[Hexagon] Make helper function static. NFC.
[oota-llvm.git] / lib / Target / Hexagon / HexagonNewValueJump.cpp
1 //===----- HexagonNewValueJump.cpp - Hexagon Backend New Value Jump -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements NewValueJump pass in Hexagon.
11 // Ideally, we should merge this as a Peephole pass prior to register
12 // allocation, but because we have a spill in between the feeder and new value
13 // jump instructions, we are forced to write after register allocation.
14 // Having said that, we should re-attempt to pull this earlier at some point
15 // in future.
16
17 // The basic approach looks for sequence of predicated jump, compare instruciton
18 // that genereates the predicate and, the feeder to the predicate. Once it finds
19 // all, it collapses compare and jump instruction into a new valu jump
20 // intstructions.
21 //
22 //
23 //===----------------------------------------------------------------------===//
24 #include "llvm/PassSupport.h"
25 #include "Hexagon.h"
26 #include "HexagonInstrInfo.h"
27 #include "HexagonMachineFunctionInfo.h"
28 #include "HexagonRegisterInfo.h"
29 #include "HexagonSubtarget.h"
30 #include "HexagonTargetMachine.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetRegisterInfo.h"
47 #include <map>
48 using namespace llvm;
49
50 #define DEBUG_TYPE "hexagon-nvj"
51
52 STATISTIC(NumNVJGenerated, "Number of New Value Jump Instructions created");
53
54 static cl::opt<int>
55 DbgNVJCount("nvj-count", cl::init(-1), cl::Hidden, cl::desc(
56   "Maximum number of predicated jumps to be converted to New Value Jump"));
57
58 static cl::opt<bool> DisableNewValueJumps("disable-nvjump", cl::Hidden,
59     cl::ZeroOrMore, cl::init(false),
60     cl::desc("Disable New Value Jumps"));
61
62 namespace llvm {
63   FunctionPass *createHexagonNewValueJump();
64   void initializeHexagonNewValueJumpPass(PassRegistry&);
65 }
66
67
68 namespace {
69   struct HexagonNewValueJump : public MachineFunctionPass {
70     const HexagonInstrInfo    *QII;
71     const HexagonRegisterInfo *QRI;
72
73   public:
74     static char ID;
75
76     HexagonNewValueJump() : MachineFunctionPass(ID) {
77       initializeHexagonNewValueJumpPass(*PassRegistry::getPassRegistry());
78     }
79
80     void getAnalysisUsage(AnalysisUsage &AU) const override {
81       AU.addRequired<MachineBranchProbabilityInfo>();
82       MachineFunctionPass::getAnalysisUsage(AU);
83     }
84
85     const char *getPassName() const override {
86       return "Hexagon NewValueJump";
87     }
88
89     bool runOnMachineFunction(MachineFunction &Fn) override;
90
91   private:
92     /// \brief A handle to the branch probability pass.
93     const MachineBranchProbabilityInfo *MBPI;
94
95     bool isNewValueJumpCandidate(const MachineInstr *MI) const;
96   };
97
98 } // end of anonymous namespace
99
100 char HexagonNewValueJump::ID = 0;
101
102 INITIALIZE_PASS_BEGIN(HexagonNewValueJump, "hexagon-nvj",
103                       "Hexagon NewValueJump", false, false)
104 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
105 INITIALIZE_PASS_END(HexagonNewValueJump, "hexagon-nvj",
106                     "Hexagon NewValueJump", false, false)
107
108
109 // We have identified this II could be feeder to NVJ,
110 // verify that it can be.
111 static bool canBeFeederToNewValueJump(const HexagonInstrInfo *QII,
112                                       const TargetRegisterInfo *TRI,
113                                       MachineBasicBlock::iterator II,
114                                       MachineBasicBlock::iterator end,
115                                       MachineBasicBlock::iterator skip,
116                                       MachineFunction &MF) {
117
118   // Predicated instruction can not be feeder to NVJ.
