[AArch64, ARM] Add v8.1a architecture and generic cpu
[oota-llvm.git] / lib / Target / Hexagon / HexagonVLIWPacketizer.cpp
1 //===----- HexagonPacketizer.cpp - vliw packetizer ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a simple VLIW packetizer using DFA. The packetizer works on
11 // machine basic blocks. For each instruction I in BB, the packetizer consults
12 // the DFA to see if machine resources are available to execute I. If so, the
13 // packetizer checks if I depends on any instruction J in the current packet.
14 // If no dependency is found, I is added to current packet and machine resource
15 // is marked as taken. If any dependency is found, a target API call is made to
16 // prune the dependence.
17 //
18 //===----------------------------------------------------------------------===//
19 #include "llvm/CodeGen/DFAPacketizer.h"
20 #include "Hexagon.h"
21 #include "HexagonMachineFunctionInfo.h"
22 #include "HexagonRegisterInfo.h"
23 #include "HexagonSubtarget.h"
24 #include "HexagonTargetMachine.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/LatencyPriorityQueue.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/ScheduleDAG.h"
37 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39 #include "llvm/CodeGen/SchedulerRegistry.h"
40 #include "llvm/MC/MCInstrItineraries.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetRegisterInfo.h"
48 #include <map>
49 #include <vector>
50
51 using namespace llvm;
52
53 #define DEBUG_TYPE "packets"
54
55 static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
56       cl::ZeroOrMore, cl::Hidden, cl::init(true),
57       cl::desc("Allow non-solo packetization of volatile memory references"));
58
59 namespace llvm {
60   void initializeHexagonPacketizerPass(PassRegistry&);
61 }
62
63
64 namespace {
65   class HexagonPacketizer : public MachineFunctionPass {
66
67   public:
68     static char ID;
69     HexagonPacketizer() : MachineFunctionPass(ID) {
70       initializeHexagonPacketizerPass(*PassRegistry::getPassRegistry());
71     }
72
73     void getAnalysisUsage(AnalysisUsage &AU) const override {
74       AU.setPreservesCFG();
75       AU.addRequired<MachineDominatorTree>();
76       AU.addRequired<MachineBranchProbabilityInfo>();
77       AU.addPreserved<MachineDominatorTree>();
78       AU.addRequired<MachineLoopInfo>();
79       AU.addPreserved<MachineLoopInfo>();
80       MachineFunctionPass::getAnalysisUsage(AU);
81     }
82
83     const char *getPassName() const override {
84       return "Hexagon Packetizer";
85     }
86
87     bool runOnMachineFunction(MachineFunction &Fn) override;
88   };
89   char HexagonPacketizer::ID = 0;
90
91   class HexagonPacketizerList : public VLIWPacketizerList {
92
93   private:
94
95     // Has the instruction been promoted to a dot-new instruction.
96     bool PromotedToDotNew;
97
98     // Has the instruction been glued to allocframe.
99     bool GlueAllocframeStore;
100
101     // Has the feeder instruction been glued to new value jump.
102     bool GlueToNewValueJump;
103
104     // Check if there is a dependence between some instruction already in this
105     // packet and this instruction.
106     bool Dependence;
107
108     // Only check for dependence if there are resources available to
109     // schedule this instruction.
110     bool FoundSequentialDependence;
111
112     /// \brief A handle to the branch probability pass.
113    const MachineBranchProbabilityInfo *MBPI;
114
115    // Track MIs with ignored dependece.
116    std::vector<MachineInstr*> IgnoreDepMIs;
117
118   public:
119     // Ctor.
120     HexagonPacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
121                           const MachineBranchProbabilityInfo *MBPI);
122
123     // initPacketizerState - initialize some internal flags.
124     void initPacketizerState() override;
125
126     // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
127     bool ignorePseudoInstruction(MachineInstr *MI,
128                                  MachineBasicBlock *MBB) override;
129
130     // isSoloInstruction - return true if instruction MI can not be packetized
131     // with any other instruction, which means that MI itself is a packet.
132     bool isSoloInstruction(MachineInstr *MI) override;
133
134     // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
135     // together.
136     bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override;
137
138     // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
139     // and SUJ.
140     bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override;
141
142     MachineBasicBlock::iterator addToPacket(MachineInstr *MI) override;
143   private:
144     bool IsCallDependent(MachineInstr* MI, SDep::Kind DepType, unsigned DepReg);
145     bool PromoteToDotNew(MachineInstr* MI, SDep::Kind DepType,
146                          MachineBasicBlock::iterator &MII,
147                          const TargetRegisterClass* RC);
148     bool CanPromoteToDotNew(MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
149                             const std::map<MachineInstr *, SUnit *> &MIToSUnit,
150                             MachineBasicBlock::iterator &MII,
151                             const TargetRegisterClass *RC);
152     bool
153     CanPromoteToNewValue(MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
154                          const std::map<MachineInstr *, SUnit *> &MIToSUnit,
155                          MachineBasicBlock::iterator &MII);
156     bool CanPromoteToNewValueStore(
157         MachineInstr *MI, MachineInstr *PacketMI, unsigned DepReg,
158         const std::map<MachineInstr *, SUnit *> &MIToSUnit);
159     bool DemoteToDotOld(MachineInstr *MI);
160     bool ArePredicatesComplements(
161         MachineInstr *MI1, MachineInstr *MI2,
162         const std::map<MachineInstr *, SUnit *> &MIToSUnit);
163     bool RestrictingDepExistInPacket(MachineInstr *, unsigned,
164                                      const std::map<MachineInstr *, SUnit *> &);
165     bool isNewifiable(MachineInstr* MI);
166     bool isCondInst(MachineInstr* MI);
167     bool tryAllocateResourcesForConstExt(MachineInstr* MI);
168     bool canReserveResourcesForConstExt(MachineInstr *MI);
169     void reserveResourcesForConstExt(MachineInstr* MI);
170     bool isNewValueInst(MachineInstr* MI);
171   };
172 }
173
174 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "packets", "Hexagon Packetizer",
175                       false, false)
176 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
177 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
178 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
179 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
180 INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer",
181                     false, false)
182
183
184 // HexagonPacketizerList Ctor.
185 HexagonPacketizerList::HexagonPacketizerList(
186     MachineFunction &MF, MachineLoopInfo &MLI,
187     const MachineBranchProbabilityInfo *MBPI)
188     : VLIWPacketizerList(MF, MLI, true) {
189   this->MBPI = MBPI;
190 }
191
192 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &Fn) {
193   const TargetInstrInfo *TII = Fn.getSubtarget().getInstrInfo();
194   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
195   const MachineBranchProbabilityInfo *MBPI =
196     &getAnalysis<MachineBranchProbabilityInfo>();
197   // Instantiate the packetizer.
