[Hexagon] Adding nodes for vector insert/extract lowering.
[oota-llvm.git] / lib / Target / Hexagon / HexagonMachineScheduler.cpp
1 //===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "HexagonMachineScheduler.h"
16 #include "llvm/CodeGen/MachineLoopInfo.h"
17 #include "llvm/IR/Function.h"
18
19 using namespace llvm;
20
21 #define DEBUG_TYPE "misched"
22
23 /// Platform-specific modifications to DAG.
24 void VLIWMachineScheduler::postprocessDAG() {
25   SUnit* LastSequentialCall = nullptr;
26   // Currently we only catch the situation when compare gets scheduled
27   // before preceding call.
28   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
29     // Remember the call.
30     if (SUnits[su].getInstr()->isCall())
31       LastSequentialCall = &(SUnits[su]);
32     // Look for a compare that defines a predicate.
33     else if (SUnits[su].getInstr()->isCompare() && LastSequentialCall)
34       SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier));
35   }
36 }
37
38 /// Check if scheduling of this SU is possible
39 /// in the current packet.
40 /// It is _not_ precise (statefull), it is more like
41 /// another heuristic. Many corner cases are figured
42 /// empirically.
43 bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
44   if (!SU || !SU->getInstr())
45     return false;
46
47   // First see if the pipeline could receive this instruction
48   // in the current cycle.
49   switch (SU->getInstr()->getOpcode()) {
50   default:
51     if (!ResourcesModel->canReserveResources(SU->getInstr()))
52       return false;
53   case TargetOpcode::EXTRACT_SUBREG:
54   case TargetOpcode::INSERT_SUBREG:
55   case TargetOpcode::SUBREG_TO_REG:
56   case TargetOpcode::REG_SEQUENCE:
57   case TargetOpcode::IMPLICIT_DEF:
58   case TargetOpcode::COPY:
59   case TargetOpcode::INLINEASM:
60     break;
61   }
62
63   // Now see if there are no other dependencies to instructions already
64   // in the packet.
65   for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
66     if (Packet[i]->Succs.size() == 0)
67       continue;
68     for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
69          E = Packet[i]->Succs.end(); I != E; ++I) {
70       // Since we do not add pseudos to packets, might as well
71       // ignore order dependencies.
72       if (I->isCtrl())
73         continue;
74
75       if (I->getSUnit() == SU)
76         return false;
77     }
78   }
79   return true;
80 }
81
82 /// Keep track of available resources.
83 bool VLIWResourceModel::reserveResources(SUnit *SU) {
84   bool startNewCycle = false;
85   // Artificially reset state.
86   if (!SU) {
87     ResourcesModel->clearResources();
88     Packet.clear();
89     TotalPackets++;
90     return false;
91   }
92   // If this SU does not fit in the packet
93   // start a new one.
94   if (!isResourceAvailable(SU)) {
95     ResourcesModel->clearResources();
96     Packet.clear();
97     TotalPackets++;
98     startNewCycle = true;
99   }
100
101   switch (SU->getInstr()->getOpcode()) {
102   default:
103     ResourcesModel->reserveResources(SU->getInstr());
104     break;
105   case TargetOpcode::EXTRACT_SUBREG:
106   case TargetOpcode::INSERT_SUBREG:
107   case TargetOpcode::SUBREG_TO_REG:
108   case TargetOpcode::REG_SEQUENCE:
109   case TargetOpcode::IMPLICIT_DEF:
110   case TargetOpcode::KILL:
111   case TargetOpcode::CFI_INSTRUCTION:
112   case TargetOpcode::EH_LABEL:
113   case TargetOpcode::COPY:
114   case TargetOpcode::INLINEASM:
115     break;
116   }
117   Packet.push_back(SU);
118
119 #ifndef NDEBUG
120   DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
121   for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
122     DEBUG(dbgs() << "\t[" << i << "] SU(");
123     DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
124     DEBUG(Packet[i]->getInstr()->dump());
125   }
126 #endif
127
128   // If packet is now full, reset the state so in the next cycle
129   // we start fresh.
130   if (Packet.size() >= SchedModel->getIssueWidth()) {
131     ResourcesModel->clearResources();
132     Packet.clear();
133     TotalPackets++;
134     startNewCycle = true;
135   }
136
137   return startNewCycle;
138 }
139
140 /// schedule - Called back from MachineScheduler::runOnMachineFunction
141 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
142 /// only includes instructions that have DAG nodes, not scheduling boundaries.