119   if (QII->isPredicated(II))
120     return false;
121
122   // Bail out if feederReg is a paired register (double regs in
123   // our case). One would think that we can check to see if a given
124   // register cmpReg1 or cmpReg2 is a sub register of feederReg
125   // using -- if (QRI->isSubRegister(feederReg, cmpReg1) logic
126   // before the callsite of this function
127   // But we can not as it comes in the following fashion.
128   //    %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
129   //    %R0<def> = KILL %R0, %D0<imp-use,kill>
130   //    %P0<def> = CMPEQri %R0<kill>, 0
131   // Hence, we need to check if it's a KILL instruction.
132   if (II->getOpcode() == TargetOpcode::KILL)
133     return false;
134
135
136   // Make sure there there is no 'def' or 'use' of any of the uses of
137   // feeder insn between it's definition, this MI and jump, jmpInst
138   // skipping compare, cmpInst.
139   // Here's the example.
140   //    r21=memub(r22+r24<<#0)
141   //    p0 = cmp.eq(r21, #0)
142   //    r4=memub(r3+r21<<#0)
143   //    if (p0.new) jump:t .LBB29_45
144   // Without this check, it will be converted into
145   //    r4=memub(r3+r21<<#0)
146   //    r21=memub(r22+r24<<#0)
147   //    p0 = cmp.eq(r21, #0)
148   //    if (p0.new) jump:t .LBB29_45
149   // and result WAR hazards if converted to New Value Jump.
150
151   for (unsigned i = 0; i < II->getNumOperands(); ++i) {
152     if (II->getOperand(i).isReg() &&
153         (II->getOperand(i).isUse() || II->getOperand(i).isDef())) {
154       MachineBasicBlock::iterator localII = II;
155       ++localII;
156       unsigned Reg = II->getOperand(i).getReg();
157       for (MachineBasicBlock::iterator localBegin = localII;
158                         localBegin != end; ++localBegin) {
159         if (localBegin == skip ) continue;
160         // Check for Subregisters too.
161         if (localBegin->modifiesRegister(Reg, TRI) ||
162             localBegin->readsRegister(Reg, TRI))
163           return false;
164       }
165     }
166   }
167   return true;
168 }
169
170 // These are the common checks that need to performed
171 // to determine if
172 // 1. compare instruction can be moved before jump.
173 // 2. feeder to the compare instruction can be moved before jump.
174 static bool commonChecksToProhibitNewValueJump(bool afterRA,
175                           MachineBasicBlock::iterator MII) {
176
177   // If store in path, bail out.
178   if (MII->getDesc().mayStore())
179     return false;
180
181   // if call in path, bail out.
182   if (MII->getOpcode() == Hexagon::J2_call)
183     return false;
184
185   // if NVJ is running prior to RA, do the following checks.
186   if (!afterRA) {
187     // The following Target Opcode instructions are spurious
188     // to new value jump. If they are in the path, bail out.
189     // KILL sets kill flag on the opcode. It also sets up a
190     // single register, out of pair.
191     //    %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
192     //    %R0<def> = KILL %R0, %D0<imp-use,kill>
193     //    %P0<def> = CMPEQri %R0<kill>, 0
194     // PHI can be anything after RA.
195     // COPY can remateriaze things in between feeder, compare and nvj.
196     if (MII->getOpcode() == TargetOpcode::KILL ||
197         MII->getOpcode() == TargetOpcode::PHI  ||
198         MII->getOpcode() == TargetOpcode::COPY)
199       return false;
200
201     // The following pseudo Hexagon instructions sets "use" and "def"
202     // of registers by individual passes in the backend. At this time,
203     // we don't know the scope of usage and definitions of these
204     // instructions.
