Just add a fixme about a possibly faster implementation of some atomic loads on some...
[oota-llvm.git] / lib / Target / Hexagon / HexagonCFGOptimizer.cpp
1 //===-- HexagonCFGOptimizer.cpp - CFG optimizations -----------------------===//
2 //                     The LLVM Compiler Infrastructure
3 //
4 // This file is distributed under the University of Illinois Open Source
5 // License. See LICENSE.TXT for details.
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Hexagon.h"
10 #include "HexagonMachineFunctionInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "HexagonTargetMachine.h"
13 #include "llvm/CodeGen/MachineDominators.h"
14 #include "llvm/CodeGen/MachineFunctionPass.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/CodeGen/MachineLoopInfo.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/Passes.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetMachine.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25
26 using namespace llvm;
27
28 #define DEBUG_TYPE "hexagon_cfg"
29
30 namespace llvm {
31   void initializeHexagonCFGOptimizerPass(PassRegistry&);
32 }
33
34
35 namespace {
36
37 class HexagonCFGOptimizer : public MachineFunctionPass {
38
39 private:
40   const HexagonTargetMachine& QTM;
41   const HexagonSubtarget &QST;
42
43   void InvertAndChangeJumpTarget(MachineInstr*, MachineBasicBlock*);
44
45  public:
46   static char ID;
47   HexagonCFGOptimizer(const HexagonTargetMachine& TM)
48     : MachineFunctionPass(ID), QTM(TM), QST(*TM.getSubtargetImpl()) {
49     initializeHexagonCFGOptimizerPass(*PassRegistry::getPassRegistry());
50   }
51
52   const char *getPassName() const override {
53     return "Hexagon CFG Optimizer";
54   }
55   bool runOnMachineFunction(MachineFunction &Fn) override;
56 };
57
58
59 char HexagonCFGOptimizer::ID = 0;
60
61 static bool IsConditionalBranch(int Opc) {
62   return (Opc == Hexagon::JMP_t) || (Opc == Hexagon::JMP_f)
63     || (Opc == Hexagon::JMP_tnew_t) || (Opc == Hexagon::JMP_fnew_t);
64 }
65
66
67 static bool IsUnconditionalJump(int Opc) {
68   return (Opc == Hexagon::JMP);
69 }
70
71
72 void
73 HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
74                                                MachineBasicBlock* NewTarget) {
75   const HexagonInstrInfo *QII = QTM.getSubtargetImpl()->getInstrInfo();
76   int NewOpcode = 0;
77   switch(MI->getOpcode()) {
78   case Hexagon::JMP_t:
79     NewOpcode = Hexagon::JMP_f;
80     break;
81
82   case Hexagon::JMP_f:
83     NewOpcode = Hexagon::JMP_t;
84     break;
85
86   case Hexagon::JMP_tnew_t:
87     NewOpcode = Hexagon::JMP_fnew_t;
88     break;
89
90   case Hexagon::JMP_fnew_t:
91     NewOpcode = Hexagon::JMP_tnew_t;
92     break;
93
94   default:
95     llvm_unreachable("Cannot handle this case");
96   }
97
98   MI->setDesc(QII->get(NewOpcode));
99   MI->getOperand(1).setMBB(NewTarget);
100 }
101
102
103 bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
104
105   // Loop over all of the basic blocks.
106   for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
107        MBBb != MBBe; ++MBBb) {
108     MachineBasicBlock* MBB = MBBb;
109
110     // Traverse the basic block.
111     MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
112     if (MII != MBB->end()) {
113       MachineInstr *MI = MII;
114       int Opc = MI->getOpcode();
115       if (IsConditionalBranch(Opc)) {
116
117         //
118         // (Case 1) Transform the code if the following condition occurs:
119         //   BB1: if (p0) jump BB3
120         //   ...falls-through to BB2 ...
121         //   BB2: jump BB4
122         //   ...next block in layout is BB3...
123         //   BB3: ...
124         //
125         //  Transform this to:
126         //  BB1: if (!p0) jump BB4
127         //  Remove BB2
128         //  BB3: ...
129         //
130         // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
131         //   BB1: if (p0) jump BB3
132         //   ...falls-through to BB2 ...
133         //   BB2: jump BB4
134         //   ...other basic blocks ...
135         //   BB4:
136         //   ...not a fall-thru
137         //   BB3: ...
138         //     jump BB4
139         //
140         // Transform this to:
141         //   BB1: if (!p0) jump BB4
142         //   Remove BB2
143         //   BB3: ...
