Move class and instruction definitions for conditional moves to a seperate file.
[oota-llvm.git] / lib / Target / Mips / MipsInstrFPU.td
1 //===- MipsInstrFPU.td - Mips FPU Instruction Information --*- tablegen -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the Mips FPU instruction set.
11 //
12 //===----------------------------------------------------------------------===//
13
14 //===----------------------------------------------------------------------===//
15 // Floating Point Instructions
16 // ------------------------
17 // * 64bit fp:
18 //    - 32 64-bit registers (default mode)
19 //    - 16 even 32-bit registers (32-bit compatible mode) for
20 //      single and double access.
21 // * 32bit fp:
22 //    - 16 even 32-bit registers - single and double (aliased)
23 //    - 32 32-bit registers (within single-only mode)
24 //===----------------------------------------------------------------------===//
25
26 // Floating Point Compare and Branch
27 def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
28                                             SDTCisVT<1, OtherVT>]>;
29 def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
30                                          SDTCisVT<2, i32>]>;
31 def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
32                                           SDTCisSameAs<1, 2>]>;
33 def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
34                                                 SDTCisVT<1, i32>,
35                                                 SDTCisSameAs<1, 2>]>;
36 def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
37                                                      SDTCisVT<1, f64>,
38                                                      SDTCisVT<2, i32>]>;
39
40 def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
41 def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
42 def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
43 def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
44                           [SDNPHasChain, SDNPOptInGlue]>;
45 def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
46 def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
47                                    SDT_MipsExtractElementF64>;
48
49 // Operand for printing out a condition code.
50 let PrintMethod = "printFCCOperand" in
51   def condcode : Operand<i32>;
52
53 //===----------------------------------------------------------------------===//
54 // Feature predicates.
55 //===----------------------------------------------------------------------===//
56
57 def IsFP64bit        : Predicate<"Subtarget.isFP64bit()">;
58 def NotFP64bit       : Predicate<"!Subtarget.isFP64bit()">;
59 def IsSingleFloat    : Predicate<"Subtarget.isSingleFloat()">;
60 def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;
61
62 //===----------------------------------------------------------------------===//
63 // Instruction Class Templates
64 //
65 // A set of multiclasses is used to address the register usage.
66 //
67 // S32 - single precision in 16 32bit even fp registers
68 //       single precision in 32 32bit fp registers in SingleOnly mode
69 // S64 - single precision in 32 64bit fp registers (In64BitMode)
70 // D32 - double precision in 16 32bit even fp registers
71 // D64 - double precision in 32 64bit fp registers (In64BitMode)
72 //
73 // Only S32 and D32 are supported right now.
74 //===----------------------------------------------------------------------===//
75
76 // FP load.
77 class FPLoad<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC,
78              Operand MemOpnd>:
79   FFI<op, (outs RC:$ft), (ins MemOpnd:$base),
80       !strconcat(opstr, "\t$ft, $base"), [(set RC:$ft, (FOp addr:$base))]>;
81
82 // FP store.
83 class FPStore<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC,
84               Operand MemOpnd>:
85   FFI<op, (outs), (ins RC:$ft, MemOpnd:$base),
86       !strconcat(opstr, "\t$ft, $base"), [(store RC:$ft, addr:$base)]>;
87
88 // Instructions that convert an FP value to 32-bit fixed point.
89 multiclass FFR1_W_M<bits<6> funct, string opstr> {
90   def _S   : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>;
91   def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>,
92              Requires<[NotFP64bit]>;
93   def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>,
94              Requires<[IsFP64bit]>;
95 }
96
97 // Instructions that convert an FP value to 64-bit fixed point.
98 let Predicates = [IsFP64bit] in
99 multiclass FFR1_L_M<bits<6> funct, string opstr> {
100   def _S   : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>;
101   def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>;
102 }
103
104 // FP-to-FP conversion instructions.
