1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
11 /// \brief This is the parent TargetLowering class for hardware code gen
14 //===----------------------------------------------------------------------===//
16 #include "AMDGPUISelLowering.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUIntrinsicInfo.h"
20 #include "AMDGPURegisterInfo.h"
21 #include "AMDGPUSubtarget.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
37 /// Diagnostic information for unimplemented or unsupported feature reporting.
38 class DiagnosticInfoUnsupported : public DiagnosticInfo {
40 const Twine &Description;
45 static int getKindID() {
47 KindID = llvm::getNextAvailablePluginDiagnosticKind();
52 DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc,
53 DiagnosticSeverity Severity = DS_Error)
54 : DiagnosticInfo(getKindID(), Severity),
58 const Function &getFunction() const { return Fn; }
59 const Twine &getDescription() const { return Description; }
61 void print(DiagnosticPrinter &DP) const override {
62 DP << "unsupported " << getDescription() << " in " << Fn.getName();
65 static bool classof(const DiagnosticInfo *DI) {
66 return DI->getKind() == getKindID();
70 int DiagnosticInfoUnsupported::KindID = 0;
74 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT,
75 CCValAssign::LocInfo LocInfo,
76 ISD::ArgFlagsTy ArgFlags, CCState &State) {
77 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(),
78 ArgFlags.getOrigAlign());
79 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
84 #include "AMDGPUGenCallingConv.inc"
86 // Find a larger type to do a load / store of a vector with.
87 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
88 unsigned StoreSize = VT.getStoreSizeInBits();
90 return EVT::getIntegerVT(Ctx, StoreSize);
92 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
93 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
96 // Type for a vector that will be loaded to.
97 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) {
98 unsigned StoreSize = VT.getStoreSizeInBits();
100 return EVT::getIntegerVT(Ctx, 32);
102 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
105 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM,
106 const AMDGPUSubtarget &STI)
107 : TargetLowering(TM), Subtarget(&STI) {
108 setOperationAction(ISD::Constant, MVT::i32, Legal);
109 setOperationAction(ISD::Constant, MVT::i64, Legal);
110 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
111 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
113 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
114 setOperationAction(ISD::BRIND, MVT::Other, Expand);
116 // We need to custom lower some of the intrinsics
117 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
119 // Library functions. These default to Expand, but we have instructions
121 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
122 setOperationAction(ISD::FEXP2, MVT::f32, Legal);
123 setOperationAction(ISD::FPOW, MVT::f32, Legal);
124 setOperationAction(ISD::FLOG2, MVT::f32, Legal);
125 setOperationAction(ISD::FABS, MVT::f32, Legal);
126 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
127 setOperationAction(ISD::FRINT, MVT::f32, Legal);
128 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
129 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
130 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
132 setOperationAction(ISD::FROUND, MVT::f32, Custom);
133 setOperationAction(ISD::FROUND, MVT::f64, Custom);
135 setOperationAction(ISD::FREM, MVT::f32, Custom);
136 setOperationAction(ISD::FREM, MVT::f64, Custom);
138 // v_mad_f32 does not support denormals according to some sources.
139 if (!Subtarget->hasFP32Denormals())
140 setOperationAction(ISD::FMAD, MVT::f32, Legal);
142 // Expand to fneg + fadd.
143 setOperationAction(ISD::FSUB, MVT::f64, Expand);
145 // Lower floating point store/load to integer store/load to reduce the number
146 // of patterns in tablegen.
147 setOperationAction(ISD::STORE, MVT::f32, Promote);
148 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
150 setOperationAction(ISD::STORE, MVT::v2f32, Promote);
151 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
153 setOperationAction(ISD::STORE, MVT::v4f32, Promote);
154 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
156 setOperationAction(ISD::STORE, MVT::v8f32, Promote);
157 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
159 setOperationAction(ISD::STORE, MVT::v16f32, Promote);
160 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
162 setOperationAction(ISD::STORE, MVT::f64, Promote);
163 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64);
165 setOperationAction(ISD::STORE, MVT::v2f64, Promote);
166 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64);
168 // Custom lowering of vector stores is required for local address space
170 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
172 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
173 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
174 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
176 // XXX: This can be change to Custom, once ExpandVectorStores can
177 // handle 64-bit stores.
178 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
180 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
181 setTruncStoreAction(MVT::i64, MVT::i8, Expand);
182 setTruncStoreAction(MVT::i64, MVT::i1, Expand);
183 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
184 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand);
187 setOperationAction(ISD::LOAD, MVT::f32, Promote);
188 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
190 setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
191 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
193 setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
194 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
196 setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
197 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
199 setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
200 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
202 setOperationAction(ISD::LOAD, MVT::f64, Promote);
203 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64);
205 setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
206 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64);
208 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
209 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
210 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
211 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
212 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
213 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
214 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
215 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
216 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
217 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
219 // There are no 64-bit extloads. These should be done as a 32-bit extload and
220 // an extension to 64-bit.
221 for (MVT VT : MVT::integer_valuetypes()) {
222 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
223 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
224 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
227 for (MVT VT : MVT::integer_vector_valuetypes()) {
228 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
229 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
230 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
231 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
232 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
233 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
234 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
235 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
236 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
237 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
238 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
239 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
242 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
244 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
245 setOperationAction(ISD::FCEIL, MVT::f64, Custom);
246 setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
247 setOperationAction(ISD::FRINT, MVT::f64, Custom);
248 setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
251 if (!Subtarget->hasBFI()) {
252 // fcopysign can be done in a single instruction with BFI.
