Simplify definition of FP move instructions.
[oota-llvm.git] / lib / Target / Mips / MipsInstrFPU.td
1 //===- MipsInstrFPU.td - Mips FPU Instruction Information --*- tablegen -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the Mips FPU instruction set.
11 //
12 //===----------------------------------------------------------------------===//
13
14 //===----------------------------------------------------------------------===//
15 // Floating Point Instructions
16 // ------------------------
17 // * 64bit fp:
18 //    - 32 64-bit registers (default mode)
19 //    - 16 even 32-bit registers (32-bit compatible mode) for
20 //      single and double access.
21 // * 32bit fp:
22 //    - 16 even 32-bit registers - single and double (aliased)
23 //    - 32 32-bit registers (within single-only mode)
24 //===----------------------------------------------------------------------===//
25
26 // Floating Point Compare and Branch
27 def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
28                                             SDTCisVT<1, OtherVT>]>;
29 def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
30                                          SDTCisVT<2, i32>]>;
31 def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
32                                           SDTCisSameAs<1, 2>]>;
33 def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
34                                                 SDTCisVT<1, i32>,
35                                                 SDTCisSameAs<1, 2>]>;
36 def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
37                                                      SDTCisVT<1, f64>,
38                                                      SDTCisVT<2, i32>]>;
39
40 def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
41 def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
42 def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
43 def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
44                           [SDNPHasChain, SDNPOptInGlue]>;
45 def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
46 def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
47                                    SDT_MipsExtractElementF64>;
48
49 // Operand for printing out a condition code.
50 let PrintMethod = "printFCCOperand" in
51   def condcode : Operand<i32>;
52
53 //===----------------------------------------------------------------------===//
54 // Feature predicates.
55 //===----------------------------------------------------------------------===//
56
57 def IsFP64bit        : Predicate<"Subtarget.isFP64bit()">;
58 def NotFP64bit       : Predicate<"!Subtarget.isFP64bit()">;
59 def IsSingleFloat    : Predicate<"Subtarget.isSingleFloat()">;
60 def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;
61
62 //===----------------------------------------------------------------------===//
63 // Instruction Class Templates
64 //
65 // A set of multiclasses is used to address the register usage.
66 //
67 // S32 - single precision in 16 32bit even fp registers
68 //       single precision in 32 32bit fp registers in SingleOnly mode
69 // S64 - single precision in 32 64bit fp registers (In64BitMode)
70 // D32 - double precision in 16 32bit even fp registers
71 // D64 - double precision in 32 64bit fp registers (In64BitMode)
72 //
73 // Only S32 and D32 are supported right now.
74 //===----------------------------------------------------------------------===//
75
76 // Instructions that convert an FP value to 32-bit fixed point.
77 multiclass FFR1_W_M<bits<6> funct, string opstr> {
78   def _S   : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>;
79   def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>,
80              Requires<[NotFP64bit]>;
81   def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>,
82              Requires<[IsFP64bit]>;
83 }
84
85 // Instructions that convert an FP value to 64-bit fixed point.
86 let Predicates = [IsFP64bit] in
87 multiclass FFR1_L_M<bits<6> funct, string opstr> {
88   def _S   : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>;
89   def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>;
90 }
91
92 // FP-to-FP conversion instructions.
93 multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> {
94   def _S   : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>;
95   def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>,
96              Requires<[NotFP64bit]>;
97   def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>,
98              Requires<[IsFP64bit]>;
99 }
100
101 multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> {
102   let isCommutable = isComm in {
103   def _S   : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>;
104   def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>,
105              Requires<[NotFP64bit]>;
106   def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>,
107              Requires<[IsFP64bit]>;
108   }
109 }
110
111 //===----------------------------------------------------------------------===//
112 // Floating Point Instructions
113 //===----------------------------------------------------------------------===//
114 defm ROUND_W : FFR1_W_M<0xc, "round">;
115 defm ROUND_L : FFR1_L_M<0x8, "round">;
116 defm TRUNC_W : FFR1_W_M<0xd, "trunc">;
117 defm TRUNC_L : FFR1_L_M<0x9, "trunc">;
118 defm CEIL_W  : FFR1_W_M<0xe, "ceil">;
119 defm CEIL_L  : FFR1_L_M<0xa, "ceil">;
120 defm FLOOR_W : FFR1_W_M<0xf, "floor">;
121 defm FLOOR_L : FFR1_L_M<0xb, "floor">;
122 defm CVT_W   : FFR1_W_M<0x24, "cvt">;
123 defm CVT_L   : FFR1_L_M<0x25, "cvt">;
124
125 def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>;
126
127 let Predicates = [NotFP64bit] in {
128   def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>;
129   def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>;
130   def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>;
131 }
132
133 let Predicates = [IsFP64bit] in {
134  def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>;
135  def CVT_S_L   : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>;
136  def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>;
137  def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>;
138  def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>;
139 }
140
141 defm FABS    : FFR1P_M<0x5, "abs",  fabs>;
142 defm FNEG    : FFR1P_M<0x7, "neg",  fneg>;
143 defm FSQRT   : FFR1P_M<0x4, "sqrt", fsqrt>;
144
145 // The odd-numbered registers are only referenced when doing loads,
146 // stores, and moves between floating-point and integer registers.
