
9530   SmallVector<SDValue, 8> BinOps, PromOps;
9531   SmallPtrSet<SDNode *, 16> Visited;
9532
9533   for (unsigned i = 0; i < 2; ++i) {
9534     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9535           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9536           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9537           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9538         isa<ConstantSDNode>(N->getOperand(i)))
9539       Inputs.push_back(N->getOperand(i));
9540     else
9541       BinOps.push_back(N->getOperand(i));
9542
9543     if (N->getOpcode() == ISD::TRUNCATE)
9544       break;
9545   }
9546
9547   // Visit all inputs, collect all binary operations (and, or, xor and
9548   // select) that are all fed by extensions.
9549   while (!BinOps.empty()) {
9550     SDValue BinOp = BinOps.back();
9551     BinOps.pop_back();
9552
9553     if (!Visited.insert(BinOp.getNode()).second)
9554       continue;
9555
9556     PromOps.push_back(BinOp);
9557
9558     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9559       // The condition of the select is not promoted.
9560       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9561         continue;
9562       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9563         continue;
9564
9565       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9566             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9567             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9568            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9569           isa<ConstantSDNode>(BinOp.getOperand(i))) {
9570         Inputs.push_back(BinOp.getOperand(i));
9571       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9572                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
9573                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9574                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9575                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
9576                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9577                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9578                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9579                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
9580         BinOps.push_back(BinOp.getOperand(i));
9581       } else {
9582         // We have an input that is not an extension or another binary
9583         // operation; we'll abort this transformation.
9584         return SDValue();
9585       }
9586     }
9587   }
9588
9589   // Make sure that this is a self-contained cluster of operations (which
9590   // is not quite the same thing as saying that everything has only one
9591   // use).
9592   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9593     if (isa<ConstantSDNode>(Inputs[i]))
9594       continue;
9595
9596     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9597                               UE = Inputs[i].getNode()->use_end();
9598          UI != UE; ++UI) {
9599       SDNode *User = *UI;
9600       if (User != N && !Visited.count(User))
9601         return SDValue();
9602
9603       // Make sure that we're not going to promote the non-output-value
9604       // operand(s) or SELECT or SELECT_CC.
9605       // FIXME: Although we could sometimes handle this, and it does occur in
9606       // practice that one of the condition inputs to the select is also one of
9607       // the outputs, we currently can't deal with this.
9608       if (User->getOpcode() == ISD::SELECT) {
9609         if (User->getOperand(0) == Inputs[i])
9610           return SDValue();
9611       } else if (User->getOpcode() == ISD::SELECT_CC) {
9612         if (User->getOperand(0) == Inputs[i] ||
9613             User->getOperand(1) == Inputs[i])
9614           return SDValue();
9615       }
9616     }
9617   }
9618
9619   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
9620     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
9621                               UE = PromOps[i].getNode()->use_end();
9622          UI != UE; ++UI) {
9623       SDNode *User = *UI;
9624       if (User != N && !Visited.count(User))
9625         return SDValue();
9626
9627       // Make sure that we're not going to promote the non-output-value
9628       // operand(s) or SELECT or SELECT_CC.
9629       // FIXME: Although we could sometimes handle this, and it does occur in
9630       // practice that one of the condition inputs to the select is also one of
9631       // the outputs, we currently can't deal with this.
9632       if (User->getOpcode() == ISD::SELECT) {
9633         if (User->getOperand(0) == PromOps[i])
9634           return SDValue();
9635       } else if (User->getOpcode() == ISD::SELECT_CC) {
9636         if (User->getOperand(0) == PromOps[i] ||
9637             User->getOperand(1) == PromOps[i])
9638           return SDValue();
9639       }
9640     }
9641   }
9642
9643   // Replace all inputs with the extension operand.
9644   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9645     // Constants may have users outside the cluster of to-be-promoted nodes,
9646     // and so we need to replace those as we do the promotions.
9647     if (isa<ConstantSDNode>(Inputs[i]))
9648       continue;
9649     else
9650       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
9651   }
9652
9653   // Replace all operations (these are all the same, but have a different
9654   // (i1) return type). DAG.getNode will validate that the types of
9655   // a binary operator match, so go through the list in reverse so that
9656   // we've likely promoted both operands first. Any intermediate truncations or
9657   // extensions disappear.
9658   while (!PromOps.empty()) {
9659     SDValue PromOp = PromOps.back();
9660     PromOps.pop_back();
9661
9662     if (PromOp.getOpcode() == ISD::TRUNCATE ||
9663         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
9664         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
9665         PromOp.getOpcode() == ISD::ANY_EXTEND) {
9666       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
9667           PromOp.getOperand(0).getValueType() != MVT::i1) {
9668         // The operand is not yet ready (see comment below).
9669         PromOps.insert(PromOps.begin(), PromOp);
9670         continue;
9671       }
9672
9673       SDValue RepValue = PromOp.getOperand(0);
9674       if (isa<ConstantSDNode>(RepValue))
9675         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
9676
9677       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
9678       continue;
9679     }
9680
9681     unsigned C;
9682     switch (PromOp.getOpcode()) {
9683     default:             C = 0; break;
9684     case ISD::SELECT:    C = 1; break;
9685     case ISD::SELECT_CC: C = 2; break;
9686     }
9687
9688     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
9689          PromOp.getOperand(C).getValueType() != MVT::i1) ||
9690         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
9691          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
9692       // The to-be-promoted operands of this node have not yet been
9693       // promoted (this should be rare because we're going through the
9694       // list backward, but if one of the operands has several users in
9695       // this cluster of to-be-promoted nodes, it is possible).
9696       PromOps.insert(PromOps.begin(), PromOp);
9697       continue;
9698     }
9699
9700     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
9701                                 PromOp.getNode()->op_end());
9702
9703     // If there are any constant inputs, make sure they're replaced now.
9704     for (unsigned i = 0; i < 2; ++i)
9705       if (isa<ConstantSDNode>(Ops[C+i]))
9706         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
9707
9708     DAG.ReplaceAllUsesOfValueWith(PromOp,
9709       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
9710   }
9711
9712   // Now we're left with the initial truncation itself.
9713   if (N->getOpcode() == ISD::TRUNCATE)
9714     return N->getOperand(0);
9715
9716   // Otherwise, this is a comparison. The operands to be compared have just
9717   // changed type (to i1), but everything else is the same.
9718   return SDValue(N, 0);
9719 }
9720
9721 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
9722                                                   DAGCombinerInfo &DCI) const {
9723   SelectionDAG &DAG = DCI.DAG;
9724   SDLoc dl(N);
9725
9726   // If we're tracking CR bits, we need to be careful that we don't have:
9727   //   zext(binary-ops(trunc(x), trunc(y)))
9728   // or
9729   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
9730   // such that we're unnecessarily moving things into CR bits that can more
9731   // efficiently stay in GPRs. Note that if we're not certain that the high
9732   // bits are set as required by the final extension, we still may need to do
9733   // some masking to get the proper behavior.
9734
9735   // This same functionality is important on PPC64 when dealing with
9736   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
9737   // the return values of functions. Because it is so similar, it is handled
9738   // here as well.
9739
9740   if (N->getValueType(0) != MVT::i32 &&
9741       N->getValueType(0) != MVT::i64)
9742     return SDValue();
9743
9744   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
9745         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
9746     return SDValue();
9747
9748   if (N->getOperand(0).getOpcode() != ISD::AND &&
9749       N->getOperand(0).getOpcode() != ISD::OR  &&
9750       N->getOperand(0).getOpcode() != ISD::XOR &&
9751       N->getOperand(0).getOpcode() != ISD::SELECT &&
9752       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
9753     return SDValue();
9754
9755   SmallVector<SDValue, 4> Inputs;
9756   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
9757   SmallPtrSet<SDNode *, 16> Visited;
9758
9759   // Visit all inputs, collect all binary operations (and, or, xor and
9760   // select) that are all fed by truncations.
9761   while (!BinOps.empty()) {
9762     SDValue BinOp = BinOps.back();
9763     BinOps.pop_back();
9764
9765     if (!Visited.insert(BinOp.getNode()).second)
9766       continue;
9767
9768     PromOps.push_back(BinOp);
9769
9770     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9771       // The condition of the select is not promoted.
9772       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9773         continue;
9774       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9775         continue;
9776
9777       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9778           isa<ConstantSDNode>(BinOp.getOperand(i))) {
9779         Inputs.push_back(BinOp.getOperand(i));
9780       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9781                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
9782                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9783                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9784                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
9785         BinOps.push_back(BinOp.getOperand(i));
9786       } else {
9787         // We have an input that is not a truncation or another binary
9788         // operation; we'll abort this transformation.
9789         return SDValue();
9790       }
9791     }
9792   }
9793
9794   // The operands of a select that must be truncated when the select is
9795   // promoted because the operand is actually part of the to-be-promoted set.
9796   DenseMap<SDNode *, EVT> SelectTruncOp[2];
9797
9798   // Make sure that this is a self-contained cluster of operations (which
9799   // is not quite the same thing as saying that everything has only one
9800   // use).