253 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
254 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
257 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
259 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
260 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
261 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
262 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
264 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
265 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
266 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
267 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
269 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
270 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
271 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
272 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
274 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
275 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
277 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
278 for (MVT VT : ScalarIntVTs) {
279 setOperationAction(ISD::SREM, VT, Expand);
280 setOperationAction(ISD::SDIV, VT, Expand);
282 // GPU does not have divrem function for signed or unsigned.
283 setOperationAction(ISD::SDIVREM, VT, Custom);
284 setOperationAction(ISD::UDIVREM, VT, Custom);
286 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
287 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
288 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
290 setOperationAction(ISD::BSWAP, VT, Expand);
291 setOperationAction(ISD::CTTZ, VT, Expand);
292 setOperationAction(ISD::CTLZ, VT, Expand);
295 if (!Subtarget->hasBCNT(32))
296 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
298 if (!Subtarget->hasBCNT(64))
299 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
301 // The hardware supports 32-bit ROTR, but not ROTL.
302 setOperationAction(ISD::ROTL, MVT::i32, Expand);
303 setOperationAction(ISD::ROTL, MVT::i64, Expand);
304 setOperationAction(ISD::ROTR, MVT::i64, Expand);
306 setOperationAction(ISD::MUL, MVT::i64, Expand);
307 setOperationAction(ISD::MULHU, MVT::i64, Expand);
308 setOperationAction(ISD::MULHS, MVT::i64, Expand);
309 setOperationAction(ISD::UDIV, MVT::i32, Expand);
310 setOperationAction(ISD::UREM, MVT::i32, Expand);
311 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
312 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
313 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
314 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
315 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
317 setOperationAction(ISD::SMIN, MVT::i32, Legal);
318 setOperationAction(ISD::UMIN, MVT::i32, Legal);
319 setOperationAction(ISD::SMAX, MVT::i32, Legal);
320 setOperationAction(ISD::UMAX, MVT::i32, Legal);
322 if (!Subtarget->hasFFBH())
323 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
325 if (!Subtarget->hasFFBL())
326 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
328 static const MVT::SimpleValueType VectorIntTypes[] = {
329 MVT::v2i32, MVT::v4i32
332 for (MVT VT : VectorIntTypes) {
333 // Expand the following operations for the current type by default.
334 setOperationAction(ISD::ADD, VT, Expand);
335 setOperationAction(ISD::AND, VT, Expand);
336 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
337 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
338 setOperationAction(ISD::MUL, VT, Expand);
339 setOperationAction(ISD::OR, VT, Expand);
340 setOperationAction(ISD::SHL, VT, Expand);
341 setOperationAction(ISD::SRA, VT, Expand);
342 setOperationAction(ISD::SRL, VT, Expand);
343 setOperationAction(ISD::ROTL, VT, Expand);
344 setOperationAction(ISD::ROTR, VT, Expand);
345 setOperationAction(ISD::SUB, VT, Expand);
346 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
347 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
348 setOperationAction(ISD::SDIV, VT, Expand);
349 setOperationAction(ISD::UDIV, VT, Expand);
350 setOperationAction(ISD::SREM, VT, Expand);
351 setOperationAction(ISD::UREM, VT, Expand);
352 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
353 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
354 setOperationAction(ISD::SDIVREM, VT, Custom);
355 setOperationAction(ISD::UDIVREM, VT, Custom);
356 setOperationAction(ISD::ADDC, VT, Expand);
357 setOperationAction(ISD::SUBC, VT, Expand);
358 setOperationAction(ISD::ADDE, VT, Expand);
359 setOperationAction(ISD::SUBE, VT, Expand);
360 setOperationAction(ISD::SELECT, VT, Expand);
361 setOperationAction(ISD::VSELECT, VT, Expand);
362 setOperationAction(ISD::SELECT_CC, VT, Expand);
363 setOperationAction(ISD::XOR, VT, Expand);
364 setOperationAction(ISD::BSWAP, VT, Expand);
365 setOperationAction(ISD::CTPOP, VT, Expand);
366 setOperationAction(ISD::CTTZ, VT, Expand);
367 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
368 setOperationAction(ISD::CTLZ, VT, Expand);
369 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
370 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
373 static const MVT::SimpleValueType FloatVectorTypes[] = {
374 MVT::v2f32, MVT::v4f32
377 for (MVT VT : FloatVectorTypes) {
378 setOperationAction(ISD::FABS, VT, Expand);
379 setOperationAction(ISD::FMINNUM, VT, Expand);
380 setOperationAction(ISD::FMAXNUM, VT, Expand);
381 setOperationAction(ISD::FADD, VT, Expand);
382 setOperationAction(ISD::FCEIL, VT, Expand);
383 setOperationAction(ISD::FCOS, VT, Expand);
384 setOperationAction(ISD::FDIV, VT, Expand);
385 setOperationAction(ISD::FEXP2, VT, Expand);
386 setOperationAction(ISD::FLOG2, VT, Expand);
387 setOperationAction(ISD::FREM, VT, Expand);
388 setOperationAction(ISD::FPOW, VT, Expand);
389 setOperationAction(ISD::FFLOOR, VT, Expand);
390 setOperationAction(ISD::FTRUNC, VT, Expand);
391 setOperationAction(ISD::FMUL, VT, Expand);
