Simplify. NFC.
[oota-llvm.git] / lib / Target / PowerPC / PPCCTRLoops.cpp
1 //===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass identifies loops where we can generate the PPC branch instructions
11 // that decrement and test the count register (CTR) (bdnz and friends).
12 //
13 // The pattern that defines the induction variable can changed depending on
14 // prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
15 // normalizes induction variables, and the Loop Strength Reduction pass
16 // run by 'llc' may also make changes to the induction variable.
17 //
18 // Criteria for CTR loops:
19 //  - Countable loops (w/ ind. var for a trip count)
20 //  - Try inner-most loops first
21 //  - No nested CTR loops.
22 //  - No function calls in loops.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #include "llvm/Transforms/Scalar.h"
27 #include "PPC.h"
28 #include "PPCTargetMachine.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/ScalarEvolutionExpander.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/PassSupport.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49
50 #ifndef NDEBUG
51 #include "llvm/CodeGen/MachineDominators.h"
52 #include "llvm/CodeGen/MachineFunction.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #endif
56
57 #include <algorithm>
58 #include <vector>
59
60 using namespace llvm;
61
62 #define DEBUG_TYPE "ctrloops"
63
64 #ifndef NDEBUG
65 static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1));
66 #endif
67
68 STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
69
70 namespace llvm {
71   void initializePPCCTRLoopsPass(PassRegistry&);
72 #ifndef NDEBUG
73   void initializePPCCTRLoopsVerifyPass(PassRegistry&);
74 #endif
75 }
76
77 namespace {
78   struct PPCCTRLoops : public FunctionPass {
79
80 #ifndef NDEBUG
81     static int Counter;
82 #endif
83
84   public:
85     static char ID;
86
87     PPCCTRLoops() : FunctionPass(ID), TM(nullptr) {
88       initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
89     }
90     PPCCTRLoops(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) {
91       initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
92     }
93
94     bool runOnFunction(Function &F) override;
95
96     void getAnalysisUsage(AnalysisUsage &AU) const override {
97       AU.addRequired<LoopInfoWrapperPass>();
98       AU.addPreserved<LoopInfoWrapperPass>();
99       AU.addRequired<DominatorTreeWrapperPass>();
100       AU.addPreserved<DominatorTreeWrapperPass>();
101       AU.addRequired<ScalarEvolutionWrapperPass>();
102     }
103
104   private:
105     bool mightUseCTR(const Triple &TT, BasicBlock *BB);
106     bool convertToCTRLoop(Loop *L);
107
108   private:
109     PPCTargetMachine *TM;
110     LoopInfo *LI;
111     ScalarEvolution *SE;
112     const DataLayout *DL;
113     DominatorTree *DT;
114     const TargetLibraryInfo *LibInfo;
115     bool PreserveLCSSA;
116   };
117
118   char PPCCTRLoops::ID = 0;
119 #ifndef NDEBUG
120   int PPCCTRLoops::Counter = 0;
121 #endif
122
123 #ifndef NDEBUG
124   struct PPCCTRLoopsVerify : public MachineFunctionPass {
125   public:
126     static char ID;
127
128     PPCCTRLoopsVerify() : MachineFunctionPass(ID) {
129       initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry());
130     }
131
132     void getAnalysisUsage(AnalysisUsage &AU) const override {
133       AU.addRequired<MachineDominatorTree>();
134       MachineFunctionPass::getAnalysisUsage(AU);
135     }
136
137     bool runOnMachineFunction(MachineFunction &MF) override;
138
139   private:
140     MachineDominatorTree *MDT;
141   };
142
143   char PPCCTRLoopsVerify::ID = 0;
144 #endif // NDEBUG
145 } // end anonymous namespace
146
147 INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
148                       false, false)
149 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
150 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
151 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
152 INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
153                     false, false)
154
155 FunctionPass *llvm::createPPCCTRLoops(PPCTargetMachine &TM) {
156   return new PPCCTRLoops(TM);
157 }
158
159 #ifndef NDEBUG
160 INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
161                       "PowerPC CTR Loops Verify", false, false)
162 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
163 INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
164                     "PowerPC CTR Loops Verify", false, false)
165
166 FunctionPass *llvm::createPPCCTRLoopsVerify() {
167   return new PPCCTRLoopsVerify();
168 }
169 #endif // NDEBUG
170
171 bool PPCCTRLoops::runOnFunction(Function &F) {
172   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
173   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
174   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
175   DL = &F.getParent()->getDataLayout();
176   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
177   LibInfo = TLIP ? &TLIP->getTLI() : nullptr;
178   PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
179
180   bool MadeChange = false;
181
182   for (LoopInfo::iterator I = LI->begin(), E = LI->end();
183        I != E; ++I) {
184     Loop *L = *I;
185     if (!L->getParentLoop())
186       MadeChange |= convertToCTRLoop(L);
187   }
188
189   return MadeChange;
190 }
191
192 static bool isLargeIntegerTy(bool Is32Bit, Type *Ty) {
193   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
194     return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
195
196   return false;
197 }
198
199 // Determining the address of a TLS variable results in a function call in
200 // certain TLS models.
