Fix some issues with Mips16 floating when certain intrinsics are present.
[oota-llvm.git] / lib / Target / Mips / Mips16ISelLowering.cpp
1 //===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsTargetLowering specialized for mips16.
11 //
12 //===----------------------------------------------------------------------===//
13 #define DEBUG_TYPE "mips-lower"
14 #include "Mips16ISelLowering.h"
15 #include "MipsRegisterInfo.h"
16 #include "MipsTargetMachine.h"
17 #include "MCTargetDesc/MipsBaseInfo.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Target/TargetInstrInfo.h"
21
22 using namespace llvm;
23
24 static cl::opt<bool> DontExpandCondPseudos16(
25   "mips16-dont-expand-cond-pseudo",
26   cl::init(false),
27   cl::desc("Dont expand conditional move related "
28            "pseudos for Mips 16"),
29   cl::Hidden);
30
31 namespace {
32 struct Mips16Libcall {
33   RTLIB::Libcall Libcall;
34   const char *Name;
35
36   bool operator<(const Mips16Libcall &RHS) const {
37     return std::strcmp(Name, RHS.Name) < 0;
38   }
39 };
40
41 struct Mips16IntrinsicHelperType{
42   const char* Name;
43   const char* Helper;
44
45   bool operator<(const Mips16IntrinsicHelperType &RHS) const {
46     return std::strcmp(Name, RHS.Name) < 0;
47   }
48   bool operator==(const Mips16IntrinsicHelperType &RHS) const {
49     return std::strcmp(Name, RHS.Name) == 0;
50   }
51 };
52 }
53
54 // Libcalls for which no helper is generated. Sorted by name for binary search.
55 static const Mips16Libcall HardFloatLibCalls[] = {
56   { RTLIB::ADD_F64, "__mips16_adddf3" },
57   { RTLIB::ADD_F32, "__mips16_addsf3" },
58   { RTLIB::DIV_F64, "__mips16_divdf3" },
59   { RTLIB::DIV_F32, "__mips16_divsf3" },
60   { RTLIB::OEQ_F64, "__mips16_eqdf2" },
61   { RTLIB::OEQ_F32, "__mips16_eqsf2" },
62   { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
63   { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
64   { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
65   { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
66   { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
67   { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
68   { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
69   { RTLIB::OGE_F64, "__mips16_gedf2" },
70   { RTLIB::OGE_F32, "__mips16_gesf2" },
71   { RTLIB::OGT_F64, "__mips16_gtdf2" },
72   { RTLIB::OGT_F32, "__mips16_gtsf2" },
73   { RTLIB::OLE_F64, "__mips16_ledf2" },
74   { RTLIB::OLE_F32, "__mips16_lesf2" },
75   { RTLIB::OLT_F64, "__mips16_ltdf2" },
76   { RTLIB::OLT_F32, "__mips16_ltsf2" },
77   { RTLIB::MUL_F64, "__mips16_muldf3" },
78   { RTLIB::MUL_F32, "__mips16_mulsf3" },
79   { RTLIB::UNE_F64, "__mips16_nedf2" },
80   { RTLIB::UNE_F32, "__mips16_nesf2" },
81   { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
82   { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
83   { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
84   { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
85   { RTLIB::SUB_F64, "__mips16_subdf3" },
86   { RTLIB::SUB_F32, "__mips16_subsf3" },
87   { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
88   { RTLIB::UO_F64, "__mips16_unorddf2" },
89   { RTLIB::UO_F32, "__mips16_unordsf2" }
90 };
91
92 static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
93   {"ceil",  "__mips16_call_stub_df_2"},
94   {"ceilf", "__mips16_call_stub_sf_1"},
95   {"copysign",  "__mips16_call_stub_df_10"},
96   {"copysignf", "__mips16_call_stub_sf_5"},
97   {"cos",  "__mips16_call_stub_df_2"},
98   {"cosf", "__mips16_call_stub_sf_1"},
99   {"exp2",  "__mips16_call_stub_df_2"},
100   {"exp2f", "__mips16_call_stub_sf_1"},
101   {"floor",  "__mips16_call_stub_df_2"},
102   {"floorf", "__mips16_call_stub_sf_1"},
103   {"log2",  "__mips16_call_stub_df_2"},
104   {"log2f", "__mips16_call_stub_sf_1"},
105   {"nearbyint",  "__mips16_call_stub_df_2"},
106   {"nearbyintf", "__mips16_call_stub_sf_1"},
107   {"rint",  "__mips16_call_stub_df_2"},
108   {"rintf", "__mips16_call_stub_sf_1"},
109   {"sin",  "__mips16_call_stub_df_2"},
110   {"sinf", "__mips16_call_stub_sf_1"},