392 setOperationAction(ISD::FMA, VT, Expand);
393 setOperationAction(ISD::FRINT, VT, Expand);
394 setOperationAction(ISD::FNEARBYINT, VT, Expand);
395 setOperationAction(ISD::FSQRT, VT, Expand);
396 setOperationAction(ISD::FSIN, VT, Expand);
397 setOperationAction(ISD::FSUB, VT, Expand);
398 setOperationAction(ISD::FNEG, VT, Expand);
399 setOperationAction(ISD::SELECT, VT, Expand);
400 setOperationAction(ISD::VSELECT, VT, Expand);
401 setOperationAction(ISD::SELECT_CC, VT, Expand);
402 setOperationAction(ISD::FCOPYSIGN, VT, Expand);
403 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
406 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
407 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
409 setTargetDAGCombine(ISD::SHL);
410 setTargetDAGCombine(ISD::MUL);
411 setTargetDAGCombine(ISD::SELECT);
412 setTargetDAGCombine(ISD::SELECT_CC);
413 setTargetDAGCombine(ISD::STORE);
415 setTargetDAGCombine(ISD::FADD);
416 setTargetDAGCombine(ISD::FSUB);
418 setBooleanContents(ZeroOrNegativeOneBooleanContent);
419 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
421 setSchedulingPreference(Sched::RegPressure);
422 setJumpIsExpensive(true);
424 // SI at least has hardware support for floating point exceptions, but no way
425 // of using or handling them is implemented. They are also optional in OpenCL
427 setHasFloatingPointExceptions(false);
429 setSelectIsExpensive(false);
430 PredictableSelectIsExpensive = false;
432 // There are no integer divide instructions, and these expand to a pretty
433 // large sequence of instructions.
434 setIntDivIsCheap(false);
435 setPow2SDivIsCheap(false);
436 setFsqrtIsCheap(true);
438 // FIXME: Need to really handle these.
439 MaxStoresPerMemcpy = 4096;
440 MaxStoresPerMemmove = 4096;
441 MaxStoresPerMemset = 4096;
444 //===----------------------------------------------------------------------===//
445 // Target Information
446 //===----------------------------------------------------------------------===//
448 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
452 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
456 // The backend supports 32 and 64 bit floating point immediates.
457 // FIXME: Why are we reporting vectors of FP immediates as legal?
458 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
459 EVT ScalarVT = VT.getScalarType();
460 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
463 // We don't want to shrink f64 / f32 constants.
464 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
465 EVT ScalarVT = VT.getScalarType();
466 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
469 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
473 unsigned NewSize = NewVT.getStoreSizeInBits();
475 // If we are reducing to a 32-bit load, this is always better.
479 EVT OldVT = N->getValueType(0);
480 unsigned OldSize = OldVT.getStoreSizeInBits();
482 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
483 // extloads, so doing one requires using a buffer_load. In cases where we
484 // still couldn't use a scalar load, using the wider load shouldn't really
487 // If the old size already had to be an extload, there's no harm in continuing
488 // to reduce the width.
489 return (OldSize < 32);
492 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
494 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
497 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits();
498 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits();
500 return ((LScalarSize <= CastScalarSize) ||
501 (CastScalarSize >= 32) ||
505 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
506 // profitable with the expansion for 64-bit since it's generally good to
508 // FIXME: These should really have the size as a parameter.
509 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
513 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
517 //===---------------------------------------------------------------------===//
519 //===---------------------------------------------------------------------===//
521 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
522 assert(VT.isFloatingPoint());
523 return VT == MVT::f32 || VT == MVT::f64;
526 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
527 assert(VT.isFloatingPoint());
528 return VT == MVT::f32 || VT == MVT::f64;
531 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
537 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
538 // Truncate is just accessing a subregister.
539 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
542 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
543 // Truncate is just accessing a subregister.
544 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
545 (Dest->getPrimitiveSizeInBits() % 32 == 0);
548 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
549 unsigned SrcSize = Src->getScalarSizeInBits();
550 unsigned DestSize = Dest->getScalarSizeInBits();
552 return SrcSize == 32 && DestSize == 64;
555 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
556 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
557 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
558 // this will enable reducing 64-bit operations the 32-bit, which is always
560 return Src == MVT::i32 && Dest == MVT::i64;
563 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
564 return isZExtFree(Val.getValueType(), VT2);
567 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
568 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
569 // limited number of native 64-bit operations. Shrinking an operation to fit
570 // in a single 32-bit register should always be helpful. As currently used,
571 // this is much less general than the name suggests, and is only used in
572 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
573 // not profitable, and may actually be harmful.
