Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / Target / Hexagon / HexagonMachineScheduler.cpp
1 //===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "HexagonMachineScheduler.h"
16 #include "llvm/CodeGen/MachineLoopInfo.h"
17 #include "llvm/IR/Function.h"
18
19 using namespace llvm;
20
21 #define DEBUG_TYPE "misched"
22
23 /// Platform-specific modifications to DAG.
24 void VLIWMachineScheduler::postprocessDAG() {
25   SUnit* LastSequentialCall = nullptr;
26   // Currently we only catch the situation when compare gets scheduled
27   // before preceding call.
28   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
29     // Remember the call.
30     if (SUnits[su].getInstr()->isCall())
31       LastSequentialCall = &(SUnits[su]);
32     // Look for a compare that defines a predicate.
33     else if (SUnits[su].getInstr()->isCompare() && LastSequentialCall)
34       SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier));
35   }
36 }
37
38 /// Check if scheduling of this SU is possible
39 /// in the current packet.
40 /// It is _not_ precise (statefull), it is more like
41 /// another heuristic. Many corner cases are figured
42 /// empirically.
43 bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
44   if (!SU || !SU->getInstr())
45     return false;
46
47   // First see if the pipeline could receive this instruction
48   // in the current cycle.
49   switch (SU->getInstr()->getOpcode()) {
50   default:
51     if (!ResourcesModel->canReserveResources(SU->getInstr()))
52       return false;
53   case TargetOpcode::EXTRACT_SUBREG:
54   case TargetOpcode::INSERT_SUBREG:
55   case TargetOpcode::SUBREG_TO_REG:
56   case TargetOpcode::REG_SEQUENCE:
57   case TargetOpcode::IMPLICIT_DEF:
58   case TargetOpcode::COPY:
59   case TargetOpcode::INLINEASM:
60     break;
61   }
62
63   // Now see if there are no other dependencies to instructions already
64   // in the packet.
65   for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
66     if (Packet[i]->Succs.size() == 0)
67       continue;
68     for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
69          E = Packet[i]->Succs.end(); I != E; ++I) {
70       // Since we do not add pseudos to packets, might as well
71       // ignore order dependencies.
72       if (I->isCtrl())
73         continue;
74
75       if (I->getSUnit() == SU)
76         return false;
77     }
78   }
79   return true;
80 }
81
82 /// Keep track of available resources.
83 bool VLIWResourceModel::reserveResources(SUnit *SU) {
84   bool startNewCycle = false;
85   // Artificially reset state.
86   if (!SU) {
87     ResourcesModel->clearResources();
88     Packet.clear();
89     TotalPackets++;
90     return false;
91   }
92   // If this SU does not fit in the packet
93   // start a new one.
94   if (!isResourceAvailable(SU)) {
95     ResourcesModel->clearResources();
96     Packet.clear();
97     TotalPackets++;
98     startNewCycle = true;
99   }
100
101   switch (SU->getInstr()->getOpcode()) {
102   default:
103     ResourcesModel->reserveResources(SU->getInstr());
104     break;
105   case TargetOpcode::EXTRACT_SUBREG:
106   case TargetOpcode::INSERT_SUBREG:
107   case TargetOpcode::SUBREG_TO_REG:
108   case TargetOpcode::REG_SEQUENCE:
109   case TargetOpcode::IMPLICIT_DEF:
110   case TargetOpcode::KILL:
111   case TargetOpcode::CFI_INSTRUCTION:
112   case TargetOpcode::EH_LABEL:
113   case TargetOpcode::COPY:
114   case TargetOpcode::INLINEASM:
115     break;
116   }
117   Packet.push_back(SU);
118
119 #ifndef NDEBUG
120   DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
121   for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
122     DEBUG(dbgs() << "\t[" << i << "] SU(");
123     DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
124     DEBUG(Packet[i]->getInstr()->dump());
125   }
126 #endif
127
128   // If packet is now full, reset the state so in the next cycle
129   // we start fresh.
130   if (Packet.size() >= SchedModel->getIssueWidth()) {
131     ResourcesModel->clearResources();
132     Packet.clear();
133     TotalPackets++;
134     startNewCycle = true;
135   }
136
137   return startNewCycle;
138 }
139
140 /// schedule - Called back from MachineScheduler::runOnMachineFunction
141 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
142 /// only includes instructions that have DAG nodes, not scheduling boundaries.
143 void VLIWMachineScheduler::schedule() {
144   DEBUG(dbgs()
145         << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
146         << " " << BB->getName()
147         << " in_func " << BB->getParent()->getFunction()->getName()
148         << " at loop depth "  << MLI->getLoopDepth(BB)
149         << " \n");
150
151   buildDAGWithRegPressure();
152
153   // Postprocess the DAG to add platform-specific artificial dependencies.
