Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / Target / Hexagon / HexagonInstrInfo.cpp
1 //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "HexagonInstrInfo.h"
15 #include "Hexagon.h"
16 #include "HexagonRegisterInfo.h"
17 #include "HexagonSubtarget.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/DFAPacketizer.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/PseudoSourceValue.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <cctype>
31
32 using namespace llvm;
33
34 #define DEBUG_TYPE "hexagon-instrinfo"
35
36 #define GET_INSTRINFO_CTOR_DTOR
37 #define GET_INSTRMAP_INFO
38 #include "HexagonGenInstrInfo.inc"
39 #include "HexagonGenDFAPacketizer.inc"
40
41 using namespace llvm;
42
43 cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
44   cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
45                             "packetization boundary."));
46
47 static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
48   cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
49
50 static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
51   cl::Hidden, cl::ZeroOrMore, cl::init(false),
52   cl::desc("Disable schedule adjustment for new value stores."));
53
54 static cl::opt<bool> EnableTimingClassLatency(
55   "enable-timing-class-latency", cl::Hidden, cl::init(false),
56   cl::desc("Enable timing class latency"));
57
58 static cl::opt<bool> EnableALUForwarding(
59   "enable-alu-forwarding", cl::Hidden, cl::init(true),
60   cl::desc("Enable vec alu forwarding"));
61
62 static cl::opt<bool> EnableACCForwarding(
63   "enable-acc-forwarding", cl::Hidden, cl::init(true),
64   cl::desc("Enable vec acc forwarding"));
65
66 static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
67   cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
68
69 ///
70 /// Constants for Hexagon instructions.
71 ///
72 const int Hexagon_MEMV_OFFSET_MAX_128B = 2047;  // #s7
73 const int Hexagon_MEMV_OFFSET_MIN_128B = -2048; // #s7
74 const int Hexagon_MEMV_OFFSET_MAX = 1023;  // #s6
75 const int Hexagon_MEMV_OFFSET_MIN = -1024; // #s6
76 const int Hexagon_MEMW_OFFSET_MAX = 4095;
77 const int Hexagon_MEMW_OFFSET_MIN = -4096;
78 const int Hexagon_MEMD_OFFSET_MAX = 8191;
79 const int Hexagon_MEMD_OFFSET_MIN = -8192;
80 const int Hexagon_MEMH_OFFSET_MAX = 2047;
81 const int Hexagon_MEMH_OFFSET_MIN = -2048;
82 const int Hexagon_MEMB_OFFSET_MAX = 1023;
83 const int Hexagon_MEMB_OFFSET_MIN = -1024;
84 const int Hexagon_ADDI_OFFSET_MAX = 32767;
85 const int Hexagon_ADDI_OFFSET_MIN = -32768;
86 const int Hexagon_MEMD_AUTOINC_MAX = 56;
87 const int Hexagon_MEMD_AUTOINC_MIN = -64;
88 const int Hexagon_MEMW_AUTOINC_MAX = 28;
89 const int Hexagon_MEMW_AUTOINC_MIN = -32;
90 const int Hexagon_MEMH_AUTOINC_MAX = 14;
91 const int Hexagon_MEMH_AUTOINC_MIN = -16;
92 const int Hexagon_MEMB_AUTOINC_MAX = 7;
93 const int Hexagon_MEMB_AUTOINC_MIN = -8;
94 const int Hexagon_MEMV_AUTOINC_MAX = 192;
95 const int Hexagon_MEMV_AUTOINC_MIN = -256;
96 const int Hexagon_MEMV_AUTOINC_MAX_128B = 384;
97 const int Hexagon_MEMV_AUTOINC_MIN_128B = -512;
98
99 // Pin the vtable to this file.
100 void HexagonInstrInfo::anchor() {}
101
102 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
103     : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
104       RI() {}
105
106
107 static bool isIntRegForSubInst(unsigned Reg) {
108   return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
109          (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
110 }
111
112
113 static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
114   return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_loreg)) &&
115          isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_hireg));
116 }
117
118
119 /// Calculate number of instructions excluding the debug instructions.
120 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
121                               MachineBasicBlock::const_instr_iterator MIE) {
122   unsigned Count = 0;
123   for (; MIB != MIE; ++MIB) {
124     if (!MIB->isDebugValue())
125       ++Count;
126   }
127   return Count;
128 }
129
130
131 /// Find the hardware loop instruction used to set-up the specified loop.
132 /// On Hexagon, we have two instructions used to set-up the hardware loop
133 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
134 /// to indicate the end of a loop.
135 static MachineInstr *findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
136       SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
137   int LOOPi;
138   int LOOPr;
139   if (EndLoopOp == Hexagon::ENDLOOP0) {
140     LOOPi = Hexagon::J2_loop0i;
141     LOOPr = Hexagon::J2_loop0r;
142   } else { // EndLoopOp == Hexagon::EndLOOP1
143     LOOPi = Hexagon::J2_loop1i;
144     LOOPr = Hexagon::J2_loop1r;
145   }
146
147   // The loop set-up instruction will be in a predecessor block
148   for (MachineBasicBlock::pred_iterator PB = BB->pred_begin(),
149          PE = BB->pred_end(); PB != PE; ++PB) {
150     // If this has been visited, already skip it.
151     if (!Visited.insert(*PB).second)
152       continue;
153     if (*PB == BB)
154       continue;
155     for (MachineBasicBlock::reverse_instr_iterator I = (*PB)->instr_rbegin(),
156            E = (*PB)->instr_rend(); I != E; ++I) {
157       int Opc = I->getOpcode();
158       if (Opc == LOOPi || Opc == LOOPr)
159         return &*I;
160       // We've reached a different loop, which means the loop0 has been removed.
161       if (Opc == EndLoopOp)
162         return 0;
163     }
164     // Check the predecessors for the LOOP instruction.
165     MachineInstr *loop = findLoopInstr(*PB, EndLoopOp, Visited);
166     if (loop)
167       return loop;
168   }
169   return 0;
170 }
171
172
173 /// Gather register def/uses from MI.
174 /// This treats possible (predicated) defs as actually happening ones
175 /// (conservatively).
176 static inline void parseOperands(const MachineInstr *MI,
177       SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
178   Defs.clear();
179   Uses.clear();
180
181   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
182     const MachineOperand &MO = MI->getOperand(i);
183
184     if (!MO.isReg())
185       continue;
186
187     unsigned Reg = MO.getReg();
188     if (!Reg)
189       continue;
190
191     if (MO.isUse())
192       Uses.push_back(MO.getReg());
193
194     if (MO.isDef())
195       Defs.push_back(MO.getReg());
196   }
197 }
198
199
200 // Position dependent, so check twice for swap.
201 static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
202   switch (Ga) {
203   case HexagonII::HSIG_None:
204   default:
205     return false;
206   case HexagonII::HSIG_L1:
207     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
208   case HexagonII::HSIG_L2:
209     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
210             Gb == HexagonII::HSIG_A);
211   case HexagonII::HSIG_S1:
212     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
213             Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
214   case HexagonII::HSIG_S2:
215     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
216             Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
217             Gb == HexagonII::HSIG_A);
218   case HexagonII::HSIG_A:
219     return (Gb == HexagonII::HSIG_A);
220   case HexagonII::HSIG_Compound:
221     return (Gb == HexagonII::HSIG_Compound);
222   }
223   return false;
224 }
225
226
227
228 /// isLoadFromStackSlot - If the specified machine instruction is a direct
229 /// load from a stack slot, return the virtual or physical register number of
230 /// the destination along with the FrameIndex of the loaded stack slot.  If
231 /// not, return 0.  This predicate must return 0 if the instruction has
232 /// any side effects other than loading from the stack slot.
233 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
234                                                int &FrameIndex) const {
235   switch (MI->getOpcode()) {
236   default: break;
237   case Hexagon::L2_loadri_io:
238   case Hexagon::L2_loadrd_io:
239   case Hexagon::L2_loadrh_io:
240   case Hexagon::L2_loadrb_io:
241   case Hexagon::L2_loadrub_io:
242     if (MI->getOperand(2).isFI() &&
243         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
244       FrameIndex = MI->getOperand(2).getIndex();
245       return MI->getOperand(0).getReg();
246     }
247     break;
248   }
249   return 0;
250 }
251
252
253 /// isStoreToStackSlot - If the specified machine instruction is a direct
254 /// store to a stack slot, return the virtual or physical register number of
255 /// the source reg along with the FrameIndex of the loaded stack slot.  If
256 /// not, return 0.  This predicate must return 0 if the instruction has
257 /// any side effects other than storing to the stack slot.
258 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
259                                               int &FrameIndex) const {
260   switch (MI->getOpcode()) {
261   default: break;
262   case Hexagon::S2_storeri_io:
263   case Hexagon::S2_storerd_io:
264   case Hexagon::S2_storerh_io:
265   case Hexagon::S2_storerb_io:
266     if (MI->getOperand(2).isFI() &&
267         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
268       FrameIndex = MI->getOperand(0).getIndex();
269       return MI->getOperand(2).getReg();
270     }
271     break;
272   }
273   return 0;
274 }
275
276
277 /// This function can analyze one/two way branching only and should (mostly) be
278 /// called by target independent side.
279 /// First entry is always the opcode of the branching instruction, except when
280 /// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
281 /// BB with only unconditional jump. Subsequent entries depend upon the opcode,
282 /// e.g. Jump_c p will have
283 /// Cond[0] = Jump_c
284 /// Cond[1] = p
285 /// HW-loop ENDLOOP:
286 /// Cond[0] = ENDLOOP
287 /// Cond[1] = MBB
288 /// New value jump:
289 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
290 /// Cond[1] = R
291 /// Cond[2] = Imm
292 ///
293 bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
294                                      MachineBasicBlock *&TBB,
295                                      MachineBasicBlock *&FBB,
296                                      SmallVectorImpl<MachineOperand> &Cond,
297                                      bool AllowModify) const {
298   TBB = nullptr;
299   FBB = nullptr;
300   Cond.clear();
301
302   // If the block has no terminators, it just falls into the block after it.
303   MachineBasicBlock::instr_iterator I = MBB.instr_end();
304   if (I == MBB.instr_begin())
305     return false;
306
307   // A basic block may looks like this:
308   //
309   //  [   insn
310   //     EH_LABEL
311   //      insn
312   //      insn
313   //      insn
314   //     EH_LABEL
315   //      insn     ]
316   //
317   // It has two succs but does not have a terminator
318   // Don't know how to handle it.
319   do {
320     --I;
321     if (I->isEHLabel())
322       // Don't analyze EH branches.
323       return true;
324   } while (I != MBB.instr_begin());
325
326   I = MBB.instr_end();
327   --I;
328
329   while (I->isDebugValue()) {
330     if (I == MBB.instr_begin())
331       return false;
332     --I;
333   }
334
335   bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
336                      I->getOperand(0).isMBB();
337   // Delete the J2_jump if it's equivalent to a fall-through.
338   if (AllowModify && JumpToBlock &&
339       MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
340     DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
341     I->eraseFromParent();
342     I = MBB.instr_end();
343     if (I == MBB.instr_begin())
344       return false;
345     --I;
346   }
347   if (!isUnpredicatedTerminator(&*I))
348     return false;
349
350   // Get the last instruction in the block.
351   MachineInstr *LastInst = &*I;
352   MachineInstr *SecondLastInst = nullptr;
353   // Find one more terminator if present.
354   for (;;) {
355     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
356       if (!SecondLastInst)
357         SecondLastInst = &*I;
358       else
359         // This is a third branch.
360         return true;
361     }
362     if (I == MBB.instr_begin())
363       break;
364     --I;
365   }
366
367   int LastOpcode = LastInst->getOpcode();
368   int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
369   // If the branch target is not a basic block, it could be a tail call.
370   // (It is, if the target is a function.)
371   if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
372     return true;
373   if (SecLastOpcode == Hexagon::J2_jump &&
374       !SecondLastInst->getOperand(0).isMBB())
375     return true;
376
377   bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
378   bool LastOpcodeHasNVJump = isNewValueJump(LastInst);
379
380   // If there is only one terminator instruction, process it.
381   if (LastInst && !SecondLastInst) {
382     if (LastOpcode == Hexagon::J2_jump) {
383       TBB = LastInst->getOperand(0).getMBB();
384       return false;
385     }
386     if (isEndLoopN(LastOpcode)) {
387       TBB = LastInst->getOperand(0).getMBB();
388       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
389       Cond.push_back(LastInst->getOperand(0));
390       return false;
391     }
392     if (LastOpcodeHasJMP_c) {
393       TBB = LastInst->getOperand(1).getMBB();
394       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
395       Cond.push_back(LastInst->getOperand(0));
396       return false;
397     }
398     // Only supporting rr/ri versions of new-value jumps.
399     if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
400       TBB = LastInst->getOperand(2).getMBB();
401       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
402       Cond.push_back(LastInst->getOperand(0));
403       Cond.push_back(LastInst->getOperand(1));
404       return false;
405     }
406     DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
407                  << " with one jump\n";);
408     // Otherwise, don't know what this is.
409     return true;
410   }
411
412   bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
413   bool SecLastOpcodeHasNVJump = isNewValueJump(SecondLastInst);
414   if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
415     TBB =  SecondLastInst->getOperand(1).getMBB();
416     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
417     Cond.push_back(SecondLastInst->getOperand(0));
418     FBB = LastInst->getOperand(0).getMBB();
419     return false;
420   }
421
422   // Only supporting rr/ri versions of new-value jumps.
423   if (SecLastOpcodeHasNVJump &&
424       (SecondLastInst->getNumExplicitOperands() == 3) &&
425       (LastOpcode == Hexagon::J2_jump)) {
426     TBB = SecondLastInst->getOperand(2).getMBB();
427     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
428     Cond.push_back(SecondLastInst->getOperand(0));
429     Cond.push_back(SecondLastInst->getOperand(1));
430     FBB = LastInst->getOperand(0).getMBB();
431     return false;
432   }
433
434   // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
435   // executed, so remove it.
436   if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
437     TBB = SecondLastInst->getOperand(0).getMBB();
438     I = LastInst->getIterator();
439     if (AllowModify)
440       I->eraseFromParent();
441     return false;
442   }
443
444   // If the block ends with an ENDLOOP, and J2_jump, handle it.
445   if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
446     TBB = SecondLastInst->getOperand(0).getMBB();
447     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
448     Cond.push_back(SecondLastInst->getOperand(0));
449     FBB = LastInst->getOperand(0).getMBB();
450     return false;
451   }
452   DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
453                << " with two jumps";);
454   // Otherwise, can't handle this.
455   return true;
456 }
457
458
459 unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
460   DEBUG(dbgs() << "\nRemoving branches out of BB#" << MBB.getNumber());
461   MachineBasicBlock::iterator I = MBB.end();
462   unsigned Count = 0;
463   while (I != MBB.begin()) {
464     --I;
465     if (I->isDebugValue())
466       continue;
467     // Only removing branches from end of MBB.
468     if (!I->isBranch())
469       return Count;
470     if (Count && (I->getOpcode() == Hexagon::J2_jump))
471       llvm_unreachable("Malformed basic block: unconditional branch not last");
472     MBB.erase(&MBB.back());
473     I = MBB.end();
474     ++Count;
475   }
476   return Count;
477 }
478
479
480 unsigned HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,
481       MachineBasicBlock *TBB, MachineBasicBlock *FBB,
482       ArrayRef<MachineOperand> Cond, DebugLoc DL) const {
483   unsigned BOpc   = Hexagon::J2_jump;
484   unsigned BccOpc = Hexagon::J2_jumpt;
485   assert(validateBranchCond(Cond) && "Invalid branching condition");
486   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
487
488   // Check if ReverseBranchCondition has asked to reverse this branch
489   // If we want to reverse the branch an odd number of times, we want
490   // J2_jumpf.
491   if (!Cond.empty() && Cond[0].isImm())
492     BccOpc = Cond[0].getImm();
493
494   if (!FBB) {
495     if (Cond.empty()) {
496       // Due to a bug in TailMerging/CFG Optimization, we need to add a
497       // special case handling of a predicated jump followed by an
498       // unconditional jump. If not, Tail Merging and CFG Optimization go
499       // into an infinite loop.
500       MachineBasicBlock *NewTBB, *NewFBB;
501       SmallVector<MachineOperand, 4> Cond;
502       MachineInstr *Term = MBB.getFirstTerminator();
503       if (Term != MBB.end() && isPredicated(Term) &&
504           !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) {
505         MachineBasicBlock *NextBB = &*++MBB.getIterator();
506         if (NewTBB == NextBB) {
507           ReverseBranchCondition(Cond);
508           RemoveBranch(MBB);
509           return InsertBranch(MBB, TBB, nullptr, Cond, DL);
510         }
511       }
512       BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
513     } else if (isEndLoopN(Cond[0].getImm())) {
514       int EndLoopOp = Cond[0].getImm();
515       assert(Cond[1].isMBB());
516       // Since we're adding an ENDLOOP, there better be a LOOP instruction.
517       // Check for it, and change the BB target if needed.
518       SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
519       MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
520       assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
521       Loop->getOperand(0).setMBB(TBB);
522       // Add the ENDLOOP after the finding the LOOP0.