201 static bool memAddrUsesCTR(const PPCTargetMachine *TM,
202                            const Value *MemAddr) {
203   const auto *GV = dyn_cast<GlobalValue>(MemAddr);
204   if (!GV) {
205     // Recurse to check for constants that refer to TLS global variables.
206     if (const auto *CV = dyn_cast<Constant>(MemAddr))
207       for (const auto &CO : CV->operands())
208         if (memAddrUsesCTR(TM, CO))
209           return true;
210
211     return false;
212   }
213
214   if (!GV->isThreadLocal())
215     return false;
216   if (!TM)
217     return true;
218   TLSModel::Model Model = TM->getTLSModel(GV);
219   return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic;
220 }
221
222 bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) {
223   for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
224        J != JE; ++J) {
225     if (CallInst *CI = dyn_cast<CallInst>(J)) {
226       if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) {
227         // Inline ASM is okay, unless it clobbers the ctr register.
228         InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
229         for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
230           InlineAsm::ConstraintInfo &C = CIV[i];
231           if (C.Type != InlineAsm::isInput)
232             for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
233               if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
234                 return true;
235         }
236
237         continue;
238       }
239
240       if (!TM)
241         return true;
242       const TargetLowering *TLI =
243           TM->getSubtargetImpl(*BB->getParent())->getTargetLowering();
244
245       if (Function *F = CI->getCalledFunction()) {
246         // Most intrinsics don't become function calls, but some might.
247         // sin, cos, exp and log are always calls.
248         unsigned Opcode;
249         if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
250           switch (F->getIntrinsicID()) {
251           default: continue;
252           // If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr
253           // we're definitely using CTR.
254           case Intrinsic::ppc_is_decremented_ctr_nonzero:
255           case Intrinsic::ppc_mtctr:
256             return true;
257
258 // VisualStudio defines setjmp as _setjmp
259 #if defined(_MSC_VER) && defined(setjmp) && \
260                        !defined(setjmp_undefined_for_msvc)
261 #  pragma push_macro("setjmp")
262 #  undef setjmp
263 #  define setjmp_undefined_for_msvc
264 #endif
265
266           case Intrinsic::setjmp:
267
268 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
269  // let's return it to _setjmp state
270 #  pragma pop_macro("setjmp")
271 #  undef setjmp_undefined_for_msvc
272 #endif
273
274           case Intrinsic::longjmp:
275
276           // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
277           // because, although it does clobber the counter register, the
278           // control can't then return to inside the loop unless there is also
279           // an eh_sjlj_setjmp.
280           case Intrinsic::eh_sjlj_setjmp:
281
282           case Intrinsic::memcpy:
283           case Intrinsic::memmove:
284           case Intrinsic::memset:
285           case Intrinsic::powi:
286           case Intrinsic::log:
287           case Intrinsic::log2:
288           case Intrinsic::log10:
289           case Intrinsic::exp:
290           case Intrinsic::exp2:
291           case Intrinsic::pow:
292           case Intrinsic::sin:
293           case Intrinsic::cos:
294             return true;
295           case Intrinsic::copysign:
296             if (CI->getArgOperand(0)->getType()->getScalarType()->
297                 isPPC_FP128Ty())
298               return true;
299             else
300               continue; // ISD::FCOPYSIGN is never a library call.
301           case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
302           case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
303           case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
304           case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
305           case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
306           case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
307           case Intrinsic::round:     Opcode = ISD::FROUND;     break;
308           }
309         }
310
311         // PowerPC does not use [US]DIVREM or other library calls for
312         // operations on regular types which are not otherwise library calls
313         // (i.e. soft float or atomics). If adapting for targets that do,
314         // additional care is required here.