143 void VLIWMachineScheduler::schedule() {
144   DEBUG(dbgs()
145         << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
146         << " " << BB->getName()
147         << " in_func " << BB->getParent()->getFunction()->getName()
148         << " at loop depth "  << MLI->getLoopDepth(BB)
149         << " \n");
150
151   buildDAGWithRegPressure();
152
153   // Postprocess the DAG to add platform-specific artificial dependencies.
154   postprocessDAG();
155
156   SmallVector<SUnit*, 8> TopRoots, BotRoots;
157   findRootsAndBiasEdges(TopRoots, BotRoots);
158
159   // Initialize the strategy before modifying the DAG.
160   SchedImpl->initialize(this);
161
162   // To view Height/Depth correctly, they should be accessed at least once.
163   //
164   // FIXME: SUnit::dumpAll always recompute depth and height now. The max
165   // depth/height could be computed directly from the roots and leaves.
166   DEBUG(unsigned maxH = 0;
167         for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
168           if (SUnits[su].getHeight() > maxH)
169             maxH = SUnits[su].getHeight();
170         dbgs() << "Max Height " << maxH << "\n";);
171   DEBUG(unsigned maxD = 0;
172         for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
173           if (SUnits[su].getDepth() > maxD)
174             maxD = SUnits[su].getDepth();
175         dbgs() << "Max Depth " << maxD << "\n";);
176   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
177           SUnits[su].dumpAll(this));
178
179   initQueues(TopRoots, BotRoots);
180
181   bool IsTopNode = false;
182   while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
183     if (!checkSchedLimit())
184       break;
185
186     scheduleMI(SU, IsTopNode);
187
188     updateQueues(SU, IsTopNode);
189
190     // Notify the scheduling strategy after updating the DAG.
191     SchedImpl->schedNode(SU, IsTopNode);
192   }
193   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
194
195   placeDebugValues();
196 }
197
198 void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
199   DAG = static_cast<VLIWMachineScheduler*>(dag);
200   SchedModel = DAG->getSchedModel();
201
202   Top.init(DAG, SchedModel);
203   Bot.init(DAG, SchedModel);
204
205   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
206   // are disabled, then these HazardRecs will be disabled.
207   const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
208   const TargetSubtargetInfo &STI = DAG->MF.getSubtarget();
209   const TargetInstrInfo *TII = STI.getInstrInfo();
210   delete Top.HazardRec;
211   delete Bot.HazardRec;
212   Top.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG);
213   Bot.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG);
214
215   delete Top.ResourceModel;
216   delete Bot.ResourceModel;
217   Top.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel());
218   Bot.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel());
219
220   assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) &&
221          "-misched-topdown incompatible with -misched-bottomup");
222 }
223
224 void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
225   if (SU->isScheduled)
226     return;
227
228   for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
229        I != E; ++I) {
230     unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
231     unsigned MinLatency = I->getLatency();
232 #ifndef NDEBUG
233     Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
234 #endif
235     if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
236       SU->TopReadyCycle = PredReadyCycle + MinLatency;
237   }
238   Top.releaseNode(SU, SU->TopReadyCycle);
239 }
240
241 void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
242   if (SU->isScheduled)
243     return;
244
245   assert(SU->getInstr() && "Scheduled SUnit must have instr");
246
247   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
248        I != E; ++I) {
249     unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
250     unsigned MinLatency = I->getLatency();
251 #ifndef NDEBUG
252     Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
253 #endif
254     if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
255       SU->BotReadyCycle = SuccReadyCycle + MinLatency;
256   }
257   Bot.releaseNode(SU, SU->BotReadyCycle);
258 }
259
260 /// Does this SU have a hazard within the current instruction group.
261 ///
262 /// The scheduler supports two modes of hazard recognition. The first is the
263 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
264 /// supports highly complicated in-order reservation tables
265 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
266 ///
267 /// The second is a streamlined mechanism that checks for hazards based on
268 /// simple counters that the scheduler itself maintains. It explicitly checks
269 /// for instruction dispatch limitations, including the number of micro-ops that
270 /// can dispatch per cycle.
271 ///
272 /// TODO: Also check whether the SU must start a new group.
273 bool ConvergingVLIWScheduler::VLIWSchedBoundary::checkHazard(SUnit *SU) {
274   if (HazardRec->isEnabled())
275     return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
276
277   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
278   if (IssueCount + uops > SchedModel->getIssueWidth())
279     return true;
280
281   return false;
282 }
283
284 void ConvergingVLIWScheduler::VLIWSchedBoundary::releaseNode(SUnit *SU,
285                                                      unsigned ReadyCycle) {
286   if (ReadyCycle < MinReadyCycle)
287     MinReadyCycle = ReadyCycle;
288
289   // Check for interlocks first. For the purpose of other heuristics, an
290   // instruction that cannot issue appears as if it's not in the ReadyQueue.