523       BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
524     } else if (isNewValueJump(Cond[0].getImm())) {
525       assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
526       // New value jump
527       // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
528       // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
529       unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
530       DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
531       if (Cond[2].isReg()) {
532         unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
533         BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
534           addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
535       } else if(Cond[2].isImm()) {
536         BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
537           addImm(Cond[2].getImm()).addMBB(TBB);
538       } else
539         llvm_unreachable("Invalid condition for branching");
540     } else {
541       assert((Cond.size() == 2) && "Malformed cond vector");
542       const MachineOperand &RO = Cond[1];
543       unsigned Flags = getUndefRegState(RO.isUndef());
544       BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
545     }
546     return 1;
547   }
548   assert((!Cond.empty()) &&
549          "Cond. cannot be empty when multiple branchings are required");
550   assert((!isNewValueJump(Cond[0].getImm())) &&
551          "NV-jump cannot be inserted with another branch");
552   // Special case for hardware loops.  The condition is a basic block.
553   if (isEndLoopN(Cond[0].getImm())) {
554     int EndLoopOp = Cond[0].getImm();
555     assert(Cond[1].isMBB());
556     // Since we're adding an ENDLOOP, there better be a LOOP instruction.
557     // Check for it, and change the BB target if needed.
558     SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
559     MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
560     assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
561     Loop->getOperand(0).setMBB(TBB);
562     // Add the ENDLOOP after the finding the LOOP0.
563     BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
564   } else {
565     const MachineOperand &RO = Cond[1];
566     unsigned Flags = getUndefRegState(RO.isUndef());
567     BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
568   }
569   BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
570
571   return 2;
572 }
573
574
575 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
576       unsigned NumCycles, unsigned ExtraPredCycles,
577       BranchProbability Probability) const {
578   return nonDbgBBSize(&MBB) <= 3;
579 }
580
581
582 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
583       unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
584       unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
585       const {
586   return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
587 }
588
589
590 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
591       unsigned NumInstrs, BranchProbability Probability) const {
592   return NumInstrs <= 4;
593 }
594
595
596 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
597       MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg,
598       unsigned SrcReg, bool KillSrc) const {
599   auto &HRI = getRegisterInfo();
600   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
601     BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
602     return;
603   }
604   if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
605     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg);
606     return;
607   }
608   if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
609     // Map Pd = Ps to Pd = or(Ps, Ps).
610     BuildMI(MBB, I, DL, get(Hexagon::C2_or),
611             DestReg).addReg(SrcReg).addReg(SrcReg);
612     return;
613   }
614   if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
615       Hexagon::IntRegsRegClass.contains(SrcReg)) {
616     // We can have an overlap between single and double reg: r1:0 = r0.
617     if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
618         // r1:0 = r0
619         BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
620                 Hexagon::subreg_hireg))).addImm(0);
621     } else {
622         // r1:0 = r1 or no overlap.
623         BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg,
624                 Hexagon::subreg_loreg))).addReg(SrcReg);
625         BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
626                 Hexagon::subreg_hireg))).addImm(0);
627     }
628     return;
629   }
630   if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
631       Hexagon::IntRegsRegClass.contains(SrcReg)) {
632     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg);
633     return;
634   }
635   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
636       Hexagon::IntRegsRegClass.contains(DestReg)) {
637     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
638       addReg(SrcReg, getKillRegState(KillSrc));
639     return;
640   }
641   if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
642       Hexagon::PredRegsRegClass.contains(DestReg)) {
643     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg).
644       addReg(SrcReg, getKillRegState(KillSrc));
645     return;
646   }
647   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
648       Hexagon::IntRegsRegClass.contains(DestReg)) {
649     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
650       addReg(SrcReg, getKillRegState(KillSrc));
651     return;
652   }
653   if (Hexagon::VectorRegsRegClass.contains(SrcReg, DestReg)) {
654     BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
655       addReg(SrcReg, getKillRegState(KillSrc));
656     return;
657   }
658   if (Hexagon::VecDblRegsRegClass.contains(SrcReg, DestReg)) {
659     BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg).
660       addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
661              getKillRegState(KillSrc)).
662       addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
663              getKillRegState(KillSrc));
664     return;
665   }
666   if (Hexagon::VecPredRegsRegClass.contains(SrcReg, DestReg)) {
667     BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg).
668       addReg(SrcReg).
669       addReg(SrcReg, getKillRegState(KillSrc));
670     return;
671   }
672   if (Hexagon::VecPredRegsRegClass.contains(SrcReg) &&
673     Hexagon::VectorRegsRegClass.contains(DestReg)) {
674     llvm_unreachable("Unimplemented pred to vec");
675     return;
676   }
677   if (Hexagon::VecPredRegsRegClass.contains(DestReg) &&
678       Hexagon::VectorRegsRegClass.contains(SrcReg)) {
679     llvm_unreachable("Unimplemented vec to pred");
680     return;
681   }
682   if (Hexagon::VecPredRegs128BRegClass.contains(SrcReg, DestReg)) {
683     BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
684       HRI.getSubReg(DestReg, Hexagon::subreg_hireg)).
685       addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
686              getKillRegState(KillSrc));
687     BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
688       HRI.getSubReg(DestReg, Hexagon::subreg_loreg)).
689       addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
690              getKillRegState(KillSrc));
691     return;
692   }
693
694 #ifndef NDEBUG
695   // Show the invalid registers to ease debugging.
696   dbgs() << "Invalid registers for copy in BB#" << MBB.getNumber()
697          << ": " << PrintReg(DestReg, &HRI)
698          << " = " << PrintReg(SrcReg, &HRI) << '\n';
699 #endif
700   llvm_unreachable("Unimplemented");
701 }
702
703
704 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
705       MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
706       const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
707   DebugLoc DL = MBB.findDebugLoc(I);
708   MachineFunction &MF = *MBB.getParent();
709   MachineFrameInfo &MFI = *MF.getFrameInfo();
710   unsigned Align = MFI.getObjectAlignment(FI);
711
712   MachineMemOperand *MMO = MF.getMachineMemOperand(
713       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
714       MFI.getObjectSize(FI), Align);
715
716   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
717     BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
718           .addFrameIndex(FI).addImm(0)
719           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
720   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
721     BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
722           .addFrameIndex(FI).addImm(0)
723           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
724   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
725     BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
726           .addFrameIndex(FI).addImm(0)
727           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
728   } else {
729     llvm_unreachable("Unimplemented");
730   }
731 }
732
733
734 void HexagonInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
735       MachineBasicBlock::iterator I, unsigned DestReg, int FI,
736       const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
737   DebugLoc DL = MBB.findDebugLoc(I);
738   MachineFunction &MF = *MBB.getParent();
739   MachineFrameInfo &MFI = *MF.getFrameInfo();
740   unsigned Align = MFI.getObjectAlignment(FI);
741
742   MachineMemOperand *MMO = MF.getMachineMemOperand(
743       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
744       MFI.getObjectSize(FI), Align);
745   if (RC == &Hexagon::IntRegsRegClass) {
746     BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
747           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
748   } else if (RC == &Hexagon::DoubleRegsRegClass) {
749     BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
750           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
751   } else if (RC == &Hexagon::PredRegsRegClass) {
752     BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
753           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
754   } else {
755     llvm_unreachable("Can't store this register to stack slot");
756   }
757 }
758
759
760 /// expandPostRAPseudo - This function is called for all pseudo instructions
761 /// that remain after register allocation. Many pseudo instructions are
762 /// created to help register allocation. This is the place to convert them
763 /// into real instructions. The target can edit MI in place, or it can insert
764 /// new instructions and erase MI. The function should return true if
765 /// anything was changed.
766 bool HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI)
767       const {
768   const HexagonRegisterInfo &HRI = getRegisterInfo();
769   MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
770   MachineBasicBlock &MBB = *MI->getParent();
771   DebugLoc DL = MI->getDebugLoc();
772   unsigned Opc = MI->getOpcode();
773   const unsigned VecOffset = 1;
774   bool Is128B = false;
775
776   switch (Opc) {
777     case Hexagon::ALIGNA:
778       BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI->getOperand(0).getReg())
779           .addReg(HRI.getFrameRegister())
780           .addImm(-MI->getOperand(1).getImm());
781       MBB.erase(MI);
782       return true;
783     case Hexagon::HEXAGON_V6_vassignp_128B:
784     case Hexagon::HEXAGON_V6_vassignp: {
785       unsigned SrcReg = MI->getOperand(1).getReg();
786       unsigned DstReg = MI->getOperand(0).getReg();
787       if (SrcReg != DstReg)
788         copyPhysReg(MBB, MI, DL, DstReg, SrcReg, MI->getOperand(1).isKill());
789       MBB.erase(MI);
790       return true;
791     }
792     case Hexagon::HEXAGON_V6_lo_128B:
793     case Hexagon::HEXAGON_V6_lo: {
794       unsigned SrcReg = MI->getOperand(1).getReg();
795       unsigned DstReg = MI->getOperand(0).getReg();
796       unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
797       copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI->getOperand(1).isKill());
798       MBB.erase(MI);
799       MRI.clearKillFlags(SrcSubLo);
800       return true;
801     }
802     case Hexagon::HEXAGON_V6_hi_128B:
803     case Hexagon::HEXAGON_V6_hi: {
804       unsigned SrcReg = MI->getOperand(1).getReg();
805       unsigned DstReg = MI->getOperand(0).getReg();
806       unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
807       copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI->getOperand(1).isKill());
808       MBB.erase(MI);
809       MRI.clearKillFlags(SrcSubHi);
810       return true;
811     }
812     case Hexagon::STrivv_indexed_128B:
813       Is128B = true;
814     case Hexagon::STrivv_indexed: {
815       unsigned SrcReg = MI->getOperand(2).getReg();
816       unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
817       unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
818       unsigned NewOpcd = Is128B ? Hexagon::V6_vS32b_ai_128B
819                                 : Hexagon::V6_vS32b_ai;
820       unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
821       MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpcd))
822           .addOperand(MI->getOperand(0))
823           .addImm(MI->getOperand(1).getImm())
824           .addReg(SrcSubLo)
825           .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
826       MI1New->getOperand(0).setIsKill(false);
827       BuildMI(MBB, MI, DL, get(NewOpcd))
828         .addOperand(MI->getOperand(0))
829         // The Vectors are indexed in multiples of vector size.
830         .addImm(MI->getOperand(1).getImm()+Offset)
831         .addReg(SrcSubHi)
832         .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
833       MBB.erase(MI);
834       return true;
835     }
836     case Hexagon::LDrivv_pseudo_V6_128B:
837     case Hexagon::LDrivv_indexed_128B:
838       Is128B = true;
839     case Hexagon::LDrivv_pseudo_V6:
840     case Hexagon::LDrivv_indexed: {
841       unsigned NewOpcd = Is128B ? Hexagon::V6_vL32b_ai_128B
842                                 : Hexagon::V6_vL32b_ai;
843       unsigned DstReg = MI->getOperand(0).getReg();
844       unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
845       MachineInstr *MI1New =
846           BuildMI(MBB, MI, DL, get(NewOpcd),
847                   HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
848               .addOperand(MI->getOperand(1))
849               .addImm(MI->getOperand(2).getImm());
850       MI1New->getOperand(1).setIsKill(false);
851       BuildMI(MBB, MI, DL, get(NewOpcd),
852               HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
853           .addOperand(MI->getOperand(1))
854           // The Vectors are indexed in multiples of vector size.
855           .addImm(MI->getOperand(2).getImm() + Offset)
856           .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
857       MBB.erase(MI);
858       return true;
859     }
860     case Hexagon::LDriv_pseudo_V6_128B:
861       Is128B = true;
862     case Hexagon::LDriv_pseudo_V6: {
863       unsigned DstReg = MI->getOperand(0).getReg();
864       unsigned NewOpc = Is128B ? Hexagon::V6_vL32b_ai_128B
865                                : Hexagon::V6_vL32b_ai;
866       int32_t Off = MI->getOperand(2).getImm();
867       int32_t Idx = Off;
868       BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
869         .addOperand(MI->getOperand(1))
870         .addImm(Idx)
871         .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
872       MBB.erase(MI);
873       return true;
874     }
875     case Hexagon::STriv_pseudo_V6_128B:
876       Is128B = true;
877     case Hexagon::STriv_pseudo_V6: {
878       unsigned NewOpc = Is128B ? Hexagon::V6_vS32b_ai_128B
879                                : Hexagon::V6_vS32b_ai;
880       int32_t Off = MI->getOperand(1).getImm();
881       int32_t Idx = Is128B ? (Off >> 7) : (Off >> 6);
882       BuildMI(MBB, MI, DL, get(NewOpc))
883         .addOperand(MI->getOperand(0))
884         .addImm(Idx)
885         .addOperand(MI->getOperand(2))
886         .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
887       MBB.erase(MI);
888       return true;
889     }
890     case Hexagon::TFR_PdTrue: {
891       unsigned Reg = MI->getOperand(0).getReg();
892       BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
893         .addReg(Reg, RegState::Undef)
894         .addReg(Reg, RegState::Undef);
895       MBB.erase(MI);
896       return true;
897     }
898     case Hexagon::TFR_PdFalse: {
899       unsigned Reg = MI->getOperand(0).getReg();
900       BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
901         .addReg(Reg, RegState::Undef)
902         .addReg(Reg, RegState::Undef);
903       MBB.erase(MI);
904       return true;
905     }
906     case Hexagon::VMULW: {
907       // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
908       unsigned DstReg = MI->getOperand(0).getReg();
909       unsigned Src1Reg = MI->getOperand(1).getReg();
910       unsigned Src2Reg = MI->getOperand(2).getReg();
911       unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
912       unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
913       unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
914       unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
915       BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
916               HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
917           .addReg(Src2SubHi);
918       BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
919               HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
920           .addReg(Src2SubLo);
921       MBB.erase(MI);
922       MRI.clearKillFlags(Src1SubHi);
923       MRI.clearKillFlags(Src1SubLo);
924       MRI.clearKillFlags(Src2SubHi);
925       MRI.clearKillFlags(Src2SubLo);
926       return true;
927     }
928     case Hexagon::VMULW_ACC: {
929       // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
930       unsigned DstReg = MI->getOperand(0).getReg();
931       unsigned Src1Reg = MI->getOperand(1).getReg();
932       unsigned Src2Reg = MI->getOperand(2).getReg();
933       unsigned Src3Reg = MI->getOperand(3).getReg();
934       unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
935       unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
936       unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
937       unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
938       unsigned Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::subreg_hireg);
939       unsigned Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::subreg_loreg);
940       BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
941               HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
942           .addReg(Src2SubHi).addReg(Src3SubHi);
943       BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
944               HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
945           .addReg(Src2SubLo).addReg(Src3SubLo);
946       MBB.erase(MI);
947       MRI.clearKillFlags(Src1SubHi);
948       MRI.clearKillFlags(Src1SubLo);
949       MRI.clearKillFlags(Src2SubHi);
950       MRI.clearKillFlags(Src2SubLo);
951       MRI.clearKillFlags(Src3SubHi);
952       MRI.clearKillFlags(Src3SubLo);
953       return true;
954     }
955     case Hexagon::MUX64_rr: {
956       const MachineOperand &Op0 = MI->getOperand(0);
957       const MachineOperand &Op1 = MI->getOperand(1);
958       const MachineOperand &Op2 = MI->getOperand(2);
959       const MachineOperand &Op3 = MI->getOperand(3);
960       unsigned Rd = Op0.getReg();
961       unsigned Pu = Op1.getReg();
962       unsigned Rs = Op2.getReg();
963       unsigned Rt = Op3.getReg();
964       DebugLoc DL = MI->getDebugLoc();
965       unsigned K1 = getKillRegState(Op1.isKill());
966       unsigned K2 = getKillRegState(Op2.isKill());
967       unsigned K3 = getKillRegState(Op3.isKill());
968       if (Rd != Rs)
969         BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
970           .addReg(Pu, (Rd == Rt) ? K1 : 0)
971           .addReg(Rs, K2);
972       if (Rd != Rt)
973         BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
974           .addReg(Pu, K1)
975           .addReg(Rt, K3);
976       MBB.erase(MI);
977       return true;
978     }
979     case Hexagon::TCRETURNi:
980       MI->setDesc(get(Hexagon::J2_jump));
981       return true;
982     case Hexagon::TCRETURNr:
983       MI->setDesc(get(Hexagon::J2_jumpr));
984       return true;
985     case Hexagon::TFRI_f:
986     case Hexagon::TFRI_cPt_f:
987     case Hexagon::TFRI_cNotPt_f: {
988       unsigned Opx = (Opc == Hexagon::TFRI_f) ? 1 : 2;
989       APFloat FVal = MI->getOperand(Opx).getFPImm()->getValueAPF();
990       APInt IVal = FVal.bitcastToAPInt();
991       MI->RemoveOperand(Opx);
992       unsigned NewOpc = (Opc == Hexagon::TFRI_f)     ? Hexagon::A2_tfrsi   :
993                         (Opc == Hexagon::TFRI_cPt_f) ? Hexagon::C2_cmoveit :
994                                                        Hexagon::C2_cmoveif;
995       MI->setDesc(get(NewOpc));
996       MI->addOperand(MachineOperand::CreateImm(IVal.getZExtValue()));
997       return true;
998     }
999   }
1000
1001   return false;
1002 }
1003
1004
1005 // We indicate that we want to reverse the branch by
1006 // inserting the reversed branching opcode.