9801   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9802     if (isa<ConstantSDNode>(Inputs[i]))
9803       continue;
9804
9805     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9806                               UE = Inputs[i].getNode()->use_end();
9807          UI != UE; ++UI) {
9808       SDNode *User = *UI;
9809       if (User != N && !Visited.count(User))
9810         return SDValue();
9811
9812       // If we're going to promote the non-output-value operand(s) or SELECT or
9813       // SELECT_CC, record them for truncation.
9814       if (User->getOpcode() == ISD::SELECT) {
9815         if (User->getOperand(0) == Inputs[i])
9816           SelectTruncOp[0].insert(std::make_pair(User,
9817                                     User->getOperand(0).getValueType()));
9818       } else if (User->getOpcode() == ISD::SELECT_CC) {
9819         if (User->getOperand(0) == Inputs[i])
9820           SelectTruncOp[0].insert(std::make_pair(User,
9821                                     User->getOperand(0).getValueType()));
9822         if (User->getOperand(1) == Inputs[i])
9823           SelectTruncOp[1].insert(std::make_pair(User,
9824                                     User->getOperand(1).getValueType()));
9825       }
9826     }
9827   }
9828
9829   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
9830     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
9831                               UE = PromOps[i].getNode()->use_end();
9832          UI != UE; ++UI) {
9833       SDNode *User = *UI;
9834       if (User != N && !Visited.count(User))
9835         return SDValue();
9836
9837       // If we're going to promote the non-output-value operand(s) or SELECT or
9838       // SELECT_CC, record them for truncation.
9839       if (User->getOpcode() == ISD::SELECT) {
9840         if (User->getOperand(0) == PromOps[i])
9841           SelectTruncOp[0].insert(std::make_pair(User,
9842                                     User->getOperand(0).getValueType()));
9843       } else if (User->getOpcode() == ISD::SELECT_CC) {
9844         if (User->getOperand(0) == PromOps[i])
9845           SelectTruncOp[0].insert(std::make_pair(User,
9846                                     User->getOperand(0).getValueType()));
9847         if (User->getOperand(1) == PromOps[i])
9848           SelectTruncOp[1].insert(std::make_pair(User,
9849                                     User->getOperand(1).getValueType()));
9850       }
9851     }
9852   }
9853
9854   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
9855   bool ReallyNeedsExt = false;
9856   if (N->getOpcode() != ISD::ANY_EXTEND) {
9857     // If all of the inputs are not already sign/zero extended, then
9858     // we'll still need to do that at the end.
9859     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9860       if (isa<ConstantSDNode>(Inputs[i]))
9861         continue;
9862
9863       unsigned OpBits =
9864         Inputs[i].getOperand(0).getValueSizeInBits();
9865       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
9866
9867       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
9868            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
9869                                   APInt::getHighBitsSet(OpBits,
9870                                                         OpBits-PromBits))) ||
9871           (N->getOpcode() == ISD::SIGN_EXTEND &&
9872            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
9873              (OpBits-(PromBits-1)))) {
9874         ReallyNeedsExt = true;
9875         break;
9876       }
9877     }
9878   }
9879
9880   // Replace all inputs, either with the truncation operand, or a
9881   // truncation or extension to the final output type.
9882   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9883     // Constant inputs need to be replaced with the to-be-promoted nodes that
9884     // use them because they might have users outside of the cluster of
9885     // promoted nodes.
9886     if (isa<ConstantSDNode>(Inputs[i]))
9887       continue;
9888
9889     SDValue InSrc = Inputs[i].getOperand(0);
9890     if (Inputs[i].getValueType() == N->getValueType(0))
9891       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
9892     else if (N->getOpcode() == ISD::SIGN_EXTEND)
9893       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9894         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
9895     else if (N->getOpcode() == ISD::ZERO_EXTEND)
9896       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9897         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
9898     else
9899       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9900         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
9901   }
9902
9903   // Replace all operations (these are all the same, but have a different
9904   // (promoted) return type). DAG.getNode will validate that the types of
9905   // a binary operator match, so go through the list in reverse so that
9906   // we've likely promoted both operands first.
9907   while (!PromOps.empty()) {
9908     SDValue PromOp = PromOps.back();
9909     PromOps.pop_back();
9910
9911     unsigned C;
9912     switch (PromOp.getOpcode()) {
9913     default:             C = 0; break;
9914     case ISD::SELECT:    C = 1; break;
9915     case ISD::SELECT_CC: C = 2; break;
9916     }
9917
9918     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
9919          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
9920         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
9921          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
9922       // The to-be-promoted operands of this node have not yet been
9923       // promoted (this should be rare because we're going through the
9924       // list backward, but if one of the operands has several users in
9925       // this cluster of to-be-promoted nodes, it is possible).
9926       PromOps.insert(PromOps.begin(), PromOp);
9927       continue;
9928     }
9929
9930     // For SELECT and SELECT_CC nodes, we do a similar check for any
9931     // to-be-promoted comparison inputs.
9932     if (PromOp.getOpcode() == ISD::SELECT ||
9933         PromOp.getOpcode() == ISD::SELECT_CC) {
9934       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
9935            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
9936           (SelectTruncOp[1].count(PromOp.getNode()) &&
9937            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
9938         PromOps.insert(PromOps.begin(), PromOp);
9939         continue;
9940       }
9941     }
9942
9943     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
9944                                 PromOp.getNode()->op_end());
9945
9946     // If this node has constant inputs, then they'll need to be promoted here.
9947     for (unsigned i = 0; i < 2; ++i) {
9948       if (!isa<ConstantSDNode>(Ops[C+i]))
9949         continue;
9950       if (Ops[C+i].getValueType() == N->getValueType(0))
9951         continue;
9952
9953       if (N->getOpcode() == ISD::SIGN_EXTEND)
9954         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9955       else if (N->getOpcode() == ISD::ZERO_EXTEND)
9956         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9957       else
9958         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9959     }
9960
9961     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
9962     // truncate them again to the original value type.
9963     if (PromOp.getOpcode() == ISD::SELECT ||
9964         PromOp.getOpcode() == ISD::SELECT_CC) {
9965       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
9966       if (SI0 != SelectTruncOp[0].end())
9967         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
9968       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
9969       if (SI1 != SelectTruncOp[1].end())
9970         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
9971     }
9972
9973     DAG.ReplaceAllUsesOfValueWith(PromOp,
9974       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
9975   }
9976
9977   // Now we're left with the initial extension itself.
9978   if (!ReallyNeedsExt)
9979     return N->getOperand(0);
9980
9981   // To zero extend, just mask off everything except for the first bit (in the
9982   // i1 case).
9983   if (N->getOpcode() == ISD::ZERO_EXTEND)
9984     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
9985                        DAG.getConstant(APInt::getLowBitsSet(
9986                                          N->getValueSizeInBits(0), PromBits),
9987                                        dl, N->getValueType(0)));
9988
9989   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
9990          "Invalid extension type");
9991   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
9992   SDValue ShiftCst =
9993       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
9994   return DAG.getNode(
9995       ISD::SRA, dl, N->getValueType(0),
9996       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
9997       ShiftCst);
9998 }
9999
10000 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
10001                                               DAGCombinerInfo &DCI) const {
10002   assert((N->getOpcode() == ISD::SINT_TO_FP ||
10003           N->getOpcode() == ISD::UINT_TO_FP) &&
10004          "Need an int -> FP conversion node here");
10005
10006   if (!Subtarget.has64BitSupport())
10007     return SDValue();
10008
10009   SelectionDAG &DAG = DCI.DAG;
10010   SDLoc dl(N);
10011   SDValue Op(N, 0);
10012
10013   // Don't handle ppc_fp128 here or i1 conversions.
10014   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
10015     return SDValue();
10016   if (Op.getOperand(0).getValueType() == MVT::i1)
10017     return SDValue();
10018
10019   // For i32 intermediate values, unfortunately, the conversion functions
10020   // leave the upper 32 bits of the value are undefined. Within the set of
10021   // scalar instructions, we have no method for zero- or sign-extending the
10022   // value. Thus, we cannot handle i32 intermediate values here.
10023   if (Op.getOperand(0).getValueType() == MVT::i32)
10024     return SDValue();
10025
10026   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
10027          "UINT_TO_FP is supported only with FPCVT");
10028
10029   // If we have FCFIDS, then use it when converting to single-precision.
10030   // Otherwise, convert to double-precision and then round.
10031   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10032                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
10033                                                             : PPCISD::FCFIDS)
10034                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
10035                                                             : PPCISD::FCFID);
10036   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10037                   ? MVT::f32
10038                   : MVT::f64;
10039
10040   // If we're converting from a float, to an int, and back to a float again,
10041   // then we don't need the store/load pair at all.
10042   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
10043        Subtarget.hasFPCVT()) ||
10044       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
10045     SDValue Src = Op.getOperand(0).getOperand(0);
10046     if (Src.getValueType() == MVT::f32) {
10047       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
10048       DCI.AddToWorklist(Src.getNode());
10049     } else if (Src.getValueType() != MVT::f64) {
10050       // Make sure that we don't pick up a ppc_fp128 source value.