291   if (ReadyCycle > CurrCycle || checkHazard(SU))
292
293     Pending.push(SU);
294   else
295     Available.push(SU);
296 }
297
298 /// Move the boundary of scheduled code by one cycle.
299 void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpCycle() {
300   unsigned Width = SchedModel->getIssueWidth();
301   IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
302
303   assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
304   unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
305
306   if (!HazardRec->isEnabled()) {
307     // Bypass HazardRec virtual calls.
308     CurrCycle = NextCycle;
309   } else {
310     // Bypass getHazardType calls in case of long latency.
311     for (; CurrCycle != NextCycle; ++CurrCycle) {
312       if (isTop())
313         HazardRec->AdvanceCycle();
314       else
315         HazardRec->RecedeCycle();
316     }
317   }
318   CheckPending = true;
319
320   DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
321         << CurrCycle << '\n');
322 }
323
324 /// Move the boundary of scheduled code by one SUnit.
325 void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpNode(SUnit *SU) {
326   bool startNewCycle = false;
327
328   // Update the reservation table.
329   if (HazardRec->isEnabled()) {
330     if (!isTop() && SU->isCall) {
331       // Calls are scheduled with their preceding instructions. For bottom-up
332       // scheduling, clear the pipeline state before emitting.
333       HazardRec->Reset();
334     }
335     HazardRec->EmitInstruction(SU);
336   }
337
338   // Update DFA model.
339   startNewCycle = ResourceModel->reserveResources(SU);
340
341   // Check the instruction group dispatch limit.
342   // TODO: Check if this SU must end a dispatch group.
343   IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
344   if (startNewCycle) {
345     DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
346     bumpCycle();
347   }
348   else
349     DEBUG(dbgs() << "*** IssueCount " << IssueCount
350           << " at cycle " << CurrCycle << '\n');
351 }
352
353 /// Release pending ready nodes in to the available queue. This makes them
354 /// visible to heuristics.
355 void ConvergingVLIWScheduler::VLIWSchedBoundary::releasePending() {
356   // If the available queue is empty, it is safe to reset MinReadyCycle.
357   if (Available.empty())
358     MinReadyCycle = UINT_MAX;
359
360   // Check to see if any of the pending instructions are ready to issue.  If
361   // so, add them to the available queue.
362   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
363     SUnit *SU = *(Pending.begin()+i);
364     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
365
366     if (ReadyCycle < MinReadyCycle)
367       MinReadyCycle = ReadyCycle;
368
369     if (ReadyCycle > CurrCycle)
370       continue;
371
372     if (checkHazard(SU))
373       continue;
374
375     Available.push(SU);
376     Pending.remove(Pending.begin()+i);
377     --i; --e;
378   }
379   CheckPending = false;
380 }
381
382 /// Remove SU from the ready set for this boundary.
383 void ConvergingVLIWScheduler::VLIWSchedBoundary::removeReady(SUnit *SU) {
384   if (Available.isInQueue(SU))
385     Available.remove(Available.find(SU));
386   else {
387     assert(Pending.isInQueue(SU) && "bad ready count");
388     Pending.remove(Pending.find(SU));
389   }
390 }
391
392 /// If this queue only has one ready candidate, return it. As a side effect,
393 /// advance the cycle until at least one node is ready. If multiple instructions
394 /// are ready, return NULL.
395 SUnit *ConvergingVLIWScheduler::VLIWSchedBoundary::pickOnlyChoice() {
396   if (CheckPending)
397     releasePending();
398
399   for (unsigned i = 0; Available.empty(); ++i) {
400     assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
401            "permanent hazard"); (void)i;
402     ResourceModel->reserveResources(nullptr);
403     bumpCycle();
404     releasePending();
405   }
406   if (Available.size() == 1)
407     return *Available.begin();
408   return nullptr;
409 }
410
411 #ifndef NDEBUG
412 void ConvergingVLIWScheduler::traceCandidate(const char *Label,
413                                              const ReadyQueue &Q,
414                                              SUnit *SU, PressureChange P) {
415   dbgs() << Label << " " << Q.getName() << " ";
416   if (P.isValid())
417     dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":"
418            << P.getUnitInc() << " ";
419   else
420     dbgs() << "     ";
421   SU->dump(DAG);
422 }
423 #endif
424
425 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
426 /// of SU, return it, otherwise return null.