205     if (MII->getOpcode() == Hexagon::LDriw_pred     ||
206         MII->getOpcode() == Hexagon::STriw_pred)
207       return false;
208   }
209
210   return true;
211 }
212
213 static bool canCompareBeNewValueJump(const HexagonInstrInfo *QII,
214                                      const TargetRegisterInfo *TRI,
215                                      MachineBasicBlock::iterator II,
216                                      unsigned pReg,
217                                      bool secondReg,
218                                      bool optLocation,
219                                      MachineBasicBlock::iterator end,
220                                      MachineFunction &MF) {
221
222   MachineInstr *MI = II;
223
224   // If the second operand of the compare is an imm, make sure it's in the
225   // range specified by the arch.
226   if (!secondReg) {
227     int64_t v = MI->getOperand(2).getImm();
228
229     if (!(isUInt<5>(v) ||
230          ((MI->getOpcode() == Hexagon::C2_cmpeqi ||
231            MI->getOpcode() == Hexagon::C2_cmpgti) &&
232           (v == -1))))
233       return false;
234   }
235
236   unsigned cmpReg1, cmpOp2 = 0; // cmpOp2 assignment silences compiler warning.
237   cmpReg1 = MI->getOperand(1).getReg();
238
239   if (secondReg) {
240     cmpOp2 = MI->getOperand(2).getReg();
241
242     // Make sure that that second register is not from COPY
243     // At machine code level, we don't need this, but if we decide
244     // to move new value jump prior to RA, we would be needing this.
245     MachineRegisterInfo &MRI = MF.getRegInfo();
246     if (secondReg && !TargetRegisterInfo::isPhysicalRegister(cmpOp2)) {
247       MachineInstr *def = MRI.getVRegDef(cmpOp2);
248       if (def->getOpcode() == TargetOpcode::COPY)
249         return false;
250     }
251   }
252
253   // Walk the instructions after the compare (predicate def) to the jump,
254   // and satisfy the following conditions.
255   ++II ;
256   for (MachineBasicBlock::iterator localII = II; localII != end;
257        ++localII) {
258
259     // Check 1.
260     // If "common" checks fail, bail out.
261     if (!commonChecksToProhibitNewValueJump(optLocation, localII))
262       return false;
263
264     // Check 2.
265     // If there is a def or use of predicate (result of compare), bail out.
266     if (localII->modifiesRegister(pReg, TRI) ||
267         localII->readsRegister(pReg, TRI))
268       return false;
269
270     // Check 3.
271     // If there is a def of any of the use of the compare (operands of compare),
272     // bail out.
273     // Eg.
274     //    p0 = cmp.eq(r2, r0)
275     //    r2 = r4
276     //    if (p0.new) jump:t .LBB28_3
277     if (localII->modifiesRegister(cmpReg1, TRI) ||
278         (secondReg && localII->modifiesRegister(cmpOp2, TRI)))
279       return false;
280   }
281   return true;
282 }
283
284
285 // Given a compare operator, return a matching New Value Jump compare operator.
286 // Make sure that MI here is included in isNewValueJumpCandidate.