111   {"sqrt",  "__mips16_call_stub_df_2"},
112   {"sqrtf", "__mips16_call_stub_sf_1"},
113   {"trunc",  "__mips16_call_stub_df_2"},
114   {"truncf", "__mips16_call_stub_sf_1"},
115 };
116
117 Mips16TargetLowering::Mips16TargetLowering(MipsTargetMachine &TM)
118   : MipsTargetLowering(TM) {
119   //
120   // set up as if mips32 and then revert so we can test the mechanism
121   // for switching
122   addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
123   addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
124   computeRegisterProperties();
125   clearRegisterClasses();
126
127   // Set up the register classes
128   addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
129
130   if (Subtarget->inMips16HardFloat())
131     setMips16HardFloatLibCalls();
132
133   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
134   setOperationAction(ISD::ATOMIC_CMP_SWAP,    MVT::i32,   Expand);
135   setOperationAction(ISD::ATOMIC_SWAP,        MVT::i32,   Expand);
136   setOperationAction(ISD::ATOMIC_LOAD_ADD,    MVT::i32,   Expand);
137   setOperationAction(ISD::ATOMIC_LOAD_SUB,    MVT::i32,   Expand);
138   setOperationAction(ISD::ATOMIC_LOAD_AND,    MVT::i32,   Expand);
139   setOperationAction(ISD::ATOMIC_LOAD_OR,     MVT::i32,   Expand);
140   setOperationAction(ISD::ATOMIC_LOAD_XOR,    MVT::i32,   Expand);
141   setOperationAction(ISD::ATOMIC_LOAD_NAND,   MVT::i32,   Expand);
142   setOperationAction(ISD::ATOMIC_LOAD_MIN,    MVT::i32,   Expand);
143   setOperationAction(ISD::ATOMIC_LOAD_MAX,    MVT::i32,   Expand);
144   setOperationAction(ISD::ATOMIC_LOAD_UMIN,   MVT::i32,   Expand);
145   setOperationAction(ISD::ATOMIC_LOAD_UMAX,   MVT::i32,   Expand);
146
147   computeRegisterProperties();
148 }
149
150 const MipsTargetLowering *
151 llvm::createMips16TargetLowering(MipsTargetMachine &TM) {
152   return new Mips16TargetLowering(TM);
153 }
154
155 bool
156 Mips16TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
157   return false;
158 }
159
160 MachineBasicBlock *
161 Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
162                                                   MachineBasicBlock *BB) const {
163   switch (MI->getOpcode()) {
164   default:
165     return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
166   case Mips::SelBeqZ:
167     return emitSel16(Mips::BeqzRxImm16, MI, BB);
168   case Mips::SelBneZ:
169     return emitSel16(Mips::BnezRxImm16, MI, BB);
170   case Mips::SelTBteqZCmpi:
171     return emitSeliT16(Mips::BteqzX16, Mips::CmpiRxImmX16, MI, BB);
172   case Mips::SelTBteqZSlti:
173     return emitSeliT16(Mips::BteqzX16, Mips::SltiRxImmX16, MI, BB);
174   case Mips::SelTBteqZSltiu:
175     return emitSeliT16(Mips::BteqzX16, Mips::SltiuRxImmX16, MI, BB);
176   case Mips::SelTBtneZCmpi:
177     return emitSeliT16(Mips::BtnezX16, Mips::CmpiRxImmX16, MI, BB);
178   case Mips::SelTBtneZSlti:
179     return emitSeliT16(Mips::BtnezX16, Mips::SltiRxImmX16, MI, BB);
180   case Mips::SelTBtneZSltiu:
181     return emitSeliT16(Mips::BtnezX16, Mips::SltiuRxImmX16, MI, BB);
182   case Mips::SelTBteqZCmp:
183     return emitSelT16(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
184   case Mips::SelTBteqZSlt:
185     return emitSelT16(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
186   case Mips::SelTBteqZSltu:
187     return emitSelT16(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
188   case Mips::SelTBtneZCmp:
189     return emitSelT16(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
190   case Mips::SelTBtneZSlt:
191     return emitSelT16(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
192   case Mips::SelTBtneZSltu:
193     return emitSelT16(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
194   case Mips::BteqzT8CmpX16:
195     return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
196   case Mips::BteqzT8SltX16:
197     return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
198   case Mips::BteqzT8SltuX16:
199     // TBD: figure out a way to get this or remove the instruction
200     // altogether.
