[ARM64] Increases the Sched Model accuracy for Cortex-A53.
[oota-llvm.git] / lib / Target / ARM64 / ARM64SchedA53.td
1 //=- ARM64SchedA53.td - ARM Cortex-A53 Scheduling Definitions -*- tablegen -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the itinerary class data for the ARM Cortex A53 processors.
11 //
12 //===----------------------------------------------------------------------===//
13
14 // ===---------------------------------------------------------------------===//
15 // The following definitions describe the simpler per-operand machine model.
16 // This works with MachineScheduler. See MCSchedModel.h for details.
17
18 // Cortex-A53 machine model for scheduling and other instruction cost heuristics.
19 def CortexA53Model : SchedMachineModel {
20   let MicroOpBufferSize = 0; // Explicitly set to zero since A53 is in-order.
21   let IssueWidth = 2;        // 2 micro-ops are dispatched per cycle.
22   let MinLatency = 1 ;       // OperandCycles are interpreted as MinLatency.
23   let LoadLatency = 3;       // Optimistic load latency assuming bypass.
24                              // This is overriden by OperandCycles if the
25                              // Itineraries are queried instead.
26   let MispredictPenalty = 9; // Based on "Cortex-A53 Software Optimisation
27                              // Specification - Instruction Timings"
28                              // v 1.0 Spreadsheet
29 }
30
31
32 //===----------------------------------------------------------------------===//
33 // Define each kind of processor resource and number available.
34
35 // Modeling each pipeline as a ProcResource using the BufferSize = 0 since
36 // Cortex-A53 is in-order.
37
38 def A53UnitALU    : ProcResource<2> { let BufferSize = 0; } // Int ALU
39 def A53UnitMAC    : ProcResource<1> { let BufferSize = 0; } // Int MAC
40 def A53UnitDiv    : ProcResource<1> { let BufferSize = 0; } // Int Division
41 def A53UnitLdSt   : ProcResource<1> { let BufferSize = 0; } // Load/Store
42 def A53UnitB      : ProcResource<1> { let BufferSize = 0; } // Branch
43 def A53UnitFPALU  : ProcResource<1> { let BufferSize = 0; } // FP ALU
44 def A53UnitFPMDS  : ProcResource<1> { let BufferSize = 0; } // FP Mult/Div/Sqrt
45
46
47 //===----------------------------------------------------------------------===//
48 // Subtarget-specific SchedWrite types which both map the ProcResources and
49 // set the latency.
50
51 let SchedModel = CortexA53Model in {
52
53 // ALU - Despite having a full latency of 4, most of the ALU instructions can
54 //       forward a cycle earlier and then two cycles earlier in the case of a
55 //       shift-only instruction. These latencies will be incorrect when the
56 //       result cannot be forwarded, but modeling isn't rocket surgery.
57 def : WriteRes<WriteImm, [A53UnitALU]> { let Latency = 3; }
58 def : WriteRes<WriteI, [A53UnitALU]> { let Latency = 3; }
59 def : WriteRes<WriteISReg, [A53UnitALU]> { let Latency = 3; }
60 def : WriteRes<WriteIEReg, [A53UnitALU]> { let Latency = 3; }
61 def : WriteRes<WriteIS, [A53UnitALU]> { let Latency = 2; }
62 def : WriteRes<WriteExtr, [A53UnitALU]> { let Latency = 3; }
63
64 // MAC
65 def : WriteRes<WriteIM32, [A53UnitMAC]> { let Latency = 4; }
66 def : WriteRes<WriteIM64, [A53UnitMAC]> { let Latency = 4; }
67
68 // Div
69 def : WriteRes<WriteID32, [A53UnitDiv]> { let Latency = 4; }
70 def : WriteRes<WriteID64, [A53UnitDiv]> { let Latency = 4; }
71
72 // Load
73 def : WriteRes<WriteLD, [A53UnitLdSt]> { let Latency = 4; }
74 def : WriteRes<WriteLDIdx, [A53UnitLdSt]> { let Latency = 4; }
75 def : WriteRes<WriteLDHi, [A53UnitLdSt]> { let Latency = 4; }
76
77 // Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd
78 //               below, choosing the median of 3 which makes the latency 6.
79 //               May model this more carefully in the future. The remaining
80 //               A53WriteVLD# types represent the 1-5 cycle issues explicitly.
81 def : WriteRes<WriteVLD, [A53UnitLdSt]> { let Latency = 6;
82                                           let ResourceCycles = [3]; }
83 def A53WriteVLD1 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 4; }
84 def A53WriteVLD2 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 5;
85                                                   let ResourceCycles = [2]; }
86 def A53WriteVLD3 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 6;
87                                                   let ResourceCycles = [3]; }
88 def A53WriteVLD4 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 7;
89                                                   let ResourceCycles = [4]; }
90 def A53WriteVLD5 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 8;
91                                                   let ResourceCycles = [5]; }
92
93 // Pre/Post Indexing - Performed as part of address generation which is already
94 //                     accounted for in the WriteST* latencies below
95 def : WriteRes<WriteAdr, []> { let Latency = 0; }
96
97 // Store
98 def : WriteRes<WriteST, [A53UnitLdSt]> { let Latency = 4; }
99 def : WriteRes<WriteSTP, [A53UnitLdSt]> { let Latency = 4; }
100 def : WriteRes<WriteSTIdx, [A53UnitLdSt]> { let Latency = 4; }
101 def : WriteRes<WriteSTX, [A53UnitLdSt]> { let Latency = 4; }
102
103 // Vector Store - Similar to vector loads, can take 1-3 cycles to issue.