287 static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
288                                       bool secondRegNewified,
289                                       MachineBasicBlock *jmpTarget,
290                                       const MachineBranchProbabilityInfo
291                                       *MBPI) {
292   bool taken = false;
293   MachineBasicBlock *Src = MI->getParent();
294   const BranchProbability Prediction =
295     MBPI->getEdgeProbability(Src, jmpTarget);
296
297   if (Prediction >= BranchProbability(1,2))
298     taken = true;
299
300   switch (MI->getOpcode()) {
301     case Hexagon::C2_cmpeq:
302       return taken ? Hexagon::J4_cmpeq_t_jumpnv_t
303                    : Hexagon::J4_cmpeq_t_jumpnv_nt;
304
305     case Hexagon::C2_cmpeqi: {
306       if (reg >= 0)
307         return taken ? Hexagon::J4_cmpeqi_t_jumpnv_t
308                      : Hexagon::J4_cmpeqi_t_jumpnv_nt;
309       else
310         return taken ? Hexagon::J4_cmpeqn1_t_jumpnv_t
311                      : Hexagon::J4_cmpeqn1_t_jumpnv_nt;
312     }
313
314     case Hexagon::C2_cmpgt: {
315       if (secondRegNewified)
316         return taken ? Hexagon::J4_cmplt_t_jumpnv_t
317                      : Hexagon::J4_cmplt_t_jumpnv_nt;
318       else
319         return taken ? Hexagon::J4_cmpgt_t_jumpnv_t
320                      : Hexagon::J4_cmpgt_t_jumpnv_nt;
321     }
322
323     case Hexagon::C2_cmpgti: {
324       if (reg >= 0)
325         return taken ? Hexagon::J4_cmpgti_t_jumpnv_t
326                      : Hexagon::J4_cmpgti_t_jumpnv_nt;
327       else
328         return taken ? Hexagon::J4_cmpgtn1_t_jumpnv_t
329                      : Hexagon::J4_cmpgtn1_t_jumpnv_nt;
330     }
331
332     case Hexagon::C2_cmpgtu: {
333       if (secondRegNewified)
334         return taken ? Hexagon::J4_cmpltu_t_jumpnv_t
335                      : Hexagon::J4_cmpltu_t_jumpnv_nt;
336       else
337         return taken ? Hexagon::J4_cmpgtu_t_jumpnv_t
338                      : Hexagon::J4_cmpgtu_t_jumpnv_nt;
339     }
340
341     case Hexagon::C2_cmpgtui:
342       return taken ? Hexagon::J4_cmpgtui_t_jumpnv_t
343                    : Hexagon::J4_cmpgtui_t_jumpnv_nt;
344
345     case Hexagon::C4_cmpneq:
346       return taken ? Hexagon::J4_cmpeq_f_jumpnv_t
347                    : Hexagon::J4_cmpeq_f_jumpnv_nt;
348
349     case Hexagon::C4_cmplte:
350       if (secondRegNewified)
351         return taken ? Hexagon::J4_cmplt_f_jumpnv_t
352                      : Hexagon::J4_cmplt_f_jumpnv_nt;
353       return taken ? Hexagon::J4_cmpgt_f_jumpnv_t
354                    : Hexagon::J4_cmpgt_f_jumpnv_nt;
355
356     case Hexagon::C4_cmplteu:
357       if (secondRegNewified)
358         return taken ? Hexagon::J4_cmpltu_f_jumpnv_t
359                      : Hexagon::J4_cmpltu_f_jumpnv_nt;
360       return taken ? Hexagon::J4_cmpgtu_f_jumpnv_t
361                    : Hexagon::J4_cmpgtu_f_jumpnv_nt;
362
363     default:
364        llvm_unreachable("Could not find matching New Value Jump instruction.");
365   }
366   // return *some value* to avoid compiler warning
367   return 0;
368 }
369
370 bool HexagonNewValueJump::isNewValueJumpCandidate(const MachineInstr *MI)
371       const {
372   switch (MI->getOpcode()) {
373     case Hexagon::C2_cmpeq:
374     case Hexagon::C2_cmpeqi:
375     case Hexagon::C2_cmpgt:
376     case Hexagon::C2_cmpgti:
377     case Hexagon::C2_cmpgtu:
378     case Hexagon::C2_cmpgtui:
379     case Hexagon::C4_cmpneq:
380     case Hexagon::C4_cmplte:
381     case Hexagon::C4_cmplteu:
382       return true;
383
384     default:
385       return false;
386   }
387 }
388
389
390 bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
391
392   DEBUG(dbgs() << "********** Hexagon New Value Jump **********\n"
393                << "********** Function: "
394                << MF.getName() << "\n");
395
396   // If we move NewValueJump before register allocation we'll need live variable
397   // analysis here too.