1007 bool HexagonInstrInfo::ReverseBranchCondition(
1008       SmallVectorImpl<MachineOperand> &Cond) const {
1009   if (Cond.empty())
1010     return true;
1011   assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1012   unsigned opcode = Cond[0].getImm();
1013   //unsigned temp;
1014   assert(get(opcode).isBranch() && "Should be a branching condition.");
1015   if (isEndLoopN(opcode))
1016     return true;
1017   unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1018   Cond[0].setImm(NewOpcode);
1019   return false;
1020 }
1021
1022
1023 void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
1024       MachineBasicBlock::iterator MI) const {
1025   DebugLoc DL;
1026   BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
1027 }
1028
1029
1030 // Returns true if an instruction is predicated irrespective of the predicate
1031 // sense. For example, all of the following will return true.
1032 // if (p0) R1 = add(R2, R3)
1033 // if (!p0) R1 = add(R2, R3)
1034 // if (p0.new) R1 = add(R2, R3)
1035 // if (!p0.new) R1 = add(R2, R3)
1036 // Note: New-value stores are not included here as in the current
1037 // implementation, we don't need to check their predicate sense.
1038 bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
1039   const uint64_t F = MI->getDesc().TSFlags;
1040   return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
1041 }
1042
1043
1044 bool HexagonInstrInfo::PredicateInstruction(MachineInstr *MI,
1045       ArrayRef<MachineOperand> Cond) const {
1046   if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1047       isEndLoopN(Cond[0].getImm())) {
1048     DEBUG(dbgs() << "\nCannot predicate:"; MI->dump(););
1049     return false;
1050   }
1051   int Opc = MI->getOpcode();
1052   assert (isPredicable(MI) && "Expected predicable instruction");
1053   bool invertJump = predOpcodeHasNot(Cond);
1054
1055   // We have to predicate MI "in place", i.e. after this function returns,
1056   // MI will need to be transformed into a predicated form. To avoid com-
1057   // plicated manipulations with the operands (handling tied operands,
1058   // etc.), build a new temporary instruction, then overwrite MI with it.
1059
1060   MachineBasicBlock &B = *MI->getParent();
1061   DebugLoc DL = MI->getDebugLoc();
1062   unsigned PredOpc = getCondOpcode(Opc, invertJump);
1063   MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1064   unsigned NOp = 0, NumOps = MI->getNumOperands();
1065   while (NOp < NumOps) {
1066     MachineOperand &Op = MI->getOperand(NOp);
1067     if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1068       break;
1069     T.addOperand(Op);
1070     NOp++;
1071   }
1072
1073   unsigned PredReg, PredRegPos, PredRegFlags;
1074   bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1075   (void)GotPredReg;
1076   assert(GotPredReg);
1077   T.addReg(PredReg, PredRegFlags);
1078   while (NOp < NumOps)
1079     T.addOperand(MI->getOperand(NOp++));
1080
1081   MI->setDesc(get(PredOpc));
1082   while (unsigned n = MI->getNumOperands())
1083     MI->RemoveOperand(n-1);
1084   for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1085     MI->addOperand(T->getOperand(i));
1086
1087   MachineBasicBlock::instr_iterator TI = T->getIterator();
1088   B.erase(TI);
1089
1090   MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1091   MRI.clearKillFlags(PredReg);
1092   return true;
1093 }
1094
1095
1096 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1097       ArrayRef<MachineOperand> Pred2) const {
1098   // TODO: Fix this
1099   return false;
1100 }
1101
1102
1103 bool HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
1104                                    std::vector<MachineOperand> &Pred) const {
1105   auto &HRI = getRegisterInfo();
1106   for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
1107     MachineOperand MO = MI->getOperand(oper);
1108     if (MO.isReg() && MO.isDef()) {
1109       const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1110       if (RC == &Hexagon::PredRegsRegClass) {
1111         Pred.push_back(MO);
1112         return true;
1113       }
1114     }
1115   }
1116   return false;
1117 }
1118
1119 bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
1120   bool isPred = MI->getDesc().isPredicable();
1121
1122   if (!isPred)
1123     return false;
1124
1125   const int Opc = MI->getOpcode();
1126   int NumOperands = MI->getNumOperands();
1127
1128   // Keep a flag for upto 4 operands in the instructions, to indicate if
1129   // that operand has been constant extended.
1130   bool OpCExtended[4];
1131   if (NumOperands > 4)
1132     NumOperands = 4;
1133
1134   for (int i = 0; i < NumOperands; i++)
1135     OpCExtended[i] = (isOperandExtended(MI, i) && isConstExtended(MI));
1136
1137   switch(Opc) {
1138   case Hexagon::A2_tfrsi:
1139     return (isOperandExtended(MI, 1) && isConstExtended(MI)) ||
1140            isInt<12>(MI->getOperand(1).getImm());
1141
1142   case Hexagon::S2_storerd_io:
1143     return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
1144
1145   case Hexagon::S2_storeri_io:
1146   case Hexagon::S2_storerinew_io:
1147     return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
1148
1149   case Hexagon::S2_storerh_io:
1150   case Hexagon::S2_storerhnew_io:
1151     return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
1152
1153   case Hexagon::S2_storerb_io:
1154   case Hexagon::S2_storerbnew_io:
1155     return isUInt<6>(MI->getOperand(1).getImm());
1156
1157   case Hexagon::L2_loadrd_io:
1158     return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
1159
1160   case Hexagon::L2_loadri_io:
1161     return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
1162
1163   case Hexagon::L2_loadrh_io:
1164   case Hexagon::L2_loadruh_io:
1165     return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
1166
1167   case Hexagon::L2_loadrb_io:
1168   case Hexagon::L2_loadrub_io:
1169     return isUInt<6>(MI->getOperand(2).getImm());
1170
1171   case Hexagon::L2_loadrd_pi:
1172     return isShiftedInt<4,3>(MI->getOperand(3).getImm());
1173
1174   case Hexagon::L2_loadri_pi:
1175     return isShiftedInt<4,2>(MI->getOperand(3).getImm());
1176
1177   case Hexagon::L2_loadrh_pi:
1178   case Hexagon::L2_loadruh_pi:
1179     return isShiftedInt<4,1>(MI->getOperand(3).getImm());
1180
1181   case Hexagon::L2_loadrb_pi:
1182   case Hexagon::L2_loadrub_pi:
1183     return isInt<4>(MI->getOperand(3).getImm());
1184
1185   case Hexagon::S4_storeirb_io:
1186   case Hexagon::S4_storeirh_io:
1187   case Hexagon::S4_storeiri_io:
1188     return (OpCExtended[1] || isUInt<6>(MI->getOperand(1).getImm())) &&
1189            (OpCExtended[2] || isInt<6>(MI->getOperand(2).getImm()));
1190
1191   case Hexagon::A2_addi:
1192     return isInt<8>(MI->getOperand(2).getImm());
1193
1194   case Hexagon::A2_aslh:
1195   case Hexagon::A2_asrh:
1196   case Hexagon::A2_sxtb:
1197   case Hexagon::A2_sxth:
1198   case Hexagon::A2_zxtb:
1199   case Hexagon::A2_zxth:
1200     return true;
1201   }
1202
1203   return true;
1204 }
1205
1206
1207 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1208       const MachineBasicBlock *MBB, const MachineFunction &MF) const {
1209   // Debug info is never a scheduling boundary. It's necessary to be explicit
1210   // due to the special treatment of IT instructions below, otherwise a
1211   // dbg_value followed by an IT will result in the IT instruction being
1212   // considered a scheduling hazard, which is wrong. It should be the actual
1213   // instruction preceding the dbg_value instruction(s), just like it is
1214   // when debug info is not present.
1215   if (MI->isDebugValue())
1216     return false;
1217
1218   // Throwing call is a boundary.
1219   if (MI->isCall()) {
1220     // If any of the block's successors is a landing pad, this could be a
1221     // throwing call.
1222     for (auto I : MBB->successors())
1223       if (I->isEHPad())
1224         return true;
1225   }
1226
1227   // Don't mess around with no return calls.
1228   if (MI->getOpcode() == Hexagon::CALLv3nr)
1229     return true;
1230
1231   // Terminators and labels can't be scheduled around.
1232   if (MI->getDesc().isTerminator() || MI->isPosition())
1233     return true;
1234
1235   if (MI->isInlineAsm() && !ScheduleInlineAsm)
1236       return true;
1237
1238   return false;
1239 }
1240
1241
1242 /// Measure the specified inline asm to determine an approximation of its
1243 /// length.
1244 /// Comments (which run till the next SeparatorString or newline) do not
1245 /// count as an instruction.
1246 /// Any other non-whitespace text is considered an instruction, with
1247 /// multiple instructions separated by SeparatorString or newlines.
1248 /// Variable-length instructions are not handled here; this function
1249 /// may be overloaded in the target code to do that.
1250 /// Hexagon counts the number of ##'s and adjust for that many
1251 /// constant exenders.
1252 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
1253       const MCAsmInfo &MAI) const {
1254   StringRef AStr(Str);
1255   // Count the number of instructions in the asm.
1256   bool atInsnStart = true;
1257   unsigned Length = 0;
1258   for (; *Str; ++Str) {
1259     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1260                                 strlen(MAI.getSeparatorString())) == 0)
1261       atInsnStart = true;
1262     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
1263       Length += MAI.getMaxInstLength();
1264       atInsnStart = false;
1265     }
1266     if (atInsnStart && strncmp(Str, MAI.getCommentString(),
1267                                strlen(MAI.getCommentString())) == 0)
1268       atInsnStart = false;
1269   }
1270
1271   // Add to size number of constant extenders seen * 4.
1272   StringRef Occ("##");
1273   Length += AStr.count(Occ)*4;
1274   return Length;
1275 }
1276
1277
1278 ScheduleHazardRecognizer*
1279 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1280       const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1281   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
1282 }
1283
1284
1285 /// \brief For a comparison instruction, return the source registers in
1286 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1287 /// compares against in CmpValue. Return true if the comparison instruction
1288 /// can be analyzed.
1289 bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
1290       unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const {
1291   unsigned Opc = MI->getOpcode();
1292
1293   // Set mask and the first source register.
1294   switch (Opc) {
1295     case Hexagon::C2_cmpeq:
1296     case Hexagon::C2_cmpeqp:
1297     case Hexagon::C2_cmpgt:
1298     case Hexagon::C2_cmpgtp:
1299     case Hexagon::C2_cmpgtu:
1300     case Hexagon::C2_cmpgtup:
1301     case Hexagon::C4_cmpneq:
1302     case Hexagon::C4_cmplte:
1303     case Hexagon::C4_cmplteu:
1304     case Hexagon::C2_cmpeqi:
1305     case Hexagon::C2_cmpgti:
1306     case Hexagon::C2_cmpgtui:
1307     case Hexagon::C4_cmpneqi:
1308     case Hexagon::C4_cmplteui:
1309     case Hexagon::C4_cmpltei:
1310       SrcReg = MI->getOperand(1).getReg();
1311       Mask = ~0;
1312       break;
1313     case Hexagon::A4_cmpbeq:
1314     case Hexagon::A4_cmpbgt:
1315     case Hexagon::A4_cmpbgtu:
1316     case Hexagon::A4_cmpbeqi:
1317     case Hexagon::A4_cmpbgti:
1318     case Hexagon::A4_cmpbgtui:
1319       SrcReg = MI->getOperand(1).getReg();
1320       Mask = 0xFF;
1321       break;
1322     case Hexagon::A4_cmpheq:
1323     case Hexagon::A4_cmphgt:
1324     case Hexagon::A4_cmphgtu:
1325     case Hexagon::A4_cmpheqi:
1326     case Hexagon::A4_cmphgti:
1327     case Hexagon::A4_cmphgtui:
1328       SrcReg = MI->getOperand(1).getReg();
1329       Mask = 0xFFFF;
1330       break;
1331   }
1332
1333   // Set the value/second source register.
1334   switch (Opc) {
1335     case Hexagon::C2_cmpeq:
1336     case Hexagon::C2_cmpeqp:
1337     case Hexagon::C2_cmpgt:
1338     case Hexagon::C2_cmpgtp:
1339     case Hexagon::C2_cmpgtu:
1340     case Hexagon::C2_cmpgtup:
1341     case Hexagon::A4_cmpbeq:
1342     case Hexagon::A4_cmpbgt:
1343     case Hexagon::A4_cmpbgtu:
1344     case Hexagon::A4_cmpheq:
1345     case Hexagon::A4_cmphgt:
1346     case Hexagon::A4_cmphgtu:
1347     case Hexagon::C4_cmpneq:
1348     case Hexagon::C4_cmplte:
1349     case Hexagon::C4_cmplteu:
1350       SrcReg2 = MI->getOperand(2).getReg();
1351       return true;
1352
1353     case Hexagon::C2_cmpeqi:
1354     case Hexagon::C2_cmpgtui:
1355     case Hexagon::C2_cmpgti:
1356     case Hexagon::C4_cmpneqi:
1357     case Hexagon::C4_cmplteui:
1358     case Hexagon::C4_cmpltei:
1359     case Hexagon::A4_cmpbeqi:
1360     case Hexagon::A4_cmpbgti:
1361     case Hexagon::A4_cmpbgtui:
1362     case Hexagon::A4_cmpheqi:
1363     case Hexagon::A4_cmphgti:
1364     case Hexagon::A4_cmphgtui:
1365       SrcReg2 = 0;
1366       Value = MI->getOperand(2).getImm();
1367       return true;
1368   }
1369
1370   return false;
1371 }
1372
1373
1374 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1375       const MachineInstr *MI, unsigned *PredCost) const {
1376   return getInstrTimingClassLatency(ItinData, MI);
1377 }
1378
1379
1380 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1381     const TargetSubtargetInfo &STI) const {
1382   const InstrItineraryData *II = STI.getInstrItineraryData();
1383   return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1384 }
1385
1386
1387 // Inspired by this pair:
1388 //  %R13<def> = L2_loadri_io %R29, 136; mem:LD4[FixedStack0]
1389 //  S2_storeri_io %R29, 132, %R1<kill>; flags:  mem:ST4[FixedStack1]
1390 // Currently AA considers the addresses in these instructions to be aliasing.
1391 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
1392       MachineInstr *MIb, AliasAnalysis *AA) const {
1393   int OffsetA = 0, OffsetB = 0;
1394   unsigned SizeA = 0, SizeB = 0;
1395
1396   if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects() ||
1397       MIa->hasOrderedMemoryRef() || MIa->hasOrderedMemoryRef())
1398     return false;
1399
1400   // Instructions that are pure loads, not loads and stores like memops are not
1401   // dependent.
1402   if (MIa->mayLoad() && !isMemOp(MIa) && MIb->mayLoad() && !isMemOp(MIb))
1403     return true;
1404
1405   // Get base, offset, and access size in MIa.
1406   unsigned BaseRegA = getBaseAndOffset(MIa, OffsetA, SizeA);
1407   if (!BaseRegA || !SizeA)
1408     return false;
1409
1410   // Get base, offset, and access size in MIb.
1411   unsigned BaseRegB = getBaseAndOffset(MIb, OffsetB, SizeB);
1412   if (!BaseRegB || !SizeB)
1413     return false;
1414
1415   if (BaseRegA != BaseRegB)
1416     return false;
1417
1418   // This is a mem access with the same base register and known offsets from it.
1419   // Reason about it.
1420   if (OffsetA > OffsetB) {
1421     uint64_t offDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
1422     return (SizeB <= offDiff);
1423   } else if (OffsetA < OffsetB) {
1424     uint64_t offDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
1425     return (SizeA <= offDiff);
1426   }
1427
1428   return false;
1429 }
1430
1431
1432 unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
1433   MachineRegisterInfo &MRI = MF->getRegInfo();
1434   const TargetRegisterClass *TRC;
1435   if (VT == MVT::i1) {
1436     TRC = &Hexagon::PredRegsRegClass;
1437   } else if (VT == MVT::i32 || VT == MVT::f32) {
1438     TRC = &Hexagon::IntRegsRegClass;
1439   } else if (VT == MVT::i64 || VT == MVT::f64) {
1440     TRC = &Hexagon::DoubleRegsRegClass;
1441   } else {
1442     llvm_unreachable("Cannot handle this register class");
1443   }
1444
1445   unsigned NewReg = MRI.createVirtualRegister(TRC);
1446   return NewReg;
1447 }
1448
1449
1450 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr* MI) const {
1451   return (getAddrMode(MI) == HexagonII::AbsoluteSet);
1452 }
1453
1454
1455 bool HexagonInstrInfo::isAccumulator(const MachineInstr *MI) const {
1456   const uint64_t F = MI->getDesc().TSFlags;
1457   return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
1458 }
1459
1460
1461 bool HexagonInstrInfo::isComplex(const MachineInstr *MI) const {
1462   const MachineFunction *MF = MI->getParent()->getParent();
1463   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1464   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1465
1466   if (!(isTC1(MI))
1467       && !(QII->isTC2Early(MI))
1468       && !(MI->getDesc().mayLoad())
1469       && !(MI->getDesc().mayStore())
1470       && (MI->getDesc().getOpcode() != Hexagon::S2_allocframe)
1471       && (MI->getDesc().getOpcode() != Hexagon::L2_deallocframe)
1472       && !(QII->isMemOp(MI))
1473       && !(MI->isBranch())
1474       && !(MI->isReturn())
1475       && !MI->isCall())
1476     return true;
1477
1478   return false;
1479 }
1480
1481
1482 // Return true if the instruction is a compund branch instruction.
1483 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr *MI) const {
1484   return (getType(MI) == HexagonII::TypeCOMPOUND && MI->isBranch());
1485 }
1486
1487
1488 bool HexagonInstrInfo::isCondInst(const MachineInstr *MI) const {
1489   return (MI->isBranch() && isPredicated(MI)) ||
1490          isConditionalTransfer(MI) ||
1491          isConditionalALU32(MI)    ||
1492          isConditionalLoad(MI)     ||
1493          // Predicated stores which don't have a .new on any operands.