315
316         LibFunc::Func Func;
317         if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
318             LibInfo->getLibFunc(F->getName(), Func) &&
319             LibInfo->hasOptimizedCodeGen(Func)) {
320           // Non-read-only functions are never treated as intrinsics.
321           if (!CI->onlyReadsMemory())
322             return true;
323
324           // Conversion happens only for FP calls.
325           if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
326             return true;
327
328           switch (Func) {
329           default: return true;
330           case LibFunc::copysign:
331           case LibFunc::copysignf:
332             continue; // ISD::FCOPYSIGN is never a library call.
333           case LibFunc::copysignl:
334             return true;
335           case LibFunc::fabs:
336           case LibFunc::fabsf:
337           case LibFunc::fabsl:
338             continue; // ISD::FABS is never a library call.
339           case LibFunc::sqrt:
340           case LibFunc::sqrtf:
341           case LibFunc::sqrtl:
342             Opcode = ISD::FSQRT; break;
343           case LibFunc::floor:
344           case LibFunc::floorf:
345           case LibFunc::floorl:
346             Opcode = ISD::FFLOOR; break;
347           case LibFunc::nearbyint:
348           case LibFunc::nearbyintf:
349           case LibFunc::nearbyintl:
350             Opcode = ISD::FNEARBYINT; break;
351           case LibFunc::ceil:
352           case LibFunc::ceilf:
353           case LibFunc::ceill:
354             Opcode = ISD::FCEIL; break;
355           case LibFunc::rint:
356           case LibFunc::rintf:
357           case LibFunc::rintl:
358             Opcode = ISD::FRINT; break;
359           case LibFunc::round:
360           case LibFunc::roundf:
361           case LibFunc::roundl:
362             Opcode = ISD::FROUND; break;
363           case LibFunc::trunc:
364           case LibFunc::truncf:
365           case LibFunc::truncl:
366             Opcode = ISD::FTRUNC; break;
367           }
368
369           auto &DL = CI->getModule()->getDataLayout();
370           MVT VTy = TLI->getSimpleValueType(DL, CI->getArgOperand(0)->getType(),
371                                             true);
372           if (VTy == MVT::Other)
373             return true;
374
375           if (TLI->isOperationLegalOrCustom(Opcode, VTy))
376             continue;
377           else if (VTy.isVector() &&
378                    TLI->isOperationLegalOrCustom(Opcode, VTy.getScalarType()))
379             continue;
380
381           return true;
382         }
383       }
384
385       return true;
386     } else if (isa<BinaryOperator>(J) &&
387                J->getType()->getScalarType()->isPPC_FP128Ty()) {
388       // Most operations on ppc_f128 values become calls.
389       return true;
390     } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
391                isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
392       CastInst *CI = cast<CastInst>(J);
393       if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
394           CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
395           isLargeIntegerTy(TT.isArch32Bit(), CI->getSrcTy()->getScalarType()) ||
396           isLargeIntegerTy(TT.isArch32Bit(), CI->getDestTy()->getScalarType()))
397         return true;
398     } else if (isLargeIntegerTy(TT.isArch32Bit(),
399                                 J->getType()->getScalarType()) &&
400                (J->getOpcode() == Instruction::UDiv ||
401                 J->getOpcode() == Instruction::SDiv ||
402                 J->getOpcode() == Instruction::URem ||
403                 J->getOpcode() == Instruction::SRem)) {
404       return true;
405     } else if (TT.isArch32Bit() &&
406                isLargeIntegerTy(false, J->getType()->getScalarType()) &&
407                (J->getOpcode() == Instruction::Shl ||
408                 J->getOpcode() == Instruction::AShr ||
409                 J->getOpcode() == Instruction::LShr)) {
410       // Only on PPC32, for 128-bit integers (specifically not 64-bit
411       // integers), these might be runtime calls.
412       return true;
413     } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
414       // On PowerPC, indirect jumps use the counter register.
415       return true;
416     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
417       if (!TM)
418         return true;
419       const TargetLowering *TLI =
420           TM->getSubtargetImpl(*BB->getParent())->getTargetLowering();
421
422       if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
423         return true;
424     }
425     for (Value *Operand : J->operands())
426       if (memAddrUsesCTR(TM, Operand))
427         return true;
428   }
429
430   return false;
431 }
432
433 bool PPCCTRLoops::convertToCTRLoop(Loop *L) {
434   bool MadeChange = false;
435
436   const Triple TT =
437       Triple(L->getHeader()->getParent()->getParent()->getTargetTriple());
438   if (!TT.isArch32Bit() && !TT.isArch64Bit())
439     return MadeChange; // Unknown arch. type.