398
399   QII = static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo());
400   QRI = static_cast<const HexagonRegisterInfo *>(
401       MF.getSubtarget().getRegisterInfo());
402   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
403
404   if (DisableNewValueJumps) {
405     return false;
406   }
407
408   int nvjCount = DbgNVJCount;
409   int nvjGenerated = 0;
410
411   // Loop through all the bb's of the function
412   for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
413         MBBb != MBBe; ++MBBb) {
414     MachineBasicBlock *MBB = &*MBBb;
415
416     DEBUG(dbgs() << "** dumping bb ** "
417                  << MBB->getNumber() << "\n");
418     DEBUG(MBB->dump());
419     DEBUG(dbgs() << "\n" << "********** dumping instr bottom up **********\n");
420     bool foundJump    = false;
421     bool foundCompare = false;
422     bool invertPredicate = false;
423     unsigned predReg = 0; // predicate reg of the jump.
424     unsigned cmpReg1 = 0;
425     int cmpOp2 = 0;
426     bool MO1IsKill = false;
427     bool MO2IsKill = false;
428     MachineBasicBlock::iterator jmpPos;
429     MachineBasicBlock::iterator cmpPos;
430     MachineInstr *cmpInstr = nullptr, *jmpInstr = nullptr;
431     MachineBasicBlock *jmpTarget = nullptr;
432     bool afterRA = false;
433     bool isSecondOpReg = false;
434     bool isSecondOpNewified = false;
435     // Traverse the basic block - bottom up
436     for (MachineBasicBlock::iterator MII = MBB->end(), E = MBB->begin();
437              MII != E;) {
438       MachineInstr *MI = --MII;
439       if (MI->isDebugValue()) {
440         continue;
441       }
442
443       if ((nvjCount == 0) || (nvjCount > -1 && nvjCount <= nvjGenerated))
444         break;
445
446       DEBUG(dbgs() << "Instr: "; MI->dump(); dbgs() << "\n");
447
448       if (!foundJump &&
449          (MI->getOpcode() == Hexagon::J2_jumpt ||
450           MI->getOpcode() == Hexagon::J2_jumpf ||
451           MI->getOpcode() == Hexagon::J2_jumptnewpt ||
452           MI->getOpcode() == Hexagon::J2_jumptnew ||
453           MI->getOpcode() == Hexagon::J2_jumpfnewpt ||
454           MI->getOpcode() == Hexagon::J2_jumpfnew)) {
455         // This is where you would insert your compare and
456         // instr that feeds compare
457         jmpPos = MII;
458         jmpInstr = MI;
459         predReg = MI->getOperand(0).getReg();
460         afterRA = TargetRegisterInfo::isPhysicalRegister(predReg);
461
462         // If ifconverter had not messed up with the kill flags of the
463         // operands, the following check on the kill flag would suffice.
464         // if(!jmpInstr->getOperand(0).isKill()) break;
465
466         // This predicate register is live out out of BB
467         // this would only work if we can actually use Live
468         // variable analysis on phy regs - but LLVM does not
469         // provide LV analysis on phys regs.
470         //if(LVs.isLiveOut(predReg, *MBB)) break;
471
472         // Get all the successors of this block - which will always
473         // be 2. Check if the predicate register is live in in those
474         // successor. If yes, we can not delete the predicate -
475         // I am doing this only because LLVM does not provide LiveOut
476         // at the BB level.
477         bool predLive = false;
478         for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
479                             SIE = MBB->succ_end(); SI != SIE; ++SI) {
480           MachineBasicBlock* succMBB = *SI;
481          if (succMBB->isLiveIn(predReg)) {
482             predLive = true;
483           }
484         }
485         if (predLive)
486           break;
487
488         jmpTarget = MI->getOperand(1).getMBB();
489         foundJump = true;
490         if (MI->getOpcode() == Hexagon::J2_jumpf ||
491             MI->getOpcode() == Hexagon::J2_jumpfnewpt ||
492             MI->getOpcode() == Hexagon::J2_jumpfnew) {
493           invertPredicate = true;
494         }
495         continue;
496       }
497
498       // No new value jump if there is a barrier. A barrier has to be in its
499       // own packet. A barrier has zero operands. We conservatively bail out
500       // here if we see any instruction with zero operands.