1494          (MI->mayStore() && isPredicated(MI) && !isNewValueStore(MI) &&
1495           !isPredicatedNew(MI));
1496 }
1497
1498
1499 bool HexagonInstrInfo::isConditionalALU32(const MachineInstr* MI) const {
1500   switch (MI->getOpcode()) {
1501     case Hexagon::A2_paddf:
1502     case Hexagon::A2_paddfnew:
1503     case Hexagon::A2_paddif:
1504     case Hexagon::A2_paddifnew:
1505     case Hexagon::A2_paddit:
1506     case Hexagon::A2_padditnew:
1507     case Hexagon::A2_paddt:
1508     case Hexagon::A2_paddtnew:
1509     case Hexagon::A2_pandf:
1510     case Hexagon::A2_pandfnew:
1511     case Hexagon::A2_pandt:
1512     case Hexagon::A2_pandtnew:
1513     case Hexagon::A2_porf:
1514     case Hexagon::A2_porfnew:
1515     case Hexagon::A2_port:
1516     case Hexagon::A2_portnew:
1517     case Hexagon::A2_psubf:
1518     case Hexagon::A2_psubfnew:
1519     case Hexagon::A2_psubt:
1520     case Hexagon::A2_psubtnew:
1521     case Hexagon::A2_pxorf:
1522     case Hexagon::A2_pxorfnew:
1523     case Hexagon::A2_pxort:
1524     case Hexagon::A2_pxortnew:
1525     case Hexagon::A4_paslhf:
1526     case Hexagon::A4_paslhfnew:
1527     case Hexagon::A4_paslht:
1528     case Hexagon::A4_paslhtnew:
1529     case Hexagon::A4_pasrhf:
1530     case Hexagon::A4_pasrhfnew:
1531     case Hexagon::A4_pasrht:
1532     case Hexagon::A4_pasrhtnew:
1533     case Hexagon::A4_psxtbf:
1534     case Hexagon::A4_psxtbfnew:
1535     case Hexagon::A4_psxtbt:
1536     case Hexagon::A4_psxtbtnew:
1537     case Hexagon::A4_psxthf:
1538     case Hexagon::A4_psxthfnew:
1539     case Hexagon::A4_psxtht:
1540     case Hexagon::A4_psxthtnew:
1541     case Hexagon::A4_pzxtbf:
1542     case Hexagon::A4_pzxtbfnew:
1543     case Hexagon::A4_pzxtbt:
1544     case Hexagon::A4_pzxtbtnew:
1545     case Hexagon::A4_pzxthf:
1546     case Hexagon::A4_pzxthfnew:
1547     case Hexagon::A4_pzxtht:
1548     case Hexagon::A4_pzxthtnew:
1549     case Hexagon::C2_ccombinewf:
1550     case Hexagon::C2_ccombinewt:
1551       return true;
1552   }
1553   return false;
1554 }
1555
1556
1557 // FIXME - Function name and it's functionality don't match.
1558 // It should be renamed to hasPredNewOpcode()
1559 bool HexagonInstrInfo::isConditionalLoad(const MachineInstr* MI) const {
1560   if (!MI->getDesc().mayLoad() || !isPredicated(MI))
1561     return false;
1562
1563   int PNewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
1564   // Instruction with valid predicated-new opcode can be promoted to .new.
1565   return PNewOpcode >= 0;
1566 }
1567
1568
1569 // Returns true if an instruction is a conditional store.
1570 //
1571 // Note: It doesn't include conditional new-value stores as they can't be
1572 // converted to .new predicate.
1573 bool HexagonInstrInfo::isConditionalStore(const MachineInstr* MI) const {
1574   switch (MI->getOpcode()) {
1575     default: return false;
1576     case Hexagon::S4_storeirbt_io:
1577     case Hexagon::S4_storeirbf_io:
1578     case Hexagon::S4_pstorerbt_rr:
1579     case Hexagon::S4_pstorerbf_rr:
1580     case Hexagon::S2_pstorerbt_io:
1581     case Hexagon::S2_pstorerbf_io:
1582     case Hexagon::S2_pstorerbt_pi:
1583     case Hexagon::S2_pstorerbf_pi:
1584     case Hexagon::S2_pstorerdt_io:
1585     case Hexagon::S2_pstorerdf_io:
1586     case Hexagon::S4_pstorerdt_rr:
1587     case Hexagon::S4_pstorerdf_rr:
1588     case Hexagon::S2_pstorerdt_pi:
1589     case Hexagon::S2_pstorerdf_pi:
1590     case Hexagon::S2_pstorerht_io:
1591     case Hexagon::S2_pstorerhf_io:
1592     case Hexagon::S4_storeirht_io:
1593     case Hexagon::S4_storeirhf_io:
1594     case Hexagon::S4_pstorerht_rr:
1595     case Hexagon::S4_pstorerhf_rr:
1596     case Hexagon::S2_pstorerht_pi:
1597     case Hexagon::S2_pstorerhf_pi:
1598     case Hexagon::S2_pstorerit_io:
1599     case Hexagon::S2_pstorerif_io:
1600     case Hexagon::S4_storeirit_io:
1601     case Hexagon::S4_storeirif_io:
1602     case Hexagon::S4_pstorerit_rr:
1603     case Hexagon::S4_pstorerif_rr:
1604     case Hexagon::S2_pstorerit_pi:
1605     case Hexagon::S2_pstorerif_pi:
1606
1607     // V4 global address store before promoting to dot new.
1608     case Hexagon::S4_pstorerdt_abs:
1609     case Hexagon::S4_pstorerdf_abs:
1610     case Hexagon::S4_pstorerbt_abs:
1611     case Hexagon::S4_pstorerbf_abs:
1612     case Hexagon::S4_pstorerht_abs:
1613     case Hexagon::S4_pstorerhf_abs:
1614     case Hexagon::S4_pstorerit_abs:
1615     case Hexagon::S4_pstorerif_abs:
1616       return true;
1617
1618     // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
1619     // from the "Conditional Store" list. Because a predicated new value store
1620     // would NOT be promoted to a double dot new store.
1621     // This function returns yes for those stores that are predicated but not
1622     // yet promoted to predicate dot new instructions.
1623   }
1624 }
1625
1626
1627 bool HexagonInstrInfo::isConditionalTransfer(const MachineInstr *MI) const {
1628   switch (MI->getOpcode()) {
1629     case Hexagon::A2_tfrt:
1630     case Hexagon::A2_tfrf:
1631     case Hexagon::C2_cmoveit:
1632     case Hexagon::C2_cmoveif:
1633     case Hexagon::A2_tfrtnew:
1634     case Hexagon::A2_tfrfnew:
1635     case Hexagon::C2_cmovenewit:
1636     case Hexagon::C2_cmovenewif:
1637     case Hexagon::A2_tfrpt:
1638     case Hexagon::A2_tfrpf:
1639       return true;
1640
1641     default:
1642       return false;
1643   }
1644   return false;
1645 }
1646
1647
1648 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
1649 // isFPImm and later getFPImm as well.
1650 bool HexagonInstrInfo::isConstExtended(const MachineInstr *MI) const {
1651   const uint64_t F = MI->getDesc().TSFlags;
1652   unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
1653   if (isExtended) // Instruction must be extended.
1654     return true;
1655
1656   unsigned isExtendable =
1657     (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
1658   if (!isExtendable)
1659     return false;
1660
1661   if (MI->isCall())
1662     return false;
1663
1664   short ExtOpNum = getCExtOpNum(MI);
1665   const MachineOperand &MO = MI->getOperand(ExtOpNum);
1666   // Use MO operand flags to determine if MO
1667   // has the HMOTF_ConstExtended flag set.
1668   if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
1669     return true;
1670   // If this is a Machine BB address we are talking about, and it is
1671   // not marked as extended, say so.
1672   if (MO.isMBB())
1673     return false;
1674
1675   // We could be using an instruction with an extendable immediate and shoehorn
1676   // a global address into it. If it is a global address it will be constant
1677   // extended. We do this for COMBINE.
1678   // We currently only handle isGlobal() because it is the only kind of
1679   // object we are going to end up with here for now.
1680   // In the future we probably should add isSymbol(), etc.
1681   if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
1682       MO.isJTI() || MO.isCPI())
1683     return true;
1684
1685   // If the extendable operand is not 'Immediate' type, the instruction should
1686   // have 'isExtended' flag set.
1687   assert(MO.isImm() && "Extendable operand must be Immediate type");
1688
1689   int MinValue = getMinValue(MI);
1690   int MaxValue = getMaxValue(MI);
1691   int ImmValue = MO.getImm();
1692
1693   return (ImmValue < MinValue || ImmValue > MaxValue);
1694 }
1695
1696
1697 bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
1698   switch (MI->getOpcode()) {
1699   case Hexagon::L4_return :
1700   case Hexagon::L4_return_t :
1701   case Hexagon::L4_return_f :
1702   case Hexagon::L4_return_tnew_pnt :
1703   case Hexagon::L4_return_fnew_pnt :
1704   case Hexagon::L4_return_tnew_pt :
1705   case Hexagon::L4_return_fnew_pt :
1706    return true;
1707   }
1708   return false;
1709 }
1710
1711
1712 // Return true when ConsMI uses a register defined by ProdMI.
1713 bool HexagonInstrInfo::isDependent(const MachineInstr *ProdMI,
1714       const MachineInstr *ConsMI) const {
1715   const MCInstrDesc &ProdMCID = ProdMI->getDesc();
1716   if (!ProdMCID.getNumDefs())
1717     return false;
1718
1719   auto &HRI = getRegisterInfo();
1720
1721   SmallVector<unsigned, 4> DefsA;
1722   SmallVector<unsigned, 4> DefsB;
1723   SmallVector<unsigned, 8> UsesA;
1724   SmallVector<unsigned, 8> UsesB;
1725
1726   parseOperands(ProdMI, DefsA, UsesA);
1727   parseOperands(ConsMI, DefsB, UsesB);
1728
1729   for (auto &RegA : DefsA)
1730     for (auto &RegB : UsesB) {
1731       // True data dependency.
1732       if (RegA == RegB)
1733         return true;
1734
1735       if (Hexagon::DoubleRegsRegClass.contains(RegA))
1736         for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
1737           if (RegB == *SubRegs)
1738             return true;
1739
1740       if (Hexagon::DoubleRegsRegClass.contains(RegB))
1741         for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
1742           if (RegA == *SubRegs)
1743             return true;
1744     }
1745
1746   return false;
1747 }
1748
1749
1750 // Returns true if the instruction is alread a .cur.
1751 bool HexagonInstrInfo::isDotCurInst(const MachineInstr* MI) const {
1752   switch (MI->getOpcode()) {
1753   case Hexagon::V6_vL32b_cur_pi:
1754   case Hexagon::V6_vL32b_cur_ai:
1755   case Hexagon::V6_vL32b_cur_pi_128B:
1756   case Hexagon::V6_vL32b_cur_ai_128B:
1757     return true;
1758   }
1759   return false;
1760 }
1761
1762
1763 // Returns true, if any one of the operands is a dot new
1764 // insn, whether it is predicated dot new or register dot new.
1765 bool HexagonInstrInfo::isDotNewInst(const MachineInstr* MI) const {
1766   if (isNewValueInst(MI) ||
1767      (isPredicated(MI) && isPredicatedNew(MI)))
1768     return true;
1769
1770   return false;
1771 }
1772
1773
1774 /// Symmetrical. See if these two instructions are fit for duplex pair.
1775 bool HexagonInstrInfo::isDuplexPair(const MachineInstr *MIa,
1776       const MachineInstr *MIb) const {
1777   HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
1778   HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
1779   return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
1780 }
1781
1782
1783 bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr *MI) const {
1784   if (!MI)
1785     return false;
1786
1787   if (MI->mayLoad() || MI->mayStore() || MI->isCompare())
1788     return true;
1789
1790   // Multiply
1791   unsigned SchedClass = MI->getDesc().getSchedClass();
1792   if (SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23)
1793     return true;
1794   return false;
1795 }
1796
1797
1798 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
1799   return (Opcode == Hexagon::ENDLOOP0 ||
1800           Opcode == Hexagon::ENDLOOP1);
1801 }
1802
1803
1804 bool HexagonInstrInfo::isExpr(unsigned OpType) const {
1805   switch(OpType) {
1806   case MachineOperand::MO_MachineBasicBlock:
1807   case MachineOperand::MO_GlobalAddress:
1808   case MachineOperand::MO_ExternalSymbol:
1809   case MachineOperand::MO_JumpTableIndex:
1810   case MachineOperand::MO_ConstantPoolIndex:
1811   case MachineOperand::MO_BlockAddress:
1812     return true;
1813   default:
1814     return false;
1815   }
1816 }
1817
1818
1819 bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
1820   const MCInstrDesc &MID = MI->getDesc();
1821   const uint64_t F = MID.TSFlags;
1822   if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
1823     return true;
1824
1825   // TODO: This is largely obsolete now. Will need to be removed
1826   // in consecutive patches.
1827   switch(MI->getOpcode()) {
1828     // TFR_FI Remains a special case.
1829     case Hexagon::TFR_FI:
1830       return true;
1831     default:
1832       return false;
1833   }
1834   return  false;
1835 }
1836
1837
1838 // This returns true in two cases:
1839 // - The OP code itself indicates that this is an extended instruction.
1840 // - One of MOs has been marked with HMOTF_ConstExtended flag.
1841 bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
1842   // First check if this is permanently extended op code.
1843   const uint64_t F = MI->getDesc().TSFlags;
1844   if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
1845     return true;
1846   // Use MO operand flags to determine if one of MI's operands
1847   // has HMOTF_ConstExtended flag set.
1848   for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
1849        E = MI->operands_end(); I != E; ++I) {
1850     if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
1851       return true;
1852   }
1853   return  false;
1854 }
1855
1856
1857 bool HexagonInstrInfo::isFloat(const MachineInstr *MI) const {
1858   unsigned Opcode = MI->getOpcode();
1859   const uint64_t F = get(Opcode).TSFlags;
1860   return (F >> HexagonII::FPPos) & HexagonII::FPMask;
1861 }
1862
1863
1864 // No V60 HVX VMEM with A_INDIRECT.
1865 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr *I,
1866       const MachineInstr *J) const {
1867   if (!isV60VectorInstruction(I))
1868     return false;
1869   if (!I->mayLoad() && !I->mayStore())
1870     return false;
1871   return J->isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
1872 }
1873
1874
1875 bool HexagonInstrInfo::isIndirectCall(const MachineInstr *MI) const {
1876   switch (MI->getOpcode()) {
1877   case Hexagon::J2_callr :
1878   case Hexagon::J2_callrf :
1879   case Hexagon::J2_callrt :
1880     return true;
1881   }
1882   return false;
1883 }
1884
1885
1886 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr *MI) const {
1887   switch (MI->getOpcode()) {
1888   case Hexagon::L4_return :
1889   case Hexagon::L4_return_t :
1890   case Hexagon::L4_return_f :
1891   case Hexagon::L4_return_fnew_pnt :
1892   case Hexagon::L4_return_fnew_pt :
1893   case Hexagon::L4_return_tnew_pnt :
1894   case Hexagon::L4_return_tnew_pt :
1895     return true;
1896   }
1897   return false;
1898 }
1899
1900
1901 bool HexagonInstrInfo::isJumpR(const MachineInstr *MI) const {
1902   switch (MI->getOpcode()) {
1903   case Hexagon::J2_jumpr :
1904   case Hexagon::J2_jumprt :
1905   case Hexagon::J2_jumprf :
1906   case Hexagon::J2_jumprtnewpt :
1907   case Hexagon::J2_jumprfnewpt  :
1908   case Hexagon::J2_jumprtnew :
1909   case Hexagon::J2_jumprfnew :
1910     return true;
1911   }
1912   return false;
1913 }
1914
1915
1916 // Return true if a given MI can accomodate given offset.
1917 // Use abs estimate as oppose to the exact number.
1918 // TODO: This will need to be changed to use MC level
1919 // definition of instruction extendable field size.
1920 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr *MI,
1921       unsigned offset) const {
1922   // This selection of jump instructions matches to that what
1923   // AnalyzeBranch can parse, plus NVJ.
1924   if (isNewValueJump(MI)) // r9:2
1925     return isInt<11>(offset);
1926
1927   switch (MI->getOpcode()) {
1928   // Still missing Jump to address condition on register value.
1929   default:
1930     return false;
1931   case Hexagon::J2_jump: // bits<24> dst; // r22:2
1932   case Hexagon::J2_call:
1933   case Hexagon::CALLv3nr:
1934     return isInt<24>(offset);
1935   case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
1936   case Hexagon::J2_jumpf:
1937   case Hexagon::J2_jumptnew:
1938   case Hexagon::J2_jumptnewpt:
1939   case Hexagon::J2_jumpfnew:
1940   case Hexagon::J2_jumpfnewpt:
1941   case Hexagon::J2_callt:
1942   case Hexagon::J2_callf:
1943     return isInt<17>(offset);
1944   case Hexagon::J2_loop0i:
1945   case Hexagon::J2_loop0iext:
1946   case Hexagon::J2_loop0r:
1947   case Hexagon::J2_loop0rext:
1948   case Hexagon::J2_loop1i:
1949   case Hexagon::J2_loop1iext:
1950   case Hexagon::J2_loop1r:
1951   case Hexagon::J2_loop1rext:
1952     return isInt<9>(offset);
1953   // TODO: Add all the compound branches here. Can we do this in Relation model?