198   HexagonPacketizerList Packetizer(Fn, MLI, MBPI);
199
200   // DFA state table should not be empty.
201   assert(Packetizer.getResourceTracker() && "Empty DFA table!");
202
203   //
204   // Loop over all basic blocks and remove KILL pseudo-instructions
205   // These instructions confuse the dependence analysis. Consider:
206   // D0 = ...   (Insn 0)
207   // R0 = KILL R0, D0 (Insn 1)
208   // R0 = ... (Insn 2)
209   // Here, Insn 1 will result in the dependence graph not emitting an output
210   // dependence between Insn 0 and Insn 2. This can lead to incorrect
211   // packetization
212   //
213   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
214        MBB != MBBe; ++MBB) {
215     MachineBasicBlock::iterator End = MBB->end();
216     MachineBasicBlock::iterator MI = MBB->begin();
217     while (MI != End) {
218       if (MI->isKill()) {
219         MachineBasicBlock::iterator DeleteMI = MI;
220         ++MI;
221         MBB->erase(DeleteMI);
222         End = MBB->end();
223         continue;
224       }
225       ++MI;
226     }
227   }
228
229   // Loop over all of the basic blocks.
230   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
231        MBB != MBBe; ++MBB) {
232     // Find scheduling regions and schedule / packetize each region.
233     unsigned RemainingCount = MBB->size();
234     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
235         RegionEnd != MBB->begin();) {
236       // The next region starts above the previous region. Look backward in the
237       // instruction stream until we find the nearest boundary.
238       MachineBasicBlock::iterator I = RegionEnd;
239       for(;I != MBB->begin(); --I, --RemainingCount) {
240         if (TII->isSchedulingBoundary(std::prev(I), MBB, Fn))
241           break;
242       }
243       I = MBB->begin();
244
245       // Skip empty scheduling regions.
246       if (I == RegionEnd) {
247         RegionEnd = std::prev(RegionEnd);
248         --RemainingCount;
249         continue;
250       }
251       // Skip regions with one instruction.
252       if (I == std::prev(RegionEnd)) {
253         RegionEnd = std::prev(RegionEnd);
254         continue;
255       }
256
257       Packetizer.PacketizeMIs(MBB, I, RegionEnd);
258       RegionEnd = I;
259     }
260   }
261
262   return true;
263 }
264
265
266 static bool IsIndirectCall(MachineInstr* MI) {
267   return MI->getOpcode() == Hexagon::J2_callr;
268 }
269
270 // Reserve resources for constant extender. Trigure an assertion if
271 // reservation fail.
272 void HexagonPacketizerList::reserveResourcesForConstExt(MachineInstr* MI) {
273   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
274   MachineFunction *MF = MI->getParent()->getParent();
275   MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::A4_ext),
276                                                   MI->getDebugLoc());
277
278   if (ResourceTracker->canReserveResources(PseudoMI)) {
279     ResourceTracker->reserveResources(PseudoMI);
280     MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
281   } else {
282     MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
283     llvm_unreachable("can not reserve resources for constant extender.");
284   }
285   return;
286 }
287
288 bool HexagonPacketizerList::canReserveResourcesForConstExt(MachineInstr *MI) {
289   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
290   assert((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
291          "Should only be called for constant extended instructions");
292   MachineFunction *MF = MI->getParent()->getParent();
293   MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::A4_ext),
294                                                   MI->getDebugLoc());
295   bool CanReserve = ResourceTracker->canReserveResources(PseudoMI);
296   MF->DeleteMachineInstr(PseudoMI);
297   return CanReserve;
298 }
299
300 // Allocate resources (i.e. 4 bytes) for constant extender. If succeed, return
301 // true, otherwise, return false.
302 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(MachineInstr* MI) {
303   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
304   MachineFunction *MF = MI->getParent()->getParent();
305   MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::A4_ext),
306                                                   MI->getDebugLoc());
307
308   if (ResourceTracker->canReserveResources(PseudoMI)) {
309     ResourceTracker->reserveResources(PseudoMI);
310     MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
311     return true;
312   } else {
313     MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
314     return false;
315   }
316 }
317
318
319 bool HexagonPacketizerList::IsCallDependent(MachineInstr* MI,
320                                           SDep::Kind DepType,
321                                           unsigned DepReg) {
322
323   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
324   const HexagonRegisterInfo *QRI =
325       (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
326
327   // Check for lr dependence
328   if (DepReg == QRI->getRARegister()) {
329     return true;
330   }
331
332   if (QII->isDeallocRet(MI)) {
333     if (DepReg == QRI->getFrameRegister() ||
334         DepReg == QRI->getStackRegister())
335       return true;
336   }
337
338   // Check if this is a predicate dependence
339   const TargetRegisterClass* RC = QRI->getMinimalPhysRegClass(DepReg);
340   if (RC == &Hexagon::PredRegsRegClass) {
341     return true;
342   }
343
344   //
345   // Lastly check for an operand used in an indirect call
346   // If we had an attribute for checking if an instruction is an indirect call,
347   // then we could have avoided this relatively brittle implementation of
348   // IsIndirectCall()
349   //
350   // Assumes that the first operand of the CALLr is the function address
351   //
352   if (IsIndirectCall(MI) && (DepType == SDep::Data)) {
353     MachineOperand MO = MI->getOperand(0);
354     if (MO.isReg() && MO.isUse() && (MO.getReg() == DepReg)) {
355       return true;
356     }
357   }
358
359   return false;
360 }
361
362 static bool IsRegDependence(const SDep::Kind DepType) {
363   return (DepType == SDep::Data || DepType == SDep::Anti ||
364           DepType == SDep::Output);
365 }
366
367 static bool IsDirectJump(MachineInstr* MI) {
368   return (MI->getOpcode() == Hexagon::J2_jump);
369 }
370
371 static bool IsSchedBarrier(MachineInstr* MI) {
372   switch (MI->getOpcode()) {
373   case Hexagon::Y2_barrier:
374     return true;
375   }
376   return false;
377 }
378
379 static bool IsControlFlow(MachineInstr* MI) {
380   return (MI->getDesc().isTerminator() || MI->getDesc().isCall());
381 }
382
383 static bool IsLoopN(MachineInstr *MI) {
384   return (MI->getOpcode() == Hexagon::J2_loop0i ||
385           MI->getOpcode() == Hexagon::J2_loop0r);
386 }
387
388 /// DoesModifyCalleeSavedReg - Returns true if the instruction modifies a
389 /// callee-saved register.