574 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
577 //===---------------------------------------------------------------------===//
578 // TargetLowering Callbacks
579 //===---------------------------------------------------------------------===//
581 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
582 const SmallVectorImpl<ISD::InputArg> &Ins) const {
584 State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
587 SDValue AMDGPUTargetLowering::LowerReturn(
589 CallingConv::ID CallConv,
591 const SmallVectorImpl<ISD::OutputArg> &Outs,
592 const SmallVectorImpl<SDValue> &OutVals,
593 SDLoc DL, SelectionDAG &DAG) const {
594 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain);
597 //===---------------------------------------------------------------------===//
598 // Target specific lowering
599 //===---------------------------------------------------------------------===//
601 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
602 SmallVectorImpl<SDValue> &InVals) const {
603 SDValue Callee = CLI.Callee;
604 SelectionDAG &DAG = CLI.DAG;
606 const Function &Fn = *DAG.getMachineFunction().getFunction();
608 StringRef FuncName("<unknown>");
610 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
611 FuncName = G->getSymbol();
612 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
613 FuncName = G->getGlobal()->getName();
615 DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName);
616 DAG.getContext()->diagnose(NoCalls);
620 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
621 SelectionDAG &DAG) const {
622 switch (Op.getOpcode()) {
624 Op.getNode()->dump();
625 llvm_unreachable("Custom lowering code for this"
626 "instruction is not implemented yet!");
628 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
629 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
630 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
631 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
632 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
633 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
634 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
635 case ISD::FREM: return LowerFREM(Op, DAG);
636 case ISD::FCEIL: return LowerFCEIL(Op, DAG);
637 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
638 case ISD::FRINT: return LowerFRINT(Op, DAG);
639 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
640 case ISD::FROUND: return LowerFROUND(Op, DAG);
641 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
642 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
643 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
644 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
645 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
650 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
651 SmallVectorImpl<SDValue> &Results,
652 SelectionDAG &DAG) const {
653 switch (N->getOpcode()) {
654 case ISD::SIGN_EXTEND_INREG:
655 // Different parts of legalization seem to interpret which type of
656 // sign_extend_inreg is the one to check for custom lowering. The extended
657 // from type is what really matters, but some places check for custom
658 // lowering of the result type. This results in trying to use
659 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
660 // nothing here and let the illegal result integer be handled normally.
663 SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode();
667 Results.push_back(SDValue(Node, 0));
668 Results.push_back(SDValue(Node, 1));
669 // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode
671 DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1));
675 SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG);
676 if (Lowered.getNode())
677 Results.push_back(Lowered);
685 // FIXME: This implements accesses to initialized globals in the constant
686 // address space by copying them to private and accessing that. It does not
687 // properly handle illegal types or vectors. The private vector loads are not
688 // scalarized, and the illegal scalars hit an assertion. This technique will not
689 // work well with large initializers, and this should eventually be
690 // removed. Initialized globals should be placed into a data section that the
691 // runtime will load into a buffer before the kernel is executed. Uses of the
692 // global need to be replaced with a pointer loaded from an implicit kernel
693 // argument into this buffer holding the copy of the data, which will remove the
694 // need for any of this.
695 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
696 const GlobalValue *GV,
697 const SDValue &InitPtr,
699 SelectionDAG &DAG) const {
700 const DataLayout &TD = DAG.getDataLayout();
702 Type *InitTy = Init->getType();
704 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
705 EVT VT = EVT::getEVT(InitTy);
706 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
707 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr,
708 MachinePointerInfo(UndefValue::get(PtrTy)), false,
709 false, TD.getPrefTypeAlignment(InitTy));
712 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
713 EVT VT = EVT::getEVT(CFP->getType());
714 PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
715 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr,
716 MachinePointerInfo(UndefValue::get(PtrTy)), false,
717 false, TD.getPrefTypeAlignment(CFP->getType()));
720 if (StructType *ST = dyn_cast<StructType>(InitTy)) {
721 const StructLayout *SL = TD.getStructLayout(ST);
723 EVT PtrVT = InitPtr.getValueType();
724 SmallVector<SDValue, 8> Chains;
726 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) {
727 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT);
728 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
730 Constant *Elt = Init->getAggregateElement(I);
731 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
734 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
737 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) {
738 EVT PtrVT = InitPtr.getValueType();
740 unsigned NumElements;
741 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy))
742 NumElements = AT->getNumElements();
743 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy))
744 NumElements = VT->getNumElements();
746 llvm_unreachable("Unexpected type");
748 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType());
749 SmallVector<SDValue, 8> Chains;
750 for (unsigned i = 0; i < NumElements; ++i) {
751 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT);
752 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
754 Constant *Elt = Init->getAggregateElement(i);
755 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
758 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
761 if (isa<UndefValue>(Init)) {
762 EVT VT = EVT::getEVT(InitTy);
763 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
764 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr,
765 MachinePointerInfo(UndefValue::get(PtrTy)), false,
766 false, TD.getPrefTypeAlignment(InitTy));
770 llvm_unreachable("Unhandled constant initializer");
773 static bool hasDefinedInitializer(const GlobalValue *GV) {
774 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
775 if (!GVar || !GVar->hasInitializer())
778 if (isa<UndefValue>(GVar->getInitializer()))
784 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
786 SelectionDAG &DAG) const {
788 const DataLayout &DL = DAG.getDataLayout();
789 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
790 const GlobalValue *GV = G->getGlobal();
792 switch (G->getAddressSpace()) {
793 case AMDGPUAS::LOCAL_ADDRESS: {
794 // XXX: What does the value of G->getOffset() mean?
795 assert(G->getOffset() == 0 &&
796 "Do not know what to do with an non-zero offset");
798 // TODO: We could emit code to handle the initialization somewhere.
799 if (hasDefinedInitializer(GV))
803 if (MFI->LocalMemoryObjects.count(GV) == 0) {
804 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
805 Offset = MFI->LDSSize;
806 MFI->LocalMemoryObjects[GV] = Offset;
807 // XXX: Account for alignment?