154   postprocessDAG();
155
156   SmallVector<SUnit*, 8> TopRoots, BotRoots;
157   findRootsAndBiasEdges(TopRoots, BotRoots);
158
159   // Initialize the strategy before modifying the DAG.
160   SchedImpl->initialize(this);
161
162   // To view Height/Depth correctly, they should be accessed at least once.
163   //
164   // FIXME: SUnit::dumpAll always recompute depth and height now. The max
165   // depth/height could be computed directly from the roots and leaves.
166   DEBUG(unsigned maxH = 0;
167         for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
168           if (SUnits[su].getHeight() > maxH)
169             maxH = SUnits[su].getHeight();
170         dbgs() << "Max Height " << maxH << "\n";);
171   DEBUG(unsigned maxD = 0;
172         for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
173           if (SUnits[su].getDepth() > maxD)
174             maxD = SUnits[su].getDepth();
175         dbgs() << "Max Depth " << maxD << "\n";);
176   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
177           SUnits[su].dumpAll(this));
178
179   initQueues(TopRoots, BotRoots);
180
181   bool IsTopNode = false;
182   while (true) {
183     DEBUG(dbgs() << "** VLIWMachineScheduler::schedule picking next node\n");
184     SUnit *SU = SchedImpl->pickNode(IsTopNode);
185     if (!SU) break;
186
187     if (!checkSchedLimit())
188       break;
189
190     scheduleMI(SU, IsTopNode);
191
192     updateQueues(SU, IsTopNode);
193
194     // Notify the scheduling strategy after updating the DAG.
195     SchedImpl->schedNode(SU, IsTopNode);
196   }
197   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
198
199   placeDebugValues();
200 }
201
202 void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
203   DAG = static_cast<VLIWMachineScheduler*>(dag);
204   SchedModel = DAG->getSchedModel();
205
206   Top.init(DAG, SchedModel);
207   Bot.init(DAG, SchedModel);
208
209   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
210   // are disabled, then these HazardRecs will be disabled.
211   const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
212   const TargetSubtargetInfo &STI = DAG->MF.getSubtarget();
213   const TargetInstrInfo *TII = STI.getInstrInfo();
214   delete Top.HazardRec;
215   delete Bot.HazardRec;
216   Top.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG);
217   Bot.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG);
218
219   delete Top.ResourceModel;
220   delete Bot.ResourceModel;
221   Top.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel());
222   Bot.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel());
223
224   assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) &&
225          "-misched-topdown incompatible with -misched-bottomup");
226 }
227
228 void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
229   if (SU->isScheduled)
230     return;
231
232   for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
233        I != E; ++I) {
234     unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
235     unsigned MinLatency = I->getLatency();
236 #ifndef NDEBUG
237     Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
238 #endif
239     if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
240       SU->TopReadyCycle = PredReadyCycle + MinLatency;
241   }
242   Top.releaseNode(SU, SU->TopReadyCycle);
243 }
244
245 void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
246   if (SU->isScheduled)
247     return;
248
249   assert(SU->getInstr() && "Scheduled SUnit must have instr");
250
251   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
252        I != E; ++I) {
253     unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
254     unsigned MinLatency = I->getLatency();
255 #ifndef NDEBUG
256     Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
257 #endif
258     if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
259       SU->BotReadyCycle = SuccReadyCycle + MinLatency;
260   }
261   Bot.releaseNode(SU, SU->BotReadyCycle);
262 }
263
264 /// Does this SU have a hazard within the current instruction group.
265 ///
266 /// The scheduler supports two modes of hazard recognition. The first is the
267 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
268 /// supports highly complicated in-order reservation tables
269 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
270 ///
271 /// The second is a streamlined mechanism that checks for hazards based on
272 /// simple counters that the scheduler itself maintains. It explicitly checks
273 /// for instruction dispatch limitations, including the number of micro-ops that
274 /// can dispatch per cycle.
275 ///
276 /// TODO: Also check whether the SU must start a new group.
277 bool ConvergingVLIWScheduler::VLIWSchedBoundary::checkHazard(SUnit *SU) {
278   if (HazardRec->isEnabled())
279     return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
280
281   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
282   if (IssueCount + uops > SchedModel->getIssueWidth())
283     return true;
284
285   return false;
286 }
287
288 void ConvergingVLIWScheduler::VLIWSchedBoundary::releaseNode(SUnit *SU,
289                                                      unsigned ReadyCycle) {
290   if (ReadyCycle < MinReadyCycle)
291     MinReadyCycle = ReadyCycle;
292
293   // Check for interlocks first. For the purpose of other heuristics, an
294   // instruction that cannot issue appears as if it's not in the ReadyQueue.