147 // When defining instructions, we reference all 32-bit registers,
148 // regardless of register aliasing.
149 let fd = 0 in {
150   /// Move Control Registers From/To CPU Registers
151   def CFC1  : FFR<0x11, 0x0, 0x2, (outs CPURegs:$rt), (ins CCR:$fs),
152                   "cfc1\t$rt, $fs", []>;
153
154   def CTC1  : FFR<0x11, 0x0, 0x6, (outs CCR:$rt), (ins CPURegs:$fs),
155                   "ctc1\t$fs, $rt", []>;
156
157   def MFC1  : FFR<0x11, 0x00, 0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
158                   "mfc1\t$rt, $fs",
159                   [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>;
160
161   def MTC1  : FFR<0x11, 0x00, 0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
162                   "mtc1\t$rt, $fs",
163                   [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>;
164 }
165
166 def FMOV_S   : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>;
167 def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>,
168                Requires<[NotFP64bit]>;
169 def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>,
170                Requires<[IsFP64bit]>;
171
172 /// Floating Point Memory Instructions
173 let Predicates = [IsNotSingleFloat] in {
174   def LDC1 : FFI<0b110101, (outs AFGR64:$ft), (ins mem:$addr),
175                  "ldc1\t$ft, $addr", [(set AFGR64:$ft, (load addr:$addr))]>;
176
177   def SDC1 : FFI<0b111101, (outs), (ins AFGR64:$ft, mem:$addr),
178                  "sdc1\t$ft, $addr", [(store AFGR64:$ft, addr:$addr)]>;
179 }
180
181 // LWC1 and SWC1 can always be emitted with odd registers.
182 def LWC1  : FFI<0b110001, (outs FGR32:$ft), (ins mem:$addr), "lwc1\t$ft, $addr",
183                [(set FGR32:$ft, (load addr:$addr))]>;
184 def SWC1  : FFI<0b111001, (outs), (ins FGR32:$ft, mem:$addr),
185                "swc1\t$ft, $addr", [(store FGR32:$ft, addr:$addr)]>;
186
187 /// Floating-point Aritmetic
188 defm FADD : FFR2P_M<0x10, "add", fadd, 1>;
189 defm FDIV : FFR2P_M<0x03, "div", fdiv>;
190 defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>;
191 defm FSUB : FFR2P_M<0x01, "sub", fsub>;
192
193 //===----------------------------------------------------------------------===//
194 // Floating Point Branch Codes
195 //===----------------------------------------------------------------------===//
196 // Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
197 // They must be kept in synch.
198 def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
199 def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;
200
201 /// Floating Point Branch of False/True (Likely)
202 let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
203   class FBRANCH<PatLeaf op, string asmstr> : FFI<0x11, (outs),
204         (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
205         [(MipsFPBrcond op, bb:$dst)]>;
206
207 def BC1F  : FBRANCH<MIPS_BRANCH_F,  "bc1f">;
208 def BC1T  : FBRANCH<MIPS_BRANCH_T,  "bc1t">;
209
210 //===----------------------------------------------------------------------===//
211 // Floating Point Flag Conditions
212 //===----------------------------------------------------------------------===//
213 // Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
214 // They must be kept in synch.
215 def MIPS_FCOND_F    : PatLeaf<(i32 0)>;
216 def MIPS_FCOND_UN   : PatLeaf<(i32 1)>;
217 def MIPS_FCOND_OEQ  : PatLeaf<(i32 2)>;
218 def MIPS_FCOND_UEQ  : PatLeaf<(i32 3)>;
219 def MIPS_FCOND_OLT  : PatLeaf<(i32 4)>;
220 def MIPS_FCOND_ULT  : PatLeaf<(i32 5)>;
221 def MIPS_FCOND_OLE  : PatLeaf<(i32 6)>;
222 def MIPS_FCOND_ULE  : PatLeaf<(i32 7)>;
223 def MIPS_FCOND_SF   : PatLeaf<(i32 8)>;
224 def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
225 def MIPS_FCOND_SEQ  : PatLeaf<(i32 10)>;
226 def MIPS_FCOND_NGL  : PatLeaf<(i32 11)>;
227 def MIPS_FCOND_LT   : PatLeaf<(i32 12)>;
228 def MIPS_FCOND_NGE  : PatLeaf<(i32 13)>;
229 def MIPS_FCOND_LE   : PatLeaf<(i32 14)>;
230 def MIPS_FCOND_NGT  : PatLeaf<(i32 15)>;
231
232 /// Floating Point Compare
233 let Defs=[FCR31] in {
234   def FCMP_S32 : FCC<0x0, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc),
235                      "c.$cc.s\t$fs, $ft",
236                      [(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc)]>;
237
238   def FCMP_D32 : FCC<0x1, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc),
239                      "c.$cc.d\t$fs, $ft",
240                      [(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc)]>,
241                      Requires<[NotFP64bit]>;
242 }
243
244
245 // Conditional moves:
246 // These instructions are expanded in
247 // MipsISelLowering::EmitInstrWithCustomInserter if target does not have
248 // conditional move instructions.