105 multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> {
106   def _S   : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>;
107   def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>,
108              Requires<[NotFP64bit]>;
109   def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>,
110              Requires<[IsFP64bit]>;
111 }
112
113 multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> {
114   let isCommutable = isComm in {
115   def _S   : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>;
116   def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>,
117              Requires<[NotFP64bit]>;
118   def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>,
119              Requires<[IsFP64bit]>;
120   }
121 }
122
123 //===----------------------------------------------------------------------===//
124 // Floating Point Instructions
125 //===----------------------------------------------------------------------===//
126 defm ROUND_W : FFR1_W_M<0xc, "round">;
127 defm ROUND_L : FFR1_L_M<0x8, "round">;
128 defm TRUNC_W : FFR1_W_M<0xd, "trunc">;
129 defm TRUNC_L : FFR1_L_M<0x9, "trunc">;
130 defm CEIL_W  : FFR1_W_M<0xe, "ceil">;
131 defm CEIL_L  : FFR1_L_M<0xa, "ceil">;
132 defm FLOOR_W : FFR1_W_M<0xf, "floor">;
133 defm FLOOR_L : FFR1_L_M<0xb, "floor">;
134 defm CVT_W   : FFR1_W_M<0x24, "cvt">;
135 defm CVT_L   : FFR1_L_M<0x25, "cvt">;
136
137 def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>;
138
139 let Predicates = [NotFP64bit] in {
140   def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>;
141   def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>;
142   def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>;
143 }
144
145 let Predicates = [IsFP64bit] in {
146  def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>;
147  def CVT_S_L   : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>;
148  def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>;
149  def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>;
150  def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>;
151 }
152
153 defm FABS    : FFR1P_M<0x5, "abs",  fabs>;
154 defm FNEG    : FFR1P_M<0x7, "neg",  fneg>;
155 defm FSQRT   : FFR1P_M<0x4, "sqrt", fsqrt>;
156
157 // The odd-numbered registers are only referenced when doing loads,
158 // stores, and moves between floating-point and integer registers.
159 // When defining instructions, we reference all 32-bit registers,
160 // regardless of register aliasing.
161 let fd = 0 in {
162   /// Move Control Registers From/To CPU Registers
163   def CFC1  : FFR<0x11, 0x0, 0x2, (outs CPURegs:$rt), (ins CCR:$fs),
164                   "cfc1\t$rt, $fs", []>;
165
166   def CTC1  : FFR<0x11, 0x0, 0x6, (outs CCR:$rt), (ins CPURegs:$fs),
167                   "ctc1\t$fs, $rt", []>;
168
169   def MFC1  : FFR<0x11, 0x00, 0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
170                   "mfc1\t$rt, $fs",
171                   [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>;
172
173   def MTC1  : FFR<0x11, 0x00, 0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
174                   "mtc1\t$rt, $fs",
175                   [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>;
176 }
177
178 def FMOV_S   : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>;
179 def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>,
180                Requires<[NotFP64bit]>;
181 def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>,
182                Requires<[IsFP64bit]>;
183
184 /// Floating Point Memory Instructions
185 let Predicates = [IsN64] in {
186   def LWC1_P8   : FPLoad<0x31, "lwc1", load, FGR32, mem64>;
187   def SWC1_P8   : FPStore<0x39, "swc1", store, FGR32, mem64>;
188   def LDC164_P8 : FPLoad<0x35, "ldc1", load, FGR64, mem64>;
189   def SDC164_P8 : FPStore<0x3d, "sdc1", store, FGR64, mem64>;
190 }
191
192 let Predicates = [NotN64] in {
193   def LWC1   : FPLoad<0x31, "lwc1", load, FGR32, mem>;
194   def SWC1   : FPStore<0x39, "swc1", store, FGR32, mem>;
195   let Predicates = [HasMips64] in {
196     def LDC164 : FPLoad<0x35, "ldc1", load, FGR64, mem>;
197     def SDC164 : FPStore<0x3d, "sdc1", store, FGR64, mem>;
198   }
199   let Predicates = [NotMips64] in {
200     def LDC1   : FPLoad<0x35, "ldc1", load, AFGR64, mem>;
201     def SDC1   : FPStore<0x3d, "sdc1", store, AFGR64, mem>;
202   }
203 }
204
205 /// Floating-point Aritmetic
206 defm FADD : FFR2P_M<0x10, "add", fadd, 1>;
207 defm FDIV : FFR2P_M<0x03, "div", fdiv>;
208 defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>;
209 defm FSUB : FFR2P_M<0x01, "sub", fsub>;
210
211 //===----------------------------------------------------------------------===//
212 // Floating Point Branch Codes
213 //===----------------------------------------------------------------------===//
214 // Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
215 // They must be kept in synch.