390 static bool DoesModifyCalleeSavedReg(MachineInstr *MI,
391                                      const TargetRegisterInfo *TRI) {
392   for (const MCPhysReg *CSR =
393            TRI->getCalleeSavedRegs(MI->getParent()->getParent());
394        *CSR; ++CSR) {
395     unsigned CalleeSavedReg = *CSR;
396     if (MI->modifiesRegister(CalleeSavedReg, TRI))
397       return true;
398   }
399   return false;
400 }
401
402 // Returns true if an instruction can be promoted to .new predicate
403 // or new-value store.
404 bool HexagonPacketizerList::isNewifiable(MachineInstr* MI) {
405   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
406   return isCondInst(MI) || QII->mayBeNewStore(MI);
407 }
408
409 bool HexagonPacketizerList::isCondInst (MachineInstr* MI) {
410   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
411   const MCInstrDesc& TID = MI->getDesc();
412                                     // bug 5670: until that is fixed,
413                                     // this portion is disabled.
414   if (   TID.isConditionalBranch()  // && !IsRegisterJump(MI)) ||
415       || QII->isConditionalTransfer(MI)
416       || QII->isConditionalALU32(MI)
417       || QII->isConditionalLoad(MI)
418       || QII->isConditionalStore(MI)) {
419     return true;
420   }
421   return false;
422 }
423
424
425 // Promote an instructiont to its .new form.
426 // At this time, we have already made a call to CanPromoteToDotNew
427 // and made sure that it can *indeed* be promoted.
428 bool HexagonPacketizerList::PromoteToDotNew(MachineInstr* MI,
429                         SDep::Kind DepType, MachineBasicBlock::iterator &MII,
430                         const TargetRegisterClass* RC) {
431
432   assert (DepType == SDep::Data);
433   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
434
435   int NewOpcode;
436   if (RC == &Hexagon::PredRegsRegClass)
437     NewOpcode = QII->GetDotNewPredOp(MI, MBPI);
438   else
439     NewOpcode = QII->GetDotNewOp(MI);
440   MI->setDesc(QII->get(NewOpcode));
441
442   return true;
443 }
444
445 bool HexagonPacketizerList::DemoteToDotOld(MachineInstr* MI) {
446   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
447   int NewOpcode = QII->GetDotOldOp(MI->getOpcode());
448   MI->setDesc(QII->get(NewOpcode));
449   return true;
450 }
451
452 enum PredicateKind {
453   PK_False,
454   PK_True,
455   PK_Unknown
456 };
457
458 /// Returns true if an instruction is predicated on p0 and false if it's
459 /// predicated on !p0.
460 static PredicateKind getPredicateSense(MachineInstr* MI,
461                                        const HexagonInstrInfo *QII) {
462   if (!QII->isPredicated(MI))
463     return PK_Unknown;
464
465   if (QII->isPredicatedTrue(MI))
466     return PK_True;
467
468   return PK_False;
469 }
470
471 static MachineOperand& GetPostIncrementOperand(MachineInstr *MI,
472                                                const HexagonInstrInfo *QII) {
473   assert(QII->isPostIncrement(MI) && "Not a post increment operation.");
474 #ifndef NDEBUG
475   // Post Increment means duplicates. Use dense map to find duplicates in the
476   // list. Caution: Densemap initializes with the minimum of 64 buckets,
477   // whereas there are at most 5 operands in the post increment.
478   DenseMap<unsigned,  unsigned> DefRegsSet;
479   for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
480     if (MI->getOperand(opNum).isReg() &&
481         MI->getOperand(opNum).isDef()) {
482       DefRegsSet[MI->getOperand(opNum).getReg()] = 1;
483     }
484
485   for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
486     if (MI->getOperand(opNum).isReg() &&
487         MI->getOperand(opNum).isUse()) {
488       if (DefRegsSet[MI->getOperand(opNum).getReg()]) {
489         return MI->getOperand(opNum);
490       }
491     }
492 #else
493   if (MI->getDesc().mayLoad()) {
494     // The 2nd operand is always the post increment operand in load.
495     assert(MI->getOperand(1).isReg() &&
496                 "Post increment operand has be to a register.");
497     return (MI->getOperand(1));
498   }
499   if (MI->getDesc().mayStore()) {
500     // The 1st operand is always the post increment operand in store.
501     assert(MI->getOperand(0).isReg() &&
502                 "Post increment operand has be to a register.");
503     return (MI->getOperand(0));
504   }
505 #endif
506   // we should never come here.
507   llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
508 }
509
510 // get the value being stored
511 static MachineOperand& GetStoreValueOperand(MachineInstr *MI) {
512   // value being stored is always the last operand.
513   return (MI->getOperand(MI->getNumOperands()-1));
514 }
515
516 // can be new value store?
517 // Following restrictions are to be respected in convert a store into
518 // a new value store.
519 // 1. If an instruction uses auto-increment, its address register cannot
520 //    be a new-value register. Arch Spec 5.4.2.1
521 // 2. If an instruction uses absolute-set addressing mode,
522 //    its address register cannot be a new-value register.
523 //    Arch Spec 5.4.2.1.TODO: This is not enabled as
524 //    as absolute-set address mode patters are not implemented.
525 // 3. If an instruction produces a 64-bit result, its registers cannot be used
526 //    as new-value registers. Arch Spec 5.4.2.2.
527 // 4. If the instruction that sets a new-value register is conditional, then
528 //    the instruction that uses the new-value register must also be conditional,
529 //    and both must always have their predicates evaluate identically.
530 //    Arch Spec 5.4.2.3.
531 // 5. There is an implied restriction of a packet can not have another store,
532 //    if there is a  new value store in the packet. Corollary, if there is
533 //    already a store in a packet, there can not be a new value store.
534 //    Arch Spec: 3.4.4.2
535 bool HexagonPacketizerList::CanPromoteToNewValueStore(
536     MachineInstr *MI, MachineInstr *PacketMI, unsigned DepReg,
537     const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
538   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
539   // Make sure we are looking at the store, that can be promoted.
540   if (!QII->mayBeNewStore(MI))
541     return false;
542
543   // Make sure there is dependency and can be new value'ed
544   if (GetStoreValueOperand(MI).isReg() &&
545       GetStoreValueOperand(MI).getReg() != DepReg)
546     return false;
547
548   const HexagonRegisterInfo *QRI =
549       (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
550   const MCInstrDesc& MCID = PacketMI->getDesc();
551   // first operand is always the result
552
553   const TargetRegisterClass* PacketRC = QII->getRegClass(MCID, 0, QRI, MF);
554
555   // if there is already an store in the packet, no can do new value store
556   // Arch Spec 3.4.4.2.
