Add 64-bit versions of LEA_ADDiu and DynAlloc. Modify LowerDYNAMIC_STACKALLOC.
[oota-llvm.git] / lib / Target / Mips / Mips64InstrInfo.td
1 //===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes Mips64 instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 //===----------------------------------------------------------------------===//
15 // Mips Operand, Complex Patterns and Transformations Definitions.
16 //===----------------------------------------------------------------------===//
17
18 // Instruction operand types
19 def shamt_64       : Operand<i64>;
20
21 // Unsigned Operand
22 def uimm16_64      : Operand<i64> {
23   let PrintMethod = "printUnsignedImm";
24 }
25
26 // Transformation Function - get Imm - 32.
27 def Subtract32 : SDNodeXForm<imm, [{
28   return getI32Imm((unsigned)N->getZExtValue() - 32);
29 }]>;
30
31 // shamt field must fit in 5 bits.
32 def immZExt5_64 : ImmLeaf<i64, [{return Imm == (Imm & 0x1f);}]>;
33
34 // imm32_63 predicate - True if imm is in range [32, 63].
35 def imm32_63 : ImmLeaf<i32,
36                        [{return (int32_t)Imm >= 32 && (int32_t)Imm < 64;}],
37                        Subtract32>;
38
39 //===----------------------------------------------------------------------===//
40 // Instructions specific format
41 //===----------------------------------------------------------------------===//
42 // Shifts
43 // 64-bit shift instructions.
44 class shift_rotate_imm64<bits<6> func, bits<5> isRotate, string instr_asm,
45                          SDNode OpNode>:
46   shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt,
47                    CPU64Regs>;
48
49 class shift_rotate_imm64_32<bits<6> func, bits<5> isRotate, string instr_asm,
50                             SDNode OpNode>:
51   shift_rotate_imm<func, isRotate, instr_asm, OpNode, imm32_63, shamt,
52                    CPU64Regs>;
53
54 // Jump and Link (Call)
55 let isCall=1, hasDelaySlot=1,
56   // All calls clobber the non-callee saved registers...
57   Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9,
58           K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in {
59   class JumpLink64<bits<6> op, string instr_asm>:
60     FJ<op, (outs), (ins calltarget64:$target, variable_ops),
61        !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
62        IIBranch>;
63
64   class JumpLinkReg64<bits<6> op, bits<6> func, string instr_asm>:
65     FR<op, func, (outs), (ins CPU64Regs:$rs, variable_ops),
66        !strconcat(instr_asm, "\t$rs"),
67        [(MipsJmpLink CPU64Regs:$rs)], IIBranch> {
68     let rt = 0;
69     let rd = 31;
70     let shamt = 0;
71   }
72
73   class BranchLink64<string instr_asm>:
74     FI<0x1, (outs), (ins CPU64Regs:$rs, brtarget:$imm16, variable_ops),
75        !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch>;
76 }
77
78 // Mul, Div
79 class Mult64<bits<6> func, string instr_asm, InstrItinClass itin>:
80   Mult<func, instr_asm, itin, CPU64Regs, [HI64, LO64]>;
81 class Div64<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
82   Div<op, func, instr_asm, itin, CPU64Regs, [HI64, LO64]>;
83
84 //===----------------------------------------------------------------------===//
85 // Instruction definition
86 //===----------------------------------------------------------------------===//
87
88 /// Arithmetic Instructions (ALU Immediate)
89 def DADDiu   : ArithLogicI<0x19, "daddiu", add, simm16_64, immSExt16,
90                            CPU64Regs>;
91 def DANDi    : ArithLogicI<0x0c, "andi", and, uimm16_64, immZExt16, CPU64Regs>;
92 def SLTi64   : SetCC_I<0x0a, "slti", setlt, simm16_64, immSExt16, CPU64Regs>;