1954   case Hexagon::J4_cmpeqi_tp0_jump_nt:
1955   case Hexagon::J4_cmpeqi_tp1_jump_nt:
1956     return isInt<11>(offset);
1957   }
1958 }
1959
1960
1961 bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr *LRMI,
1962       const MachineInstr *ESMI) const {
1963   if (!LRMI || !ESMI)
1964     return false;
1965
1966   bool isLate = isLateResultInstr(LRMI);
1967   bool isEarly = isEarlySourceInstr(ESMI);
1968
1969   DEBUG(dbgs() << "V60" <<  (isLate ? "-LR  " : " --  "));
1970   DEBUG(LRMI->dump());
1971   DEBUG(dbgs() << "V60" <<  (isEarly ? "-ES  " : " --  "));
1972   DEBUG(ESMI->dump());
1973
1974   if (isLate && isEarly) {
1975     DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
1976     return true;
1977   }
1978
1979   return false;
1980 }
1981
1982
1983 bool HexagonInstrInfo::isLateResultInstr(const MachineInstr *MI) const {
1984   if (!MI)
1985     return false;
1986
1987   switch (MI->getOpcode()) {
1988   case TargetOpcode::EXTRACT_SUBREG:
1989   case TargetOpcode::INSERT_SUBREG:
1990   case TargetOpcode::SUBREG_TO_REG:
1991   case TargetOpcode::REG_SEQUENCE:
1992   case TargetOpcode::IMPLICIT_DEF:
1993   case TargetOpcode::COPY:
1994   case TargetOpcode::INLINEASM:
1995   case TargetOpcode::PHI:
1996     return false;
1997   default:
1998     break;
1999   }
2000
2001   unsigned SchedClass = MI->getDesc().getSchedClass();
2002
2003   switch (SchedClass) {
2004   case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
2005   case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
2006   case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
2007   case Hexagon::Sched::ALU64_tc_1_SLOT23:
2008   case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
2009   case Hexagon::Sched::S_2op_tc_1_SLOT23:
2010   case Hexagon::Sched::S_3op_tc_1_SLOT23:
2011   case Hexagon::Sched::V2LDST_tc_ld_SLOT01:
2012   case Hexagon::Sched::V2LDST_tc_st_SLOT0:
2013   case Hexagon::Sched::V2LDST_tc_st_SLOT01:
2014   case Hexagon::Sched::V4LDST_tc_ld_SLOT01:
2015   case Hexagon::Sched::V4LDST_tc_st_SLOT0:
2016   case Hexagon::Sched::V4LDST_tc_st_SLOT01:
2017     return false;
2018   }
2019   return true;
2020 }
2021
2022
2023 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr *MI) const {
2024   if (!MI)
2025     return false;
2026
2027   // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2028   // resource, but all operands can be received late like an ALU instruction.
2029   return MI->getDesc().getSchedClass() == Hexagon::Sched::CVI_VX_LATE;
2030 }
2031
2032
2033 bool HexagonInstrInfo::isLoopN(const MachineInstr *MI) const {
2034   unsigned Opcode = MI->getOpcode();
2035   return Opcode == Hexagon::J2_loop0i    ||
2036          Opcode == Hexagon::J2_loop0r    ||
2037          Opcode == Hexagon::J2_loop0iext ||
2038          Opcode == Hexagon::J2_loop0rext ||
2039          Opcode == Hexagon::J2_loop1i    ||
2040          Opcode == Hexagon::J2_loop1r    ||
2041          Opcode == Hexagon::J2_loop1iext ||
2042          Opcode == Hexagon::J2_loop1rext;
2043 }
2044
2045
2046 bool HexagonInstrInfo::isMemOp(const MachineInstr *MI) const {
2047   switch (MI->getOpcode()) {
2048     default: return false;
2049     case Hexagon::L4_iadd_memopw_io :
2050     case Hexagon::L4_isub_memopw_io :
2051     case Hexagon::L4_add_memopw_io :
2052     case Hexagon::L4_sub_memopw_io :
2053     case Hexagon::L4_and_memopw_io :
2054     case Hexagon::L4_or_memopw_io :
2055     case Hexagon::L4_iadd_memoph_io :
2056     case Hexagon::L4_isub_memoph_io :
2057     case Hexagon::L4_add_memoph_io :
2058     case Hexagon::L4_sub_memoph_io :
2059     case Hexagon::L4_and_memoph_io :
2060     case Hexagon::L4_or_memoph_io :
2061     case Hexagon::L4_iadd_memopb_io :
2062     case Hexagon::L4_isub_memopb_io :
2063     case Hexagon::L4_add_memopb_io :
2064     case Hexagon::L4_sub_memopb_io :
2065     case Hexagon::L4_and_memopb_io :
2066     case Hexagon::L4_or_memopb_io :
2067     case Hexagon::L4_ior_memopb_io:
2068     case Hexagon::L4_ior_memoph_io:
2069     case Hexagon::L4_ior_memopw_io:
2070     case Hexagon::L4_iand_memopb_io:
2071     case Hexagon::L4_iand_memoph_io:
2072     case Hexagon::L4_iand_memopw_io:
2073     return true;
2074   }
2075   return false;
2076 }
2077
2078
2079 bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
2080   const uint64_t F = MI->getDesc().TSFlags;
2081   return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2082 }
2083
2084
2085 bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2086   const uint64_t F = get(Opcode).TSFlags;
2087   return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2088 }
2089
2090
2091 bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
2092   return isNewValueJump(MI) || isNewValueStore(MI);
2093 }
2094
2095
2096 bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
2097   return isNewValue(MI) && MI->isBranch();
2098 }
2099
2100
2101 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2102   return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2103 }
2104
2105
2106 bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
2107   const uint64_t F = MI->getDesc().TSFlags;
2108   return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2109 }
2110
2111
2112 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2113   const uint64_t F = get(Opcode).TSFlags;
2114   return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2115 }
2116
2117
2118 // Returns true if a particular operand is extendable for an instruction.
2119 bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
2120     unsigned OperandNum) const {
2121   const uint64_t F = MI->getDesc().TSFlags;
2122   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
2123           == OperandNum;
2124 }
2125
2126
2127 bool HexagonInstrInfo::isPostIncrement(const MachineInstr* MI) const {
2128   return getAddrMode(MI) == HexagonII::PostInc;
2129 }
2130
2131
2132 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
2133   const uint64_t F = MI->getDesc().TSFlags;
2134   assert(isPredicated(MI));
2135   return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2136 }
2137
2138
2139 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2140   const uint64_t F = get(Opcode).TSFlags;
2141   assert(isPredicated(Opcode));
2142   return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2143 }
2144
2145
2146 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
2147   const uint64_t F = MI->getDesc().TSFlags;
2148   return !((F >> HexagonII::PredicatedFalsePos) &
2149            HexagonII::PredicatedFalseMask);
2150 }
2151
2152
2153 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2154   const uint64_t F = get(Opcode).TSFlags;
2155   // Make sure that the instruction is predicated.
2156   assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
2157   return !((F >> HexagonII::PredicatedFalsePos) &
2158            HexagonII::PredicatedFalseMask);
2159 }
2160
2161
2162 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2163   const uint64_t F = get(Opcode).TSFlags;
2164   return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
2165 }
2166
2167
2168 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2169   const uint64_t F = get(Opcode).TSFlags;
2170   return ~(F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
2171 }
2172
2173
2174 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2175   const uint64_t F = get(Opcode).TSFlags;
2176   assert(get(Opcode).isBranch() &&
2177          (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2178   return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
2179 }
2180
2181
2182 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
2183   return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2184          MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
2185 }
2186
2187
2188 bool HexagonInstrInfo::isSolo(const MachineInstr* MI) const {
2189   const uint64_t F = MI->getDesc().TSFlags;
2190   return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
2191 }
2192
2193
2194 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr *MI) const {
2195   switch (MI->getOpcode()) {
2196   case Hexagon::STriw_pred :
2197   case Hexagon::LDriw_pred :
2198     return true;
2199   default:
2200     return false;
2201   }
2202 }
2203
2204
2205 // Returns true when SU has a timing class TC1.
2206 bool HexagonInstrInfo::isTC1(const MachineInstr *MI) const {
2207   unsigned SchedClass = MI->getDesc().getSchedClass();
2208   switch (SchedClass) {
2209   case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
2210   case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
2211   case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
2212   case Hexagon::Sched::ALU64_tc_1_SLOT23:
2213   case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
2214   //case Hexagon::Sched::M_tc_1_SLOT23:
2215   case Hexagon::Sched::S_2op_tc_1_SLOT23:
2216   case Hexagon::Sched::S_3op_tc_1_SLOT23:
2217     return true;
2218
2219   default:
2220     return false;
2221   }
2222 }
2223
2224
2225 bool HexagonInstrInfo::isTC2(const MachineInstr *MI) const {
2226   unsigned SchedClass = MI->getDesc().getSchedClass();
2227   switch (SchedClass) {
2228   case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
2229   case Hexagon::Sched::ALU64_tc_2_SLOT23:
2230   case Hexagon::Sched::CR_tc_2_SLOT3:
2231   case Hexagon::Sched::M_tc_2_SLOT23:
2232   case Hexagon::Sched::S_2op_tc_2_SLOT23:
2233   case Hexagon::Sched::S_3op_tc_2_SLOT23:
2234     return true;
2235
2236   default:
2237     return false;
2238   }
2239 }
2240
2241
2242 bool HexagonInstrInfo::isTC2Early(const MachineInstr *MI) const {
2243   unsigned SchedClass = MI->getDesc().getSchedClass();
2244   switch (SchedClass) {
2245   case Hexagon::Sched::ALU32_2op_tc_2early_SLOT0123:
2246   case Hexagon::Sched::ALU32_3op_tc_2early_SLOT0123:
2247   case Hexagon::Sched::ALU64_tc_2early_SLOT23:
2248   case Hexagon::Sched::CR_tc_2early_SLOT23:
2249   case Hexagon::Sched::CR_tc_2early_SLOT3:
2250   case Hexagon::Sched::J_tc_2early_SLOT0123:
2251   case Hexagon::Sched::J_tc_2early_SLOT2:
2252   case Hexagon::Sched::J_tc_2early_SLOT23:
2253   case Hexagon::Sched::S_2op_tc_2early_SLOT23:
2254   case Hexagon::Sched::S_3op_tc_2early_SLOT23:
2255     return true;
2256
2257   default:
2258     return false;
2259   }
2260 }
2261
2262
2263 bool HexagonInstrInfo::isTC4x(const MachineInstr *MI) const {
2264   if (!MI)
2265     return false;
2266
2267   unsigned SchedClass = MI->getDesc().getSchedClass();
2268   return SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23;
2269 }
2270
2271
2272 bool HexagonInstrInfo::isV60VectorInstruction(const MachineInstr *MI) const {
2273   if (!MI)
2274     return false;
2275
2276   const uint64_t V = getType(MI);
2277   return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
2278 }
2279
2280
2281 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
2282 //
2283 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, const int Offset) const {
2284   if (VT == MVT::v16i32 || VT == MVT::v8i64 ||
2285       VT == MVT::v32i16 || VT == MVT::v64i8) {
2286       return (Offset >= Hexagon_MEMV_AUTOINC_MIN &&
2287               Offset <= Hexagon_MEMV_AUTOINC_MAX &&
2288               (Offset & 0x3f) == 0);
2289   }
2290   // 128B
2291   if (VT == MVT::v32i32 || VT == MVT::v16i64 ||
2292       VT == MVT::v64i16 || VT == MVT::v128i8) {
2293       return (Offset >= Hexagon_MEMV_AUTOINC_MIN_128B &&
2294               Offset <= Hexagon_MEMV_AUTOINC_MAX_128B &&
2295               (Offset & 0x7f) == 0);
2296   }
2297   if (VT == MVT::i64) {
2298       return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
2299               Offset <= Hexagon_MEMD_AUTOINC_MAX &&
2300               (Offset & 0x7) == 0);
2301   }
2302   if (VT == MVT::i32) {
2303       return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
2304               Offset <= Hexagon_MEMW_AUTOINC_MAX &&
2305               (Offset & 0x3) == 0);
2306   }
2307   if (VT == MVT::i16) {
2308       return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
2309               Offset <= Hexagon_MEMH_AUTOINC_MAX &&
2310               (Offset & 0x1) == 0);
2311   }
2312   if (VT == MVT::i8) {
2313       return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
2314               Offset <= Hexagon_MEMB_AUTOINC_MAX);
2315   }
2316   llvm_unreachable("Not an auto-inc opc!");
2317 }
2318
2319
2320 bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2321       bool Extend) const {
2322   // This function is to check whether the "Offset" is in the correct range of
2323   // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2324   // inserted to calculate the final address. Due to this reason, the function
2325   // assumes that the "Offset" has correct alignment.
2326   // We used to assert if the offset was not properly aligned, however,
2327   // there are cases where a misaligned pointer recast can cause this
2328   // problem, and we need to allow for it. The front end warns of such
2329   // misaligns with respect to load size.
2330
2331   switch (Opcode) {
2332   case Hexagon::STriq_pred_V6:
2333   case Hexagon::STriq_pred_vec_V6:
2334   case Hexagon::STriv_pseudo_V6:
2335   case Hexagon::STrivv_pseudo_V6:
2336   case Hexagon::LDriq_pred_V6:
2337   case Hexagon::LDriq_pred_vec_V6:
2338   case Hexagon::LDriv_pseudo_V6:
2339   case Hexagon::LDrivv_pseudo_V6:
2340   case Hexagon::LDrivv_indexed:
2341   case Hexagon::STrivv_indexed:
2342   case Hexagon::V6_vL32b_ai:
2343   case Hexagon::V6_vS32b_ai:
2344   case Hexagon::V6_vL32Ub_ai:
2345   case Hexagon::V6_vS32Ub_ai:
2346     return (Offset >= Hexagon_MEMV_OFFSET_MIN) &&
2347       (Offset <= Hexagon_MEMV_OFFSET_MAX);
2348
2349   case Hexagon::STriq_pred_V6_128B:
2350   case Hexagon::STriq_pred_vec_V6_128B:
2351   case Hexagon::STriv_pseudo_V6_128B:
2352   case Hexagon::STrivv_pseudo_V6_128B:
2353   case Hexagon::LDriq_pred_V6_128B:
2354   case Hexagon::LDriq_pred_vec_V6_128B:
2355   case Hexagon::LDriv_pseudo_V6_128B:
2356   case Hexagon::LDrivv_pseudo_V6_128B:
2357   case Hexagon::LDrivv_indexed_128B:
2358   case Hexagon::STrivv_indexed_128B:
2359   case Hexagon::V6_vL32b_ai_128B:
2360   case Hexagon::V6_vS32b_ai_128B:
2361   case Hexagon::V6_vL32Ub_ai_128B:
2362   case Hexagon::V6_vS32Ub_ai_128B:
2363     return (Offset >= Hexagon_MEMV_OFFSET_MIN_128B) &&
2364       (Offset <= Hexagon_MEMV_OFFSET_MAX_128B);
2365
2366   case Hexagon::J2_loop0i:
2367   case Hexagon::J2_loop1i:
2368     return isUInt<10>(Offset);
2369   }
2370
2371   if (Extend)
2372     return true;
2373
2374   switch (Opcode) {
2375   case Hexagon::L2_loadri_io:
2376   case Hexagon::S2_storeri_io:
2377     return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2378       (Offset <= Hexagon_MEMW_OFFSET_MAX);
2379
2380   case Hexagon::L2_loadrd_io:
2381   case Hexagon::S2_storerd_io:
2382     return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2383       (Offset <= Hexagon_MEMD_OFFSET_MAX);
2384
2385   case Hexagon::L2_loadrh_io:
2386   case Hexagon::L2_loadruh_io:
2387   case Hexagon::S2_storerh_io:
2388     return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2389       (Offset <= Hexagon_MEMH_OFFSET_MAX);
2390
2391   case Hexagon::L2_loadrb_io:
2392   case Hexagon::L2_loadrub_io:
2393   case Hexagon::S2_storerb_io:
2394     return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2395       (Offset <= Hexagon_MEMB_OFFSET_MAX);
2396
2397   case Hexagon::A2_addi:
2398     return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2399       (Offset <= Hexagon_ADDI_OFFSET_MAX);
2400
2401   case Hexagon::L4_iadd_memopw_io :
2402   case Hexagon::L4_isub_memopw_io :
2403   case Hexagon::L4_add_memopw_io :
2404   case Hexagon::L4_sub_memopw_io :
2405   case Hexagon::L4_and_memopw_io :
2406   case Hexagon::L4_or_memopw_io :
2407     return (0 <= Offset && Offset <= 255);
2408
2409   case Hexagon::L4_iadd_memoph_io :
2410   case Hexagon::L4_isub_memoph_io :
2411   case Hexagon::L4_add_memoph_io :
2412   case Hexagon::L4_sub_memoph_io :
2413   case Hexagon::L4_and_memoph_io :
2414   case Hexagon::L4_or_memoph_io :
2415     return (0 <= Offset && Offset <= 127);
2416
2417   case Hexagon::L4_iadd_memopb_io :
2418   case Hexagon::L4_isub_memopb_io :
2419   case Hexagon::L4_add_memopb_io :
2420   case Hexagon::L4_sub_memopb_io :
2421   case Hexagon::L4_and_memopb_io :
2422   case Hexagon::L4_or_memopb_io :
2423     return (0 <= Offset && Offset <= 63);
2424
2425   // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
2426   // any size. Later pass knows how to handle it.