10051       return SDValue();
10052     }
10053
10054     unsigned FCTOp =
10055       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
10056                                                         PPCISD::FCTIDUZ;
10057
10058     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
10059     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
10060
10061     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
10062       FP = DAG.getNode(ISD::FP_ROUND, dl,
10063                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
10064       DCI.AddToWorklist(FP.getNode());
10065     }
10066
10067     return FP;
10068   }
10069
10070   return SDValue();
10071 }
10072
10073 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
10074 // builtins) into loads with swaps.
10075 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
10076                                               DAGCombinerInfo &DCI) const {
10077   SelectionDAG &DAG = DCI.DAG;
10078   SDLoc dl(N);
10079   SDValue Chain;
10080   SDValue Base;
10081   MachineMemOperand *MMO;
10082
10083   switch (N->getOpcode()) {
10084   default:
10085     llvm_unreachable("Unexpected opcode for little endian VSX load");
10086   case ISD::LOAD: {
10087     LoadSDNode *LD = cast<LoadSDNode>(N);
10088     Chain = LD->getChain();
10089     Base = LD->getBasePtr();
10090     MMO = LD->getMemOperand();
10091     // If the MMO suggests this isn't a load of a full vector, leave
10092     // things alone.  For a built-in, we have to make the change for
10093     // correctness, so if there is a size problem that will be a bug.
10094     if (MMO->getSize() < 16)
10095       return SDValue();
10096     break;
10097   }
10098   case ISD::INTRINSIC_W_CHAIN: {
10099     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10100     Chain = Intrin->getChain();
10101     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
10102     // us what we want. Get operand 2 instead.
10103     Base = Intrin->getOperand(2);
10104     MMO = Intrin->getMemOperand();
10105     break;
10106   }
10107   }
10108
10109   MVT VecTy = N->getValueType(0).getSimpleVT();
10110   SDValue LoadOps[] = { Chain, Base };
10111   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
10112                                          DAG.getVTList(VecTy, MVT::Other),
10113                                          LoadOps, VecTy, MMO);
10114   DCI.AddToWorklist(Load.getNode());
10115   Chain = Load.getValue(1);
10116   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
10117                              DAG.getVTList(VecTy, MVT::Other), Chain, Load);
10118   DCI.AddToWorklist(Swap.getNode());
10119   return Swap;
10120 }
10121
10122 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
10123 // builtins) into stores with swaps.
10124 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
10125                                                DAGCombinerInfo &DCI) const {
10126   SelectionDAG &DAG = DCI.DAG;
10127   SDLoc dl(N);
10128   SDValue Chain;
10129   SDValue Base;
10130   unsigned SrcOpnd;
10131   MachineMemOperand *MMO;
10132
10133   switch (N->getOpcode()) {
10134   default:
10135     llvm_unreachable("Unexpected opcode for little endian VSX store");
10136   case ISD::STORE: {
10137     StoreSDNode *ST = cast<StoreSDNode>(N);
10138     Chain = ST->getChain();
10139     Base = ST->getBasePtr();
10140     MMO = ST->getMemOperand();
10141     SrcOpnd = 1;
10142     // If the MMO suggests this isn't a store of a full vector, leave
10143     // things alone.  For a built-in, we have to make the change for
10144     // correctness, so if there is a size problem that will be a bug.
10145     if (MMO->getSize() < 16)
10146       return SDValue();
10147     break;
10148   }
10149   case ISD::INTRINSIC_VOID: {
10150     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10151     Chain = Intrin->getChain();
10152     // Intrin->getBasePtr() oddly does not get what we want.
10153     Base = Intrin->getOperand(3);
10154     MMO = Intrin->getMemOperand();
10155     SrcOpnd = 2;
10156     break;
10157   }
10158   }
10159
10160   SDValue Src = N->getOperand(SrcOpnd);
10161   MVT VecTy = Src.getValueType().getSimpleVT();
10162   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
10163                              DAG.getVTList(VecTy, MVT::Other), Chain, Src);
10164   DCI.AddToWorklist(Swap.getNode());
10165   Chain = Swap.getValue(1);
10166   SDValue StoreOps[] = { Chain, Swap, Base };
10167   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
10168                                           DAG.getVTList(MVT::Other),
10169                                           StoreOps, VecTy, MMO);
10170   DCI.AddToWorklist(Store.getNode());
10171   return Store;
10172 }
10173
10174 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
10175                                              DAGCombinerInfo &DCI) const {
10176   SelectionDAG &DAG = DCI.DAG;
10177   SDLoc dl(N);
10178   switch (N->getOpcode()) {
10179   default: break;
10180   case PPCISD::SHL:
10181     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
10182         return N->getOperand(0);
10183     break;
10184   case PPCISD::SRL:
10185     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
10186         return N->getOperand(0);
10187     break;
10188   case PPCISD::SRA:
10189     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10190       if (C->isNullValue() ||   //  0 >>s V -> 0.
10191           C->isAllOnesValue())    // -1 >>s V -> -1.
10192         return N->getOperand(0);
10193     }
10194     break;
10195   case ISD::SIGN_EXTEND:
10196   case ISD::ZERO_EXTEND:
10197   case ISD::ANY_EXTEND:
10198     return DAGCombineExtBoolTrunc(N, DCI);
10199   case ISD::TRUNCATE:
10200   case ISD::SETCC:
10201   case ISD::SELECT_CC:
10202     return DAGCombineTruncBoolExt(N, DCI);
10203   case ISD::SINT_TO_FP:
10204   case ISD::UINT_TO_FP:
10205     return combineFPToIntToFP(N, DCI);
10206   case ISD::STORE: {
10207     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
10208     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
10209         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
10210         N->getOperand(1).getValueType() == MVT::i32 &&
10211         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
10212       SDValue Val = N->getOperand(1).getOperand(0);
10213       if (Val.getValueType() == MVT::f32) {
10214         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
10215         DCI.AddToWorklist(Val.getNode());
10216       }
10217       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
10218       DCI.AddToWorklist(Val.getNode());
10219
10220       SDValue Ops[] = {
10221         N->getOperand(0), Val, N->getOperand(2),
10222         DAG.getValueType(N->getOperand(1).getValueType())
10223       };
10224
10225       Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
10226               DAG.getVTList(MVT::Other), Ops,
10227               cast<StoreSDNode>(N)->getMemoryVT(),
10228               cast<StoreSDNode>(N)->getMemOperand());
10229       DCI.AddToWorklist(Val.getNode());
10230       return Val;
10231     }
10232
10233     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
10234     if (cast<StoreSDNode>(N)->isUnindexed() &&
10235         N->getOperand(1).getOpcode() == ISD::BSWAP &&
10236         N->getOperand(1).getNode()->hasOneUse() &&
10237         (N->getOperand(1).getValueType() == MVT::i32 ||
10238          N->getOperand(1).getValueType() == MVT::i16 ||
10239          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10240           N->getOperand(1).getValueType() == MVT::i64))) {
10241       SDValue BSwapOp = N->getOperand(1).getOperand(0);
10242       // Do an any-extend to 32-bits if this is a half-word input.
10243       if (BSwapOp.getValueType() == MVT::i16)
10244         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
10245
10246       SDValue Ops[] = {
10247         N->getOperand(0), BSwapOp, N->getOperand(2),
10248         DAG.getValueType(N->getOperand(1).getValueType())
10249       };
10250       return
10251         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
10252                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
10253                                 cast<StoreSDNode>(N)->getMemOperand());
10254     }
10255
10256     // For little endian, VSX stores require generating xxswapd/lxvd2x.
10257     EVT VT = N->getOperand(1).getValueType();
10258     if (VT.isSimple()) {
10259       MVT StoreVT = VT.getSimpleVT();
10260       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10261           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
10262            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
10263         return expandVSXStoreForLE(N, DCI);
10264     }
10265     break;
10266   }
10267   case ISD::LOAD: {
10268     LoadSDNode *LD = cast<LoadSDNode>(N);
10269     EVT VT = LD->getValueType(0);
10270
10271     // For little endian, VSX loads require generating lxvd2x/xxswapd.
10272     if (VT.isSimple()) {
10273       MVT LoadVT = VT.getSimpleVT();
10274       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10275           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
10276            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
10277         return expandVSXLoadForLE(N, DCI);
10278     }
10279
10280     EVT MemVT = LD->getMemoryVT();
10281     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
10282     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
10283     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
10284     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
10285     if (LD->isUnindexed() && VT.isVector() &&
10286         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
10287           // P8 and later hardware should just use LOAD.
10288           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
10289                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
10290          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
10291           LD->getAlignment() >= ScalarABIAlignment)) &&
10292         LD->getAlignment() < ABIAlignment) {
10293       // This is a type-legal unaligned Altivec or QPX load.