93 def SLTiu64  : SetCC_I<0x0b, "sltiu", setult, simm16_64, immSExt16, CPU64Regs>;
94 def ORi64    : ArithLogicI<0x0d, "ori", or, uimm16_64, immZExt16, CPU64Regs>;
95 def XORi64   : ArithLogicI<0x0e, "xori", xor, uimm16_64, immZExt16, CPU64Regs>;
96 def LUi64    : LoadUpper<0x0f, "lui", CPU64Regs, uimm16_64>;
97
98 /// Arithmetic Instructions (3-Operand, R-Type)
99 def DADDu    : ArithLogicR<0x00, 0x2d, "daddu", add, IIAlu, CPU64Regs, 1>;
100 def DSUBu    : ArithLogicR<0x00, 0x2f, "dsubu", sub, IIAlu, CPU64Regs>;
101 def SLT64    : SetCC_R<0x00, 0x2a, "slt", setlt, CPU64Regs>;
102 def SLTu64   : SetCC_R<0x00, 0x2b, "sltu", setult, CPU64Regs>;
103 def AND64    : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPU64Regs, 1>;
104 def OR64     : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPU64Regs, 1>;
105 def XOR64    : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPU64Regs, 1>;
106 def NOR64    : LogicNOR<0x00, 0x27, "nor", CPU64Regs>;
107
108 /// Shift Instructions
109 def DSLL     : shift_rotate_imm64<0x38, 0x00, "dsll", shl>;
110 def DSRL     : shift_rotate_imm64<0x3a, 0x00, "dsrl", srl>;
111 def DSRA     : shift_rotate_imm64<0x3b, 0x00, "dsra", sra>;
112 def DSLL32   : shift_rotate_imm64_32<0x3c, 0x00, "dsll32", shl>;
113 def DSRL32   : shift_rotate_imm64_32<0x3e, 0x00, "dsrl32", srl>;
114 def DSRA32   : shift_rotate_imm64_32<0x3f, 0x00, "dsra32", sra>;
115 def DSLLV    : shift_rotate_reg<0x24, 0x00, "dsllv", shl, CPU64Regs>;
116 def DSRLV    : shift_rotate_reg<0x26, 0x00, "dsrlv", srl, CPU64Regs>;
117 def DSRAV    : shift_rotate_reg<0x27, 0x00, "dsrav", sra, CPU64Regs>;
118
119 // Rotate Instructions
120 let Predicates = [HasMips64r2] in {
121   def DROTR    : shift_rotate_imm64<0x3a, 0x01, "drotr", rotr>;
122   def DROTR32  : shift_rotate_imm64_32<0x3e, 0x01, "drotr32", rotr>;
123   def DROTRV   : shift_rotate_reg<0x16, 0x01, "drotrv", rotr, CPU64Regs>;
124 }
125
126 /// Load and Store Instructions
127 ///  aligned 
128 defm LB64    : LoadM64<0x20, "lb",  sextloadi8>;
129 defm LBu64   : LoadM64<0x24, "lbu", zextloadi8>;
130 defm LH64    : LoadM64<0x21, "lh",  sextloadi16_a>;
131 defm LHu64   : LoadM64<0x25, "lhu", zextloadi16_a>;
132 defm LW64    : LoadM64<0x23, "lw",  sextloadi32_a>;
133 defm LWu64   : LoadM64<0x27, "lwu", zextloadi32_a>;
134 defm SB64    : StoreM64<0x28, "sb", truncstorei8>;
135 defm SH64    : StoreM64<0x29, "sh", truncstorei16_a>;
136 defm SW64    : StoreM64<0x2b, "sw", truncstorei32_a>;
137 defm LD      : LoadM64<0x37, "ld",  load_a>;
138 defm SD      : StoreM64<0x3f, "sd", store_a>;
139
140 ///  unaligned
141 defm ULH64     : LoadM64<0x21, "ulh",  sextloadi16_u, 1>;
142 defm ULHu64    : LoadM64<0x25, "ulhu", zextloadi16_u, 1>;
143 defm ULW64     : LoadM64<0x23, "ulw",  sextloadi32_u, 1>;
144 defm USH64     : StoreM64<0x29, "ush", truncstorei16_u, 1>;
145 defm USW64     : StoreM64<0x2b, "usw", truncstorei32_u, 1>;
146 defm ULD       : LoadM64<0x37, "uld",  load_u, 1>;
147 defm USD       : StoreM64<0x3f, "usd", store_u, 1>;
148
149 /// Jump and Branch Instructions
150 def JAL64  : JumpLink64<0x03, "jal">;
151 def JALR64 : JumpLinkReg64<0x00, 0x09, "jalr">;
152 def BEQ64  : CBranch<0x04, "beq", seteq, CPU64Regs>;
153 def BNE64  : CBranch<0x05, "bne", setne, CPU64Regs>;
154 def BGEZ64 : CBranchZero<0x01, 1, "bgez", setge, CPU64Regs>;
155 def BGTZ64 : CBranchZero<0x07, 0, "bgtz", setgt, CPU64Regs>;
156 def BLEZ64 : CBranchZero<0x07, 0, "blez", setle, CPU64Regs>;
157 def BLTZ64 : CBranchZero<0x01, 0, "bltz", setlt, CPU64Regs>;
158
159 /// Multiply and Divide Instructions.