295   if (ReadyCycle > CurrCycle || checkHazard(SU))
296
297     Pending.push(SU);
298   else
299     Available.push(SU);
300 }
301
302 /// Move the boundary of scheduled code by one cycle.
303 void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpCycle() {
304   unsigned Width = SchedModel->getIssueWidth();
305   IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
306
307   assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
308   unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
309
310   if (!HazardRec->isEnabled()) {
311     // Bypass HazardRec virtual calls.
312     CurrCycle = NextCycle;
313   } else {
314     // Bypass getHazardType calls in case of long latency.
315     for (; CurrCycle != NextCycle; ++CurrCycle) {
316       if (isTop())
317         HazardRec->AdvanceCycle();
318       else
319         HazardRec->RecedeCycle();
320     }
321   }
322   CheckPending = true;
323
324   DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
325         << CurrCycle << '\n');
326 }
327
328 /// Move the boundary of scheduled code by one SUnit.
329 void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpNode(SUnit *SU) {
330   bool startNewCycle = false;
331
332   // Update the reservation table.
333   if (HazardRec->isEnabled()) {
334     if (!isTop() && SU->isCall) {
335       // Calls are scheduled with their preceding instructions. For bottom-up
336       // scheduling, clear the pipeline state before emitting.
337       HazardRec->Reset();
338     }
339     HazardRec->EmitInstruction(SU);
340   }
341
342   // Update DFA model.
343   startNewCycle = ResourceModel->reserveResources(SU);
344
345   // Check the instruction group dispatch limit.
346   // TODO: Check if this SU must end a dispatch group.
347   IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
348   if (startNewCycle) {
349     DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
350     bumpCycle();
351   }
352   else
353     DEBUG(dbgs() << "*** IssueCount " << IssueCount
354           << " at cycle " << CurrCycle << '\n');
355 }
356
357 /// Release pending ready nodes in to the available queue. This makes them
358 /// visible to heuristics.
359 void ConvergingVLIWScheduler::VLIWSchedBoundary::releasePending() {
360   // If the available queue is empty, it is safe to reset MinReadyCycle.
361   if (Available.empty())
362     MinReadyCycle = UINT_MAX;
363
364   // Check to see if any of the pending instructions are ready to issue.  If
365   // so, add them to the available queue.
366   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
367     SUnit *SU = *(Pending.begin()+i);
368     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
369
370     if (ReadyCycle < MinReadyCycle)
371       MinReadyCycle = ReadyCycle;
372
373     if (ReadyCycle > CurrCycle)
374       continue;
375
376     if (checkHazard(SU))
377       continue;
378
379     Available.push(SU);
380     Pending.remove(Pending.begin()+i);
381     --i; --e;
382   }
383   CheckPending = false;
384 }
385
386 /// Remove SU from the ready set for this boundary.
387 void ConvergingVLIWScheduler::VLIWSchedBoundary::removeReady(SUnit *SU) {
388   if (Available.isInQueue(SU))
389     Available.remove(Available.find(SU));
390   else {
391     assert(Pending.isInQueue(SU) && "bad ready count");
392     Pending.remove(Pending.find(SU));
393   }
394 }
395
396 /// If this queue only has one ready candidate, return it. As a side effect,
397 /// advance the cycle until at least one node is ready. If multiple instructions
398 /// are ready, return NULL.
399 SUnit *ConvergingVLIWScheduler::VLIWSchedBoundary::pickOnlyChoice() {
400   if (CheckPending)
401     releasePending();
402
403   for (unsigned i = 0; Available.empty(); ++i) {
404     assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
405            "permanent hazard"); (void)i;
406     ResourceModel->reserveResources(nullptr);
407     bumpCycle();
408     releasePending();
409   }
410   if (Available.size() == 1)
411     return *Available.begin();
412   return nullptr;
413 }
414
415 #ifndef NDEBUG
416 void ConvergingVLIWScheduler::traceCandidate(const char *Label,
417                                              const ReadyQueue &Q,
418                                              SUnit *SU, PressureChange P) {
419   dbgs() << Label << " " << Q.getName() << " ";
420   if (P.isValid())
421     dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":"
422            << P.getUnitInc() << " ";
423   else
424     dbgs() << "     ";
425   SU->dump(DAG);
426 }
427 #endif
428
429 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
430 /// of SU, return it, otherwise return null.