557   for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(),
558          VE = CurrentPacketMIs.end();
559        (VI != VE); ++VI) {
560     SUnit *PacketSU = MIToSUnit.find(*VI)->second;
561     if (PacketSU->getInstr()->getDesc().mayStore() ||
562         // if we have mayStore = 1 set on ALLOCFRAME and DEALLOCFRAME,
563         // then we don't need this
564         PacketSU->getInstr()->getOpcode() == Hexagon::S2_allocframe ||
565         PacketSU->getInstr()->getOpcode() == Hexagon::L2_deallocframe)
566       return false;
567   }
568
569   if (PacketRC == &Hexagon::DoubleRegsRegClass) {
570     // new value store constraint: double regs can not feed into new value store
571     // arch spec section: 5.4.2.2
572     return false;
573   }
574
575   // Make sure it's NOT the post increment register that we are going to
576   // new value.
577   if (QII->isPostIncrement(MI) &&
578       MI->getDesc().mayStore() &&
579       GetPostIncrementOperand(MI, QII).getReg() == DepReg) {
580     return false;
581   }
582
583   if (QII->isPostIncrement(PacketMI) &&
584       PacketMI->getDesc().mayLoad() &&
585       GetPostIncrementOperand(PacketMI, QII).getReg() == DepReg) {
586     // if source is post_inc, or absolute-set addressing,
587     // it can not feed into new value store
588     //  r3 = memw(r2++#4)
589     //  memw(r30 + #-1404) = r2.new -> can not be new value store
590     // arch spec section: 5.4.2.1
591     return false;
592   }
593
594   // If the source that feeds the store is predicated, new value store must
595   // also be predicated.
596   if (QII->isPredicated(PacketMI)) {
597     if (!QII->isPredicated(MI))
598       return false;
599
600     // Check to make sure that they both will have their predicates
601     // evaluate identically
602     unsigned predRegNumSrc = 0;
603     unsigned predRegNumDst = 0;
604     const TargetRegisterClass* predRegClass = nullptr;
605
606     // Get predicate register used in the source instruction
607     for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
608       if ( PacketMI->getOperand(opNum).isReg())
609       predRegNumSrc = PacketMI->getOperand(opNum).getReg();
610       predRegClass = QRI->getMinimalPhysRegClass(predRegNumSrc);
611       if (predRegClass == &Hexagon::PredRegsRegClass) {
612         break;
613       }
614     }
615     assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
616         ("predicate register not found in a predicated PacketMI instruction"));
617
618     // Get predicate register used in new-value store instruction
619     for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
620       if ( MI->getOperand(opNum).isReg())
621       predRegNumDst = MI->getOperand(opNum).getReg();
622       predRegClass = QRI->getMinimalPhysRegClass(predRegNumDst);
623       if (predRegClass == &Hexagon::PredRegsRegClass) {
624         break;
625       }
626     }
627     assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
628             ("predicate register not found in a predicated MI instruction"));
629
630     // New-value register producer and user (store) need to satisfy these
631     // constraints:
632     // 1) Both instructions should be predicated on the same register.
633     // 2) If producer of the new-value register is .new predicated then store
634     // should also be .new predicated and if producer is not .new predicated
635     // then store should not be .new predicated.
636     // 3) Both new-value register producer and user should have same predicate
637     // sense, i.e, either both should be negated or both should be none negated.
638
639     if (( predRegNumDst != predRegNumSrc) ||
640           QII->isDotNewInst(PacketMI) != QII->isDotNewInst(MI)  ||
641           getPredicateSense(MI, QII) != getPredicateSense(PacketMI, QII)) {
642       return false;
643     }
644   }
645
646   // Make sure that other than the new-value register no other store instruction
647   // register has been modified in the same packet. Predicate registers can be
648   // modified by they should not be modified between the producer and the store
649   // instruction as it will make them both conditional on different values.
650   // We already know this to be true for all the instructions before and
651   // including PacketMI. Howerver, we need to perform the check for the
652   // remaining instructions in the packet.
653
654   std::vector<MachineInstr*>::iterator VI;
655   std::vector<MachineInstr*>::iterator VE;
656   unsigned StartCheck = 0;
657
658   for (VI=CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end();
659       (VI != VE); ++VI) {
660     SUnit *TempSU = MIToSUnit.find(*VI)->second;
661     MachineInstr* TempMI = TempSU->getInstr();
662
663     // Following condition is true for all the instructions until PacketMI is
664     // reached (StartCheck is set to 0 before the for loop).
665     // StartCheck flag is 1 for all the instructions after PacketMI.
666     if (TempMI != PacketMI && !StartCheck) // start processing only after
667       continue;                            // encountering PacketMI
668
669     StartCheck = 1;
670     if (TempMI == PacketMI) // We don't want to check PacketMI for dependence
671       continue;
672
673     for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
674       if (MI->getOperand(opNum).isReg() &&
675           TempSU->getInstr()->modifiesRegister(MI->getOperand(opNum).getReg(),
676                                                QRI))
677         return false;
678     }
679   }
680
681   // Make sure that for non-POST_INC stores:
682   // 1. The only use of reg is DepReg and no other registers.
683   //    This handles V4 base+index registers.
684   //    The following store can not be dot new.
685   //    Eg.   r0 = add(r0, #3)a
686   //          memw(r1+r0<<#2) = r0
687   if (!QII->isPostIncrement(MI) &&
688       GetStoreValueOperand(MI).isReg() &&
689       GetStoreValueOperand(MI).getReg() == DepReg) {
690     for(unsigned opNum = 0; opNum < MI->getNumOperands()-1; opNum++) {
691       if (MI->getOperand(opNum).isReg() &&
692           MI->getOperand(opNum).getReg() == DepReg) {
693         return false;
694       }
695     }
696     // 2. If data definition is because of implicit definition of the register,
697     //    do not newify the store. Eg.
698     //    %R9<def> = ZXTH %R12, %D6<imp-use>, %R12<imp-def>
699     //    STrih_indexed %R8, 2, %R12<kill>; mem:ST2[%scevgep343]
700     for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
701       if (PacketMI->getOperand(opNum).isReg() &&
702           PacketMI->getOperand(opNum).getReg() == DepReg &&
703           PacketMI->getOperand(opNum).isDef() &&
704           PacketMI->getOperand(opNum).isImplicit()) {
705         return false;
706       }
707     }
708   }
709
710   // Can be dot new store.
711   return true;
712 }
713
714 // can this MI to promoted to either
715 // new value store or new value jump
716 bool HexagonPacketizerList::CanPromoteToNewValue(
717     MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
718     const std::map<MachineInstr *, SUnit *> &MIToSUnit,
719     MachineBasicBlock::iterator &MII) {
720
721   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
722   if (!QII->mayBeNewStore(MI))
723     return false;
724
725   MachineInstr *PacketMI = PacketSU->getInstr();
726
727   // Check to see the store can be new value'ed.