440
441   // Process nested loops first.
442   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
443     MadeChange |= convertToCTRLoop(*I);
444     DEBUG(dbgs() << "Nested loop converted\n");
445   }
446
447   // If a nested loop has been converted, then we can't convert this loop.
448   if (MadeChange)
449     return MadeChange;
450
451 #ifndef NDEBUG
452   // Stop trying after reaching the limit (if any).
453   int Limit = CTRLoopLimit;
454   if (Limit >= 0) {
455     if (Counter >= CTRLoopLimit)
456       return false;
457     Counter++;
458   }
459 #endif
460
461   // We don't want to spill/restore the counter register, and so we don't
462   // want to use the counter register if the loop contains calls.
463   for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
464        I != IE; ++I)
465     if (mightUseCTR(TT, *I))
466       return MadeChange;
467
468   SmallVector<BasicBlock*, 4> ExitingBlocks;
469   L->getExitingBlocks(ExitingBlocks);
470
471   BasicBlock *CountedExitBlock = nullptr;
472   const SCEV *ExitCount = nullptr;
473   BranchInst *CountedExitBranch = nullptr;
474   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
475        IE = ExitingBlocks.end(); I != IE; ++I) {
476     const SCEV *EC = SE->getExitCount(L, *I);
477     DEBUG(dbgs() << "Exit Count for " << *L << " from block " <<
478                     (*I)->getName() << ": " << *EC << "\n");
479     if (isa<SCEVCouldNotCompute>(EC))
480       continue;
481     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
482       if (ConstEC->getValue()->isZero())
483         continue;
484     } else if (!SE->isLoopInvariant(EC, L))
485       continue;
486
487     if (SE->getTypeSizeInBits(EC->getType()) > (TT.isArch64Bit() ? 64 : 32))
488       continue;
489
490     // We now have a loop-invariant count of loop iterations (which is not the
491     // constant zero) for which we know that this loop will not exit via this
492     // exisiting block.
493
494     // We need to make sure that this block will run on every loop iteration.
495     // For this to be true, we must dominate all blocks with backedges. Such
496     // blocks are in-loop predecessors to the header block.
497     bool NotAlways = false;
498     for (pred_iterator PI = pred_begin(L->getHeader()),
499          PIE = pred_end(L->getHeader()); PI != PIE; ++PI) {
500       if (!L->contains(*PI))
501         continue;
502
503       if (!DT->dominates(*I, *PI)) {
504         NotAlways = true;
505         break;
506       }
507     }
508
509     if (NotAlways)
510       continue;
511
512     // Make sure this blocks ends with a conditional branch.
513     Instruction *TI = (*I)->getTerminator();
514     if (!TI)
515       continue;
516
517     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
518       if (!BI->isConditional())
519         continue;
520
521       CountedExitBranch = BI;
522     } else
523       continue;
524
525     // Note that this block may not be the loop latch block, even if the loop
526     // has a latch block.
527     CountedExitBlock = *I;
528     ExitCount = EC;
529     break;
530   }
531
532   if (!CountedExitBlock)
533     return MadeChange;
534
535   BasicBlock *Preheader = L->getLoopPreheader();
536
537   // If we don't have a preheader, then insert one. If we already have a
538   // preheader, then we can use it (except if the preheader contains a use of
539   // the CTR register because some such uses might be reordered by the
540   // selection DAG after the mtctr instruction).
541   if (!Preheader || mightUseCTR(TT, Preheader))
542     Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
543   if (!Preheader)
544     return MadeChange;
545
546   DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() << "\n");
547
548   // Insert the count into the preheader and replace the condition used by the
549   // selected branch.
550   MadeChange = true;
551
552   SCEVExpander SCEVE(*SE, Preheader->getModule()->getDataLayout(), "loopcnt");
553   LLVMContext &C = SE->getContext();
554   Type *CountType = TT.isArch64Bit() ? Type::getInt64Ty(C) :
555                                        Type::getInt32Ty(C);
556   if (!ExitCount->getType()->isPointerTy() &&
557       ExitCount->getType() != CountType)
558     ExitCount = SE->getZeroExtendExpr(ExitCount, CountType);
559   ExitCount = SE->getAddExpr(ExitCount, SE->getOne(CountType));
560   Value *ECValue =
561       SCEVE.expandCodeFor(ExitCount, CountType, Preheader->getTerminator());
562
563   IRBuilder<> CountBuilder(Preheader->getTerminator());
564   Module *M = Preheader->getParent()->getParent();
565   Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr,
566                                                CountType);
567   CountBuilder.CreateCall(MTCTRFunc, ECValue);
568
569   IRBuilder<> CondBuilder(CountedExitBranch);
570   Value *DecFunc =
571     Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero);
572   Value *NewCond = CondBuilder.CreateCall(DecFunc, {});
573   Value *OldCond = CountedExitBranch->getCondition();
574   CountedExitBranch->setCondition(NewCond);
575
576   // The false branch must exit the loop.