249 // flag:int, data:float
250 let usesCustomInserter = 1, Constraints = "$F = $dst" in
251 class CondMovIntFP<RegisterClass RC, bits<5> fmt, bits<6> func,
252                    string instr_asm> :
253   FFR<0x11, func, fmt, (outs RC:$dst), (ins RC:$T, CPURegs:$cond, RC:$F),
254       !strconcat(instr_asm, "\t$dst, $T, $cond"), []>;
255
256 def MOVZ_S : CondMovIntFP<FGR32, 16, 18, "movz.s">;
257 def MOVN_S : CondMovIntFP<FGR32, 16, 19, "movn.s">;
258
259 let Predicates = [NotFP64bit] in {
260   def MOVZ_D : CondMovIntFP<AFGR64, 17, 18, "movz.d">;
261   def MOVN_D : CondMovIntFP<AFGR64, 17, 19, "movn.d">;
262 }
263
264 defm : MovzPats<FGR32, MOVZ_S>;
265 defm : MovnPats<FGR32, MOVN_S>;
266
267 let Predicates = [NotFP64bit] in {
268   defm : MovzPats<AFGR64, MOVZ_D>;
269   defm : MovnPats<AFGR64, MOVN_D>;
270 }
271
272 let usesCustomInserter = 1, Uses = [FCR31], Constraints = "$F = $dst" in {
273 // flag:float, data:int
274 class CondMovFPInt<SDNode cmov, bits<1> tf, string instr_asm> :
275   FCMOV<tf, (outs CPURegs:$dst), (ins CPURegs:$T, CPURegs:$F),
276         !strconcat(instr_asm, "\t$dst, $T, $$fcc0"),
277         [(set CPURegs:$dst, (cmov CPURegs:$T, CPURegs:$F))]>;
278
279 // flag:float, data:float
280 class CondMovFPFP<RegisterClass RC, SDNode cmov, bits<5> fmt, bits<1> tf,
281                   string instr_asm> :
282   FFCMOV<fmt, tf, (outs RC:$dst), (ins RC:$T, RC:$F),
283          !strconcat(instr_asm, "\t$dst, $T, $$fcc0"),
284          [(set RC:$dst, (cmov RC:$T, RC:$F))]>;
285 }
286
287 def MOVT : CondMovFPInt<MipsCMovFP_T, 1, "movt">;
288 def MOVF : CondMovFPInt<MipsCMovFP_F, 0, "movf">;
289 def MOVT_S : CondMovFPFP<FGR32, MipsCMovFP_T, 16, 1, "movt.s">;
290 def MOVF_S : CondMovFPFP<FGR32, MipsCMovFP_F, 16, 0, "movf.s">;
291
292 let Predicates = [NotFP64bit] in {
293   def MOVT_D : CondMovFPFP<AFGR64, MipsCMovFP_T, 17, 1, "movt.d">;
294   def MOVF_D : CondMovFPFP<AFGR64, MipsCMovFP_F, 17, 0, "movf.d">;
295 }
296
297 //===----------------------------------------------------------------------===//
298 // Floating Point Pseudo-Instructions
299 //===----------------------------------------------------------------------===//
300 def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src),
301                              "# MOVCCRToCCR", []>;
302
303 // This pseudo instr gets expanded into 2 mtc1 instrs after register
304 // allocation.
305 def BuildPairF64 :
306   MipsPseudo<(outs AFGR64:$dst),
307              (ins CPURegs:$lo, CPURegs:$hi), "",
308              [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;
309
310 // This pseudo instr gets expanded into 2 mfc1 instrs after register
311 // allocation.
312 // if n is 0, lower part of src is extracted.
313 // if n is 1, higher part of src is extracted.
314 def ExtractElementF64 :
315   MipsPseudo<(outs CPURegs:$dst),
316              (ins AFGR64:$src, i32imm:$n), "",
317              [(set CPURegs:$dst,
318                (MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
319
320 //===----------------------------------------------------------------------===//
321 // Floating Point Patterns
322 //===----------------------------------------------------------------------===//
323 def fpimm0 : PatLeaf<(fpimm), [{
324   return N->isExactlyValue(+0.0);
325 }]>;
326
327 def fpimm0neg : PatLeaf<(fpimm), [{
328   return N->isExactlyValue(-0.0);
329 }]>;
330
331 def : Pat<(f32 fpimm0), (MTC1 ZERO)>;
332 def : Pat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
333
334 def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
335 def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVT_D32_W (MTC1 CPURegs:$src))>;
336
337 def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;
338 def : Pat<(i32 (fp_to_sint AFGR64:$src)), (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
339
340 let Predicates = [NotFP64bit] in {
341   def : Pat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
342   def : Pat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
343 }
344