728   if (CanPromoteToNewValueStore(MI, PacketMI, DepReg, MIToSUnit))
729     return true;
730
731   // Check to see the compare/jump can be new value'ed.
732   // This is done as a pass on its own. Don't need to check it here.
733   return false;
734 }
735
736 // Check to see if an instruction can be dot new
737 // There are three kinds.
738 // 1. dot new on predicate - V2/V3/V4
739 // 2. dot new on stores NV/ST - V4
740 // 3. dot new on jump NV/J - V4 -- This is generated in a pass.
741 bool HexagonPacketizerList::CanPromoteToDotNew(
742     MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
743     const std::map<MachineInstr *, SUnit *> &MIToSUnit,
744     MachineBasicBlock::iterator &MII, const TargetRegisterClass *RC) {
745   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
746   // Already a dot new instruction.
747   if (QII->isDotNewInst(MI) && !QII->mayBeNewStore(MI))
748     return false;
749
750   if (!isNewifiable(MI))
751     return false;
752
753   // predicate .new
754   if (RC == &Hexagon::PredRegsRegClass && isCondInst(MI))
755       return true;
756   else if (RC != &Hexagon::PredRegsRegClass &&
757       !QII->mayBeNewStore(MI)) // MI is not a new-value store
758     return false;
759   else {
760     // Create a dot new machine instruction to see if resources can be
761     // allocated. If not, bail out now.
762     int NewOpcode = QII->GetDotNewOp(MI);
763     const MCInstrDesc &desc = QII->get(NewOpcode);
764     DebugLoc dl;
765     MachineInstr *NewMI =
766                     MI->getParent()->getParent()->CreateMachineInstr(desc, dl);
767     bool ResourcesAvailable = ResourceTracker->canReserveResources(NewMI);
768     MI->getParent()->getParent()->DeleteMachineInstr(NewMI);
769
770     if (!ResourcesAvailable)
771       return false;
772
773     // new value store only
774     // new new value jump generated as a passes
775     if (!CanPromoteToNewValue(MI, PacketSU, DepReg, MIToSUnit, MII)) {
776       return false;
777     }
778   }
779   return true;
780 }
781
782 // Go through the packet instructions and search for anti dependency
783 // between them and DepReg from MI
784 // Consider this case:
785 // Trying to add
786 // a) %R1<def> = TFRI_cdNotPt %P3, 2
787 // to this packet:
788 // {
789 //   b) %P0<def> = OR_pp %P3<kill>, %P0<kill>
790 //   c) %P3<def> = TFR_PdRs %R23
791 //   d) %R1<def> = TFRI_cdnPt %P3, 4
792 //  }
793 // The P3 from a) and d) will be complements after
794 // a)'s P3 is converted to .new form
795 // Anti Dep between c) and b) is irrelevant for this case
796 bool HexagonPacketizerList::RestrictingDepExistInPacket(
797     MachineInstr *MI, unsigned DepReg,
798     const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
799
800   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
801   SUnit *PacketSUDep = MIToSUnit.find(MI)->second;
802
803   for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
804        VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
805
806     // We only care for dependencies to predicated instructions
807     if(!QII->isPredicated(*VIN)) continue;
808
809     // Scheduling Unit for current insn in the packet
810     SUnit *PacketSU = MIToSUnit.find(*VIN)->second;
811
812     // Look at dependencies between current members of the packet
813     // and predicate defining instruction MI.
814     // Make sure that dependency is on the exact register
815     // we care about.
816     if (PacketSU->isSucc(PacketSUDep)) {
817       for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
818         if ((PacketSU->Succs[i].getSUnit() == PacketSUDep) &&
819             (PacketSU->Succs[i].getKind() == SDep::Anti) &&
820             (PacketSU->Succs[i].getReg() == DepReg)) {
821           return true;
822         }
823       }
824     }
825   }
826
827   return false;
828 }
829
830
831 /// Gets the predicate register of a predicated instruction.
832 static unsigned getPredicatedRegister(MachineInstr *MI,
833                                       const HexagonInstrInfo *QII) {
834   /// We use the following rule: The first predicate register that is a use is
835   /// the predicate register of a predicated instruction.
836
837   assert(QII->isPredicated(MI) && "Must be predicated instruction");
838
839   for (MachineInstr::mop_iterator OI = MI->operands_begin(),
840        OE = MI->operands_end(); OI != OE; ++OI) {
841     MachineOperand &Op = *OI;
842     if (Op.isReg() && Op.getReg() && Op.isUse() &&
843         Hexagon::PredRegsRegClass.contains(Op.getReg()))
844       return Op.getReg();
845   }
846
847   llvm_unreachable("Unknown instruction operand layout");
848
849   return 0;
850 }
851
852 // Given two predicated instructions, this function detects whether
853 // the predicates are complements
854 bool HexagonPacketizerList::ArePredicatesComplements(
855     MachineInstr *MI1, MachineInstr *MI2,
856     const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
857
858   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
859
860   // If we don't know the predicate sense of the instructions bail out early, we
861   // need it later.
862   if (getPredicateSense(MI1, QII) == PK_Unknown ||
863       getPredicateSense(MI2, QII) == PK_Unknown)
864     return false;
865
866   // Scheduling unit for candidate
867   SUnit *SU = MIToSUnit.find(MI1)->second;
868
869   // One corner case deals with the following scenario:
870   // Trying to add
871   // a) %R24<def> = TFR_cPt %P0, %R25
872   // to this packet:
873   //
874   // {
875   //   b) %R25<def> = TFR_cNotPt %P0, %R24
876   //   c) %P0<def> = CMPEQri %R26, 1
877   // }
878   //
879   // On general check a) and b) are complements, but
880   // presence of c) will convert a) to .new form, and
881   // then it is not a complement
882   // We attempt to detect it by analyzing  existing
883   // dependencies in the packet
884
885   // Analyze relationships between all existing members of the packet.
886   // Look for Anti dependecy on the same predicate reg
887   // as used in the candidate
888   for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
889        VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
890
891     // Scheduling Unit for current insn in the packet
892     SUnit *PacketSU = MIToSUnit.find(*VIN)->second;
893
894     // If this instruction in the packet is succeeded by the candidate...
895     if (PacketSU->isSucc(SU)) {
896       for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
897         // The corner case exist when there is true data
898         // dependency between candidate and one of current
899         // packet members, this dep is on predicate reg, and
900         // there already exist anti dep on the same pred in
901         // the packet.
902         if (PacketSU->Succs[i].getSUnit() == SU &&
903             PacketSU->Succs[i].getKind() == SDep::Data &&
904             Hexagon::PredRegsRegClass.contains(
905               PacketSU->Succs[i].getReg()) &&
906             // Here I know that *VIN is predicate setting instruction
907             // with true data dep to candidate on the register
908             // we care about - c) in the above example.