10294       SDValue Chain = LD->getChain();
10295       SDValue Ptr = LD->getBasePtr();
10296       bool isLittleEndian = Subtarget.isLittleEndian();
10297
10298       // This implements the loading of unaligned vectors as described in
10299       // the venerable Apple Velocity Engine overview. Specifically:
10300       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
10301       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
10302       //
10303       // The general idea is to expand a sequence of one or more unaligned
10304       // loads into an alignment-based permutation-control instruction (lvsl
10305       // or lvsr), a series of regular vector loads (which always truncate
10306       // their input address to an aligned address), and a series of
10307       // permutations.  The results of these permutations are the requested
10308       // loaded values.  The trick is that the last "extra" load is not taken
10309       // from the address you might suspect (sizeof(vector) bytes after the
10310       // last requested load), but rather sizeof(vector) - 1 bytes after the
10311       // last requested vector. The point of this is to avoid a page fault if
10312       // the base address happened to be aligned. This works because if the
10313       // base address is aligned, then adding less than a full vector length
10314       // will cause the last vector in the sequence to be (re)loaded.
10315       // Otherwise, the next vector will be fetched as you might suspect was
10316       // necessary.
10317
10318       // We might be able to reuse the permutation generation from
10319       // a different base address offset from this one by an aligned amount.
10320       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
10321       // optimization later.
10322       Intrinsic::ID Intr, IntrLD, IntrPerm;
10323       MVT PermCntlTy, PermTy, LDTy;
10324       if (Subtarget.hasAltivec()) {
10325         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
10326                                  Intrinsic::ppc_altivec_lvsl;
10327         IntrLD = Intrinsic::ppc_altivec_lvx;
10328         IntrPerm = Intrinsic::ppc_altivec_vperm;
10329         PermCntlTy = MVT::v16i8;
10330         PermTy = MVT::v4i32;
10331         LDTy = MVT::v4i32;
10332       } else {
10333         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
10334                                        Intrinsic::ppc_qpx_qvlpcls;
10335         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
10336                                        Intrinsic::ppc_qpx_qvlfs;
10337         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
10338         PermCntlTy = MVT::v4f64;
10339         PermTy = MVT::v4f64;
10340         LDTy = MemVT.getSimpleVT();
10341       }
10342
10343       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
10344
10345       // Create the new MMO for the new base load. It is like the original MMO,
10346       // but represents an area in memory almost twice the vector size centered
10347       // on the original address. If the address is unaligned, we might start
10348       // reading up to (sizeof(vector)-1) bytes below the address of the
10349       // original unaligned load.
10350       MachineFunction &MF = DAG.getMachineFunction();
10351       MachineMemOperand *BaseMMO =
10352         MF.getMachineMemOperand(LD->getMemOperand(),
10353                                 -(long)MemVT.getStoreSize()+1,
10354                                 2*MemVT.getStoreSize()-1);
10355
10356       // Create the new base load.
10357       SDValue LDXIntID =
10358           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
10359       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
10360       SDValue BaseLoad =
10361         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10362                                 DAG.getVTList(PermTy, MVT::Other),
10363                                 BaseLoadOps, LDTy, BaseMMO);
10364
10365       // Note that the value of IncOffset (which is provided to the next
10366       // load's pointer info offset value, and thus used to calculate the
10367       // alignment), and the value of IncValue (which is actually used to
10368       // increment the pointer value) are different! This is because we
10369       // require the next load to appear to be aligned, even though it
10370       // is actually offset from the base pointer by a lesser amount.
10371       int IncOffset = VT.getSizeInBits() / 8;
10372       int IncValue = IncOffset;
10373
10374       // Walk (both up and down) the chain looking for another load at the real
10375       // (aligned) offset (the alignment of the other load does not matter in
10376       // this case). If found, then do not use the offset reduction trick, as
10377       // that will prevent the loads from being later combined (as they would
10378       // otherwise be duplicates).
10379       if (!findConsecutiveLoad(LD, DAG))
10380         --IncValue;
10381
10382       SDValue Increment =
10383           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
10384       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
10385
10386       MachineMemOperand *ExtraMMO =
10387         MF.getMachineMemOperand(LD->getMemOperand(),
10388                                 1, 2*MemVT.getStoreSize()-1);
10389       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
10390       SDValue ExtraLoad =
10391         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10392                                 DAG.getVTList(PermTy, MVT::Other),
10393                                 ExtraLoadOps, LDTy, ExtraMMO);
10394
10395       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
10396         BaseLoad.getValue(1), ExtraLoad.getValue(1));
10397
10398       // Because vperm has a big-endian bias, we must reverse the order
10399       // of the input vectors and complement the permute control vector
10400       // when generating little endian code.  We have already handled the
10401       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
10402       // and ExtraLoad here.
10403       SDValue Perm;
10404       if (isLittleEndian)
10405         Perm = BuildIntrinsicOp(IntrPerm,
10406                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
10407       else
10408         Perm = BuildIntrinsicOp(IntrPerm,
10409                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
10410
10411       if (VT != PermTy)
10412         Perm = Subtarget.hasAltivec() ?
10413                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
10414                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
10415                                DAG.getTargetConstant(1, dl, MVT::i64));
10416                                // second argument is 1 because this rounding
10417                                // is always exact.
10418
10419       // The output of the permutation is our loaded result, the TokenFactor is
10420       // our new chain.
10421       DCI.CombineTo(N, Perm, TF);
10422       return SDValue(N, 0);
10423     }
10424     }
10425     break;
10426     case ISD::INTRINSIC_WO_CHAIN: {
10427       bool isLittleEndian = Subtarget.isLittleEndian();
10428       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10429       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
10430                                            : Intrinsic::ppc_altivec_lvsl);
10431       if ((IID == Intr ||
10432            IID == Intrinsic::ppc_qpx_qvlpcld  ||
10433            IID == Intrinsic::ppc_qpx_qvlpcls) &&
10434         N->getOperand(1)->getOpcode() == ISD::ADD) {
10435         SDValue Add = N->getOperand(1);
10436
10437         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
10438                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
10439
10440         if (DAG.MaskedValueIsZero(
10441                 Add->getOperand(1),
10442                 APInt::getAllOnesValue(Bits /* alignment */)
10443                     .zext(
10444                         Add.getValueType().getScalarType().getSizeInBits()))) {
10445           SDNode *BasePtr = Add->getOperand(0).getNode();
10446           for (SDNode::use_iterator UI = BasePtr->use_begin(),
10447                                     UE = BasePtr->use_end();
10448                UI != UE; ++UI) {
10449             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10450                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
10451               // We've found another LVSL/LVSR, and this address is an aligned
10452               // multiple of that one. The results will be the same, so use the
10453               // one we've just found instead.
10454
10455               return SDValue(*UI, 0);
10456             }
10457           }
10458         }
10459
10460         if (isa<ConstantSDNode>(Add->getOperand(1))) {
10461           SDNode *BasePtr = Add->getOperand(0).getNode();
10462           for (SDNode::use_iterator UI = BasePtr->use_begin(),
10463                UE = BasePtr->use_end(); UI != UE; ++UI) {
10464             if (UI->getOpcode() == ISD::ADD &&
10465                 isa<ConstantSDNode>(UI->getOperand(1)) &&
10466                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
10467                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
10468                 (1ULL << Bits) == 0) {
10469               SDNode *OtherAdd = *UI;
10470               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
10471                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
10472                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10473                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
10474                   return SDValue(*VI, 0);
10475                 }
10476               }
10477             }
10478           }
10479         }
10480       }
10481     }
10482
10483     break;
10484   case ISD::INTRINSIC_W_CHAIN: {
10485     // For little endian, VSX loads require generating lxvd2x/xxswapd.
10486     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10487       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10488       default:
10489         break;
10490       case Intrinsic::ppc_vsx_lxvw4x:
10491       case Intrinsic::ppc_vsx_lxvd2x:
10492         return expandVSXLoadForLE(N, DCI);
10493       }
10494     }
10495     break;
10496   }
10497   case ISD::INTRINSIC_VOID: {
10498     // For little endian, VSX stores require generating xxswapd/stxvd2x.
10499     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10500       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10501       default:
10502         break;
10503       case Intrinsic::ppc_vsx_stxvw4x:
10504       case Intrinsic::ppc_vsx_stxvd2x:
10505         return expandVSXStoreForLE(N, DCI);
10506       }
10507     }
10508     break;
10509   }
10510   case ISD::BSWAP:
10511     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
10512     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
10513         N->getOperand(0).hasOneUse() &&
10514         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
10515          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10516           N->getValueType(0) == MVT::i64))) {
10517       SDValue Load = N->getOperand(0);
10518       LoadSDNode *LD = cast<LoadSDNode>(Load);
10519       // Create the byte-swapping load.
10520       SDValue Ops[] = {
10521         LD->getChain(),    // Chain
10522         LD->getBasePtr(),  // Ptr
10523         DAG.getValueType(N->getValueType(0)) // VT
10524       };
10525       SDValue BSLoad =
10526         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
10527                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
10528                                               MVT::i64 : MVT::i32, MVT::Other),
10529                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
10530
10531       // If this is an i16 load, insert the truncate.
10532       SDValue ResVal = BSLoad;
10533       if (N->getValueType(0) == MVT::i16)
10534         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
10535
10536       // First, combine the bswap away.  This makes the value produced by the
10537       // load dead.