104 def : WriteRes<WriteVST, [A53UnitLdSt]> { let Latency = 5;
105                                           let ResourceCycles = [2];}
106 def A53WriteVST1 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 4; }
107 def A53WriteVST2 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 5;
108                                                   let ResourceCycles = [2]; }
109 def A53WriteVST3 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 6;
110                                                   let ResourceCycles = [3]; }
111
112 // Branch
113 def : WriteRes<WriteBr, [A53UnitB]>;
114 def : WriteRes<WriteBrReg, [A53UnitB]>;
115 def : WriteRes<WriteSys, [A53UnitB]>;
116 def : WriteRes<WriteBarrier, [A53UnitB]>;
117 def : WriteRes<WriteHint, [A53UnitB]>;
118
119 // FP ALU
120 def : WriteRes<WriteF, [A53UnitFPALU]> { let Latency = 6; }
121 def : WriteRes<WriteFCmp, [A53UnitFPALU]> { let Latency = 6; }
122 def : WriteRes<WriteFCvt, [A53UnitFPALU]> { let Latency = 6; }
123 def : WriteRes<WriteFCopy, [A53UnitFPALU]> { let Latency = 6; }
124 def : WriteRes<WriteFImm, [A53UnitFPALU]> { let Latency = 6; }
125 def : WriteRes<WriteV, [A53UnitFPALU]> { let Latency = 6; }
126
127 // FP Mul, Div, Sqrt
128 def : WriteRes<WriteFMul, [A53UnitFPMDS]> { let Latency = 6; }
129 def : WriteRes<WriteFDiv, [A53UnitFPMDS]> { let Latency = 33;
130                                             let ResourceCycles = [29]; }
131 def A53WriteFMAC : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 10; }
132 def A53WriteFDivSP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 18;
133                                                      let ResourceCycles = [14]; }
134 def A53WriteFDivDP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 33;
135                                                      let ResourceCycles = [29]; }
136 def A53WriteFSqrtSP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 17;
137                                                       let ResourceCycles = [13]; }
138 def A53WriteFSqrtDP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 32;
139                                                       let ResourceCycles = [28]; }
140
141 //===----------------------------------------------------------------------===//
142 // Subtarget-specific SchedRead types.
143
144 // No forwarding for these reads.
145 def : ReadAdvance<ReadExtrHi, 0>;
146 def : ReadAdvance<ReadAdrBase, 0>;
147 def : ReadAdvance<ReadVLD, 0>;
148
149 // ALU - Most operands in the ALU pipes are not needed for two cycles. Shiftable
150 //       operands are needed one cycle later if and only if they are to be
151 //       shifted. Otherwise, they too are needed two cycle later.
152 def : ReadAdvance<ReadI, 2, [WriteImm,WriteI,
153                              WriteISReg, WriteIEReg,WriteIS,
154                              WriteID32,WriteID64,
155                              WriteIM32,WriteIM64]>;
156 def A53ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI,
157                                           WriteISReg, WriteIEReg,WriteIS,
158                                           WriteID32,WriteID64,
159                                           WriteIM32,WriteIM64]>;
160 def A53ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI,
161                                              WriteISReg, WriteIEReg,WriteIS,
162                                              WriteID32,WriteID64,
163                                              WriteIM32,WriteIM64]>;
164 def A53ReadISReg : SchedReadVariant<[
165         SchedVar<RegShiftedPred, [A53ReadShifted]>,
166         SchedVar<NoSchedPred, [A53ReadNotShifted]>]>;
167 def : SchedAlias<ReadISReg, A53ReadISReg>;
168
169 def A53ReadIEReg : SchedReadVariant<[
170         SchedVar<RegShiftedPred, [A53ReadShifted]>,
171         SchedVar<NoSchedPred, [A53ReadNotShifted]>]>;
172 def : SchedAlias<ReadIEReg, A53ReadIEReg>;
173
174 // MAC - Operands are generally needed one cycle later in the MAC pipe.
175 //       Accumulator operands are needed two cycles later.
176 def : ReadAdvance<ReadIM, 1, [WriteImm,WriteI,
177                               WriteISReg, WriteIEReg,WriteIS,
178                               WriteID32,WriteID64,
179                               WriteIM32,WriteIM64]>;
180 def : ReadAdvance<ReadIMA, 2, [WriteImm,WriteI,
181                                WriteISReg, WriteIEReg,WriteIS,
182                                WriteID32,WriteID64,
183                                WriteIM32,WriteIM64]>;
184
185 // Div
186 def : ReadAdvance<ReadID, 1, [WriteImm,WriteI,
187                               WriteISReg, WriteIEReg,WriteIS,
188                               WriteID32,WriteID64,
189                               WriteIM32,WriteIM64]>;
190
191 //===----------------------------------------------------------------------===//
192 // Subtarget-specific InstRWs.