427 static SUnit *getSingleUnscheduledPred(SUnit *SU) {
428   SUnit *OnlyAvailablePred = nullptr;
429   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
430        I != E; ++I) {
431     SUnit &Pred = *I->getSUnit();
432     if (!Pred.isScheduled) {
433       // We found an available, but not scheduled, predecessor.  If it's the
434       // only one we have found, keep track of it... otherwise give up.
435       if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
436         return nullptr;
437       OnlyAvailablePred = &Pred;
438     }
439   }
440   return OnlyAvailablePred;
441 }
442
443 /// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
444 /// of SU, return it, otherwise return null.
445 static SUnit *getSingleUnscheduledSucc(SUnit *SU) {
446   SUnit *OnlyAvailableSucc = nullptr;
447   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
448        I != E; ++I) {
449     SUnit &Succ = *I->getSUnit();
450     if (!Succ.isScheduled) {
451       // We found an available, but not scheduled, successor.  If it's the
452       // only one we have found, keep track of it... otherwise give up.
453       if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
454         return nullptr;
455       OnlyAvailableSucc = &Succ;
456     }
457   }
458   return OnlyAvailableSucc;
459 }
460
461 // Constants used to denote relative importance of
462 // heuristic components for cost computation.
463 static const unsigned PriorityOne = 200;
464 static const unsigned PriorityTwo = 50;
465 static const unsigned ScaleTwo = 10;
466 static const unsigned FactorOne = 2;
467
468 /// Single point to compute overall scheduling cost.
469 /// TODO: More heuristics will be used soon.
470 int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
471                                             SchedCandidate &Candidate,
472                                             RegPressureDelta &Delta,
473                                             bool verbose) {
474   // Initial trivial priority.
475   int ResCount = 1;
476
477   // Do not waste time on a node that is already scheduled.
478   if (!SU || SU->isScheduled)
479     return ResCount;
480
481   // Forced priority is high.
482   if (SU->isScheduleHigh)
483     ResCount += PriorityOne;
484
485   // Critical path first.
486   if (Q.getID() == TopQID) {
487     ResCount += (SU->getHeight() * ScaleTwo);
488
489     // If resources are available for it, multiply the
490     // chance of scheduling.
491     if (Top.ResourceModel->isResourceAvailable(SU))
492       ResCount <<= FactorOne;
493   } else {
494     ResCount += (SU->getDepth() * ScaleTwo);
495
496     // If resources are available for it, multiply the
497     // chance of scheduling.
498     if (Bot.ResourceModel->isResourceAvailable(SU))
499       ResCount <<= FactorOne;
500   }
501
502   unsigned NumNodesBlocking = 0;
503   if (Q.getID() == TopQID) {
504     // How many SUs does it block from scheduling?
505     // Look at all of the successors of this node.
506     // Count the number of nodes that
507     // this node is the sole unscheduled node for.
508     for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
509          I != E; ++I)
510       if (getSingleUnscheduledPred(I->getSUnit()) == SU)
511         ++NumNodesBlocking;
512   } else {
513     // How many unscheduled predecessors block this node?
514     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
515          I != E; ++I)
516       if (getSingleUnscheduledSucc(I->getSUnit()) == SU)
517         ++NumNodesBlocking;
518   }
519   ResCount += (NumNodesBlocking * ScaleTwo);
520
521   // Factor in reg pressure as a heuristic.
522   ResCount -= (Delta.Excess.getUnitInc()*PriorityTwo);
523   ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityTwo);
524
525   DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")");
526
527   return ResCount;
528 }
529
530 /// Pick the best candidate from the top queue.
531 ///
532 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
533 /// DAG building. To adjust for the current scheduling location we need to
534 /// maintain the number of vreg uses remaining to be top-scheduled.
535 ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
536 pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
537                   SchedCandidate &Candidate) {
538   DEBUG(Q.dump());
539
540   // getMaxPressureDelta temporarily modifies the tracker.
541   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
542
543   // BestSU remains NULL if no top candidates beat the best existing candidate.
544   CandResult FoundCandidate = NoCand;
545   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
546     RegPressureDelta RPDelta;
547     TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
548                                     DAG->getRegionCriticalPSets(),
549                                     DAG->getRegPressure().MaxSetPressure);
550
551     int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
552
553     // Initialize the candidate if needed.
554     if (!Candidate.SU) {
555       Candidate.SU = *I;
556       Candidate.RPDelta = RPDelta;
557       Candidate.SCost = CurrentCost;
558       FoundCandidate = NodeOrder;
559       continue;
560     }
561
562     // Best cost.