10538       DCI.CombineTo(N, ResVal);
10539
10540       // Next, combine the load away, we give it a bogus result value but a real
10541       // chain result.  The result value is dead because the bswap is dead.
10542       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
10543
10544       // Return N so it doesn't get rechecked!
10545       return SDValue(N, 0);
10546     }
10547
10548     break;
10549   case PPCISD::VCMP: {
10550     // If a VCMPo node already exists with exactly the same operands as this
10551     // node, use its result instead of this node (VCMPo computes both a CR6 and
10552     // a normal output).
10553     //
10554     if (!N->getOperand(0).hasOneUse() &&
10555         !N->getOperand(1).hasOneUse() &&
10556         !N->getOperand(2).hasOneUse()) {
10557
10558       // Scan all of the users of the LHS, looking for VCMPo's that match.
10559       SDNode *VCMPoNode = nullptr;
10560
10561       SDNode *LHSN = N->getOperand(0).getNode();
10562       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
10563            UI != E; ++UI)
10564         if (UI->getOpcode() == PPCISD::VCMPo &&
10565             UI->getOperand(1) == N->getOperand(1) &&
10566             UI->getOperand(2) == N->getOperand(2) &&
10567             UI->getOperand(0) == N->getOperand(0)) {
10568           VCMPoNode = *UI;
10569           break;
10570         }
10571
10572       // If there is no VCMPo node, or if the flag value has a single use, don't
10573       // transform this.
10574       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
10575         break;
10576
10577       // Look at the (necessarily single) use of the flag value.  If it has a
10578       // chain, this transformation is more complex.  Note that multiple things
10579       // could use the value result, which we should ignore.
10580       SDNode *FlagUser = nullptr;
10581       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
10582            FlagUser == nullptr; ++UI) {
10583         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
10584         SDNode *User = *UI;
10585         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
10586           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
10587             FlagUser = User;
10588             break;
10589           }
10590         }
10591       }
10592
10593       // If the user is a MFOCRF instruction, we know this is safe.
10594       // Otherwise we give up for right now.
10595       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
10596         return SDValue(VCMPoNode, 0);
10597     }
10598     break;
10599   }
10600   case ISD::BRCOND: {
10601     SDValue Cond = N->getOperand(1);
10602     SDValue Target = N->getOperand(2);
10603
10604     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10605         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
10606           Intrinsic::ppc_is_decremented_ctr_nonzero) {
10607
10608       // We now need to make the intrinsic dead (it cannot be instruction
10609       // selected).
10610       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
10611       assert(Cond.getNode()->hasOneUse() &&
10612              "Counter decrement has more than one use");
10613
10614       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
10615                          N->getOperand(0), Target);
10616     }
10617   }
10618   break;
10619   case ISD::BR_CC: {
10620     // If this is a branch on an altivec predicate comparison, lower this so
10621     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
10622     // lowering is done pre-legalize, because the legalizer lowers the predicate
10623     // compare down to code that is difficult to reassemble.
10624     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
10625     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
10626
10627     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
10628     // value. If so, pass-through the AND to get to the intrinsic.
10629     if (LHS.getOpcode() == ISD::AND &&
10630         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10631         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
10632           Intrinsic::ppc_is_decremented_ctr_nonzero &&
10633         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10634         !isNullConstant(LHS.getOperand(1)))
10635       LHS = LHS.getOperand(0);
10636
10637     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10638         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
10639           Intrinsic::ppc_is_decremented_ctr_nonzero &&
10640         isa<ConstantSDNode>(RHS)) {
10641       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10642              "Counter decrement comparison is not EQ or NE");
10643
10644       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
10645       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
10646                     (CC == ISD::SETNE && !Val);
10647
10648       // We now need to make the intrinsic dead (it cannot be instruction
10649       // selected).
10650       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
10651       assert(LHS.getNode()->hasOneUse() &&
10652              "Counter decrement has more than one use");
10653
10654       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
10655                          N->getOperand(0), N->getOperand(4));
10656     }
10657
10658     int CompareOpc;
10659     bool isDot;
10660
10661     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10662         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
10663         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
10664       assert(isDot && "Can't compare against a vector result!");
10665
10666       // If this is a comparison against something other than 0/1, then we know
10667       // that the condition is never/always true.
10668       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
10669       if (Val != 0 && Val != 1) {
10670         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
10671           return N->getOperand(0);
10672         // Always !=, turn it into an unconditional branch.
10673         return DAG.getNode(ISD::BR, dl, MVT::Other,
10674                            N->getOperand(0), N->getOperand(4));
10675       }
10676
10677       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
10678
10679       // Create the PPCISD altivec 'dot' comparison node.
10680       SDValue Ops[] = {
10681         LHS.getOperand(2),  // LHS of compare
10682         LHS.getOperand(3),  // RHS of compare
10683         DAG.getConstant(CompareOpc, dl, MVT::i32)
10684       };
10685       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
10686       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10687
10688       // Unpack the result based on how the target uses it.
10689       PPC::Predicate CompOpc;
10690       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
10691       default:  // Can't happen, don't crash on invalid number though.
10692       case 0:   // Branch on the value of the EQ bit of CR6.
10693         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
10694         break;
10695       case 1:   // Branch on the inverted value of the EQ bit of CR6.
10696         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
10697         break;
10698       case 2:   // Branch on the value of the LT bit of CR6.
10699         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
10700         break;
10701       case 3:   // Branch on the inverted value of the LT bit of CR6.
10702         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
10703         break;
10704       }
10705
10706       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
10707                          DAG.getConstant(CompOpc, dl, MVT::i32),
10708                          DAG.getRegister(PPC::CR6, MVT::i32),
10709                          N->getOperand(4), CompNode.getValue(1));
10710     }
10711     break;
10712   }
10713   }
10714
10715   return SDValue();
10716 }
10717
10718 SDValue
10719 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
10720                                   SelectionDAG &DAG,
10721                                   std::vector<SDNode *> *Created) const {
10722   // fold (sdiv X, pow2)
10723   EVT VT = N->getValueType(0);
10724   if (VT == MVT::i64 && !Subtarget.isPPC64())
10725     return SDValue();
10726   if ((VT != MVT::i32 && VT != MVT::i64) ||
10727       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
10728     return SDValue();
10729
10730   SDLoc DL(N);
10731   SDValue N0 = N->getOperand(0);
10732
10733   bool IsNegPow2 = (-Divisor).isPowerOf2();
10734   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
10735   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
10736
10737   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
10738   if (Created)
10739     Created->push_back(Op.getNode());
10740
10741   if (IsNegPow2) {
10742     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
10743     if (Created)
10744       Created->push_back(Op.getNode());
10745   }
10746
10747   return Op;
10748 }
10749
10750 //===----------------------------------------------------------------------===//
10751 // Inline Assembly Support
10752 //===----------------------------------------------------------------------===//
10753
10754 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
10755                                                       APInt &KnownZero,
10756                                                       APInt &KnownOne,
10757                                                       const SelectionDAG &DAG,
10758                                                       unsigned Depth) const {
10759   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
10760   switch (Op.getOpcode()) {
10761   default: break;
10762   case PPCISD::LBRX: {
10763     // lhbrx is known to have the top bits cleared out.
10764     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
10765       KnownZero = 0xFFFF0000;
10766     break;
10767   }
10768   case ISD::INTRINSIC_WO_CHAIN: {
10769     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
10770     default: break;
10771     case Intrinsic::ppc_altivec_vcmpbfp_p:
10772     case Intrinsic::ppc_altivec_vcmpeqfp_p:
10773     case Intrinsic::ppc_altivec_vcmpequb_p:
10774     case Intrinsic::ppc_altivec_vcmpequh_p:
10775     case Intrinsic::ppc_altivec_vcmpequw_p:
10776     case Intrinsic::ppc_altivec_vcmpequd_p:
10777     case Intrinsic::ppc_altivec_vcmpgefp_p:
10778     case Intrinsic::ppc_altivec_vcmpgtfp_p:
10779     case Intrinsic::ppc_altivec_vcmpgtsb_p:
10780     case Intrinsic::ppc_altivec_vcmpgtsh_p:
10781     case Intrinsic::ppc_altivec_vcmpgtsw_p:
10782     case Intrinsic::ppc_altivec_vcmpgtsd_p:
10783     case Intrinsic::ppc_altivec_vcmpgtub_p:
10784     case Intrinsic::ppc_altivec_vcmpgtuh_p:
10785     case Intrinsic::ppc_altivec_vcmpgtuw_p:
10786     case Intrinsic::ppc_altivec_vcmpgtud_p:
10787       KnownZero = ~1U;  // All bits but the low one are known to be zero.
10788       break;
10789     }
10790   }
10791   }
10792 }
10793
10794 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
10795   switch (Subtarget.getDarwinDirective()) {
10796   default: break;
10797   case PPC::DIR_970:
10798   case PPC::DIR_PWR4:
10799   case PPC::DIR_PWR5:
10800   case PPC::DIR_PWR5X:
10801   case PPC::DIR_PWR6:
10802   case PPC::DIR_PWR6X:
10803   case PPC::DIR_PWR7:
10804   case PPC::DIR_PWR8: {
10805     if (!ML)
10806       break;
10807
10808     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
10809
10810     // For small loops (between 5 and 8 instructions), align to a 32-byte
10811     // boundary so that the entire loop fits in one instruction-cache line.