501       if (foundJump && MI->getNumOperands() == 0)
502         break;
503
504       if (foundJump &&
505          !foundCompare &&
506           MI->getOperand(0).isReg() &&
507           MI->getOperand(0).getReg() == predReg) {
508
509         // Not all compares can be new value compare. Arch Spec: 7.6.1.1
510         if (isNewValueJumpCandidate(MI)) {
511
512           assert((MI->getDesc().isCompare()) &&
513               "Only compare instruction can be collapsed into New Value Jump");
514           isSecondOpReg = MI->getOperand(2).isReg();
515
516           if (!canCompareBeNewValueJump(QII, QRI, MII, predReg, isSecondOpReg,
517                                         afterRA, jmpPos, MF))
518             break;
519
520           cmpInstr = MI;
521           cmpPos = MII;
522           foundCompare = true;
523
524           // We need cmpReg1 and cmpOp2(imm or reg) while building
525           // new value jump instruction.
526           cmpReg1 = MI->getOperand(1).getReg();
527           if (MI->getOperand(1).isKill())
528             MO1IsKill = true;
529
530           if (isSecondOpReg) {
531             cmpOp2 = MI->getOperand(2).getReg();
532             if (MI->getOperand(2).isKill())
533               MO2IsKill = true;
534           } else
535             cmpOp2 = MI->getOperand(2).getImm();
536           continue;
537         }
538       }
539
540       if (foundCompare && foundJump) {
541
542         // If "common" checks fail, bail out on this BB.
543         if (!commonChecksToProhibitNewValueJump(afterRA, MII))
544           break;
545
546         bool foundFeeder = false;
547         MachineBasicBlock::iterator feederPos = MII;
548         if (MI->getOperand(0).isReg() &&
549             MI->getOperand(0).isDef() &&
550            (MI->getOperand(0).getReg() == cmpReg1 ||
551             (isSecondOpReg &&
552              MI->getOperand(0).getReg() == (unsigned) cmpOp2))) {
553
554           unsigned feederReg = MI->getOperand(0).getReg();
555
556           // First try to see if we can get the feeder from the first operand
557           // of the compare. If we can not, and if secondOpReg is true
558           // (second operand of the compare is also register), try that one.
559           // TODO: Try to come up with some heuristic to figure out which
560           // feeder would benefit.
561
562           if (feederReg == cmpReg1) {
563             if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF)) {
564               if (!isSecondOpReg)
565                 break;
566               else
567                 continue;
568             } else
569               foundFeeder = true;
570           }
571
572           if (!foundFeeder &&
573                isSecondOpReg &&
574                feederReg == (unsigned) cmpOp2)
575             if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF))
576               break;
577
578           if (isSecondOpReg) {
579             // In case of CMPLT, or CMPLTU, or EQ with the second register
580             // to newify, swap the operands.
581             if (cmpInstr->getOpcode() == Hexagon::C2_cmpeq &&
582                                      feederReg == (unsigned) cmpOp2) {
583               unsigned tmp = cmpReg1;
584               bool tmpIsKill = MO1IsKill;
585               cmpReg1 = cmpOp2;
586               MO1IsKill = MO2IsKill;
587               cmpOp2 = tmp;
588               MO2IsKill = tmpIsKill;
589             }
590
591             // Now we have swapped the operands, all we need to check is,
592             // if the second operand (after swap) is the feeder.
593             // And if it is, make a note.