808 MFI->LDSSize += Size;
810 Offset = MFI->LocalMemoryObjects[GV];
813 return DAG.getConstant(Offset, SDLoc(Op),
814 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS));
816 case AMDGPUAS::CONSTANT_ADDRESS: {
817 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
818 Type *EltType = GV->getType()->getElementType();
819 unsigned Size = DL.getTypeAllocSize(EltType);
820 unsigned Alignment = DL.getPrefTypeAlignment(EltType);
822 MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS);
823 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
825 int FI = FrameInfo->CreateStackObject(Size, Alignment, false);
826 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT);
828 const GlobalVariable *Var = cast<GlobalVariable>(GV);
829 if (!Var->hasInitializer()) {
830 // This has no use, but bugpoint will hit it.
831 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
834 const Constant *Init = Var->getInitializer();
835 SmallVector<SDNode*, 8> WorkList;
837 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(),
838 E = DAG.getEntryNode()->use_end(); I != E; ++I) {
839 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD)
841 WorkList.push_back(*I);
843 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG);
844 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(),
845 E = WorkList.end(); I != E; ++I) {
846 SmallVector<SDValue, 8> Ops;
847 Ops.push_back(Chain);
848 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) {
849 Ops.push_back((*I)->getOperand(i));
851 DAG.UpdateNodeOperands(*I, Ops);
853 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
857 const Function &Fn = *DAG.getMachineFunction().getFunction();
858 DiagnosticInfoUnsupported BadInit(Fn,
859 "initializer for address space");
860 DAG.getContext()->diagnose(BadInit);
864 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
865 SelectionDAG &DAG) const {
866 SmallVector<SDValue, 8> Args;
868 for (const SDUse &U : Op->ops())
869 DAG.ExtractVectorElements(U.get(), Args);
871 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
874 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
875 SelectionDAG &DAG) const {
877 SmallVector<SDValue, 8> Args;
878 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
879 EVT VT = Op.getValueType();
880 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
881 VT.getVectorNumElements());
883 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
886 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
887 SelectionDAG &DAG) const {
889 MachineFunction &MF = DAG.getMachineFunction();
890 const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering();
892 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
894 unsigned FrameIndex = FIN->getIndex();
895 unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex);
896 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op),
900 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
901 SelectionDAG &DAG) const {
902 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
904 EVT VT = Op.getValueType();
906 switch (IntrinsicID) {
908 case AMDGPUIntrinsic::AMDGPU_abs:
909 case AMDGPUIntrinsic::AMDIL_abs: // Legacy name.
910 return LowerIntrinsicIABS(Op, DAG);
911 case AMDGPUIntrinsic::AMDGPU_lrp:
912 return LowerIntrinsicLRP(Op, DAG);
914 case AMDGPUIntrinsic::AMDGPU_clamp:
915 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name.
916 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
917 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
919 case Intrinsic::AMDGPU_div_scale: {
920 // 3rd parameter required to be a constant.
921 const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
923 return DAG.getUNDEF(VT);
925 // Translate to the operands expected by the machine instruction. The
926 // first parameter must be the same as the first instruction.
927 SDValue Numerator = Op.getOperand(1);
928 SDValue Denominator = Op.getOperand(2);
930 // Note this order is opposite of the machine instruction's operations,
931 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
932 // intrinsic has the numerator as the first operand to match a normal
933 // division operation.
935 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
937 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
938 Denominator, Numerator);
941 case Intrinsic::AMDGPU_div_fmas:
942 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
943 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
946 case Intrinsic::AMDGPU_div_fixup:
947 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
948 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
950 case Intrinsic::AMDGPU_trig_preop:
951 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
952 Op.getOperand(1), Op.getOperand(2));
954 case Intrinsic::AMDGPU_rcp:
955 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
957 case Intrinsic::AMDGPU_rsq:
958 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
960 case AMDGPUIntrinsic::AMDGPU_legacy_rsq:
961 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
963 case Intrinsic::AMDGPU_rsq_clamped:
964 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
965 Type *Type = VT.getTypeForEVT(*DAG.getContext());
966 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
967 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
969 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
970 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
971 DAG.getConstantFP(Max, DL, VT));
972 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
973 DAG.getConstantFP(Min, DL, VT));
975 return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
978 case Intrinsic::AMDGPU_ldexp:
979 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1),
982 case AMDGPUIntrinsic::AMDGPU_imax:
983 return DAG.getNode(ISD::SMAX, DL, VT, Op.getOperand(1),
985 case AMDGPUIntrinsic::AMDGPU_umax:
986 return DAG.getNode(ISD::UMAX, DL, VT, Op.getOperand(1),
988 case AMDGPUIntrinsic::AMDGPU_imin:
989 return DAG.getNode(ISD::SMIN, DL, VT, Op.getOperand(1),
991 case AMDGPUIntrinsic::AMDGPU_umin:
992 return DAG.getNode(ISD::UMIN, DL, VT, Op.getOperand(1),
995 case AMDGPUIntrinsic::AMDGPU_umul24:
996 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT,
997 Op.getOperand(1), Op.getOperand(2));
999 case AMDGPUIntrinsic::AMDGPU_imul24:
1000 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT,
1001 Op.getOperand(1), Op.getOperand(2));
1003 case AMDGPUIntrinsic::AMDGPU_umad24:
1004 return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT,
1005 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
1007 case AMDGPUIntrinsic::AMDGPU_imad24:
1008 return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT,
1009 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
1011 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
1012 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
1014 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
1015 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
1017 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
1018 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
1020 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
1021 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
1023 case AMDGPUIntrinsic::AMDGPU_bfe_i32:
1024 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
1029 case AMDGPUIntrinsic::AMDGPU_bfe_u32:
1030 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
1035 case AMDGPUIntrinsic::AMDGPU_bfi:
1036 return DAG.getNode(AMDGPUISD::BFI, DL, VT,
1041 case AMDGPUIntrinsic::AMDGPU_bfm:
1042 return DAG.getNode(AMDGPUISD::BFM, DL, VT,
1046 case AMDGPUIntrinsic::AMDGPU_brev:
1047 return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1));
1049 case Intrinsic::AMDGPU_class:
1050 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
1051 Op.getOperand(1), Op.getOperand(2));
1053 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name.