201     return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
202   case Mips::BtnezT8CmpX16:
203     return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
204   case Mips::BtnezT8SltX16:
205     return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
206   case Mips::BtnezT8SltuX16:
207     // TBD: figure out a way to get this or remove the instruction
208     // altogether.
209     return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
210   case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
211     Mips::BteqzX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
212   case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
213     Mips::BteqzX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
214   case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
215     Mips::BteqzX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
216   case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
217     Mips::BtnezX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
218   case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
219     Mips::BtnezX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
220   case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
221     Mips::BtnezX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
222     break;
223   case Mips::SltCCRxRy16:
224     return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
225     break;
226   case Mips::SltiCCRxImmX16:
227     return emitFEXT_CCRXI16_ins
228       (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
229   case Mips::SltiuCCRxImmX16:
230     return emitFEXT_CCRXI16_ins
231       (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
232   case Mips::SltuCCRxRy16:
233     return emitFEXT_CCRX16_ins
234       (Mips::SltuRxRy16, MI, BB);
235   }
236 }
237
238 bool Mips16TargetLowering::
239 isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
240                                   unsigned NextStackOffset,
241                                   const MipsFunctionInfo& FI) const {
242   // No tail call optimization for mips16.
243   return false;
244 }
245
246 void Mips16TargetLowering::setMips16HardFloatLibCalls() {
247   for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) {
248     assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
249            "Array not sorted!");
250     if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL)
251       setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name);
252   }
253
254   setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
255   setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
256 }
257
258 //
259 // The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
260 // cleaner way to do all of this but it will have to wait until the traditional
261 // gcc mechanism is completed.
262 //
263 // For Pic, in order for Mips16 code to call Mips32 code which according the abi
264 // have either arguments or returned values placed in floating point registers,
265 // we use a set of helper functions. (This includes functions which return type
266 //  complex which on Mips are returned in a pair of floating point registers).
267 //
268 // This is an encoding that we inherited from gcc.
269 // In Mips traditional O32, N32 ABI, floating point numbers are passed in
270 // floating point argument registers 1,2 only when the first and optionally
271 // the second arguments are float (sf) or double (df).
272 // For Mips16 we are only concerned with the situations where floating point
273 // arguments are being passed in floating point registers by the ABI, because
274 // Mips16 mode code cannot execute floating point instructions to load those
275 // values and hence helper functions are needed.
276 // The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
277 // the helper function suffixs for these are:
278 //                        0,  1,    5,        9,         2,   6,        10
279 // this suffix can then be calculated as follows:
280 // for a given argument Arg:
281 //     Arg1x, Arg2x = 1 :  Arg is sf
282 //                    2 :  Arg is df
283 //                    0:   Arg is neither sf or df
284 // So this stub is the string for number Arg1x + Arg2x*4.
285 // However not all numbers between 0 and 10 are possible, we check anyway and
286 // assert if the impossible exists.