563     if (CurrentCost > Candidate.SCost) {
564       DEBUG(traceCandidate("CCAND", Q, *I));
565       Candidate.SU = *I;
566       Candidate.RPDelta = RPDelta;
567       Candidate.SCost = CurrentCost;
568       FoundCandidate = BestCost;
569       continue;
570     }
571
572     // Fall through to original instruction order.
573     // Only consider node order if Candidate was chosen from this Q.
574     if (FoundCandidate == NoCand)
575       continue;
576   }
577   return FoundCandidate;
578 }
579
580 /// Pick the best candidate node from either the top or bottom queue.
581 SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
582   // Schedule as far as possible in the direction of no choice. This is most
583   // efficient, but also provides the best heuristics for CriticalPSets.
584   if (SUnit *SU = Bot.pickOnlyChoice()) {
585     IsTopNode = false;
586     return SU;
587   }
588   if (SUnit *SU = Top.pickOnlyChoice()) {
589     IsTopNode = true;
590     return SU;
591   }
592   SchedCandidate BotCand;
593   // Prefer bottom scheduling when heuristics are silent.
594   CandResult BotResult = pickNodeFromQueue(Bot.Available,
595                                            DAG->getBotRPTracker(), BotCand);
596   assert(BotResult != NoCand && "failed to find the first candidate");
597
598   // If either Q has a single candidate that provides the least increase in
599   // Excess pressure, we can immediately schedule from that Q.
600   //
601   // RegionCriticalPSets summarizes the pressure within the scheduled region and
602   // affects picking from either Q. If scheduling in one direction must
603   // increase pressure for one of the excess PSets, then schedule in that
604   // direction first to provide more freedom in the other direction.
605   if (BotResult == SingleExcess || BotResult == SingleCritical) {
606     IsTopNode = false;
607     return BotCand.SU;
608   }
609   // Check if the top Q has a better candidate.
610   SchedCandidate TopCand;
611   CandResult TopResult = pickNodeFromQueue(Top.Available,
612                                            DAG->getTopRPTracker(), TopCand);
613   assert(TopResult != NoCand && "failed to find the first candidate");
614
615   if (TopResult == SingleExcess || TopResult == SingleCritical) {
616     IsTopNode = true;
617     return TopCand.SU;
618   }
619   // If either Q has a single candidate that minimizes pressure above the
620   // original region's pressure pick it.
621   if (BotResult == SingleMax) {
622     IsTopNode = false;
623     return BotCand.SU;
624   }
625   if (TopResult == SingleMax) {
626     IsTopNode = true;
627     return TopCand.SU;
628   }
629   if (TopCand.SCost > BotCand.SCost) {
630     IsTopNode = true;
631     return TopCand.SU;
632   }
633   // Otherwise prefer the bottom candidate in node order.
634   IsTopNode = false;
635   return BotCand.SU;
636 }
637
638 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
639 SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
640   if (DAG->top() == DAG->bottom()) {
641     assert(Top.Available.empty() && Top.Pending.empty() &&
642            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
643     return nullptr;
644   }
645   SUnit *SU;
646   if (llvm::ForceTopDown) {
647     SU = Top.pickOnlyChoice();
648     if (!SU) {
649       SchedCandidate TopCand;
650       CandResult TopResult =
651         pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
652       assert(TopResult != NoCand && "failed to find the first candidate");
653       (void)TopResult;
654       SU = TopCand.SU;
655     }
656     IsTopNode = true;
657   } else if (llvm::ForceBottomUp) {
658     SU = Bot.pickOnlyChoice();
659     if (!SU) {
660       SchedCandidate BotCand;
661       CandResult BotResult =
662         pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
663       assert(BotResult != NoCand && "failed to find the first candidate");
664       (void)BotResult;
665       SU = BotCand.SU;
666     }
667     IsTopNode = false;
668   } else {
669     SU = pickNodeBidrectional(IsTopNode);
670   }
671   if (SU->isTopReady())
672     Top.removeReady(SU);
673   if (SU->isBottomReady())
674     Bot.removeReady(SU);
675
676   DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
677         << " Scheduling Instruction in cycle "
678         << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
679         SU->dump(DAG));
680   return SU;
681 }
682
683 /// Update the scheduler's state after scheduling a node. This is the same node
684 /// that was just returned by pickNode(). However, VLIWMachineScheduler needs
685 /// to update it's state based on the current cycle before MachineSchedStrategy
686 /// does.
687 void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
688   if (IsTopNode) {
689     SU->TopReadyCycle = Top.CurrCycle;
690     Top.bumpNode(SU);
691   } else {
692     SU->BotReadyCycle = Bot.CurrCycle;
693     Bot.bumpNode(SU);
694   }
695 }