144         //   BB4: ...
145         //
146         unsigned NumSuccs = MBB->succ_size();
147         MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
148         MachineBasicBlock* FirstSucc = *SI;
149         MachineBasicBlock* SecondSucc = *(++SI);
150         MachineBasicBlock* LayoutSucc = nullptr;
151         MachineBasicBlock* JumpAroundTarget = nullptr;
152
153         if (MBB->isLayoutSuccessor(FirstSucc)) {
154           LayoutSucc = FirstSucc;
155           JumpAroundTarget = SecondSucc;
156         } else if (MBB->isLayoutSuccessor(SecondSucc)) {
157           LayoutSucc = SecondSucc;
158           JumpAroundTarget = FirstSucc;
159         } else {
160           // Odd case...cannot handle.
161         }
162
163         // The target of the unconditional branch must be JumpAroundTarget.
164         // TODO: If not, we should not invert the unconditional branch.
165         MachineBasicBlock* CondBranchTarget = nullptr;
166         if ((MI->getOpcode() == Hexagon::JMP_t) ||
167             (MI->getOpcode() == Hexagon::JMP_f)) {
168           CondBranchTarget = MI->getOperand(1).getMBB();
169         }
170
171         if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
172           continue;
173         }
174
175         if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
176
177           // Ensure that BB2 has one instruction -- an unconditional jump.
178           if ((LayoutSucc->size() == 1) &&
179               IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
180             MachineBasicBlock* UncondTarget =
181               LayoutSucc->front().getOperand(0).getMBB();
182             // Check if the layout successor of BB2 is BB3.
183             bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
184             bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
185               JumpAroundTarget->size() >= 1 &&
186               IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
187               JumpAroundTarget->pred_size() == 1 &&
188               JumpAroundTarget->succ_size() == 1;
189
190             if (case1 || case2) {
191               InvertAndChangeJumpTarget(MI, UncondTarget);
192               MBB->removeSuccessor(JumpAroundTarget);
193               MBB->addSuccessor(UncondTarget);
194
195               // Remove the unconditional branch in LayoutSucc.
196               LayoutSucc->erase(LayoutSucc->begin());
197               LayoutSucc->removeSuccessor(UncondTarget);
198               LayoutSucc->addSuccessor(JumpAroundTarget);
199
200               // This code performs the conversion for case 2, which moves
201               // the block to the fall-thru case (BB3 in the code above).
202               if (case2 && !case1) {
203                 JumpAroundTarget->moveAfter(LayoutSucc);
204                 // only move a block if it doesn't have a fall-thru. otherwise
205                 // the CFG will be incorrect.
206                 if (!UncondTarget->canFallThrough()) {
207                   UncondTarget->moveAfter(JumpAroundTarget);
208                 }
209               }
210
211               //
212               // Correct live-in information. Is used by post-RA scheduler
213               // The live-in to LayoutSucc is now all values live-in to
214               // JumpAroundTarget.
215               //
216               std::vector<unsigned> OrigLiveIn(LayoutSucc->livein_begin(),
217                                                LayoutSucc->livein_end());
218               std::vector<unsigned> NewLiveIn(JumpAroundTarget->livein_begin(),
219                                               JumpAroundTarget->livein_end());
220               for (unsigned i = 0; i < OrigLiveIn.size(); ++i) {
221                 LayoutSucc->removeLiveIn(OrigLiveIn[i]);
222               }
223               for (unsigned i = 0; i < NewLiveIn.size(); ++i) {
224                 LayoutSucc->addLiveIn(NewLiveIn[i]);
225               }
226             }
227           }
228         }
229       }
230     }
231   }
232   return true;
233 }
234 }
235
236
237 //===----------------------------------------------------------------------===//
238 //                         Public Constructor Functions
239 //===----------------------------------------------------------------------===//
240
241 static void initializePassOnce(PassRegistry &Registry) {
242   PassInfo *PI = new PassInfo("Hexagon CFG Optimizer", "hexagon-cfg",
243                               &HexagonCFGOptimizer::ID, nullptr, false, false);
244   Registry.registerPass(*PI, true);
245 }
246
247 void llvm::initializeHexagonCFGOptimizerPass(PassRegistry &Registry) {
248   CALL_ONCE_INITIALIZATION(initializePassOnce)
249 }
250
251 FunctionPass *llvm::createHexagonCFGOptimizer(const HexagonTargetMachine &TM) {
252   return new HexagonCFGOptimizer(TM);
253 }