577   if (!L->contains(CountedExitBranch->getSuccessor(0)))
578     CountedExitBranch->swapSuccessors();
579
580   // The old condition may be dead now, and may have even created a dead PHI
581   // (the original induction variable).
582   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
583   DeleteDeadPHIs(CountedExitBlock);
584
585   ++NumCTRLoops;
586   return MadeChange;
587 }
588
589 #ifndef NDEBUG
590 static bool clobbersCTR(const MachineInstr *MI) {
591   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
592     const MachineOperand &MO = MI->getOperand(i);
593     if (MO.isReg()) {
594       if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8))
595         return true;
596     } else if (MO.isRegMask()) {
597       if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8))
598         return true;
599     }
600   }
601
602   return false;
603 }
604
605 static bool verifyCTRBranch(MachineBasicBlock *MBB,
606                             MachineBasicBlock::iterator I) {
607   MachineBasicBlock::iterator BI = I;
608   SmallSet<MachineBasicBlock *, 16>   Visited;
609   SmallVector<MachineBasicBlock *, 8> Preds;
610   bool CheckPreds;
611
612   if (I == MBB->begin()) {
613     Visited.insert(MBB);
614     goto queue_preds;
615   } else
616     --I;
617
618 check_block:
619   Visited.insert(MBB);
620   if (I == MBB->end())
621     goto queue_preds;
622
623   CheckPreds = true;
624   for (MachineBasicBlock::iterator IE = MBB->begin();; --I) {
625     unsigned Opc = I->getOpcode();
626     if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) {
627       CheckPreds = false;
628       break;
629     }
630
631     if (I != BI && clobbersCTR(I)) {
632       DEBUG(dbgs() << "BB#" << MBB->getNumber() << " (" <<
633                       MBB->getFullName() << ") instruction " << *I <<
634                       " clobbers CTR, invalidating " << "BB#" <<
635                       BI->getParent()->getNumber() << " (" <<
636                       BI->getParent()->getFullName() << ") instruction " <<
637                       *BI << "\n");
638       return false;
639     }
640
641     if (I == IE)
642       break;
643   }
644
645   if (!CheckPreds && Preds.empty())
646     return true;
647
648   if (CheckPreds) {
649 queue_preds:
650     if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) {
651       DEBUG(dbgs() << "Unable to find a MTCTR instruction for BB#" <<
652                       BI->getParent()->getNumber() << " (" <<
653                       BI->getParent()->getFullName() << ") instruction " <<
654                       *BI << "\n");
655       return false;
656     }
657
658     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
659          PIE = MBB->pred_end(); PI != PIE; ++PI)
660       Preds.push_back(*PI);
661   }
662
663   do {
664     MBB = Preds.pop_back_val();
665     if (!Visited.count(MBB)) {
666       I = MBB->getLastNonDebugInstr();
667       goto check_block;
668     }
669   } while (!Preds.empty());
670
671   return true;
672 }
673
674 bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) {
675   MDT = &getAnalysis<MachineDominatorTree>();
676
677   // Verify that all bdnz/bdz instructions are dominated by a loop mtctr before
678   // any other instructions that might clobber the ctr register.
679   for (MachineFunction::iterator I = MF.begin(), IE = MF.end();
680        I != IE; ++I) {
681     MachineBasicBlock *MBB = &*I;
682     if (!MDT->isReachableFromEntry(MBB))
683       continue;
684
685     for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(),
686       MIIE = MBB->end(); MII != MIIE; ++MII) {
687       unsigned Opc = MII->getOpcode();
688       if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ ||
689           Opc == PPC::BDZ8  || Opc == PPC::BDZ)
690         if (!verifyCTRBranch(MBB, MII))
691           llvm_unreachable("Invalid PPC CTR loop!");
692     }
693   }
694
695   return false;
696 }
697 #endif // NDEBUG