10812     uint64_t LoopSize = 0;
10813     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
10814       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
10815         LoopSize += TII->GetInstSizeInBytes(J);
10816         if (LoopSize > 32)
10817           break;
10818       }
10819
10820     if (LoopSize > 16 && LoopSize <= 32)
10821       return 5;
10822
10823     break;
10824   }
10825   }
10826
10827   return TargetLowering::getPrefLoopAlignment(ML);
10828 }
10829
10830 /// getConstraintType - Given a constraint, return the type of
10831 /// constraint it is for this target.
10832 PPCTargetLowering::ConstraintType
10833 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
10834   if (Constraint.size() == 1) {
10835     switch (Constraint[0]) {
10836     default: break;
10837     case 'b':
10838     case 'r':
10839     case 'f':
10840     case 'v':
10841     case 'y':
10842       return C_RegisterClass;
10843     case 'Z':
10844       // FIXME: While Z does indicate a memory constraint, it specifically
10845       // indicates an r+r address (used in conjunction with the 'y' modifier
10846       // in the replacement string). Currently, we're forcing the base
10847       // register to be r0 in the asm printer (which is interpreted as zero)
10848       // and forming the complete address in the second register. This is
10849       // suboptimal.
10850       return C_Memory;
10851     }
10852   } else if (Constraint == "wc") { // individual CR bits.
10853     return C_RegisterClass;
10854   } else if (Constraint == "wa" || Constraint == "wd" ||
10855              Constraint == "wf" || Constraint == "ws") {
10856     return C_RegisterClass; // VSX registers.
10857   }
10858   return TargetLowering::getConstraintType(Constraint);
10859 }
10860
10861 /// Examine constraint type and operand type and determine a weight value.
10862 /// This object must already have been set up with the operand type
10863 /// and the current alternative constraint selected.
10864 TargetLowering::ConstraintWeight
10865 PPCTargetLowering::getSingleConstraintMatchWeight(
10866     AsmOperandInfo &info, const char *constraint) const {
10867   ConstraintWeight weight = CW_Invalid;
10868   Value *CallOperandVal = info.CallOperandVal;
10869     // If we don't have a value, we can't do a match,
10870     // but allow it at the lowest weight.
10871   if (!CallOperandVal)
10872     return CW_Default;
10873   Type *type = CallOperandVal->getType();
10874
10875   // Look at the constraint type.
10876   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
10877     return CW_Register; // an individual CR bit.
10878   else if ((StringRef(constraint) == "wa" ||
10879             StringRef(constraint) == "wd" ||
10880             StringRef(constraint) == "wf") &&
10881            type->isVectorTy())
10882     return CW_Register;
10883   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
10884     return CW_Register;
10885
10886   switch (*constraint) {
10887   default:
10888     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10889     break;
10890   case 'b':
10891     if (type->isIntegerTy())
10892       weight = CW_Register;
10893     break;
10894   case 'f':
10895     if (type->isFloatTy())
10896       weight = CW_Register;
10897     break;
10898   case 'd':
10899     if (type->isDoubleTy())
10900       weight = CW_Register;
10901     break;
10902   case 'v':
10903     if (type->isVectorTy())
10904       weight = CW_Register;
10905     break;
10906   case 'y':
10907     weight = CW_Register;
10908     break;
10909   case 'Z':
10910     weight = CW_Memory;
10911     break;
10912   }
10913   return weight;
10914 }
10915
10916 std::pair<unsigned, const TargetRegisterClass *>
10917 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10918                                                 StringRef Constraint,
10919                                                 MVT VT) const {
10920   if (Constraint.size() == 1) {
10921     // GCC RS6000 Constraint Letters
10922     switch (Constraint[0]) {
10923     case 'b':   // R1-R31
10924       if (VT == MVT::i64 && Subtarget.isPPC64())
10925         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
10926       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
10927     case 'r':   // R0-R31
10928       if (VT == MVT::i64 && Subtarget.isPPC64())
10929         return std::make_pair(0U, &PPC::G8RCRegClass);
10930       return std::make_pair(0U, &PPC::GPRCRegClass);
10931     case 'f':
10932       if (VT == MVT::f32 || VT == MVT::i32)
10933         return std::make_pair(0U, &PPC::F4RCRegClass);
10934       if (VT == MVT::f64 || VT == MVT::i64)
10935         return std::make_pair(0U, &PPC::F8RCRegClass);
10936       if (VT == MVT::v4f64 && Subtarget.hasQPX())
10937         return std::make_pair(0U, &PPC::QFRCRegClass);
10938       if (VT == MVT::v4f32 && Subtarget.hasQPX())
10939         return std::make_pair(0U, &PPC::QSRCRegClass);
10940       break;
10941     case 'v':
10942       if (VT == MVT::v4f64 && Subtarget.hasQPX())
10943         return std::make_pair(0U, &PPC::QFRCRegClass);
10944       if (VT == MVT::v4f32 && Subtarget.hasQPX())
10945         return std::make_pair(0U, &PPC::QSRCRegClass);
10946       if (Subtarget.hasAltivec())
10947         return std::make_pair(0U, &PPC::VRRCRegClass);
10948     case 'y':   // crrc
10949       return std::make_pair(0U, &PPC::CRRCRegClass);
10950     }
10951   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
10952     // An individual CR bit.
10953     return std::make_pair(0U, &PPC::CRBITRCRegClass);
10954   } else if ((Constraint == "wa" || Constraint == "wd" ||
10955              Constraint == "wf") && Subtarget.hasVSX()) {
10956     return std::make_pair(0U, &PPC::VSRCRegClass);
10957   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
10958     if (VT == MVT::f32 && Subtarget.hasP8Vector())
10959       return std::make_pair(0U, &PPC::VSSRCRegClass);
10960     else
10961       return std::make_pair(0U, &PPC::VSFRCRegClass);
10962   }
10963
10964   std::pair<unsigned, const TargetRegisterClass *> R =
10965       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10966
10967   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
10968   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
10969   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
10970   // register.
10971   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
10972   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
10973   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
10974       PPC::GPRCRegClass.contains(R.first))
10975     return std::make_pair(TRI->getMatchingSuperReg(R.first,
10976                             PPC::sub_32, &PPC::G8RCRegClass),
10977                           &PPC::G8RCRegClass);
10978
10979   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
10980   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
10981     R.first = PPC::CR0;
10982     R.second = &PPC::CRRCRegClass;
10983   }
10984
10985   return R;
10986 }
10987
10988 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10989 /// vector.  If it is invalid, don't add anything to Ops.
10990 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10991                                                      std::string &Constraint,
10992                                                      std::vector<SDValue>&Ops,
10993                                                      SelectionDAG &DAG) const {
10994   SDValue Result;
10995
10996   // Only support length 1 constraints.
10997   if (Constraint.length() > 1) return;
10998
10999   char Letter = Constraint[0];
11000   switch (Letter) {
11001   default: break;
11002   case 'I':
11003   case 'J':
11004   case 'K':
11005   case 'L':
11006   case 'M':
11007   case 'N':
11008   case 'O':
11009   case 'P': {
11010     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
11011     if (!CST) return; // Must be an immediate to match.
11012     SDLoc dl(Op);
11013     int64_t Value = CST->getSExtValue();
11014     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
11015                          // numbers are printed as such.
11016     switch (Letter) {
11017     default: llvm_unreachable("Unknown constraint letter!");
11018     case 'I':  // "I" is a signed 16-bit constant.
11019       if (isInt<16>(Value))
11020         Result = DAG.getTargetConstant(Value, dl, TCVT);
11021       break;
11022     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
11023       if (isShiftedUInt<16, 16>(Value))
11024         Result = DAG.getTargetConstant(Value, dl, TCVT);
11025       break;
11026     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
11027       if (isShiftedInt<16, 16>(Value))
11028         Result = DAG.getTargetConstant(Value, dl, TCVT);
11029       break;
11030     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
11031       if (isUInt<16>(Value))
11032         Result = DAG.getTargetConstant(Value, dl, TCVT);
11033       break;
11034     case 'M':  // "M" is a constant that is greater than 31.
11035       if (Value > 31)
11036         Result = DAG.getTargetConstant(Value, dl, TCVT);
11037       break;
11038     case 'N':  // "N" is a positive constant that is an exact power of two.
11039       if (Value > 0 && isPowerOf2_64(Value))
11040         Result = DAG.getTargetConstant(Value, dl, TCVT);
11041       break;
11042     case 'O':  // "O" is the constant zero.