2427   case Hexagon::STriw_pred:
2428   case Hexagon::LDriw_pred:
2429     return true;
2430
2431   case Hexagon::TFR_FI:
2432   case Hexagon::TFR_FIA:
2433   case Hexagon::INLINEASM:
2434     return true;
2435
2436   case Hexagon::L2_ploadrbt_io:
2437   case Hexagon::L2_ploadrbf_io:
2438   case Hexagon::L2_ploadrubt_io:
2439   case Hexagon::L2_ploadrubf_io:
2440   case Hexagon::S2_pstorerbt_io:
2441   case Hexagon::S2_pstorerbf_io:
2442   case Hexagon::S4_storeirb_io:
2443   case Hexagon::S4_storeirbt_io:
2444   case Hexagon::S4_storeirbf_io:
2445     return isUInt<6>(Offset);
2446
2447   case Hexagon::L2_ploadrht_io:
2448   case Hexagon::L2_ploadrhf_io:
2449   case Hexagon::L2_ploadruht_io:
2450   case Hexagon::L2_ploadruhf_io:
2451   case Hexagon::S2_pstorerht_io:
2452   case Hexagon::S2_pstorerhf_io:
2453   case Hexagon::S4_storeirh_io:
2454   case Hexagon::S4_storeirht_io:
2455   case Hexagon::S4_storeirhf_io:
2456     return isShiftedUInt<6,1>(Offset);
2457
2458   case Hexagon::L2_ploadrit_io:
2459   case Hexagon::L2_ploadrif_io:
2460   case Hexagon::S2_pstorerit_io:
2461   case Hexagon::S2_pstorerif_io:
2462   case Hexagon::S4_storeiri_io:
2463   case Hexagon::S4_storeirit_io:
2464   case Hexagon::S4_storeirif_io:
2465     return isShiftedUInt<6,2>(Offset);
2466
2467   case Hexagon::L2_ploadrdt_io:
2468   case Hexagon::L2_ploadrdf_io:
2469   case Hexagon::S2_pstorerdt_io:
2470   case Hexagon::S2_pstorerdf_io:
2471     return isShiftedUInt<6,3>(Offset);
2472   } // switch
2473
2474   llvm_unreachable("No offset range is defined for this opcode. "
2475                    "Please define it in the above switch statement!");
2476 }
2477
2478
2479 bool HexagonInstrInfo::isVecAcc(const MachineInstr *MI) const {
2480   return MI && isV60VectorInstruction(MI) && isAccumulator(MI);
2481 }
2482
2483
2484 bool HexagonInstrInfo::isVecALU(const MachineInstr *MI) const {
2485   if (!MI)
2486     return false;
2487   const uint64_t F = get(MI->getOpcode()).TSFlags;
2488   const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
2489   return
2490     V == HexagonII::TypeCVI_VA         ||
2491     V == HexagonII::TypeCVI_VA_DV;
2492 }
2493
2494
2495 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr *ProdMI,
2496       const MachineInstr *ConsMI) const {
2497   if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2498     return true;
2499
2500   if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2501     return true;
2502
2503   if (mayBeNewStore(ConsMI))
2504     return true;
2505
2506   return false;
2507 }
2508
2509
2510 /// \brief Can these instructions execute at the same time in a bundle.
2511 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr *First,
2512       const MachineInstr *Second) const {
2513   if (DisableNVSchedule)
2514     return false;
2515   if (mayBeNewStore(Second)) {
2516     // Make sure the definition of the first instruction is the value being
2517     // stored.
2518     const MachineOperand &Stored =
2519       Second->getOperand(Second->getNumOperands() - 1);
2520     if (!Stored.isReg())
2521       return false;
2522     for (unsigned i = 0, e = First->getNumOperands(); i < e; ++i) {
2523       const MachineOperand &Op = First->getOperand(i);
2524       if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
2525         return true;
2526     }
2527   }
2528   return false;
2529 }
2530
2531
2532 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
2533   for (auto &I : *B)
2534     if (I.isEHLabel())
2535       return true;
2536   return false;
2537 }
2538
2539
2540 // Returns true if an instruction can be converted into a non-extended
2541 // equivalent instruction.
2542 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr *MI) const {
2543   short NonExtOpcode;
2544   // Check if the instruction has a register form that uses register in place
2545   // of the extended operand, if so return that as the non-extended form.
2546   if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
2547     return true;
2548
2549   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
2550     // Check addressing mode and retrieve non-ext equivalent instruction.
2551
2552     switch (getAddrMode(MI)) {
2553     case HexagonII::Absolute :
2554       // Load/store with absolute addressing mode can be converted into
2555       // base+offset mode.
2556       NonExtOpcode = Hexagon::getBaseWithImmOffset(MI->getOpcode());
2557       break;
2558     case HexagonII::BaseImmOffset :
2559       // Load/store with base+offset addressing mode can be converted into
2560       // base+register offset addressing mode. However left shift operand should
2561       // be set to 0.
2562       NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
2563       break;
2564     case HexagonII::BaseLongOffset:
2565       NonExtOpcode = Hexagon::getRegShlForm(MI->getOpcode());
2566       break;
2567     default:
2568       return false;
2569     }
2570     if (NonExtOpcode < 0)
2571       return false;
2572     return true;
2573   }
2574   return false;
2575 }
2576
2577
2578 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr *MI) const {
2579   return Hexagon::getRealHWInstr(MI->getOpcode(),
2580                                  Hexagon::InstrType_Pseudo) >= 0;
2581 }
2582
2583
2584 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
2585       const {
2586   MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
2587   while (I != E) {
2588     if (I->isBarrier())
2589       return true;
2590     ++I;
2591   }
2592   return false;
2593 }
2594
2595
2596 // Returns true, if a LD insn can be promoted to a cur load.
2597 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr *MI) const {
2598   auto &HST = MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>();
2599   const uint64_t F = MI->getDesc().TSFlags;
2600   return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
2601          HST.hasV60TOps();
2602 }
2603
2604
2605 // Returns true, if a ST insn can be promoted to a new-value store.
2606 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
2607   const uint64_t F = MI->getDesc().TSFlags;
2608   return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
2609 }
2610
2611
2612 bool HexagonInstrInfo::producesStall(const MachineInstr *ProdMI,
2613       const MachineInstr *ConsMI) const {
2614   // There is no stall when ProdMI is not a V60 vector.
2615   if (!isV60VectorInstruction(ProdMI))
2616     return false;
2617
2618   // There is no stall when ProdMI and ConsMI are not dependent.
2619   if (!isDependent(ProdMI, ConsMI))
2620     return false;
2621
2622   // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
2623   // are scheduled in consecutive packets.
2624   if (isVecUsableNextPacket(ProdMI, ConsMI))
2625     return false;
2626
2627   return true;
2628 }
2629
2630
2631 bool HexagonInstrInfo::producesStall(const MachineInstr *MI,
2632       MachineBasicBlock::const_instr_iterator BII) const {
2633   // There is no stall when I is not a V60 vector.
2634   if (!isV60VectorInstruction(MI))
2635     return false;
2636
2637   MachineBasicBlock::const_instr_iterator MII = BII;
2638   MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
2639
2640   if (!(*MII).isBundle()) {
2641     const MachineInstr *J = &*MII;
2642     if (!isV60VectorInstruction(J))
2643       return false;
2644     else if (isVecUsableNextPacket(J, MI))
2645       return false;
2646     return true;
2647   }
2648
2649   for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
2650     const MachineInstr *J = &*MII;
2651     if (producesStall(J, MI))
2652       return true;
2653   }
2654   return false;
2655 }
2656
2657
2658 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr *MI,
2659       unsigned PredReg) const {
2660   for (unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
2661     const MachineOperand &MO = MI->getOperand(opNum);
2662     if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
2663       return false; // Predicate register must be explicitly defined.
2664   }
2665
2666   // Hexagon Programmer's Reference says that decbin, memw_locked, and
2667   // memd_locked cannot be used as .new as well,
2668   // but we don't seem to have these instructions defined.
2669   return MI->getOpcode() != Hexagon::A4_tlbmatch;
2670 }
2671
2672
2673 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
2674   return (Opcode == Hexagon::J2_jumpt)      ||
2675          (Opcode == Hexagon::J2_jumpf)      ||
2676          (Opcode == Hexagon::J2_jumptnew)   ||
2677          (Opcode == Hexagon::J2_jumpfnew)   ||
2678          (Opcode == Hexagon::J2_jumptnewpt) ||
2679          (Opcode == Hexagon::J2_jumpfnewpt);
2680 }
2681
2682
2683 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
2684   if (Cond.empty() || !isPredicated(Cond[0].getImm()))
2685     return false;
2686   return !isPredicatedTrue(Cond[0].getImm());
2687 }
2688
2689
2690 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
2691   const uint64_t F = MI->getDesc().TSFlags;
2692   return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
2693 }
2694
2695
2696 // Returns the base register in a memory access (load/store). The offset is
2697 // returned in Offset and the access size is returned in AccessSize.
2698 unsigned HexagonInstrInfo::getBaseAndOffset(const MachineInstr *MI,
2699       int &Offset, unsigned &AccessSize) const {
2700   // Return if it is not a base+offset type instruction or a MemOp.
2701   if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
2702       getAddrMode(MI) != HexagonII::BaseLongOffset &&
2703       !isMemOp(MI) && !isPostIncrement(MI))
2704     return 0;
2705
2706   // Since it is a memory access instruction, getMemAccessSize() should never
2707   // return 0.
2708   assert (getMemAccessSize(MI) &&
2709           "BaseImmOffset or BaseLongOffset or MemOp without accessSize");
2710
2711   // Return Values of getMemAccessSize() are
2712   // 0 - Checked in the assert above.
2713   // 1, 2, 3, 4 & 7, 8 - The statement below is correct for all these.
2714   // MemAccessSize is represented as 1+log2(N) where N is size in bits.
2715   AccessSize = (1U << (getMemAccessSize(MI) - 1));
2716
2717   unsigned basePos = 0, offsetPos = 0;
2718   if (!getBaseAndOffsetPosition(MI, basePos, offsetPos))
2719     return 0;
2720
2721   // Post increment updates its EA after the mem access,
2722   // so we need to treat its offset as zero.
2723   if (isPostIncrement(MI))
2724     Offset = 0;
2725   else {
2726     Offset = MI->getOperand(offsetPos).getImm();
2727   }
2728
2729   return MI->getOperand(basePos).getReg();
2730 }
2731
2732
2733 /// Return the position of the base and offset operands for this instruction.
2734 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr *MI,
2735       unsigned &BasePos, unsigned &OffsetPos) const {
2736   // Deal with memops first.
2737   if (isMemOp(MI)) {
2738     assert (MI->getOperand(0).isReg() && MI->getOperand(1).isImm() &&
2739             "Bad Memop.");
2740     BasePos = 0;
2741     OffsetPos = 1;
2742   } else if (MI->mayStore()) {
2743     BasePos = 0;
2744     OffsetPos = 1;
2745   } else if (MI->mayLoad()) {
2746     BasePos = 1;
2747     OffsetPos = 2;
2748   } else
2749     return false;
2750
2751   if (isPredicated(MI)) {
2752     BasePos++;
2753     OffsetPos++;
2754   }
2755   if (isPostIncrement(MI)) {
2756     BasePos++;
2757     OffsetPos++;
2758   }
2759
2760   if (!MI->getOperand(BasePos).isReg() || !MI->getOperand(OffsetPos).isImm())
2761     return false;
2762
2763   return true;
2764 }
2765
2766
2767 // Inserts branching instructions in reverse order of their occurence.
2768 // e.g. jump_t t1 (i1)
2769 // jump t2        (i2)
2770 // Jumpers = {i2, i1}
2771 SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
2772       MachineBasicBlock& MBB) const {
2773   SmallVector<MachineInstr*, 2> Jumpers;
2774   // If the block has no terminators, it just falls into the block after it.
2775   MachineBasicBlock::instr_iterator I = MBB.instr_end();
2776   if (I == MBB.instr_begin())
2777     return Jumpers;
2778
2779   // A basic block may looks like this:
2780   //
2781   //  [   insn
2782   //     EH_LABEL
2783   //      insn
2784   //      insn
2785   //      insn
2786   //     EH_LABEL
2787   //      insn     ]
2788   //
2789   // It has two succs but does not have a terminator
2790   // Don't know how to handle it.
2791   do {
2792     --I;
2793     if (I->isEHLabel())
2794       return Jumpers;
2795   } while (I != MBB.instr_begin());
2796
2797   I = MBB.instr_end();
2798   --I;
2799
2800   while (I->isDebugValue()) {
2801     if (I == MBB.instr_begin())
2802       return Jumpers;
2803     --I;
2804   }
2805   if (!isUnpredicatedTerminator(&*I))
2806     return Jumpers;
2807
2808   // Get the last instruction in the block.
2809   MachineInstr *LastInst = &*I;
2810   Jumpers.push_back(LastInst);
2811   MachineInstr *SecondLastInst = nullptr;
2812   // Find one more terminator if present.
2813   do {
2814     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
2815       if (!SecondLastInst) {
2816         SecondLastInst = &*I;
2817         Jumpers.push_back(SecondLastInst);
2818       } else // This is a third branch.
2819         return Jumpers;
2820     }
2821     if (I == MBB.instr_begin())
2822       break;
2823     --I;
2824   } while (true);
2825   return Jumpers;
2826 }
2827
2828
2829 // Returns Operand Index for the constant extended instruction.
2830 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
2831   const uint64_t F = MI->getDesc().TSFlags;
2832   return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
2833 }
2834
2835 // See if instruction could potentially be a duplex candidate.
2836 // If so, return its group. Zero otherwise.
2837 HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
2838       const MachineInstr *MI) const {
2839   unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
2840
2841   switch (MI->getOpcode()) {
2842   default:
2843     return HexagonII::HCG_None;
2844   //
2845   // Compound pairs.
2846   // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
2847   // "Rd16=#U6 ; jump #r9:2"
2848   // "Rd16=Rs16 ; jump #r9:2"
2849   //
2850   case Hexagon::C2_cmpeq:
2851   case Hexagon::C2_cmpgt:
2852   case Hexagon::C2_cmpgtu:
2853     DstReg = MI->getOperand(0).getReg();
2854     Src1Reg = MI->getOperand(1).getReg();
2855     Src2Reg = MI->getOperand(2).getReg();
2856     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2857         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2858         isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
2859       return HexagonII::HCG_A;
2860     break;
2861   case Hexagon::C2_cmpeqi:
2862   case Hexagon::C2_cmpgti:
2863   case Hexagon::C2_cmpgtui:
2864     // P0 = cmp.eq(Rs,#u2)
2865     DstReg = MI->getOperand(0).getReg();
2866     SrcReg = MI->getOperand(1).getReg();
2867     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2868         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2869         isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
2870         ((isUInt<5>(MI->getOperand(2).getImm())) ||
2871          (MI->getOperand(2).getImm() == -1)))
2872       return HexagonII::HCG_A;
2873     break;
2874   case Hexagon::A2_tfr:
2875     // Rd = Rs
2876     DstReg = MI->getOperand(0).getReg();
2877     SrcReg = MI->getOperand(1).getReg();
2878     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
2879       return HexagonII::HCG_A;
2880     break;
2881   case Hexagon::A2_tfrsi:
2882     // Rd = #u6
2883     // Do not test for #u6 size since the const is getting extended
2884     // regardless and compound could be formed.
2885     DstReg = MI->getOperand(0).getReg();
2886     if (isIntRegForSubInst(DstReg))
2887       return HexagonII::HCG_A;
2888     break;
2889   case Hexagon::S2_tstbit_i:
2890     DstReg = MI->getOperand(0).getReg();
2891     Src1Reg = MI->getOperand(1).getReg();
2892     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2893         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2894         MI->getOperand(2).isImm() &&
2895         isIntRegForSubInst(Src1Reg) && (MI->getOperand(2).getImm() == 0))
2896       return HexagonII::HCG_A;
2897     break;
2898   // The fact that .new form is used pretty much guarantees
2899   // that predicate register will match. Nevertheless,
2900   // there could be some false positives without additional
2901   // checking.
2902   case Hexagon::J2_jumptnew:
2903   case Hexagon::J2_jumpfnew:
2904   case Hexagon::J2_jumptnewpt:
2905   case Hexagon::J2_jumpfnewpt:
2906     Src1Reg = MI->getOperand(0).getReg();
2907     if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
2908         (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
2909       return HexagonII::HCG_B;
2910     break;
2911   // Transfer and jump:
2912   // Rd=#U6 ; jump #r9:2
2913   // Rd=Rs ; jump #r9:2
2914   // Do not test for jump range here.
2915   case Hexagon::J2_jump:
2916   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
2917     return HexagonII::HCG_C;
2918     break;
2919   }
2920
2921   return HexagonII::HCG_None;
2922 }
2923
2924
2925 // Returns -1 when there is no opcode found.