909             // Now I need to see if there is an anti dependency
910             // from c) to any other instruction in the
911             // same packet on the pred reg of interest
912             RestrictingDepExistInPacket(*VIN,PacketSU->Succs[i].getReg(),
913                                         MIToSUnit)) {
914            return false;
915         }
916       }
917     }
918   }
919
920   // If the above case does not apply, check regular
921   // complement condition.
922   // Check that the predicate register is the same and
923   // that the predicate sense is different
924   // We also need to differentiate .old vs. .new:
925   // !p0 is not complimentary to p0.new
926   unsigned PReg1 = getPredicatedRegister(MI1, QII);
927   unsigned PReg2 = getPredicatedRegister(MI2, QII);
928   return ((PReg1 == PReg2) &&
929           Hexagon::PredRegsRegClass.contains(PReg1) &&
930           Hexagon::PredRegsRegClass.contains(PReg2) &&
931           (getPredicateSense(MI1, QII) != getPredicateSense(MI2, QII)) &&
932           (QII->isDotNewInst(MI1) == QII->isDotNewInst(MI2)));
933 }
934
935 // initPacketizerState - Initialize packetizer flags
936 void HexagonPacketizerList::initPacketizerState() {
937
938   Dependence = false;
939   PromotedToDotNew = false;
940   GlueToNewValueJump = false;
941   GlueAllocframeStore = false;
942   FoundSequentialDependence = false;
943
944   return;
945 }
946
947 // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
948 bool HexagonPacketizerList::ignorePseudoInstruction(MachineInstr *MI,
949                                                     MachineBasicBlock *MBB) {
950   if (MI->isDebugValue())
951     return true;
952
953   // We must print out inline assembly
954   if (MI->isInlineAsm())
955     return false;
956
957   // We check if MI has any functional units mapped to it.
958   // If it doesn't, we ignore the instruction.
959   const MCInstrDesc& TID = MI->getDesc();
960   unsigned SchedClass = TID.getSchedClass();
961   const InstrStage* IS =
962                     ResourceTracker->getInstrItins()->beginStage(SchedClass);
963   unsigned FuncUnits = IS->getUnits();
964   return !FuncUnits;
965 }
966
967 // isSoloInstruction: - Returns true for instructions that must be
968 // scheduled in their own packet.
969 bool HexagonPacketizerList::isSoloInstruction(MachineInstr *MI) {
970
971   if (MI->isInlineAsm())
972     return true;
973
974   if (MI->isEHLabel())
975     return true;
976
977   // From Hexagon V4 Programmer's Reference Manual 3.4.4 Grouping constraints:
978   // trap, pause, barrier, icinva, isync, and syncht are solo instructions.
979   // They must not be grouped with other instructions in a packet.
980   if (IsSchedBarrier(MI))
981     return true;
982
983   return false;
984 }
985
986 // isLegalToPacketizeTogether:
987 // SUI is the current instruction that is out side of the current packet.
988 // SUJ is the current instruction inside the current packet against which that
989 // SUI will be packetized.
990 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
991   MachineInstr *I = SUI->getInstr();
992   MachineInstr *J = SUJ->getInstr();
993   assert(I && J && "Unable to packetize null instruction!");
994
995   const MCInstrDesc &MCIDI = I->getDesc();
996   const MCInstrDesc &MCIDJ = J->getDesc();
997
998   MachineBasicBlock::iterator II = I;
999
1000   const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
1001   const HexagonRegisterInfo *QRI =
1002       (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
1003   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1004
1005   // Inline asm cannot go in the packet.
1006   if (I->getOpcode() == Hexagon::INLINEASM)
1007     llvm_unreachable("Should not meet inline asm here!");
1008
1009   if (isSoloInstruction(I))
1010     llvm_unreachable("Should not meet solo instr here!");
1011
1012   // A save callee-save register function call can only be in a packet
1013   // with instructions that don't write to the callee-save registers.
1014   if ((QII->isSaveCalleeSavedRegsCall(I) &&
1015        DoesModifyCalleeSavedReg(J, QRI)) ||
1016       (QII->isSaveCalleeSavedRegsCall(J) &&
1017        DoesModifyCalleeSavedReg(I, QRI))) {
1018     Dependence = true;
1019     return false;
1020   }
1021
1022   // Two control flow instructions cannot go in the same packet.
1023   if (IsControlFlow(I) && IsControlFlow(J)) {
1024     Dependence = true;
1025     return false;
1026   }
1027
1028   // A LoopN instruction cannot appear in the same packet as a jump or call.
1029   if (IsLoopN(I) &&
1030      (IsDirectJump(J) || MCIDJ.isCall() || QII->isDeallocRet(J))) {
1031     Dependence = true;
1032     return false;
1033   }
1034   if (IsLoopN(J) &&
1035      (IsDirectJump(I) || MCIDI.isCall() || QII->isDeallocRet(I))) {
1036     Dependence = true;
1037     return false;
1038   }
1039
1040   // dealloc_return cannot appear in the same packet as a conditional or
1041   // unconditional jump.
1042   if (QII->isDeallocRet(I) &&
1043      (MCIDJ.isBranch() || MCIDJ.isCall() || MCIDJ.isBarrier())) {
1044     Dependence = true;
1045     return false;
1046   }
1047
1048
1049   // V4 allows dual store. But does not allow second store, if the
1050   // first store is not in SLOT0. New value store, new value jump,
1051   // dealloc_return and memop always take SLOT0.
1052   // Arch spec 3.4.4.2
1053   if (MCIDI.mayStore() && MCIDJ.mayStore() &&
1054       (QII->isNewValueInst(J) || QII->isMemOp(J) || QII->isMemOp(I))) {
1055     Dependence = true;
1056     return false;
1057   }
1058
1059   if ((QII->isMemOp(J) && MCIDI.mayStore())
1060       || (MCIDJ.mayStore() && QII->isMemOp(I))
1061       || (QII->isMemOp(J) && QII->isMemOp(I))) {
1062     Dependence = true;
1063     return false;
1064   }
1065
1066   //if dealloc_return
1067   if (MCIDJ.mayStore() && QII->isDeallocRet(I)) {
1068     Dependence = true;
1069     return false;
1070   }
1071
1072   // If an instruction feeds new value jump, glue it.