594             if (feederReg == (unsigned)cmpOp2)
595               isSecondOpNewified = true;
596           }
597
598           // Now that we are moving feeder close the jump,
599           // make sure we are respecting the kill values of
600           // the operands of the feeder.
601
602           bool updatedIsKill = false;
603           for (unsigned i = 0; i < MI->getNumOperands(); i++) {
604             MachineOperand &MO = MI->getOperand(i);
605             if (MO.isReg() && MO.isUse()) {
606               unsigned feederReg = MO.getReg();
607               for (MachineBasicBlock::iterator localII = feederPos,
608                    end = jmpPos; localII != end; localII++) {
609                 MachineInstr *localMI = localII;
610                 for (unsigned j = 0; j < localMI->getNumOperands(); j++) {
611                   MachineOperand &localMO = localMI->getOperand(j);
612                   if (localMO.isReg() && localMO.isUse() &&
613                       localMO.isKill() && feederReg == localMO.getReg()) {
614                     // We found that there is kill of a use register
615                     // Set up a kill flag on the register
616                     localMO.setIsKill(false);
617                     MO.setIsKill();
618                     updatedIsKill = true;
619                     break;
620                   }
621                 }
622                 if (updatedIsKill) break;
623               }
624             }
625             if (updatedIsKill) break;
626           }
627
628           MBB->splice(jmpPos, MI->getParent(), MI);
629           MBB->splice(jmpPos, MI->getParent(), cmpInstr);
630           DebugLoc dl = MI->getDebugLoc();
631           MachineInstr *NewMI;
632
633           assert((isNewValueJumpCandidate(cmpInstr)) &&
634                  "This compare is not a New Value Jump candidate.");
635           unsigned opc = getNewValueJumpOpcode(cmpInstr, cmpOp2,
636                                                isSecondOpNewified,
637                                                jmpTarget, MBPI);
638           if (invertPredicate)
639             opc = QII->getInvertedPredicatedOpcode(opc);
640
641           if (isSecondOpReg)
642             NewMI = BuildMI(*MBB, jmpPos, dl,
643                                   QII->get(opc))
644                                     .addReg(cmpReg1, getKillRegState(MO1IsKill))
645                                     .addReg(cmpOp2, getKillRegState(MO2IsKill))
646                                     .addMBB(jmpTarget);
647
648           else if ((cmpInstr->getOpcode() == Hexagon::C2_cmpeqi ||
649                     cmpInstr->getOpcode() == Hexagon::C2_cmpgti) &&
650                     cmpOp2 == -1 )
651             // Corresponding new-value compare jump instructions don't have the
652             // operand for -1 immediate value.
653             NewMI = BuildMI(*MBB, jmpPos, dl,
654                                   QII->get(opc))
655                                     .addReg(cmpReg1, getKillRegState(MO1IsKill))
656                                     .addMBB(jmpTarget);
657
658           else
659             NewMI = BuildMI(*MBB, jmpPos, dl,
660                                   QII->get(opc))
661                                     .addReg(cmpReg1, getKillRegState(MO1IsKill))
662                                     .addImm(cmpOp2)
663                                     .addMBB(jmpTarget);
664
665           assert(NewMI && "New Value Jump Instruction Not created!");
666           (void)NewMI;
667           if (cmpInstr->getOperand(0).isReg() &&
668               cmpInstr->getOperand(0).isKill())
669             cmpInstr->getOperand(0).setIsKill(false);
670           if (cmpInstr->getOperand(1).isReg() &&
671               cmpInstr->getOperand(1).isKill())
672             cmpInstr->getOperand(1).setIsKill(false);
673           cmpInstr->eraseFromParent();
674           jmpInstr->eraseFromParent();
675           ++nvjGenerated;
676           ++NumNVJGenerated;
677           break;
678         }
679       }
680     }
681   }
682
683   return true;
684
685 }
686
687 FunctionPass *llvm::createHexagonNewValueJump() {
688   return new HexagonNewValueJump();
689 }