160 def DMULT    : Mult64<0x1c, "dmult", IIImul>;
161 def DMULTu   : Mult64<0x1d, "dmultu", IIImul>;
162 def DSDIV    : Div64<MipsDivRem, 0x1e, "ddiv", IIIdiv>;
163 def DUDIV    : Div64<MipsDivRemU, 0x1f, "ddivu", IIIdiv>;
164
165 def MTHI64 : MoveToLOHI<0x11, "mthi", CPU64Regs, [HI64]>;
166 def MTLO64 : MoveToLOHI<0x13, "mtlo", CPU64Regs, [LO64]>;
167 def MFHI64 : MoveFromLOHI<0x10, "mfhi", CPU64Regs, [HI64]>;
168 def MFLO64 : MoveFromLOHI<0x12, "mflo", CPU64Regs, [LO64]>;
169
170 /// Count Leading
171 def DCLZ : CountLeading0<0x24, "dclz", CPU64Regs>;
172 def DCLO : CountLeading1<0x25, "dclo", CPU64Regs>;
173
174 def LEA_ADDiu64 : EffectiveAddress<"addiu\t$rt, $addr", CPU64Regs, mem_ea_64>;
175
176 let Uses = [SP_64] in
177 def DynAlloc64 : EffectiveAddress<"daddiu\t$rt, $addr", CPU64Regs, mem_ea_64>,
178                  Requires<[IsN64]>;
179
180 //===----------------------------------------------------------------------===//
181 //  Arbitrary patterns that map to one or more instructions
182 //===----------------------------------------------------------------------===//
183
184 // Small immediates
185 def : Pat<(i64 immSExt16:$in),
186           (DADDiu ZERO_64, imm:$in)>;
187 def : Pat<(i64 immZExt16:$in),
188           (ORi64 ZERO_64, imm:$in)>;
189
190 // zextloadi32_u
191 def : Pat<(zextloadi32_u addr:$a), (DSRL32 (DSLL32 (ULW64_P8 addr:$a), 0), 0)>,
192       Requires<[IsN64]>;
193 def : Pat<(zextloadi32_u addr:$a), (DSRL32 (DSLL32 (ULW64 addr:$a), 0), 0)>,
194       Requires<[NotN64]>;
195
196 // hi/lo relocs
197 def : Pat<(i64 (MipsLo tglobaladdr:$in)), (DADDiu ZERO_64, tglobaladdr:$in)>;
198
199 defm : BrcondPats<CPU64Regs, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
200                   ZERO_64>;
201
202 // setcc patterns
203 defm : SeteqPats<CPU64Regs, SLTiu64, XOR64, SLTu64, ZERO_64>;
204 defm : SetlePats<CPU64Regs, SLT64, SLTu64>;
205 defm : SetgtPats<CPU64Regs, SLT64, SLTu64>;
206 defm : SetgePats<CPU64Regs, SLT64, SLTu64>;
207 defm : SetgeImmPats<CPU64Regs, SLTi64, SLTiu64>;
208
209 // select MipsDynAlloc
210 def : Pat<(MipsDynAlloc addr:$f), (DynAlloc64 addr:$f)>, Requires<[IsN64]>;
211
212 // truncate
213 def : Pat<(i32 (trunc CPU64Regs:$src)),
214           (SLL (EXTRACT_SUBREG CPU64Regs:$src, sub_32), 0)>, Requires<[IsN64]>;
215