1054 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
1056 case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name.
1057 return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1));
1058 case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name.
1059 return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1));
1063 ///IABS(a) = SMAX(sub(0, a), a)
1064 SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op,
1065 SelectionDAG &DAG) const {
1067 EVT VT = Op.getValueType();
1068 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1071 return DAG.getNode(ISD::SMAX, DL, VT, Neg, Op.getOperand(1));
1074 /// Linear Interpolation
1075 /// LRP(a, b, c) = muladd(a, b, (1 - a) * c)
1076 SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
1077 SelectionDAG &DAG) const {
1079 EVT VT = Op.getValueType();
1080 SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT,
1081 DAG.getConstantFP(1.0f, DL, MVT::f32),
1083 SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA,
1085 return DAG.getNode(ISD::FADD, DL, VT,
1086 DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)),
1090 /// \brief Generate Min/Max node
1091 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL,
1098 DAGCombinerInfo &DCI) const {
1099 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
1102 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1105 SelectionDAG &DAG = DCI.DAG;
1106 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1115 case ISD::SETFALSE2:
1124 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1125 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1131 // Ordered. Assume ordered for undefined.
1133 // Only do this after legalization to avoid interfering with other combines
1134 // which might occur.
1135 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1136 !DCI.isCalledByLegalizer())
1139 // We need to permute the operands to get the correct NaN behavior. The
1140 // selected operand is the second one based on the failing compare with NaN,
1141 // so permute it based on the compare type the hardware uses.
1143 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1144 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1149 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1150 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1156 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1157 !DCI.isCalledByLegalizer())
1161 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1162 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1164 case ISD::SETCC_INVALID:
1165 llvm_unreachable("Invalid setcc condcode!");
1170 // FIXME: Remove this when combines added to DAGCombiner.
1171 SDValue AMDGPUTargetLowering::CombineIMinMax(SDLoc DL,
1178 SelectionDAG &DAG) const {
1179 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1182 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1186 unsigned Opc = (LHS == True) ? ISD::UMIN : ISD::UMAX;
1187 return DAG.getNode(Opc, DL, VT, LHS, RHS);
1191 unsigned Opc = (LHS == True) ? ISD::SMIN : ISD::SMAX;
1192 return DAG.getNode(Opc, DL, VT, LHS, RHS);
1196 unsigned Opc = (LHS == True) ? ISD::SMAX : ISD::SMIN;
1197 return DAG.getNode(Opc, DL, VT, LHS, RHS);
1201 unsigned Opc = (LHS == True) ? ISD::UMAX : ISD::UMIN;
1202 return DAG.getNode(Opc, DL, VT, LHS, RHS);
1209 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op,
1210 SelectionDAG &DAG) const {
1211 LoadSDNode *Load = cast<LoadSDNode>(Op);
1212 EVT MemVT = Load->getMemoryVT();
1213 EVT MemEltVT = MemVT.getVectorElementType();
1215 EVT LoadVT = Op.getValueType();
1216 EVT EltVT = LoadVT.getVectorElementType();
1217 EVT PtrVT = Load->getBasePtr().getValueType();
1219 unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
1220 SmallVector<SDValue, 8> Loads;
1221 SmallVector<SDValue, 8> Chains;
1224 unsigned MemEltSize = MemEltVT.getStoreSize();
1225 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
1227 for (unsigned i = 0; i < NumElts; ++i) {
1228 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
1229 DAG.getConstant(i * MemEltSize, SL, PtrVT));
1232 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
1233 Load->getChain(), Ptr,
1234 SrcValue.getWithOffset(i * MemEltSize),
1235 MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
1236 Load->isInvariant(), Load->getAlignment());
1237 Loads.push_back(NewLoad.getValue(0));
1238 Chains.push_back(NewLoad.getValue(1));
1242 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads),
1243 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains)
1246 return DAG.getMergeValues(Ops, SL);
1249 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1250 SelectionDAG &DAG) const {
1251 EVT VT = Op.getValueType();
1253 // If this is a 2 element vector, we really want to scalarize and not create
1254 // weird 1 element vectors.