431 static SUnit *getSingleUnscheduledPred(SUnit *SU) {
432   SUnit *OnlyAvailablePred = nullptr;
433   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
434        I != E; ++I) {
435     SUnit &Pred = *I->getSUnit();
436     if (!Pred.isScheduled) {
437       // We found an available, but not scheduled, predecessor.  If it's the
438       // only one we have found, keep track of it... otherwise give up.
439       if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
440         return nullptr;
441       OnlyAvailablePred = &Pred;
442     }
443   }
444   return OnlyAvailablePred;
445 }
446
447 /// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
448 /// of SU, return it, otherwise return null.
449 static SUnit *getSingleUnscheduledSucc(SUnit *SU) {
450   SUnit *OnlyAvailableSucc = nullptr;
451   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
452        I != E; ++I) {
453     SUnit &Succ = *I->getSUnit();
454     if (!Succ.isScheduled) {
455       // We found an available, but not scheduled, successor.  If it's the
456       // only one we have found, keep track of it... otherwise give up.
457       if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
458         return nullptr;
459       OnlyAvailableSucc = &Succ;
460     }
461   }
462   return OnlyAvailableSucc;
463 }
464
465 // Constants used to denote relative importance of
466 // heuristic components for cost computation.
467 static const unsigned PriorityOne = 200;
468 static const unsigned PriorityTwo = 50;
469 static const unsigned ScaleTwo = 10;
470 static const unsigned FactorOne = 2;
471
472 /// Single point to compute overall scheduling cost.
473 /// TODO: More heuristics will be used soon.
474 int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
475                                             SchedCandidate &Candidate,
476                                             RegPressureDelta &Delta,
477                                             bool verbose) {
478   // Initial trivial priority.
479   int ResCount = 1;
480
481   // Do not waste time on a node that is already scheduled.
482   if (!SU || SU->isScheduled)
483     return ResCount;
484
485   // Forced priority is high.
486   if (SU->isScheduleHigh)
487     ResCount += PriorityOne;
488
489   // Critical path first.
490   if (Q.getID() == TopQID) {
491     ResCount += (SU->getHeight() * ScaleTwo);
492
493     // If resources are available for it, multiply the
494     // chance of scheduling.
495     if (Top.ResourceModel->isResourceAvailable(SU))
496       ResCount <<= FactorOne;
497   } else {
498     ResCount += (SU->getDepth() * ScaleTwo);
499
500     // If resources are available for it, multiply the
501     // chance of scheduling.
502     if (Bot.ResourceModel->isResourceAvailable(SU))
503       ResCount <<= FactorOne;
504   }
505
506   unsigned NumNodesBlocking = 0;
507   if (Q.getID() == TopQID) {
508     // How many SUs does it block from scheduling?
509     // Look at all of the successors of this node.
510     // Count the number of nodes that
511     // this node is the sole unscheduled node for.
512     for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
513          I != E; ++I)
514       if (getSingleUnscheduledPred(I->getSUnit()) == SU)
515         ++NumNodesBlocking;
516   } else {
517     // How many unscheduled predecessors block this node?
518     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
519          I != E; ++I)
520       if (getSingleUnscheduledSucc(I->getSUnit()) == SU)
521         ++NumNodesBlocking;
522   }
523   ResCount += (NumNodesBlocking * ScaleTwo);
524
525   // Factor in reg pressure as a heuristic.
526   ResCount -= (Delta.Excess.getUnitInc()*PriorityTwo);
527   ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityTwo);
528
529   DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")");
530
531   return ResCount;
532 }
533
534 /// Pick the best candidate from the top queue.
535 ///
536 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
537 /// DAG building. To adjust for the current scheduling location we need to
538 /// maintain the number of vreg uses remaining to be top-scheduled.
539 ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
540 pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
541                   SchedCandidate &Candidate) {
542   DEBUG(Q.dump());
543
544   // getMaxPressureDelta temporarily modifies the tracker.
545   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
546
547   // BestSU remains NULL if no top candidates beat the best existing candidate.
548   CandResult FoundCandidate = NoCand;
549   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
550     RegPressureDelta RPDelta;
551     TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
552                                     DAG->getRegionCriticalPSets(),
553                                     DAG->getRegPressure().MaxSetPressure);
554
555     int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
556
557     // Initialize the candidate if needed.
558     if (!Candidate.SU) {
559       Candidate.SU = *I;
560       Candidate.RPDelta = RPDelta;
561       Candidate.SCost = CurrentCost;
562       FoundCandidate = NodeOrder;
563       continue;
564     }
565
566     // Best cost.