2926 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr *GA,
2927       const MachineInstr *GB) const {
2928   assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
2929   assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
2930   if ((GA->getOpcode() != Hexagon::C2_cmpeqi) ||
2931       (GB->getOpcode() != Hexagon::J2_jumptnew))
2932     return -1;
2933   unsigned DestReg = GA->getOperand(0).getReg();
2934   if (!GB->readsRegister(DestReg))
2935     return -1;
2936   if (DestReg == Hexagon::P0)
2937     return Hexagon::J4_cmpeqi_tp0_jump_nt;
2938   if (DestReg == Hexagon::P1)
2939     return Hexagon::J4_cmpeqi_tp1_jump_nt;
2940   return -1;
2941 }
2942
2943
2944 int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
2945   enum Hexagon::PredSense inPredSense;
2946   inPredSense = invertPredicate ? Hexagon::PredSense_false :
2947                                   Hexagon::PredSense_true;
2948   int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
2949   if (CondOpcode >= 0) // Valid Conditional opcode/instruction
2950     return CondOpcode;
2951
2952   // This switch case will be removed once all the instructions have been
2953   // modified to use relation maps.
2954   switch(Opc) {
2955   case Hexagon::TFRI_f:
2956     return !invertPredicate ? Hexagon::TFRI_cPt_f :
2957                               Hexagon::TFRI_cNotPt_f;
2958   }
2959
2960   llvm_unreachable("Unexpected predicable instruction");
2961 }
2962
2963
2964 // Return the cur value instruction for a given store.
2965 int HexagonInstrInfo::getDotCurOp(const MachineInstr* MI) const {
2966   switch (MI->getOpcode()) {
2967   default: llvm_unreachable("Unknown .cur type");
2968   case Hexagon::V6_vL32b_pi:
2969     return Hexagon::V6_vL32b_cur_pi;
2970   case Hexagon::V6_vL32b_ai:
2971     return Hexagon::V6_vL32b_cur_ai;
2972   //128B
2973   case Hexagon::V6_vL32b_pi_128B:
2974     return Hexagon::V6_vL32b_cur_pi_128B;
2975   case Hexagon::V6_vL32b_ai_128B:
2976     return Hexagon::V6_vL32b_cur_ai_128B;
2977   }
2978   return 0;
2979 }
2980
2981
2982
2983 // The diagram below shows the steps involved in the conversion of a predicated
2984 // store instruction to its .new predicated new-value form.
2985 //
2986 //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
2987 //                ^           ^
2988 //               /             \ (not OK. it will cause new-value store to be
2989 //              /               X conditional on p0.new while R2 producer is
2990 //             /                 \ on p0)
2991 //            /                   \.
2992 //     p.new store                 p.old NV store
2993 // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
2994 //            ^                  ^
2995 //             \                /
2996 //              \              /
2997 //               \            /
2998 //                 p.old store
2999 //             [if (p0)memw(R0+#0)=R2]
3000 //
3001 //
3002 // The following set of instructions further explains the scenario where
3003 // conditional new-value store becomes invalid when promoted to .new predicate
3004 // form.
3005 //
3006 // { 1) if (p0) r0 = add(r1, r2)
3007 //   2) p0 = cmp.eq(r3, #0) }
3008 //
3009 //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
3010 // the first two instructions because in instr 1, r0 is conditional on old value
3011 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3012 // is not valid for new-value stores.
3013 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3014 // from the "Conditional Store" list. Because a predicated new value store
3015 // would NOT be promoted to a double dot new store. See diagram below:
3016 // This function returns yes for those stores that are predicated but not
3017 // yet promoted to predicate dot new instructions.
3018 //
3019 //                          +---------------------+
3020 //                    /-----| if (p0) memw(..)=r0 |---------\~
3021 //                   ||     +---------------------+         ||
3022 //          promote  ||       /\       /\                   ||  promote
3023 //                   ||      /||\     /||\                  ||
3024 //                  \||/    demote     ||                  \||/
3025 //                   \/       ||       ||                   \/
3026 //       +-------------------------+   ||   +-------------------------+
3027 //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
3028 //       +-------------------------+   ||   +-------------------------+
3029 //                        ||           ||         ||
3030 //                        ||         demote      \||/
3031 //                      promote        ||         \/ NOT possible
3032 //                        ||           ||         /\~
3033 //                       \||/          ||        /||\~
3034 //                        \/           ||         ||
3035 //                      +-----------------------------+
3036 //                      | if (p0.new) memw(..)=r0.new |
3037 //                      +-----------------------------+
3038 //                           Double Dot New Store
3039 //
3040 // Returns the most basic instruction for the .new predicated instructions and
3041 // new-value stores.
3042 // For example, all of the following instructions will be converted back to the
3043 // same instruction:
3044 // 1) if (p0.new) memw(R0+#0) = R1.new  --->
3045 // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
3046 // 3) if (p0.new) memw(R0+#0) = R1      --->
3047 //
3048 // To understand the translation of instruction 1 to its original form, consider
3049 // a packet with 3 instructions.
3050 // { p0 = cmp.eq(R0,R1)
3051 //   if (p0.new) R2 = add(R3, R4)
3052 //   R5 = add (R3, R1)
3053 // }
3054 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3055 //
3056 // This instruction can be part of the previous packet only if both p0 and R2
3057 // are promoted to .new values. This promotion happens in steps, first
3058 // predicate register is promoted to .new and in the next iteration R2 is
3059 // promoted. Therefore, in case of dependence check failure (due to R5) during
3060 // next iteration, it should be converted back to its most basic form.
3061
3062
3063 // Return the new value instruction for a given store.
3064 int HexagonInstrInfo::getDotNewOp(const MachineInstr* MI) const {
3065   int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
3066   if (NVOpcode >= 0) // Valid new-value store instruction.
3067     return NVOpcode;
3068
3069   switch (MI->getOpcode()) {
3070   default: llvm_unreachable("Unknown .new type");
3071   case Hexagon::S4_storerb_ur:
3072     return Hexagon::S4_storerbnew_ur;
3073
3074   case Hexagon::S2_storerb_pci:
3075     return Hexagon::S2_storerb_pci;
3076
3077   case Hexagon::S2_storeri_pci:
3078     return Hexagon::S2_storeri_pci;
3079
3080   case Hexagon::S2_storerh_pci:
3081     return Hexagon::S2_storerh_pci;
3082
3083   case Hexagon::S2_storerd_pci:
3084     return Hexagon::S2_storerd_pci;
3085
3086   case Hexagon::S2_storerf_pci:
3087     return Hexagon::S2_storerf_pci;
3088
3089   case Hexagon::V6_vS32b_ai:
3090     return Hexagon::V6_vS32b_new_ai;
3091
3092   case Hexagon::V6_vS32b_pi:
3093     return Hexagon::V6_vS32b_new_pi;
3094
3095   // 128B
3096   case Hexagon::V6_vS32b_ai_128B:
3097     return Hexagon::V6_vS32b_new_ai_128B;
3098
3099   case Hexagon::V6_vS32b_pi_128B:
3100     return Hexagon::V6_vS32b_new_pi_128B;
3101   }
3102   return 0;
3103 }
3104
3105 // Returns the opcode to use when converting MI, which is a conditional jump,
3106 // into a conditional instruction which uses the .new value of the predicate.
3107 // We also use branch probabilities to add a hint to the jump.
3108 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr *MI,
3109       const MachineBranchProbabilityInfo *MBPI) const {
3110   // We assume that block can have at most two successors.
3111   bool taken = false;
3112   const MachineBasicBlock *Src = MI->getParent();
3113   const MachineOperand *BrTarget = &MI->getOperand(1);
3114   const MachineBasicBlock *Dst = BrTarget->getMBB();
3115
3116   const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
3117   if (Prediction >= BranchProbability(1,2))
3118     taken = true;
3119
3120   switch (MI->getOpcode()) {
3121   case Hexagon::J2_jumpt:
3122     return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3123   case Hexagon::J2_jumpf:
3124     return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3125
3126   default:
3127     llvm_unreachable("Unexpected jump instruction.");
3128   }
3129 }
3130
3131
3132 // Return .new predicate version for an instruction.
3133 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr *MI,
3134       const MachineBranchProbabilityInfo *MBPI) const {
3135   int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
3136   if (NewOpcode >= 0) // Valid predicate new instruction
3137     return NewOpcode;
3138
3139   switch (MI->getOpcode()) {
3140   // Condtional Jumps
3141   case Hexagon::J2_jumpt:
3142   case Hexagon::J2_jumpf:
3143     return getDotNewPredJumpOp(MI, MBPI);
3144
3145   default:
3146     assert(0 && "Unknown .new type");
3147   }
3148   return 0;
3149 }
3150
3151
3152 int HexagonInstrInfo::getDotOldOp(const int opc) const {
3153   int NewOp = opc;
3154   if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3155     NewOp = Hexagon::getPredOldOpcode(NewOp);
3156     assert(NewOp >= 0 &&
3157            "Couldn't change predicate new instruction to its old form.");
3158   }
3159
3160   if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3161     NewOp = Hexagon::getNonNVStore(NewOp);
3162     assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3163   }
3164   return NewOp;
3165 }
3166
3167
3168 // See if instruction could potentially be a duplex candidate.
3169 // If so, return its group. Zero otherwise.
3170 HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
3171       const MachineInstr *MI) const {
3172   unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3173   auto &HRI = getRegisterInfo();
3174
3175   switch (MI->getOpcode()) {
3176   default:
3177     return HexagonII::HSIG_None;
3178   //
3179   // Group L1:
3180   //
3181   // Rd = memw(Rs+#u4:2)
3182   // Rd = memub(Rs+#u4:0)
3183   case Hexagon::L2_loadri_io:
3184     DstReg = MI->getOperand(0).getReg();
3185     SrcReg = MI->getOperand(1).getReg();
3186     // Special case this one from Group L2.
3187     // Rd = memw(r29+#u5:2)
3188     if (isIntRegForSubInst(DstReg)) {
3189       if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3190           HRI.getStackRegister() == SrcReg &&
3191           MI->getOperand(2).isImm() &&
3192           isShiftedUInt<5,2>(MI->getOperand(2).getImm()))
3193         return HexagonII::HSIG_L2;
3194       // Rd = memw(Rs+#u4:2)
3195       if (isIntRegForSubInst(SrcReg) &&
3196           (MI->getOperand(2).isImm() &&
3197           isShiftedUInt<4,2>(MI->getOperand(2).getImm())))
3198         return HexagonII::HSIG_L1;
3199     }
3200     break;
3201   case Hexagon::L2_loadrub_io:
3202     // Rd = memub(Rs+#u4:0)
3203     DstReg = MI->getOperand(0).getReg();
3204     SrcReg = MI->getOperand(1).getReg();
3205     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3206         MI->getOperand(2).isImm() && isUInt<4>(MI->getOperand(2).getImm()))
3207       return HexagonII::HSIG_L1;
3208     break;
3209   //
3210   // Group L2:
3211   //
3212   // Rd = memh/memuh(Rs+#u3:1)
3213   // Rd = memb(Rs+#u3:0)
3214   // Rd = memw(r29+#u5:2) - Handled above.
3215   // Rdd = memd(r29+#u5:3)
3216   // deallocframe
3217   // [if ([!]p0[.new])] dealloc_return
3218   // [if ([!]p0[.new])] jumpr r31
3219   case Hexagon::L2_loadrh_io:
3220   case Hexagon::L2_loadruh_io:
3221     // Rd = memh/memuh(Rs+#u3:1)
3222     DstReg = MI->getOperand(0).getReg();
3223     SrcReg = MI->getOperand(1).getReg();
3224     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3225         MI->getOperand(2).isImm() &&
3226         isShiftedUInt<3,1>(MI->getOperand(2).getImm()))
3227       return HexagonII::HSIG_L2;
3228     break;
3229   case Hexagon::L2_loadrb_io:
3230     // Rd = memb(Rs+#u3:0)
3231     DstReg = MI->getOperand(0).getReg();
3232     SrcReg = MI->getOperand(1).getReg();
3233     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3234         MI->getOperand(2).isImm() &&
3235         isUInt<3>(MI->getOperand(2).getImm()))
3236       return HexagonII::HSIG_L2;
3237     break;
3238   case Hexagon::L2_loadrd_io:
3239     // Rdd = memd(r29+#u5:3)
3240     DstReg = MI->getOperand(0).getReg();
3241     SrcReg = MI->getOperand(1).getReg();
3242     if (isDblRegForSubInst(DstReg, HRI) &&
3243         Hexagon::IntRegsRegClass.contains(SrcReg) &&
3244         HRI.getStackRegister() == SrcReg &&
3245         MI->getOperand(2).isImm() &&
3246         isShiftedUInt<5,3>(MI->getOperand(2).getImm()))
3247       return HexagonII::HSIG_L2;
3248     break;
3249   // dealloc_return is not documented in Hexagon Manual, but marked
3250   // with A_SUBINSN attribute in iset_v4classic.py.
3251   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3252   case Hexagon::L4_return:
3253   case Hexagon::L2_deallocframe:
3254     return HexagonII::HSIG_L2;
3255   case Hexagon::EH_RETURN_JMPR:
3256   case Hexagon::JMPret :
3257     // jumpr r31
3258     // Actual form JMPR %PC<imp-def>, %R31<imp-use>, %R0<imp-use,internal>.
3259     DstReg = MI->getOperand(0).getReg();
3260     if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
3261       return HexagonII::HSIG_L2;
3262     break;
3263   case Hexagon::JMPrett:
3264   case Hexagon::JMPretf:
3265   case Hexagon::JMPrettnewpt:
3266   case Hexagon::JMPretfnewpt :
3267   case Hexagon::JMPrettnew :
3268   case Hexagon::JMPretfnew :
3269     DstReg = MI->getOperand(1).getReg();
3270     SrcReg = MI->getOperand(0).getReg();
3271     // [if ([!]p0[.new])] jumpr r31
3272     if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
3273         (Hexagon::P0 == SrcReg)) &&
3274         (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
3275       return HexagonII::HSIG_L2;
3276      break;
3277   case Hexagon::L4_return_t :
3278   case Hexagon::L4_return_f :
3279   case Hexagon::L4_return_tnew_pnt :
3280   case Hexagon::L4_return_fnew_pnt :
3281   case Hexagon::L4_return_tnew_pt :
3282   case Hexagon::L4_return_fnew_pt :
3283     // [if ([!]p0[.new])] dealloc_return
3284     SrcReg = MI->getOperand(0).getReg();
3285     if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
3286       return HexagonII::HSIG_L2;
3287     break;
3288   //
3289   // Group S1:
3290   //
3291   // memw(Rs+#u4:2) = Rt
3292   // memb(Rs+#u4:0) = Rt
3293   case Hexagon::S2_storeri_io:
3294     // Special case this one from Group S2.
3295     // memw(r29+#u5:2) = Rt
3296     Src1Reg = MI->getOperand(0).getReg();
3297     Src2Reg = MI->getOperand(2).getReg();
3298     if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3299         isIntRegForSubInst(Src2Reg) &&
3300         HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
3301         isShiftedUInt<5,2>(MI->getOperand(1).getImm()))
3302       return HexagonII::HSIG_S2;
3303     // memw(Rs+#u4:2) = Rt
3304     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3305         MI->getOperand(1).isImm() &&
3306         isShiftedUInt<4,2>(MI->getOperand(1).getImm()))
3307       return HexagonII::HSIG_S1;
3308     break;
3309   case Hexagon::S2_storerb_io:
3310     // memb(Rs+#u4:0) = Rt
3311     Src1Reg = MI->getOperand(0).getReg();
3312     Src2Reg = MI->getOperand(2).getReg();
3313     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3314         MI->getOperand(1).isImm() && isUInt<4>(MI->getOperand(1).getImm()))
3315       return HexagonII::HSIG_S1;
3316     break;
3317   //
3318   // Group S2:
3319   //
3320   // memh(Rs+#u3:1) = Rt
3321   // memw(r29+#u5:2) = Rt
3322   // memd(r29+#s6:3) = Rtt
3323   // memw(Rs+#u4:2) = #U1
3324   // memb(Rs+#u4) = #U1
3325   // allocframe(#u5:3)
3326   case Hexagon::S2_storerh_io:
3327     // memh(Rs+#u3:1) = Rt
3328     Src1Reg = MI->getOperand(0).getReg();
3329     Src2Reg = MI->getOperand(2).getReg();
3330     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3331         MI->getOperand(1).isImm() &&
3332         isShiftedUInt<3,1>(MI->getOperand(1).getImm()))
3333       return HexagonII::HSIG_S1;
3334     break;
3335   case Hexagon::S2_storerd_io:
3336     // memd(r29+#s6:3) = Rtt
3337     Src1Reg = MI->getOperand(0).getReg();
3338     Src2Reg = MI->getOperand(2).getReg();
3339     if (isDblRegForSubInst(Src2Reg, HRI) &&
3340         Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3341         HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
3342         isShiftedInt<6,3>(MI->getOperand(1).getImm()))
3343       return HexagonII::HSIG_S2;
3344     break;
3345   case Hexagon::S4_storeiri_io:
3346     // memw(Rs+#u4:2) = #U1
3347     Src1Reg = MI->getOperand(0).getReg();
3348     if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
3349         isShiftedUInt<4,2>(MI->getOperand(1).getImm()) &&
3350         MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
3351       return HexagonII::HSIG_S2;
3352     break;
3353   case Hexagon::S4_storeirb_io:
3354     // memb(Rs+#u4) = #U1
3355     Src1Reg = MI->getOperand(0).getReg();
3356     if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
3357         isUInt<4>(MI->getOperand(1).getImm()) && MI->getOperand(2).isImm() &&
3358         MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
3359       return HexagonII::HSIG_S2;
3360     break;
3361   case Hexagon::S2_allocframe:
3362     if (MI->getOperand(0).isImm() &&
3363         isShiftedUInt<5,3>(MI->getOperand(0).getImm()))
3364       return HexagonII::HSIG_S1;
3365     break;
3366   //
3367   // Group A:
3368   //
3369   // Rx = add(Rx,#s7)
3370   // Rd = Rs
3371   // Rd = #u6
3372   // Rd = #-1
3373   // if ([!]P0[.new]) Rd = #0
3374   // Rd = add(r29,#u6:2)
3375   // Rx = add(Rx,Rs)
3376   // P0 = cmp.eq(Rs,#u2)
3377   // Rdd = combine(#0,Rs)
3378   // Rdd = combine(Rs,#0)
3379   // Rdd = combine(#u2,#U2)
3380   // Rd = add(Rs,#1)
3381   // Rd = add(Rs,#-1)
3382   // Rd = sxth/sxtb/zxtb/zxth(Rs)
3383   // Rd = and(Rs,#1)
3384   case Hexagon::A2_addi:
3385     DstReg = MI->getOperand(0).getReg();
3386     SrcReg = MI->getOperand(1).getReg();
3387     if (isIntRegForSubInst(DstReg)) {
3388       // Rd = add(r29,#u6:2)
3389       if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3390         HRI.getStackRegister() == SrcReg && MI->getOperand(2).isImm() &&
3391         isShiftedUInt<6,2>(MI->getOperand(2).getImm()))
3392         return HexagonII::HSIG_A;
3393       // Rx = add(Rx,#s7)
3394       if ((DstReg == SrcReg) && MI->getOperand(2).isImm() &&
3395           isInt<7>(MI->getOperand(2).getImm()))
3396         return HexagonII::HSIG_A;
3397       // Rd = add(Rs,#1)
3398       // Rd = add(Rs,#-1)
3399       if (isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
3400           ((MI->getOperand(2).getImm() == 1) ||
3401           (MI->getOperand(2).getImm() == -1)))
3402         return HexagonII::HSIG_A;
3403     }
3404     break;
3405   case Hexagon::A2_add:
3406     // Rx = add(Rx,Rs)
3407     DstReg = MI->getOperand(0).getReg();
3408     Src1Reg = MI->getOperand(1).getReg();
3409     Src2Reg = MI->getOperand(2).getReg();
3410     if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
3411         isIntRegForSubInst(Src2Reg))
3412       return HexagonII::HSIG_A;
3413     break;
3414   case Hexagon::A2_andir:
3415     // Same as zxtb.