287 //
288
289 unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
290   (ArgListTy &Args) const {
291   unsigned int resultNum = 0;
292   if (Args.size() >= 1) {
293     Type *t = Args[0].Ty;
294     if (t->isFloatTy()) {
295       resultNum = 1;
296     }
297     else if (t->isDoubleTy()) {
298       resultNum = 2;
299     }
300   }
301   if (resultNum) {
302     if (Args.size() >=2) {
303       Type *t = Args[1].Ty;
304       if (t->isFloatTy()) {
305         resultNum += 4;
306       }
307       else if (t->isDoubleTy()) {
308         resultNum += 8;
309       }
310     }
311   }
312   return resultNum;
313 }
314
315 //
316 // prefixs are attached to stub numbers depending on the return type .
317 // return type: float  sf_
318 //              double df_
319 //              single complex sc_
320 //              double complext dc_
321 //              others  NO PREFIX
322 //
323 //
324 // The full name of a helper function is__mips16_call_stub +
325 //    return type dependent prefix + stub number
326 //
327 //
328 // This is something that probably should be in a different source file and
329 // perhaps done differently but my main purpose is to not waste runtime
330 // on something that we can enumerate in the source. Another possibility is
331 // to have a python script to generate these mapping tables. This will do
332 // for now. There are a whole series of helper function mapping arrays, one
333 // for each return type class as outlined above. There there are 11 possible
334 //  entries. Ones with 0 are ones which should never be selected
335 //
336 // All the arrays are similar except for ones which return neither
337 // sf, df, sc, dc, in which only care about ones which have sf or df as a
338 // first parameter.
339 //
340 #define P_ "__mips16_call_stub_"
341 #define MAX_STUB_NUMBER 10
342 #define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
343 #define T P "0" , T1
344 #define P P_
345 static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
346   {0, T1 };
347 #undef P
348 #define P P_ "sf_"
349 static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
350   { T };
351 #undef P
352 #define P P_ "df_"
353 static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
354   { T };
355 #undef P
356 #define P P_ "sc_"
357 static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
358   { T };
359 #undef P
360 #define P P_ "dc_"
361 static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
362   { T };
363 #undef P
364 #undef P_
365
366
367 const char* Mips16TargetLowering::
368   getMips16HelperFunction
369     (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
370   const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
371 #ifndef NDEBUG
372   const unsigned int maxStubNum = 10;
373   assert(stubNum <= maxStubNum);
374   const bool validStubNum[maxStubNum+1] =
375     {true, true, true, false, false, true, true, false, false, true, true};
376   assert(validStubNum[stubNum]);
377 #endif
378   const char *result;
379   if (RetTy->isFloatTy()) {
380     result = sfMips16Helper[stubNum];
381   }
382   else if (RetTy ->isDoubleTy()) {
383     result = dfMips16Helper[stubNum];
384   }
385   else if (RetTy->isStructTy()) {
386     // check if it's complex
387     if (RetTy->getNumContainedTypes() == 2) {
388       if ((RetTy->getContainedType(0)->isFloatTy()) &&
389           (RetTy->getContainedType(1)->isFloatTy())) {
390         result = scMips16Helper[stubNum];
391       }
392       else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
393                (RetTy->getContainedType(1)->isDoubleTy())) {
394         result = dcMips16Helper[stubNum];
395       }
396       else {
397         llvm_unreachable("Uncovered condition");
398       }
399     }
400     else {
401       llvm_unreachable("Uncovered condition");
402     }
403   }
404   else {
405     if (stubNum == 0) {
406       needHelper = false;
407       return "";
408     }
409     result = vMips16Helper[stubNum];
410   }
411   needHelper = true;
412   return result;
413 }
414
415 void Mips16TargetLowering::
416 getOpndList(SmallVectorImpl<SDValue> &Ops,
417             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
418             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
419             CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
420   SelectionDAG &DAG = CLI.DAG;
421   const char* Mips16HelperFunction = 0;
422   bool NeedMips16Helper = false;
423
424   if (getTargetMachine().Options.UseSoftFloat &&
425       Subtarget->inMips16HardFloat()) {
426     //
427     // currently we don't have symbols tagged with the mips16 or mips32
428     // qualifier so we will assume that we don't know what kind it is.