11043       if (Value == 0)
11044         Result = DAG.getTargetConstant(Value, dl, TCVT);
11045       break;
11046     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
11047       if (isInt<16>(-Value))
11048         Result = DAG.getTargetConstant(Value, dl, TCVT);
11049       break;
11050     }
11051     break;
11052   }
11053   }
11054
11055   if (Result.getNode()) {
11056     Ops.push_back(Result);
11057     return;
11058   }
11059
11060   // Handle standard constraint letters.
11061   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11062 }
11063
11064 // isLegalAddressingMode - Return true if the addressing mode represented
11065 // by AM is legal for this target, for a load/store of the specified type.
11066 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
11067                                               const AddrMode &AM, Type *Ty,
11068                                               unsigned AS) const {
11069   // PPC does not allow r+i addressing modes for vectors!
11070   if (Ty->isVectorTy() && AM.BaseOffs != 0)
11071     return false;
11072
11073   // PPC allows a sign-extended 16-bit immediate field.
11074   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
11075     return false;
11076
11077   // No global is ever allowed as a base.
11078   if (AM.BaseGV)
11079     return false;
11080
11081   // PPC only support r+r,
11082   switch (AM.Scale) {
11083   case 0:  // "r+i" or just "i", depending on HasBaseReg.
11084     break;
11085   case 1:
11086     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
11087       return false;
11088     // Otherwise we have r+r or r+i.
11089     break;
11090   case 2:
11091     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
11092       return false;
11093     // Allow 2*r as r+r.
11094     break;
11095   default:
11096     // No other scales are supported.
11097     return false;
11098   }
11099
11100   return true;
11101 }
11102
11103 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
11104                                            SelectionDAG &DAG) const {
11105   MachineFunction &MF = DAG.getMachineFunction();
11106   MachineFrameInfo *MFI = MF.getFrameInfo();
11107   MFI->setReturnAddressIsTaken(true);
11108
11109   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
11110     return SDValue();
11111
11112   SDLoc dl(Op);
11113   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11114
11115   // Make sure the function does not optimize away the store of the RA to
11116   // the stack.
11117   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
11118   FuncInfo->setLRStoreRequired();
11119   bool isPPC64 = Subtarget.isPPC64();
11120   auto PtrVT = getPointerTy(MF.getDataLayout());
11121
11122   if (Depth > 0) {
11123     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
11124     SDValue Offset =
11125         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
11126                         isPPC64 ? MVT::i64 : MVT::i32);
11127     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11128                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
11129                        MachinePointerInfo(), false, false, false, 0);
11130   }
11131
11132   // Just load the return address off the stack.
11133   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
11134   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
11135                      MachinePointerInfo(), false, false, false, 0);
11136 }
11137
11138 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
11139                                           SelectionDAG &DAG) const {
11140   SDLoc dl(Op);
11141   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11142
11143   MachineFunction &MF = DAG.getMachineFunction();
11144   MachineFrameInfo *MFI = MF.getFrameInfo();
11145   MFI->setFrameAddressIsTaken(true);
11146
11147   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
11148   bool isPPC64 = PtrVT == MVT::i64;
11149
11150   // Naked functions never have a frame pointer, and so we use r1. For all
11151   // other functions, this decision must be delayed until during PEI.
11152   unsigned FrameReg;
11153   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
11154     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
11155   else
11156     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
11157
11158   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
11159                                          PtrVT);
11160   while (Depth--)
11161     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
11162                             FrameAddr, MachinePointerInfo(), false, false,
11163                             false, 0);
11164   return FrameAddr;
11165 }
11166
11167 // FIXME? Maybe this could be a TableGen attribute on some registers and
11168 // this table could be generated automatically from RegInfo.
11169 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
11170                                               SelectionDAG &DAG) const {
11171   bool isPPC64 = Subtarget.isPPC64();
11172   bool isDarwinABI = Subtarget.isDarwinABI();
11173
11174   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
11175       (!isPPC64 && VT != MVT::i32))
11176     report_fatal_error("Invalid register global variable type");
11177
11178   bool is64Bit = isPPC64 && VT == MVT::i64;
11179   unsigned Reg = StringSwitch<unsigned>(RegName)
11180                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
11181                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
11182                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
11183                                   (is64Bit ? PPC::X13 : PPC::R13))
11184                    .Default(0);
11185
11186   if (Reg)
11187     return Reg;
11188   report_fatal_error("Invalid register name global variable");
11189 }
11190
11191 bool
11192 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
11193   // The PowerPC target isn't yet aware of offsets.
11194   return false;
11195 }
11196
11197 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
11198                                            const CallInst &I,
11199                                            unsigned Intrinsic) const {
11200
11201   switch (Intrinsic) {
11202   case Intrinsic::ppc_qpx_qvlfd:
11203   case Intrinsic::ppc_qpx_qvlfs:
11204   case Intrinsic::ppc_qpx_qvlfcd:
11205   case Intrinsic::ppc_qpx_qvlfcs:
11206   case Intrinsic::ppc_qpx_qvlfiwa:
11207   case Intrinsic::ppc_qpx_qvlfiwz:
11208   case Intrinsic::ppc_altivec_lvx:
11209   case Intrinsic::ppc_altivec_lvxl:
11210   case Intrinsic::ppc_altivec_lvebx:
11211   case Intrinsic::ppc_altivec_lvehx:
11212   case Intrinsic::ppc_altivec_lvewx:
11213   case Intrinsic::ppc_vsx_lxvd2x:
11214   case Intrinsic::ppc_vsx_lxvw4x: {
11215     EVT VT;
11216     switch (Intrinsic) {
11217     case Intrinsic::ppc_altivec_lvebx:
11218       VT = MVT::i8;
11219       break;
11220     case Intrinsic::ppc_altivec_lvehx:
11221       VT = MVT::i16;
11222       break;
11223     case Intrinsic::ppc_altivec_lvewx:
11224       VT = MVT::i32;
11225       break;
11226     case Intrinsic::ppc_vsx_lxvd2x:
11227       VT = MVT::v2f64;
11228       break;
11229     case Intrinsic::ppc_qpx_qvlfd:
11230       VT = MVT::v4f64;
11231       break;
11232     case Intrinsic::ppc_qpx_qvlfs:
11233       VT = MVT::v4f32;
11234       break;
11235     case Intrinsic::ppc_qpx_qvlfcd:
11236       VT = MVT::v2f64;
11237       break;
11238     case Intrinsic::ppc_qpx_qvlfcs:
11239       VT = MVT::v2f32;
11240       break;
11241     default:
11242       VT = MVT::v4i32;
11243       break;
11244     }
11245
11246     Info.opc = ISD::INTRINSIC_W_CHAIN;
11247     Info.memVT = VT;
11248     Info.ptrVal = I.getArgOperand(0);
11249     Info.offset = -VT.getStoreSize()+1;
11250     Info.size = 2*VT.getStoreSize()-1;
11251     Info.align = 1;
11252     Info.vol = false;
11253     Info.readMem = true;
11254     Info.writeMem = false;
11255     return true;
11256   }
11257   case Intrinsic::ppc_qpx_qvlfda:
11258   case Intrinsic::ppc_qpx_qvlfsa:
11259   case Intrinsic::ppc_qpx_qvlfcda:
11260   case Intrinsic::ppc_qpx_qvlfcsa:
11261   case Intrinsic::ppc_qpx_qvlfiwaa:
11262   case Intrinsic::ppc_qpx_qvlfiwza: {
11263     EVT VT;
11264     switch (Intrinsic) {
11265     case Intrinsic::ppc_qpx_qvlfda:
11266       VT = MVT::v4f64;
11267       break;
11268     case Intrinsic::ppc_qpx_qvlfsa:
11269       VT = MVT::v4f32;
11270       break;
11271     case Intrinsic::ppc_qpx_qvlfcda:
11272       VT = MVT::v2f64;
11273       break;
11274     case Intrinsic::ppc_qpx_qvlfcsa:
11275       VT = MVT::v2f32;
11276       break;
11277     default:
11278       VT = MVT::v4i32;
11279       break;
11280     }
11281
11282     Info.opc = ISD::INTRINSIC_W_CHAIN;
11283     Info.memVT = VT;
11284     Info.ptrVal = I.getArgOperand(0);
11285     Info.offset = 0;
11286     Info.size = VT.getStoreSize();
11287     Info.align = 1;
11288     Info.vol = false;
11289     Info.readMem = true;
11290     Info.writeMem = false;
11291     return true;
11292   }
11293   case Intrinsic::ppc_qpx_qvstfd:
11294   case Intrinsic::ppc_qpx_qvstfs:
11295   case Intrinsic::ppc_qpx_qvstfcd:
11296   case Intrinsic::ppc_qpx_qvstfcs:
11297   case Intrinsic::ppc_qpx_qvstfiw:
11298   case Intrinsic::ppc_altivec_stvx:
11299   case Intrinsic::ppc_altivec_stvxl:
11300   case Intrinsic::ppc_altivec_stvebx:
11301   case Intrinsic::ppc_altivec_stvehx:
11302   case Intrinsic::ppc_altivec_stvewx:
11303   case Intrinsic::ppc_vsx_stxvd2x:
11304   case Intrinsic::ppc_vsx_stxvw4x: {
11305     EVT VT;
11306     switch (Intrinsic) {
11307     case Intrinsic::ppc_altivec_stvebx:
11308       VT = MVT::i8;
11309       break;
11310     case Intrinsic::ppc_altivec_stvehx:
11311       VT = MVT::i16;
11312       break;
11313     case Intrinsic::ppc_altivec_stvewx:
11314       VT = MVT::i32;