3416     // Rd16=and(Rs16,#255)
3417     // Rd16=and(Rs16,#1)
3418     DstReg = MI->getOperand(0).getReg();
3419     SrcReg = MI->getOperand(1).getReg();
3420     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3421         MI->getOperand(2).isImm() &&
3422         ((MI->getOperand(2).getImm() == 1) ||
3423         (MI->getOperand(2).getImm() == 255)))
3424       return HexagonII::HSIG_A;
3425     break;
3426   case Hexagon::A2_tfr:
3427     // Rd = Rs
3428     DstReg = MI->getOperand(0).getReg();
3429     SrcReg = MI->getOperand(1).getReg();
3430     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3431       return HexagonII::HSIG_A;
3432     break;
3433   case Hexagon::A2_tfrsi:
3434     // Rd = #u6
3435     // Do not test for #u6 size since the const is getting extended
3436     // regardless and compound could be formed.
3437     // Rd = #-1
3438     DstReg = MI->getOperand(0).getReg();
3439     if (isIntRegForSubInst(DstReg))
3440       return HexagonII::HSIG_A;
3441     break;
3442   case Hexagon::C2_cmoveit:
3443   case Hexagon::C2_cmovenewit:
3444   case Hexagon::C2_cmoveif:
3445   case Hexagon::C2_cmovenewif:
3446     // if ([!]P0[.new]) Rd = #0
3447     // Actual form:
3448     // %R16<def> = C2_cmovenewit %P0<internal>, 0, %R16<imp-use,undef>;
3449     DstReg = MI->getOperand(0).getReg();
3450     SrcReg = MI->getOperand(1).getReg();
3451     if (isIntRegForSubInst(DstReg) &&
3452         Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
3453         MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0)
3454       return HexagonII::HSIG_A;
3455     break;
3456   case Hexagon::C2_cmpeqi:
3457     // P0 = cmp.eq(Rs,#u2)
3458     DstReg = MI->getOperand(0).getReg();
3459     SrcReg = MI->getOperand(1).getReg();
3460     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3461         Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
3462         MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm()))
3463       return HexagonII::HSIG_A;
3464     break;
3465   case Hexagon::A2_combineii:
3466   case Hexagon::A4_combineii:
3467     // Rdd = combine(#u2,#U2)
3468     DstReg = MI->getOperand(0).getReg();
3469     if (isDblRegForSubInst(DstReg, HRI) &&
3470         ((MI->getOperand(1).isImm() && isUInt<2>(MI->getOperand(1).getImm())) ||
3471         (MI->getOperand(1).isGlobal() &&
3472         isUInt<2>(MI->getOperand(1).getOffset()))) &&
3473         ((MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm())) ||
3474         (MI->getOperand(2).isGlobal() &&
3475         isUInt<2>(MI->getOperand(2).getOffset()))))
3476       return HexagonII::HSIG_A;
3477     break;
3478   case Hexagon::A4_combineri:
3479     // Rdd = combine(Rs,#0)
3480     DstReg = MI->getOperand(0).getReg();
3481     SrcReg = MI->getOperand(1).getReg();
3482     if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3483         ((MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) ||
3484         (MI->getOperand(2).isGlobal() && MI->getOperand(2).getOffset() == 0)))
3485       return HexagonII::HSIG_A;
3486     break;
3487   case Hexagon::A4_combineir:
3488     // Rdd = combine(#0,Rs)
3489     DstReg = MI->getOperand(0).getReg();
3490     SrcReg = MI->getOperand(2).getReg();
3491     if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3492         ((MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) ||
3493         (MI->getOperand(1).isGlobal() && MI->getOperand(1).getOffset() == 0)))
3494       return HexagonII::HSIG_A;
3495     break;
3496   case Hexagon::A2_sxtb:
3497   case Hexagon::A2_sxth:
3498   case Hexagon::A2_zxtb:
3499   case Hexagon::A2_zxth:
3500     // Rd = sxth/sxtb/zxtb/zxth(Rs)
3501     DstReg = MI->getOperand(0).getReg();
3502     SrcReg = MI->getOperand(1).getReg();
3503     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3504       return HexagonII::HSIG_A;
3505     break;
3506   }
3507
3508   return HexagonII::HSIG_None;
3509 }
3510
3511
3512 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr *MI) const {
3513   return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Real);
3514 }
3515
3516
3517 // Return first non-debug instruction in the basic block.
3518 MachineInstr *HexagonInstrInfo::getFirstNonDbgInst(MachineBasicBlock *BB)
3519       const {
3520   for (auto MII = BB->instr_begin(), End = BB->instr_end(); MII != End; MII++) {
3521     MachineInstr *MI = &*MII;
3522     if (MI->isDebugValue())
3523       continue;
3524     return MI;
3525   }
3526   return nullptr;
3527 }
3528
3529
3530 unsigned HexagonInstrInfo::getInstrTimingClassLatency(
3531       const InstrItineraryData *ItinData, const MachineInstr *MI) const {
3532   // Default to one cycle for no itinerary. However, an "empty" itinerary may
3533   // still have a MinLatency property, which getStageLatency checks.
3534   if (!ItinData)
3535     return getInstrLatency(ItinData, MI);
3536
3537   // Get the latency embedded in the itinerary. If we're not using timing class
3538   // latencies or if we using BSB scheduling, then restrict the maximum latency
3539   // to 1 (that is, either 0 or 1).
3540   if (MI->isTransient())
3541     return 0;
3542   unsigned Latency = ItinData->getStageLatency(MI->getDesc().getSchedClass());
3543   if (!EnableTimingClassLatency ||
3544       MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>().
3545       useBSBScheduling())
3546     if (Latency > 1)
3547       Latency = 1;
3548   return Latency;
3549 }
3550
3551
3552 // inverts the predication logic.
3553 // p -> NotP
3554 // NotP -> P
3555 bool HexagonInstrInfo::getInvertedPredSense(
3556       SmallVectorImpl<MachineOperand> &Cond) const {
3557   if (Cond.empty())
3558     return false;
3559   unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
3560   Cond[0].setImm(Opc);
3561   return true;
3562 }
3563
3564
3565 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
3566   int InvPredOpcode;
3567   InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
3568                                         : Hexagon::getTruePredOpcode(Opc);
3569   if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
3570     return InvPredOpcode;
3571
3572   llvm_unreachable("Unexpected predicated instruction");
3573 }
3574
3575
3576 // Returns the max value that doesn't need to be extended.
3577 int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
3578   const uint64_t F = MI->getDesc().TSFlags;
3579   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
3580                     & HexagonII::ExtentSignedMask;
3581   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
3582                     & HexagonII::ExtentBitsMask;
3583
3584   if (isSigned) // if value is signed
3585     return ~(-1U << (bits - 1));
3586   else
3587     return ~(-1U << bits);
3588 }
3589
3590
3591 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr* MI) const {
3592   const uint64_t F = MI->getDesc().TSFlags;
3593   return (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
3594 }
3595
3596
3597 // Returns the min value that doesn't need to be extended.
3598 int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
3599   const uint64_t F = MI->getDesc().TSFlags;
3600   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
3601                     & HexagonII::ExtentSignedMask;
3602   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
3603                     & HexagonII::ExtentBitsMask;
3604
3605   if (isSigned) // if value is signed
3606     return -1U << (bits - 1);
3607   else
3608     return 0;
3609 }
3610
3611
3612 // Returns opcode of the non-extended equivalent instruction.
3613 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr *MI) const {
3614   // Check if the instruction has a register form that uses register in place
3615   // of the extended operand, if so return that as the non-extended form.
3616   short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
3617     if (NonExtOpcode >= 0)
3618       return NonExtOpcode;
3619
3620   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
3621     // Check addressing mode and retrieve non-ext equivalent instruction.
3622     switch (getAddrMode(MI)) {
3623     case HexagonII::Absolute :
3624       return Hexagon::getBaseWithImmOffset(MI->getOpcode());
3625     case HexagonII::BaseImmOffset :
3626       return Hexagon::getBaseWithRegOffset(MI->getOpcode());
3627     case HexagonII::BaseLongOffset:
3628       return Hexagon::getRegShlForm(MI->getOpcode());
3629
3630     default:
3631       return -1;
3632     }
3633   }
3634   return -1;
3635 }
3636
3637
3638 bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
3639       unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
3640   if (Cond.empty())
3641     return false;
3642   assert(Cond.size() == 2);
3643   if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
3644      DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
3645      return false;
3646   }
3647   PredReg = Cond[1].getReg();
3648   PredRegPos = 1;
3649   // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
3650   PredRegFlags = 0;
3651   if (Cond[1].isImplicit())
3652     PredRegFlags = RegState::Implicit;
3653   if (Cond[1].isUndef())
3654     PredRegFlags |= RegState::Undef;
3655   return true;
3656 }
3657
3658
3659 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr *MI) const {
3660   return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Pseudo);
3661 }
3662
3663
3664 short HexagonInstrInfo::getRegForm(const MachineInstr *MI) const {
3665   return Hexagon::getRegForm(MI->getOpcode());
3666 }
3667
3668
3669 // Return the number of bytes required to encode the instruction.
3670 // Hexagon instructions are fixed length, 4 bytes, unless they
3671 // use a constant extender, which requires another 4 bytes.
3672 // For debug instructions and prolog labels, return 0.
3673 unsigned HexagonInstrInfo::getSize(const MachineInstr *MI) const {
3674   if (MI->isDebugValue() || MI->isPosition())
3675     return 0;
3676
3677   unsigned Size = MI->getDesc().getSize();
3678   if (!Size)
3679     // Assume the default insn size in case it cannot be determined
3680     // for whatever reason.
3681     Size = HEXAGON_INSTR_SIZE;
3682
3683   if (isConstExtended(MI) || isExtended(MI))
3684     Size += HEXAGON_INSTR_SIZE;
3685
3686   // Try and compute number of instructions in asm.
3687   if (BranchRelaxAsmLarge && MI->getOpcode() == Hexagon::INLINEASM) {
3688     const MachineBasicBlock &MBB = *MI->getParent();
3689     const MachineFunction *MF = MBB.getParent();
3690     const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
3691
3692     // Count the number of register definitions to find the asm string.
3693     unsigned NumDefs = 0;
3694     for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
3695          ++NumDefs)
3696       assert(NumDefs != MI->getNumOperands()-2 && "No asm string?");
3697
3698     assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
3699     // Disassemble the AsmStr and approximate number of instructions.
3700     const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
3701     Size = getInlineAsmLength(AsmStr, *MAI);
3702   }
3703
3704   return Size;
3705 }
3706
3707
3708 uint64_t HexagonInstrInfo::getType(const MachineInstr* MI) const {
3709   const uint64_t F = MI->getDesc().TSFlags;
3710   return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
3711 }
3712
3713
3714 unsigned HexagonInstrInfo::getUnits(const MachineInstr* MI) const {
3715   const TargetSubtargetInfo &ST = MI->getParent()->getParent()->getSubtarget();
3716   const InstrItineraryData &II = *ST.getInstrItineraryData();
3717   const InstrStage &IS = *II.beginStage(MI->getDesc().getSchedClass());
3718
3719   return IS.getUnits();
3720 }
3721
3722
3723 unsigned HexagonInstrInfo::getValidSubTargets(const unsigned Opcode) const {
3724   const uint64_t F = get(Opcode).TSFlags;
3725   return (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask;
3726 }
3727
3728
3729 // Calculate size of the basic block without debug instructions.
3730 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
3731   return nonDbgMICount(BB->instr_begin(), BB->instr_end());
3732 }
3733
3734
3735 unsigned HexagonInstrInfo::nonDbgBundleSize(
3736       MachineBasicBlock::const_iterator BundleHead) const {
3737   assert(BundleHead->isBundle() && "Not a bundle header");
3738   auto MII = BundleHead.getInstrIterator();
3739   // Skip the bundle header.
3740   return nonDbgMICount(++MII, getBundleEnd(BundleHead));
3741 }
3742
3743
3744 /// immediateExtend - Changes the instruction in place to one using an immediate
3745 /// extender.
3746 void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
3747   assert((isExtendable(MI)||isConstExtended(MI)) &&
3748                                "Instruction must be extendable");
3749   // Find which operand is extendable.
3750   short ExtOpNum = getCExtOpNum(MI);
3751   MachineOperand &MO = MI->getOperand(ExtOpNum);
3752   // This needs to be something we understand.
3753   assert((MO.isMBB() || MO.isImm()) &&
3754          "Branch with unknown extendable field type");
3755   // Mark given operand as extended.
3756   MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
3757 }
3758
3759
3760 bool HexagonInstrInfo::invertAndChangeJumpTarget(
3761       MachineInstr* MI, MachineBasicBlock* NewTarget) const {
3762   DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to BB#"
3763                << NewTarget->getNumber(); MI->dump(););
3764   assert(MI->isBranch());
3765   unsigned NewOpcode = getInvertedPredicatedOpcode(MI->getOpcode());
3766   int TargetPos = MI->getNumOperands() - 1;
3767   // In general branch target is the last operand,
3768   // but some implicit defs added at the end might change it.
3769   while ((TargetPos > -1) && !MI->getOperand(TargetPos).isMBB())
3770     --TargetPos;
3771   assert((TargetPos >= 0) && MI->getOperand(TargetPos).isMBB());
3772   MI->getOperand(TargetPos).setMBB(NewTarget);
3773   if (EnableBranchPrediction && isPredicatedNew(MI)) {
3774     NewOpcode = reversePrediction(NewOpcode);
3775   }
3776   MI->setDesc(get(NewOpcode));
3777   return true;
3778 }
3779
3780
3781 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
3782   /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
3783   MachineFunction::iterator A = MF.begin();
3784   MachineBasicBlock &B = *A;
3785   MachineBasicBlock::iterator I = B.begin();
3786   MachineInstr *MI = &*I;
3787   DebugLoc DL = MI->getDebugLoc();
3788   MachineInstr *NewMI;
3789
3790   for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
3791        insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
3792     NewMI = BuildMI(B, MI, DL, get(insn));
3793     DEBUG(dbgs() << "\n" << getName(NewMI->getOpcode()) <<
3794           "  Class: " << NewMI->getDesc().getSchedClass());
3795     NewMI->eraseFromParent();
3796   }
3797   /* --- The code above is used to generate complete set of Hexagon Insn --- */
3798 }
3799
3800
3801 // inverts the predication logic.
3802 // p -> NotP
3803 // NotP -> P
3804 bool HexagonInstrInfo::reversePredSense(MachineInstr* MI) const {
3805   DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI->dump());
3806   MI->setDesc(get(getInvertedPredicatedOpcode(MI->getOpcode())));
3807   return true;
3808 }
3809
3810
3811 // Reverse the branch prediction.
3812 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
3813   int PredRevOpcode = -1;
3814   if (isPredictedTaken(Opcode))
3815     PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
3816   else
3817     PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
3818   assert(PredRevOpcode > 0);
3819   return PredRevOpcode;
3820 }
3821
3822
3823 // TODO: Add more rigorous validation.
3824 bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
3825       const {
3826   return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
3827 }
3828