1255 if (VT.getVectorNumElements() == 2)
1256 return ScalarizeVectorLoad(Op, DAG);
1258 LoadSDNode *Load = cast<LoadSDNode>(Op);
1259 SDValue BasePtr = Load->getBasePtr();
1260 EVT PtrVT = BasePtr.getValueType();
1261 EVT MemVT = Load->getMemoryVT();
1263 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
1266 EVT LoMemVT, HiMemVT;
1269 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1270 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1271 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1273 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1274 Load->getChain(), BasePtr,
1276 LoMemVT, Load->isVolatile(), Load->isNonTemporal(),
1277 Load->isInvariant(), Load->getAlignment());
1279 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1280 DAG.getConstant(LoMemVT.getStoreSize(), SL,
1284 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT,
1285 Load->getChain(), HiPtr,
1286 SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1287 HiMemVT, Load->isVolatile(), Load->isNonTemporal(),
1288 Load->isInvariant(), Load->getAlignment());
1291 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1292 DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1293 LoLoad.getValue(1), HiLoad.getValue(1))
1296 return DAG.getMergeValues(Ops, SL);
1299 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
1300 SelectionDAG &DAG) const {
1301 StoreSDNode *Store = cast<StoreSDNode>(Op);
1302 EVT MemVT = Store->getMemoryVT();
1303 unsigned MemBits = MemVT.getSizeInBits();
1305 // Byte stores are really expensive, so if possible, try to pack 32-bit vector
1306 // truncating store into an i32 store.
1307 // XXX: We could also handle optimize other vector bitwidths.
1308 if (!MemVT.isVector() || MemBits > 32) {
1313 SDValue Value = Store->getValue();
1314 EVT VT = Value.getValueType();
1315 EVT ElemVT = VT.getVectorElementType();
1316 SDValue Ptr = Store->getBasePtr();
1317 EVT MemEltVT = MemVT.getVectorElementType();
1318 unsigned MemEltBits = MemEltVT.getSizeInBits();
1319 unsigned MemNumElements = MemVT.getVectorNumElements();
1320 unsigned PackedSize = MemVT.getStoreSizeInBits();
1321 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32);
1323 assert(Value.getValueType().getScalarSizeInBits() >= 32);
1325 SDValue PackedValue;
1326 for (unsigned i = 0; i < MemNumElements; ++i) {
1327 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
1328 DAG.getConstant(i, DL, MVT::i32));
1329 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
1330 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
1332 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32);
1333 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
1338 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
1342 if (PackedSize < 32) {
1343 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
1344 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
1345 Store->getMemOperand()->getPointerInfo(),
1347 Store->isNonTemporal(), Store->isVolatile(),
1348 Store->getAlignment());
1351 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
1352 Store->getMemOperand()->getPointerInfo(),
1353 Store->isVolatile(), Store->isNonTemporal(),
1354 Store->getAlignment());
1357 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op,
1358 SelectionDAG &DAG) const {
1359 StoreSDNode *Store = cast<StoreSDNode>(Op);
1360 EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
1361 EVT EltVT = Store->getValue().getValueType().getVectorElementType();
1362 EVT PtrVT = Store->getBasePtr().getValueType();
1363 unsigned NumElts = Store->getMemoryVT().getVectorNumElements();
1366 SmallVector<SDValue, 8> Chains;
1368 unsigned EltSize = MemEltVT.getStoreSize();
1369 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
1371 for (unsigned i = 0, e = NumElts; i != e; ++i) {
1372 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
1374 DAG.getConstant(i, SL, MVT::i32));
1376 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT);
1377 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset);
1379 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
1380 SrcValue.getWithOffset(i * EltSize),
1381 MemEltVT, Store->isNonTemporal(), Store->isVolatile(),
1382 Store->getAlignment());
1383 Chains.push_back(NewStore);
1386 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
1389 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1390 SelectionDAG &DAG) const {
1391 StoreSDNode *Store = cast<StoreSDNode>(Op);
1392 SDValue Val = Store->getValue();
1393 EVT VT = Val.getValueType();
1395 // If this is a 2 element vector, we really want to scalarize and not create
1396 // weird 1 element vectors.
1397 if (VT.getVectorNumElements() == 2)
1398 return ScalarizeVectorStore(Op, DAG);
1400 EVT MemVT = Store->getMemoryVT();
1401 SDValue Chain = Store->getChain();
1402 SDValue BasePtr = Store->getBasePtr();
1406 EVT LoMemVT, HiMemVT;
1409 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1410 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1411 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1413 EVT PtrVT = BasePtr.getValueType();
1414 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1415 DAG.getConstant(LoMemVT.getStoreSize(), SL,
1418 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
1420 = DAG.getTruncStore(Chain, SL, Lo,
1424 Store->isNonTemporal(),
1425 Store->isVolatile(),
1426 Store->getAlignment());
1428 = DAG.getTruncStore(Chain, SL, Hi,
1430 SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1432 Store->isNonTemporal(),
1433 Store->isVolatile(),
1434 Store->getAlignment());
1436 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1440 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1442 LoadSDNode *Load = cast<LoadSDNode>(Op);
1443 ISD::LoadExtType ExtType = Load->getExtensionType();
1444 EVT VT = Op.getValueType();
1445 EVT MemVT = Load->getMemoryVT();
1447 if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
1448 assert(VT == MVT::i1 && "Only i1 non-extloads expected");
1449 // FIXME: Copied from PPC
1450 // First, load into 32 bits, then truncate to 1 bit.