429     // and generate the helper
430     //
431     bool LookupHelper = true;
432     if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
433       Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
434
435       if (std::binary_search(HardFloatLibCalls, array_endof(HardFloatLibCalls),
436                              Find))
437         LookupHelper = false;
438       else {
439         Mips16IntrinsicHelperType IntrinsicFind = {S->getSymbol(), ""};
440         // one more look at list of intrinsics
441         if (std::binary_search(Mips16IntrinsicHelper,
442             array_endof(Mips16IntrinsicHelper),
443                                      IntrinsicFind)) {
444           const Mips16IntrinsicHelperType *h =(std::find(Mips16IntrinsicHelper,
445               array_endof(Mips16IntrinsicHelper),
446                                        IntrinsicFind));
447           Mips16HelperFunction = h->Helper;
448           NeedMips16Helper = true;
449           LookupHelper = false;
450         }
451
452       }
453     } else if (GlobalAddressSDNode *G =
454                    dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
455       Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
456                              G->getGlobal()->getName().data() };
457
458       if (std::binary_search(HardFloatLibCalls, array_endof(HardFloatLibCalls),
459                              Find))
460         LookupHelper = false;
461     }
462     if (LookupHelper) Mips16HelperFunction =
463       getMips16HelperFunction(CLI.RetTy, CLI.Args, NeedMips16Helper);
464
465   }
466
467   SDValue JumpTarget = Callee;
468
469   // T9 should contain the address of the callee function if
470   // -reloction-model=pic or it is an indirect call.
471   if (IsPICCall || !GlobalOrExternal) {
472     unsigned V0Reg = Mips::V0;
473     if (NeedMips16Helper) {
474       RegsToPass.push_front(std::make_pair(V0Reg, Callee));
475       JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy());
476       JumpTarget = getAddrGlobal(JumpTarget, DAG, MipsII::MO_GOT);
477     } else
478       RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
479   }
480
481   Ops.push_back(JumpTarget);
482
483   MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
484                                   InternalLinkage, CLI, Callee, Chain);
485 }
486
487 MachineBasicBlock *Mips16TargetLowering::
488 emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const {
489   if (DontExpandCondPseudos16)
490     return BB;
491   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
492   DebugLoc DL = MI->getDebugLoc();
493   // To "insert" a SELECT_CC instruction, we actually have to insert the
494   // diamond control-flow pattern.  The incoming instruction knows the
495   // destination vreg to set, the condition code register to branch on, the
496   // true/false values to select between, and a branch opcode to use.
497   const BasicBlock *LLVM_BB = BB->getBasicBlock();
498   MachineFunction::iterator It = BB;
499   ++It;
500
501   //  thisMBB:
502   //  ...
503   //   TrueVal = ...
504   //   setcc r1, r2, r3
505   //   bNE   r1, r0, copy1MBB
506   //   fallthrough --> copy0MBB
507   MachineBasicBlock *thisMBB  = BB;
508   MachineFunction *F = BB->getParent();
509   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
510   MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
511   F->insert(It, copy0MBB);
512   F->insert(It, sinkMBB);
513
514   // Transfer the remainder of BB and its successor edges to sinkMBB.
515   sinkMBB->splice(sinkMBB->begin(), BB,
516                   llvm::next(MachineBasicBlock::iterator(MI)),
517                   BB->end());
518   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
519
520   // Next, add the true and fallthrough blocks as its successors.
521   BB->addSuccessor(copy0MBB);
522   BB->addSuccessor(sinkMBB);
523
524   BuildMI(BB, DL, TII->get(Opc)).addReg(MI->getOperand(3).getReg())
525     .addMBB(sinkMBB);
526
527   //  copy0MBB:
528   //   %FalseValue = ...
529   //   # fallthrough to sinkMBB
530   BB = copy0MBB;
531
532   // Update machine-CFG edges
533   BB->addSuccessor(sinkMBB);
534
535   //  sinkMBB:
536   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
537   //  ...