1073   MachineBasicBlock::iterator NextMII = I;
1074   ++NextMII;
1075   if (NextMII != I->getParent()->end() && QII->isNewValueJump(NextMII)) {
1076     MachineInstr *NextMI = NextMII;
1077
1078     bool secondRegMatch = false;
1079     bool maintainNewValueJump = false;
1080
1081     if (NextMI->getOperand(1).isReg() &&
1082         I->getOperand(0).getReg() == NextMI->getOperand(1).getReg()) {
1083       secondRegMatch = true;
1084       maintainNewValueJump = true;
1085     }
1086
1087     if (!secondRegMatch &&
1088           I->getOperand(0).getReg() == NextMI->getOperand(0).getReg()) {
1089       maintainNewValueJump = true;
1090     }
1091
1092     for (std::vector<MachineInstr*>::iterator
1093           VI = CurrentPacketMIs.begin(),
1094             VE = CurrentPacketMIs.end();
1095           (VI != VE && maintainNewValueJump); ++VI) {
1096       SUnit *PacketSU = MIToSUnit.find(*VI)->second;
1097
1098       // NVJ can not be part of the dual jump - Arch Spec: section 7.8
1099       if (PacketSU->getInstr()->getDesc().isCall()) {
1100         Dependence = true;
1101         break;
1102       }
1103       // Validate
1104       // 1. Packet does not have a store in it.
1105       // 2. If the first operand of the nvj is newified, and the second
1106       //    operand is also a reg, it (second reg) is not defined in
1107       //    the same packet.
1108       // 3. If the second operand of the nvj is newified, (which means
1109       //    first operand is also a reg), first reg is not defined in
1110       //    the same packet.
1111       if (PacketSU->getInstr()->getDesc().mayStore()               ||
1112           PacketSU->getInstr()->getOpcode() == Hexagon::S2_allocframe ||
1113           // Check #2.
1114           (!secondRegMatch && NextMI->getOperand(1).isReg() &&
1115             PacketSU->getInstr()->modifiesRegister(
1116                               NextMI->getOperand(1).getReg(), QRI)) ||
1117           // Check #3.
1118           (secondRegMatch &&
1119             PacketSU->getInstr()->modifiesRegister(
1120                               NextMI->getOperand(0).getReg(), QRI))) {
1121         Dependence = true;
1122         break;
1123       }
1124     }
1125     if (!Dependence)
1126       GlueToNewValueJump = true;
1127     else
1128       return false;
1129   }
1130
1131   if (SUJ->isSucc(SUI)) {
1132     for (unsigned i = 0;
1133          (i < SUJ->Succs.size()) && !FoundSequentialDependence;
1134          ++i) {
1135
1136       if (SUJ->Succs[i].getSUnit() != SUI) {
1137         continue;
1138       }
1139
1140       SDep::Kind DepType = SUJ->Succs[i].getKind();
1141
1142       // For direct calls:
1143       // Ignore register dependences for call instructions for
1144       // packetization purposes except for those due to r31 and
1145       // predicate registers.
1146       //
1147       // For indirect calls:
1148       // Same as direct calls + check for true dependences to the register
1149       // used in the indirect call.
1150       //
1151       // We completely ignore Order dependences for call instructions
1152       //
1153       // For returns:
1154       // Ignore register dependences for return instructions like jumpr,
1155       // dealloc return unless we have dependencies on the explicit uses
1156       // of the registers used by jumpr (like r31) or dealloc return
1157       // (like r29 or r30).
1158       //
1159       // TODO: Currently, jumpr is handling only return of r31. So, the
1160       // following logic (specificaly IsCallDependent) is working fine.
1161       // We need to enable jumpr for register other than r31 and then,
1162       // we need to rework the last part, where it handles indirect call
1163       // of that (IsCallDependent) function. Bug 6216 is opened for this.
1164       //
1165       unsigned DepReg = 0;
1166       const TargetRegisterClass* RC = nullptr;
1167       if (DepType == SDep::Data) {
1168         DepReg = SUJ->Succs[i].getReg();
1169         RC = QRI->getMinimalPhysRegClass(DepReg);
1170       }
1171       if ((MCIDI.isCall() || MCIDI.isReturn()) &&
1172           (!IsRegDependence(DepType) ||
1173             !IsCallDependent(I, DepType, SUJ->Succs[i].getReg()))) {
1174         /* do nothing */
1175       }
1176
1177       // For instructions that can be promoted to dot-new, try to promote.
1178       else if ((DepType == SDep::Data) &&
1179                CanPromoteToDotNew(I, SUJ, DepReg, MIToSUnit, II, RC) &&
1180                PromoteToDotNew(I, DepType, II, RC)) {
1181         PromotedToDotNew = true;
1182         /* do nothing */
1183       }
1184
1185       else if ((DepType == SDep::Data) &&
1186                (QII->isNewValueJump(I))) {
1187         /* do nothing */
1188       }
1189
1190       // For predicated instructions, if the predicates are complements
1191       // then there can be no dependence.
1192       else if (QII->isPredicated(I) &&
1193                QII->isPredicated(J) &&
1194           ArePredicatesComplements(I, J, MIToSUnit)) {
1195         /* do nothing */
1196
1197       }
1198       else if (IsDirectJump(I) &&
1199                !MCIDJ.isBranch() &&
1200                !MCIDJ.isCall() &&
1201                (DepType == SDep::Order)) {
1202         // Ignore Order dependences between unconditional direct branches
1203         // and non-control-flow instructions
1204         /* do nothing */
1205       }
1206       else if (MCIDI.isConditionalBranch() && (DepType != SDep::Data) &&
1207                (DepType != SDep::Output)) {
1208         // Ignore all dependences for jumps except for true and output
1209         // dependences
1210         /* do nothing */
1211       }
1212
1213       // Ignore output dependences due to superregs. We can
1214       // write to two different subregisters of R1:0 for instance
1215       // in the same cycle
1216       //
1217
1218       //
1219       // Let the
1220       // If neither I nor J defines DepReg, then this is a
1221       // superfluous output dependence. The dependence must be of the
1222       // form:
1223       //  R0 = ...
1224       //  R1 = ...
1225       // and there is an output dependence between the two instructions
1226       // with
1227       // DepReg = D0
1228       // We want to ignore these dependences.
1229       // Ideally, the dependence constructor should annotate such
1230       // dependences. We can then avoid this relatively expensive check.
1231       //
1232       else if (DepType == SDep::Output) {
1233         // DepReg is the register that's responsible for the dependence.
1234         unsigned DepReg = SUJ->Succs[i].getReg();
1235
1236         // Check if I and J really defines DepReg.
1237         if (I->definesRegister(DepReg) ||
1238             J->definesRegister(DepReg)) {
1239           FoundSequentialDependence = true;
1240           break;
1241         }
1242       }
1243
1244       // We ignore Order dependences for
1245       // 1. Two loads unless they are volatile.
1246       // 2. Two stores in V4 unless they are volatile.