11315       break;
11316     case Intrinsic::ppc_vsx_stxvd2x:
11317       VT = MVT::v2f64;
11318       break;
11319     case Intrinsic::ppc_qpx_qvstfd:
11320       VT = MVT::v4f64;
11321       break;
11322     case Intrinsic::ppc_qpx_qvstfs:
11323       VT = MVT::v4f32;
11324       break;
11325     case Intrinsic::ppc_qpx_qvstfcd:
11326       VT = MVT::v2f64;
11327       break;
11328     case Intrinsic::ppc_qpx_qvstfcs:
11329       VT = MVT::v2f32;
11330       break;
11331     default:
11332       VT = MVT::v4i32;
11333       break;
11334     }
11335
11336     Info.opc = ISD::INTRINSIC_VOID;
11337     Info.memVT = VT;
11338     Info.ptrVal = I.getArgOperand(1);
11339     Info.offset = -VT.getStoreSize()+1;
11340     Info.size = 2*VT.getStoreSize()-1;
11341     Info.align = 1;
11342     Info.vol = false;
11343     Info.readMem = false;
11344     Info.writeMem = true;
11345     return true;
11346   }
11347   case Intrinsic::ppc_qpx_qvstfda:
11348   case Intrinsic::ppc_qpx_qvstfsa:
11349   case Intrinsic::ppc_qpx_qvstfcda:
11350   case Intrinsic::ppc_qpx_qvstfcsa:
11351   case Intrinsic::ppc_qpx_qvstfiwa: {
11352     EVT VT;
11353     switch (Intrinsic) {
11354     case Intrinsic::ppc_qpx_qvstfda:
11355       VT = MVT::v4f64;
11356       break;
11357     case Intrinsic::ppc_qpx_qvstfsa:
11358       VT = MVT::v4f32;
11359       break;
11360     case Intrinsic::ppc_qpx_qvstfcda:
11361       VT = MVT::v2f64;
11362       break;
11363     case Intrinsic::ppc_qpx_qvstfcsa:
11364       VT = MVT::v2f32;
11365       break;
11366     default:
11367       VT = MVT::v4i32;
11368       break;
11369     }
11370
11371     Info.opc = ISD::INTRINSIC_VOID;
11372     Info.memVT = VT;
11373     Info.ptrVal = I.getArgOperand(1);
11374     Info.offset = 0;
11375     Info.size = VT.getStoreSize();
11376     Info.align = 1;
11377     Info.vol = false;
11378     Info.readMem = false;
11379     Info.writeMem = true;
11380     return true;
11381   }
11382   default:
11383     break;
11384   }
11385
11386   return false;
11387 }
11388
11389 /// getOptimalMemOpType - Returns the target specific optimal type for load
11390 /// and store operations as a result of memset, memcpy, and memmove
11391 /// lowering. If DstAlign is zero that means it's safe to destination
11392 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
11393 /// means there isn't a need to check it against alignment requirement,
11394 /// probably because the source does not need to be loaded. If 'IsMemset' is
11395 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
11396 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
11397 /// source is constant so it does not need to be loaded.
11398 /// It returns EVT::Other if the type should be determined using generic
11399 /// target-independent logic.
11400 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
11401                                            unsigned DstAlign, unsigned SrcAlign,
11402                                            bool IsMemset, bool ZeroMemset,
11403                                            bool MemcpyStrSrc,
11404                                            MachineFunction &MF) const {
11405   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
11406     const Function *F = MF.getFunction();
11407     // When expanding a memset, require at least two QPX instructions to cover
11408     // the cost of loading the value to be stored from the constant pool.
11409     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
11410        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
11411         !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
11412       return MVT::v4f64;
11413     }
11414
11415     // We should use Altivec/VSX loads and stores when available. For unaligned
11416     // addresses, unaligned VSX loads are only fast starting with the P8.
11417     if (Subtarget.hasAltivec() && Size >= 16 &&
11418         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
11419          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
11420       return MVT::v4i32;
11421   }
11422
11423   if (Subtarget.isPPC64()) {
11424     return MVT::i64;
11425   }
11426
11427   return MVT::i32;
11428 }
11429
11430 /// \brief Returns true if it is beneficial to convert a load of a constant
11431 /// to just the constant itself.
11432 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
11433                                                           Type *Ty) const {
11434   assert(Ty->isIntegerTy());
11435
11436   unsigned BitSize = Ty->getPrimitiveSizeInBits();
11437   return !(BitSize == 0 || BitSize > 64);
11438 }
11439
11440 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11441   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11442     return false;
11443   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11444   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11445   return NumBits1 == 64 && NumBits2 == 32;
11446 }
11447
11448 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11449   if (!VT1.isInteger() || !VT2.isInteger())
11450     return false;
11451   unsigned NumBits1 = VT1.getSizeInBits();
11452   unsigned NumBits2 = VT2.getSizeInBits();
11453   return NumBits1 == 64 && NumBits2 == 32;
11454 }
11455
11456 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
11457   // Generally speaking, zexts are not free, but they are free when they can be
11458   // folded with other operations.
11459   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
11460     EVT MemVT = LD->getMemoryVT();
11461     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
11462          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
11463         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
11464          LD->getExtensionType() == ISD::ZEXTLOAD))
11465       return true;
11466   }
11467
11468   // FIXME: Add other cases...
11469   //  - 32-bit shifts with a zext to i64
11470   //  - zext after ctlz, bswap, etc.
11471   //  - zext after and by a constant mask
11472
11473   return TargetLowering::isZExtFree(Val, VT2);
11474 }
11475
11476 bool PPCTargetLowering::isFPExtFree(EVT VT) const {
11477   assert(VT.isFloatingPoint());
11478   return true;
11479 }
11480
11481 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11482   return isInt<16>(Imm) || isUInt<16>(Imm);
11483 }
11484
11485 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
11486   return isInt<16>(Imm) || isUInt<16>(Imm);
11487 }
11488
11489 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
11490                                                        unsigned,
11491                                                        unsigned,
11492                                                        bool *Fast) const {
11493   if (DisablePPCUnaligned)
11494     return false;
11495
11496   // PowerPC supports unaligned memory access for simple non-vector types.
11497   // Although accessing unaligned addresses is not as efficient as accessing
11498   // aligned addresses, it is generally more efficient than manual expansion,
11499   // and generally only traps for software emulation when crossing page
11500   // boundaries.
11501
11502   if (!VT.isSimple())
11503     return false;
11504
11505   if (VT.getSimpleVT().isVector()) {
11506     if (Subtarget.hasVSX()) {
11507       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
11508           VT != MVT::v4f32 && VT != MVT::v4i32)
11509         return false;
11510     } else {
11511       return false;
11512     }
11513   }
11514
11515   if (VT == MVT::ppcf128)
11516     return false;
11517
11518   if (Fast)
11519     *Fast = true;
11520
11521   return true;
11522 }
11523
11524 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
11525   VT = VT.getScalarType();
11526
11527   if (!VT.isSimple())
11528     return false;
11529
11530   switch (VT.getSimpleVT().SimpleTy) {
11531   case MVT::f32:
11532   case MVT::f64:
11533     return true;
11534   default:
11535     break;
11536   }
11537
11538   return false;
11539 }
11540
11541 const MCPhysReg *
11542 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
11543   // LR is a callee-save register, but we must treat it as clobbered by any call
11544   // site. Hence we include LR in the scratch registers, which are in turn added
11545   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
11546   // to CTR, which is used by any indirect call.
11547   static const MCPhysReg ScratchRegs[] = {
11548     PPC::X12, PPC::LR8, PPC::CTR8, 0
11549   };
11550
11551   return ScratchRegs;
11552 }
11553
11554 unsigned PPCTargetLowering::getExceptionPointerRegister(
11555     const Constant *PersonalityFn) const {
11556   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
11557 }
11558
11559 unsigned PPCTargetLowering::getExceptionSelectorRegister(
11560     const Constant *PersonalityFn) const {
11561   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
11562 }
11563
11564 bool
11565 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
11566                      EVT VT , unsigned DefinedValues) const {
11567   if (VT == MVT::v2i64)
11568     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
11569
11570   if (Subtarget.hasQPX()) {
11571     if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1)
11572       return true;
11573   }
11574
11575   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
11576 }
11577
11578 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
11579   if (DisableILPPref || Subtarget.enableMachineScheduler())
11580     return TargetLowering::getSchedulingPreference(N);
11581
11582   return Sched::ILP;
11583 }
11584
11585 // Create a fast isel object.
11586 FastISel *
11587 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
11588                                   const TargetLibraryInfo *LibInfo) const {
11589   return PPC::createFastISel(FuncInfo, LibInfo);
11590 }