216 def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
217 def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;
218
219 /// Floating Point Branch of False/True (Likely)
220 let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
221   class FBRANCH<PatLeaf op, string asmstr> : FFI<0x11, (outs),
222         (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
223         [(MipsFPBrcond op, bb:$dst)]>;
224
225 def BC1F  : FBRANCH<MIPS_BRANCH_F,  "bc1f">;
226 def BC1T  : FBRANCH<MIPS_BRANCH_T,  "bc1t">;
227
228 //===----------------------------------------------------------------------===//
229 // Floating Point Flag Conditions
230 //===----------------------------------------------------------------------===//
231 // Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
232 // They must be kept in synch.
233 def MIPS_FCOND_F    : PatLeaf<(i32 0)>;
234 def MIPS_FCOND_UN   : PatLeaf<(i32 1)>;
235 def MIPS_FCOND_OEQ  : PatLeaf<(i32 2)>;
236 def MIPS_FCOND_UEQ  : PatLeaf<(i32 3)>;
237 def MIPS_FCOND_OLT  : PatLeaf<(i32 4)>;
238 def MIPS_FCOND_ULT  : PatLeaf<(i32 5)>;
239 def MIPS_FCOND_OLE  : PatLeaf<(i32 6)>;
240 def MIPS_FCOND_ULE  : PatLeaf<(i32 7)>;
241 def MIPS_FCOND_SF   : PatLeaf<(i32 8)>;
242 def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
243 def MIPS_FCOND_SEQ  : PatLeaf<(i32 10)>;
244 def MIPS_FCOND_NGL  : PatLeaf<(i32 11)>;
245 def MIPS_FCOND_LT   : PatLeaf<(i32 12)>;
246 def MIPS_FCOND_NGE  : PatLeaf<(i32 13)>;
247 def MIPS_FCOND_LE   : PatLeaf<(i32 14)>;
248 def MIPS_FCOND_NGT  : PatLeaf<(i32 15)>;
249
250 /// Floating Point Compare
251 let Defs=[FCR31] in {
252   def FCMP_S32 : FCC<0x0, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc),
253                      "c.$cc.s\t$fs, $ft",
254                      [(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc)]>;
255
256   def FCMP_D32 : FCC<0x1, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc),
257                      "c.$cc.d\t$fs, $ft",
258                      [(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc)]>,
259                      Requires<[NotFP64bit]>;
260 }
261
262 //===----------------------------------------------------------------------===//
263 // Floating Point Pseudo-Instructions
264 //===----------------------------------------------------------------------===//
265 def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src),
266                              "# MOVCCRToCCR", []>;
267
268 // This pseudo instr gets expanded into 2 mtc1 instrs after register
269 // allocation.
270 def BuildPairF64 :
271   MipsPseudo<(outs AFGR64:$dst),
272              (ins CPURegs:$lo, CPURegs:$hi), "",
273              [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;
274
275 // This pseudo instr gets expanded into 2 mfc1 instrs after register
276 // allocation.
277 // if n is 0, lower part of src is extracted.
278 // if n is 1, higher part of src is extracted.
279 def ExtractElementF64 :
280   MipsPseudo<(outs CPURegs:$dst),
281              (ins AFGR64:$src, i32imm:$n), "",
282              [(set CPURegs:$dst,
283                (MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
284
285 //===----------------------------------------------------------------------===//
286 // Floating Point Patterns
287 //===----------------------------------------------------------------------===//
288 def fpimm0 : PatLeaf<(fpimm), [{
289   return N->isExactlyValue(+0.0);
290 }]>;
291
292 def fpimm0neg : PatLeaf<(fpimm), [{
293   return N->isExactlyValue(-0.0);
294 }]>;
295
296 def : Pat<(f32 fpimm0), (MTC1 ZERO)>;
297 def : Pat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
298
299 def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
300 def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVT_D32_W (MTC1 CPURegs:$src))>;
301
302 def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;
303 def : Pat<(i32 (fp_to_sint AFGR64:$src)), (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
304
305 let Predicates = [NotFP64bit] in {
306   def : Pat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
307   def : Pat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
308 }
309