1247       else if ((DepType == SDep::Order) &&
1248                !I->hasOrderedMemoryRef() &&
1249                !J->hasOrderedMemoryRef()) {
1250         if (MCIDI.mayStore() && MCIDJ.mayStore()) {
1251           /* do nothing */
1252         }
1253         // store followed by store-- not OK on V2
1254         // store followed by load -- not OK on all (OK if addresses
1255         // are not aliased)
1256         // load followed by store -- OK on all
1257         // load followed by load  -- OK on all
1258         else if ( !MCIDJ.mayStore()) {
1259           /* do nothing */
1260         }
1261         else {
1262           FoundSequentialDependence = true;
1263           break;
1264         }
1265       }
1266
1267       // For V4, special case ALLOCFRAME. Even though there is dependency
1268       // between ALLOCFRAME and subsequent store, allow it to be
1269       // packetized in a same packet. This implies that the store is using
1270       // caller's SP. Hence, offset needs to be updated accordingly.
1271       else if (DepType == SDep::Data
1272                && J->getOpcode() == Hexagon::S2_allocframe
1273                && (I->getOpcode() == Hexagon::S2_storerd_io
1274                    || I->getOpcode() == Hexagon::S2_storeri_io
1275                    || I->getOpcode() == Hexagon::S2_storerb_io)
1276                && I->getOperand(0).getReg() == QRI->getStackRegister()
1277                && QII->isValidOffset(I->getOpcode(),
1278                                      I->getOperand(1).getImm() -
1279                                      (FrameSize + HEXAGON_LRFP_SIZE)))
1280       {
1281         GlueAllocframeStore = true;
1282         // Since this store is to be glued with allocframe in the same
1283         // packet, it will use SP of the previous stack frame, i.e
1284         // caller's SP. Therefore, we need to recalculate offset according
1285         // to this change.
1286         I->getOperand(1).setImm(I->getOperand(1).getImm() -
1287                                         (FrameSize + HEXAGON_LRFP_SIZE));
1288       }
1289
1290       //
1291       // Skip over anti-dependences. Two instructions that are
1292       // anti-dependent can share a packet
1293       //
1294       else if (DepType != SDep::Anti) {
1295         FoundSequentialDependence = true;
1296         break;
1297       }
1298     }
1299
1300     if (FoundSequentialDependence) {
1301       Dependence = true;
1302       return false;
1303     }
1304   }
1305
1306   return true;
1307 }
1308
1309 // isLegalToPruneDependencies
1310 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1311   MachineInstr *I = SUI->getInstr();
1312   assert(I && SUJ->getInstr() && "Unable to packetize null instruction!");
1313
1314   const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
1315
1316   if (Dependence) {
1317
1318     // Check if the instruction was promoted to a dot-new. If so, demote it
1319     // back into a dot-old.
1320     if (PromotedToDotNew) {
1321       DemoteToDotOld(I);
1322     }
1323
1324     // Check if the instruction (must be a store) was glued with an Allocframe
1325     // instruction. If so, restore its offset to its original value, i.e. use
1326     // curent SP instead of caller's SP.
1327     if (GlueAllocframeStore) {
1328       I->getOperand(1).setImm(I->getOperand(1).getImm() +
1329                                              FrameSize + HEXAGON_LRFP_SIZE);
1330     }
1331
1332     return false;
1333   }
1334   return true;
1335 }
1336
1337 MachineBasicBlock::iterator
1338 HexagonPacketizerList::addToPacket(MachineInstr *MI) {
1339
1340     MachineBasicBlock::iterator MII = MI;
1341     MachineBasicBlock *MBB = MI->getParent();
1342
1343     const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1344
1345     if (GlueToNewValueJump) {
1346
1347       ++MII;
1348       MachineInstr *nvjMI = MII;
1349       assert(ResourceTracker->canReserveResources(MI));
1350       ResourceTracker->reserveResources(MI);
1351       if ((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
1352           !tryAllocateResourcesForConstExt(MI)) {
1353         endPacket(MBB, MI);
1354         ResourceTracker->reserveResources(MI);
1355         assert(canReserveResourcesForConstExt(MI) &&
1356                "Ensure that there is a slot");
1357         reserveResourcesForConstExt(MI);
1358         // Reserve resources for new value jump constant extender.
1359         assert(canReserveResourcesForConstExt(MI) &&
1360                "Ensure that there is a slot");
1361         reserveResourcesForConstExt(nvjMI);
1362         assert(ResourceTracker->canReserveResources(nvjMI) &&
1363                "Ensure that there is a slot");
1364
1365       } else if (   // Extended instruction takes two slots in the packet.
1366         // Try reserve and allocate 4-byte in the current packet first.
1367         (QII->isExtended(nvjMI)
1368             && (!tryAllocateResourcesForConstExt(nvjMI)
1369                 || !ResourceTracker->canReserveResources(nvjMI)))
1370         || // For non-extended instruction, no need to allocate extra 4 bytes.
1371         (!QII->isExtended(nvjMI) &&
1372               !ResourceTracker->canReserveResources(nvjMI)))
1373       {
1374         endPacket(MBB, MI);
1375         // A new and empty packet starts.
1376         // We are sure that the resources requirements can be satisfied.
1377         // Therefore, do not need to call "canReserveResources" anymore.
1378         ResourceTracker->reserveResources(MI);
1379         if (QII->isExtended(nvjMI))
1380           reserveResourcesForConstExt(nvjMI);
1381       }
1382       // Here, we are sure that "reserveResources" would succeed.
1383       ResourceTracker->reserveResources(nvjMI);
1384       CurrentPacketMIs.push_back(MI);
1385       CurrentPacketMIs.push_back(nvjMI);
1386     } else {
1387       if (   (QII->isExtended(MI) || QII->isConstExtended(MI))
1388           && (   !tryAllocateResourcesForConstExt(MI)
1389               || !ResourceTracker->canReserveResources(MI)))
1390       {
1391         endPacket(MBB, MI);
1392         // Check if the instruction was promoted to a dot-new. If so, demote it
1393         // back into a dot-old
1394         if (PromotedToDotNew) {
1395           DemoteToDotOld(MI);
1396         }
1397         reserveResourcesForConstExt(MI);
1398       }
1399       // In case that "MI" is not an extended insn,
1400       // the resource availability has already been checked.
1401       ResourceTracker->reserveResources(MI);
1402       CurrentPacketMIs.push_back(MI);
1403     }
1404     return MII;
1405 }
1406
1407 //===----------------------------------------------------------------------===//
1408 //                         Public Constructor Functions
1409 //===----------------------------------------------------------------------===//
1410
1411 FunctionPass *llvm::createHexagonPacketizer() {
1412   return new HexagonPacketizer();
1413 }
1414