538   BB = sinkMBB;
539
540   BuildMI(*BB, BB->begin(), DL,
541           TII->get(Mips::PHI), MI->getOperand(0).getReg())
542     .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
543     .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
544
545   MI->eraseFromParent();   // The pseudo instruction is gone now.
546   return BB;
547 }
548
549 MachineBasicBlock *Mips16TargetLowering::emitSelT16
550   (unsigned Opc1, unsigned Opc2,
551    MachineInstr *MI, MachineBasicBlock *BB) const {
552   if (DontExpandCondPseudos16)
553     return BB;
554   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
555   DebugLoc DL = MI->getDebugLoc();
556   // To "insert" a SELECT_CC instruction, we actually have to insert the
557   // diamond control-flow pattern.  The incoming instruction knows the
558   // destination vreg to set, the condition code register to branch on, the
559   // true/false values to select between, and a branch opcode to use.
560   const BasicBlock *LLVM_BB = BB->getBasicBlock();
561   MachineFunction::iterator It = BB;
562   ++It;
563
564   //  thisMBB:
565   //  ...
566   //   TrueVal = ...
567   //   setcc r1, r2, r3
568   //   bNE   r1, r0, copy1MBB
569   //   fallthrough --> copy0MBB
570   MachineBasicBlock *thisMBB  = BB;
571   MachineFunction *F = BB->getParent();
572   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
573   MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
574   F->insert(It, copy0MBB);
575   F->insert(It, sinkMBB);
576
577   // Transfer the remainder of BB and its successor edges to sinkMBB.
578   sinkMBB->splice(sinkMBB->begin(), BB,
579                   llvm::next(MachineBasicBlock::iterator(MI)),
580                   BB->end());
581   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
582
583   // Next, add the true and fallthrough blocks as its successors.
584   BB->addSuccessor(copy0MBB);
585   BB->addSuccessor(sinkMBB);
586
587   BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
588     .addReg(MI->getOperand(4).getReg());
589   BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
590
591   //  copy0MBB:
592   //   %FalseValue = ...
593   //   # fallthrough to sinkMBB
594   BB = copy0MBB;
595
596   // Update machine-CFG edges
597   BB->addSuccessor(sinkMBB);
598
599   //  sinkMBB:
600   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
601   //  ...
602   BB = sinkMBB;
603
604   BuildMI(*BB, BB->begin(), DL,
605           TII->get(Mips::PHI), MI->getOperand(0).getReg())
606     .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
607     .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
608
609   MI->eraseFromParent();   // The pseudo instruction is gone now.
610   return BB;
611
612 }
613
614 MachineBasicBlock *Mips16TargetLowering::emitSeliT16
615   (unsigned Opc1, unsigned Opc2,
616    MachineInstr *MI, MachineBasicBlock *BB) const {
617   if (DontExpandCondPseudos16)
618     return BB;
619   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
620   DebugLoc DL = MI->getDebugLoc();
621   // To "insert" a SELECT_CC instruction, we actually have to insert the
622   // diamond control-flow pattern.  The incoming instruction knows the
623   // destination vreg to set, the condition code register to branch on, the
624   // true/false values to select between, and a branch opcode to use.
625   const BasicBlock *LLVM_BB = BB->getBasicBlock();
626   MachineFunction::iterator It = BB;
627   ++It;
628
629   //  thisMBB:
630   //  ...
631   //   TrueVal = ...
632   //   setcc r1, r2, r3
633   //   bNE   r1, r0, copy1MBB
634   //   fallthrough --> copy0MBB
635   MachineBasicBlock *thisMBB  = BB;
636   MachineFunction *F = BB->getParent();
637   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
638   MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
639   F->insert(It, copy0MBB);
640   F->insert(It, sinkMBB);
641
642   // Transfer the remainder of BB and its successor edges to sinkMBB.
643   sinkMBB->splice(sinkMBB->begin(), BB,
644                   llvm::next(MachineBasicBlock::iterator(MI)),
645                   BB->end());
646   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
647
648   // Next, add the true and fallthrough blocks as its successors.