567     if (CurrentCost > Candidate.SCost) {
568       DEBUG(traceCandidate("CCAND", Q, *I));
569       Candidate.SU = *I;
570       Candidate.RPDelta = RPDelta;
571       Candidate.SCost = CurrentCost;
572       FoundCandidate = BestCost;
573       continue;
574     }
575
576     // Fall through to original instruction order.
577     // Only consider node order if Candidate was chosen from this Q.
578     if (FoundCandidate == NoCand)
579       continue;
580   }
581   return FoundCandidate;
582 }
583
584 /// Pick the best candidate node from either the top or bottom queue.
585 SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
586   // Schedule as far as possible in the direction of no choice. This is most
587   // efficient, but also provides the best heuristics for CriticalPSets.
588   if (SUnit *SU = Bot.pickOnlyChoice()) {
589     IsTopNode = false;
590     return SU;
591   }
592   if (SUnit *SU = Top.pickOnlyChoice()) {
593     IsTopNode = true;
594     return SU;
595   }
596   SchedCandidate BotCand;
597   // Prefer bottom scheduling when heuristics are silent.
598   CandResult BotResult = pickNodeFromQueue(Bot.Available,
599                                            DAG->getBotRPTracker(), BotCand);
600   assert(BotResult != NoCand && "failed to find the first candidate");
601
602   // If either Q has a single candidate that provides the least increase in
603   // Excess pressure, we can immediately schedule from that Q.
604   //
605   // RegionCriticalPSets summarizes the pressure within the scheduled region and
606   // affects picking from either Q. If scheduling in one direction must
607   // increase pressure for one of the excess PSets, then schedule in that
608   // direction first to provide more freedom in the other direction.
609   if (BotResult == SingleExcess || BotResult == SingleCritical) {
610     IsTopNode = false;
611     return BotCand.SU;
612   }
613   // Check if the top Q has a better candidate.
614   SchedCandidate TopCand;
615   CandResult TopResult = pickNodeFromQueue(Top.Available,
616                                            DAG->getTopRPTracker(), TopCand);
617   assert(TopResult != NoCand && "failed to find the first candidate");
618
619   if (TopResult == SingleExcess || TopResult == SingleCritical) {
620     IsTopNode = true;
621     return TopCand.SU;
622   }
623   // If either Q has a single candidate that minimizes pressure above the
624   // original region's pressure pick it.
625   if (BotResult == SingleMax) {
626     IsTopNode = false;
627     return BotCand.SU;
628   }
629   if (TopResult == SingleMax) {
630     IsTopNode = true;
631     return TopCand.SU;
632   }
633   if (TopCand.SCost > BotCand.SCost) {
634     IsTopNode = true;
635     return TopCand.SU;
636   }
637   // Otherwise prefer the bottom candidate in node order.
638   IsTopNode = false;
639   return BotCand.SU;
640 }
641
642 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
643 SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
644   if (DAG->top() == DAG->bottom()) {
645     assert(Top.Available.empty() && Top.Pending.empty() &&
646            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
647     return nullptr;
648   }
649   SUnit *SU;
650   if (llvm::ForceTopDown) {
651     SU = Top.pickOnlyChoice();
652     if (!SU) {
653       SchedCandidate TopCand;
654       CandResult TopResult =
655         pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
656       assert(TopResult != NoCand && "failed to find the first candidate");
657       (void)TopResult;
658       SU = TopCand.SU;
659     }
660     IsTopNode = true;
661   } else if (llvm::ForceBottomUp) {
662     SU = Bot.pickOnlyChoice();
663     if (!SU) {
664       SchedCandidate BotCand;
665       CandResult BotResult =
666         pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
667       assert(BotResult != NoCand && "failed to find the first candidate");
668       (void)BotResult;
669       SU = BotCand.SU;
670     }
671     IsTopNode = false;
672   } else {
673     SU = pickNodeBidrectional(IsTopNode);
674   }
675   if (SU->isTopReady())
676     Top.removeReady(SU);
677   if (SU->isBottomReady())
678     Bot.removeReady(SU);
679
680   DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
681         << " Scheduling Instruction in cycle "
682         << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
683         SU->dump(DAG));
684   return SU;
685 }
686
687 /// Update the scheduler's state after scheduling a node. This is the same node
688 /// that was just returned by pickNode(). However, VLIWMachineScheduler needs
689 /// to update it's state based on the current cycle before MachineSchedStrategy
690 /// does.
691 void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
692   if (IsTopNode) {
693     SU->TopReadyCycle = Top.CurrCycle;
694     Top.bumpNode(SU);
695   } else {
696     SU->BotReadyCycle = Bot.CurrCycle;
697     Bot.bumpNode(SU);
698   }
699 }