193
194 //---
195 // Miscellaneous
196 //---
197 def : InstRW<[WriteI], (instrs COPY)>;
198
199 //---
200 // Vector Mul with Accumulate
201 //---
202 //def : InstRW<[WriteIM32, A53ReadIMA], (instregex "^M(ADD|SUB)W.*")>;
203 //def : InstRW<[WriteIM64, A53ReadIMA], (instregex "^M(ADD|SUB)X.*")>;
204
205 //---
206 // Vector Loads
207 //---
208 def : InstRW<[A53WriteVLD1], (instregex "LD1i(8|16|32|64)(_POST)?$")>;
209 def : InstRW<[A53WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
210 def : InstRW<[A53WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
211 def : InstRW<[A53WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
212 def : InstRW<[A53WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
213 def : InstRW<[A53WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
214
215 def : InstRW<[A53WriteVLD1], (instregex "LD2i(8|16|32|64)(_POST)?$")>;
216 def : InstRW<[A53WriteVLD1], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
217 def : InstRW<[A53WriteVLD2], (instregex "LD2Twov(8b|4h|2s)(_POST)?$")>;
218 def : InstRW<[A53WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)(_POST)?$")>;
219
220 def : InstRW<[A53WriteVLD2], (instregex "LD3i(8|16|32|64)(_POST)?$")>;
221 def : InstRW<[A53WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2dq)(_POST)?$")>;
222 def : InstRW<[A53WriteVLD4], (instregex "LD3Threev(8b|4h|2s|1d|16b|8h|4s)(_POST)?$")>;
223 def : InstRW<[A53WriteVLD3], (instregex "LD3Threev(2d)(_POST)?$")>;
224
225 def : InstRW<[A53WriteVLD2], (instregex "LD4i(8|16|32|64)(_POST)?$")>;
226 def : InstRW<[A53WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
227 def : InstRW<[A53WriteVLD5], (instregex "LD4Fourv(8b|4h|2s|1d|16b|8h|4s)(_POST)?$")>;
228 def : InstRW<[A53WriteVLD4], (instregex "LD4Fourv(2d)(_POST)?$")>;
229
230 def : InstRW<[A53WriteVLD1, A53WriteVLD1], (instregex "LDN?PS.*$")>;
231 def : InstRW<[A53WriteVLD2, A53WriteVLD2], (instregex "LDN?PD.*$")>;
232 def : InstRW<[A53WriteVLD4, A53WriteVLD4], (instregex "LDN?PQ.*$")>;
233
234 //---
235 // Vector Stores
236 //---
237 def : InstRW<[A53WriteVST1], (instregex "ST1i(8|16|32|64)(_POST)?$")>;
238 def : InstRW<[A53WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
239 def : InstRW<[A53WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
240 def : InstRW<[A53WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
241 def : InstRW<[A53WriteVST2], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
242
243 def : InstRW<[A53WriteVST1], (instregex "ST2i(8|16|32|64)(_POST)?$")>;
244 def : InstRW<[A53WriteVST1], (instregex "ST2Twov(8b|4h|2s)(_POST)?$")>;
245 def : InstRW<[A53WriteVST2], (instregex "ST2Twov(16b|8h|4s|2d)(_POST)?$")>;
246
247 def : InstRW<[A53WriteVST2], (instregex "ST3i(8|16|32|64)(_POST)?$")>;
248 def : InstRW<[A53WriteVST3], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s)(_POST)?$")>;
249 def : InstRW<[A53WriteVST2], (instregex "ST3Threev(2d)(_POST)?$")>;
250
251 def : InstRW<[A53WriteVST2], (instregex "ST4i(8|16|32|64)(_POST)?$")>;
252 def : InstRW<[A53WriteVST3], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s)(_POST)?$")>;
253 def : InstRW<[A53WriteVST2], (instregex "ST4Fourv(2d)(_POST)?$")>;
254
255 def : InstRW<[A53WriteVST1], (instregex "STN?P(S|D).*$")>;
256 def : InstRW<[A53WriteVST2], (instregex "STN?PQ.*$")>;
257
258 //---
259 // Floating Point MAC, DIV, SQRT
260 //---
261 def : InstRW<[A53WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>;
262 def : InstRW<[A53WriteFMAC], (instregex "^FML(A|S).*")>;
263 def : InstRW<[A53WriteFDivSP], (instrs FDIVSrr)>;
264 def : InstRW<[A53WriteFDivDP], (instrs FDIVDrr)>;
265 def : InstRW<[A53WriteFDivSP], (instregex "^FDIVv.*32$")>;
266 def : InstRW<[A53WriteFDivDP], (instregex "^FDIVv.*64$")>;
267 def : InstRW<[A53WriteFSqrtSP], (instregex "^.*SQRT.*32$")>;
268 def : InstRW<[A53WriteFSqrtDP], (instregex "^.*SQRT.*64$")>;
269
270 }