649   BB->addSuccessor(copy0MBB);
650   BB->addSuccessor(sinkMBB);
651
652   BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
653     .addImm(MI->getOperand(4).getImm());
654   BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
655
656   //  copy0MBB:
657   //   %FalseValue = ...
658   //   # fallthrough to sinkMBB
659   BB = copy0MBB;
660
661   // Update machine-CFG edges
662   BB->addSuccessor(sinkMBB);
663
664   //  sinkMBB:
665   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
666   //  ...
667   BB = sinkMBB;
668
669   BuildMI(*BB, BB->begin(), DL,
670           TII->get(Mips::PHI), MI->getOperand(0).getReg())
671     .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
672     .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
673
674   MI->eraseFromParent();   // The pseudo instruction is gone now.
675   return BB;
676
677 }
678
679 MachineBasicBlock
680   *Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
681                                              MachineInstr *MI,
682                                              MachineBasicBlock *BB) const {
683   if (DontExpandCondPseudos16)
684     return BB;
685   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
686   unsigned regX = MI->getOperand(0).getReg();
687   unsigned regY = MI->getOperand(1).getReg();
688   MachineBasicBlock *target = MI->getOperand(2).getMBB();
689   BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
690     .addReg(regY);
691   BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
692   MI->eraseFromParent();   // The pseudo instruction is gone now.
693   return BB;
694 }
695
696 MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
697   unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
698   MachineInstr *MI,  MachineBasicBlock *BB) const {
699   if (DontExpandCondPseudos16)
700     return BB;
701   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
702   unsigned regX = MI->getOperand(0).getReg();
703   int64_t imm = MI->getOperand(1).getImm();
704   MachineBasicBlock *target = MI->getOperand(2).getMBB();
705   unsigned CmpOpc;
706   if (isUInt<8>(imm))
707     CmpOpc = CmpiOpc;
708   else if ((!ImmSigned && isUInt<16>(imm)) ||
709            (ImmSigned && isInt<16>(imm)))
710     CmpOpc = CmpiXOpc;
711   else
712     llvm_unreachable("immediate field not usable");
713   BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
714     .addImm(imm);
715   BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
716   MI->eraseFromParent();   // The pseudo instruction is gone now.
717   return BB;
718 }
719
720 static unsigned Mips16WhichOp8uOr16simm
721   (unsigned shortOp, unsigned longOp, int64_t Imm) {
722   if (isUInt<8>(Imm))
723     return shortOp;
724   else if (isInt<16>(Imm))
725     return longOp;
726   else
727     llvm_unreachable("immediate field not usable");
728 }
729
730 MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins(
731   unsigned SltOpc,
732   MachineInstr *MI,  MachineBasicBlock *BB) const {
733   if (DontExpandCondPseudos16)
734     return BB;
735   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
736   unsigned CC = MI->getOperand(0).getReg();
737   unsigned regX = MI->getOperand(1).getReg();
738   unsigned regY = MI->getOperand(2).getReg();
739   BuildMI(*BB, MI, MI->getDebugLoc(),
740                   TII->get(SltOpc)).addReg(regX).addReg(regY);
741   BuildMI(*BB, MI, MI->getDebugLoc(),
742           TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
743   MI->eraseFromParent();   // The pseudo instruction is gone now.
744   return BB;
745 }
746
747 MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins(
748   unsigned SltiOpc, unsigned SltiXOpc,
749   MachineInstr *MI,  MachineBasicBlock *BB )const {
750   if (DontExpandCondPseudos16)
751     return BB;
752   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
753   unsigned CC = MI->getOperand(0).getReg();
754   unsigned regX = MI->getOperand(1).getReg();
755   int64_t Imm = MI->getOperand(2).getImm();
756   unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
757   BuildMI(*BB, MI, MI->getDebugLoc(),
758           TII->get(SltOpc)).addReg(regX).addImm(Imm);
759   BuildMI(*BB, MI, MI->getDebugLoc(),
760           TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
761   MI->eraseFromParent();   // The pseudo instruction is gone now.
762   return BB;
763
764 }