1452 SDValue Chain = Load->getChain();
1453 SDValue BasePtr = Load->getBasePtr();
1454 MachineMemOperand *MMO = Load->getMemOperand();
1456 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
1457 BasePtr, MVT::i8, MMO);
1460 DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD),
1464 return DAG.getMergeValues(Ops, DL);
1467 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS ||
1468 Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS ||
1469 ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32))
1472 // <SI && AS=PRIVATE && EXTLOAD && size < 32bit,
1473 // register (2-)byte extract.
1475 // Get Register holding the target.
1476 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
1477 DAG.getConstant(2, DL, MVT::i32));
1478 // Load the Register.
1479 SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
1480 Load->getChain(), Ptr,
1481 DAG.getTargetConstant(0, DL, MVT::i32),
1484 // Get offset within the register.
1485 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1487 DAG.getConstant(0x3, DL, MVT::i32));
1489 // Bit offset of target byte (byteIdx * 8).
1490 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1491 DAG.getConstant(3, DL, MVT::i32));
1493 // Shift to the right.
1494 Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt);
1496 // Eliminate the upper bits by setting them to ...
1497 EVT MemEltVT = MemVT.getScalarType();
1500 if (ExtType == ISD::SEXTLOAD) {
1501 SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1504 DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode),
1508 return DAG.getMergeValues(Ops, DL);
1513 DAG.getZeroExtendInReg(Ret, DL, MemEltVT),
1517 return DAG.getMergeValues(Ops, DL);
1520 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1522 SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG);
1523 if (Result.getNode()) {
1527 StoreSDNode *Store = cast<StoreSDNode>(Op);
1528 SDValue Chain = Store->getChain();
1529 if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1530 Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1531 Store->getValue().getValueType().isVector()) {
1532 return ScalarizeVectorStore(Op, DAG);
1535 EVT MemVT = Store->getMemoryVT();
1536 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS &&
1537 MemVT.bitsLT(MVT::i32)) {
1539 if (Store->getMemoryVT() == MVT::i8) {
1541 } else if (Store->getMemoryVT() == MVT::i16) {
1544 SDValue BasePtr = Store->getBasePtr();
1545 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr,
1546 DAG.getConstant(2, DL, MVT::i32));
1547 SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
1549 DAG.getTargetConstant(0, DL, MVT::i32));
1551 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr,
1552 DAG.getConstant(0x3, DL, MVT::i32));
1554 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1555 DAG.getConstant(3, DL, MVT::i32));
1557 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1560 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1562 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1563 MaskedValue, ShiftAmt);
1565 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32,
1566 DAG.getConstant(Mask, DL, MVT::i32),
1568 DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask,
1569 DAG.getConstant(0xffffffff, DL, MVT::i32));
1570 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1572 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1573 return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
1575 DAG.getTargetConstant(0, DL, MVT::i32));
1580 // This is a shortcut for integer division because we have fast i32<->f32
1581 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1582 // float is enough to accurately represent up to a 24-bit integer.
1583 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const {
1585 EVT VT = Op.getValueType();
1586 SDValue LHS = Op.getOperand(0);
1587 SDValue RHS = Op.getOperand(1);
1588 MVT IntVT = MVT::i32;
1589 MVT FltVT = MVT::f32;
1591 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1592 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1594 if (VT.isVector()) {
1595 unsigned NElts = VT.getVectorNumElements();
1596 IntVT = MVT::getVectorVT(MVT::i32, NElts);
1597 FltVT = MVT::getVectorVT(MVT::f32, NElts);
1600 unsigned BitSize = VT.getScalarType().getSizeInBits();
1602 SDValue jq = DAG.getConstant(1, DL, IntVT);
1605 // char|short jq = ia ^ ib;
1606 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1608 // jq = jq >> (bitsize - 2)
1609 jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1610 DAG.getConstant(BitSize - 2, DL, VT));
1613 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1616 jq = DAG.getSExtOrTrunc(jq, DL, IntVT);
1619 // int ia = (int)LHS;
1621 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT);
1623 // int ib, (int)RHS;
1625 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT);
1627 // float fa = (float)ia;
1628 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1630 // float fb = (float)ib;
1631 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1633 // float fq = native_divide(fa, fb);
1634 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1635 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1638 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1640 // float fqneg = -fq;
1641 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1643 // float fr = mad(fqneg, fb, fa);
1644 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT,
1645 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa);
1647 // int iq = (int)fq;
1648 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1651 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1654 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1656 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1658 // int cv = fr >= fb;
1659 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1661 // jq = (cv ? jq : 0);
1662 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1664 // dst = trunc/extend to legal type
1665 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT);
1668 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1670 // Rem needs compensation, it's easier to recompute it
1671 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1672 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1678 return DAG.getMergeValues(Res, DL);
1681 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1683 SmallVectorImpl<SDValue> &Results) const {
1684 assert(Op.getValueType() == MVT::i64);
1687 EVT VT = Op.getValueType();
1688 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1690 SDValue one = DAG.getConstant(1, DL, HalfVT);
1691 SDValue zero = DAG.getConstant(0, DL, HalfVT);
1694 SDValue LHS = Op.getOperand(0);
1695 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1696 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1698 SDValue RHS = Op.getOperand(1);
1699 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1700 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1702 if (VT == MVT::i64 &&
1703 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1704 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1706 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1709 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero);
1710 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero);
1711 Results.push_back(DIV);
1712 Results.push_back(REM);
1716 // Get Speculative values
1717 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1718 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1720 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1721 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero);
1723 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1724 SDValue DIV_Lo = zero;
1726 const unsigned halfBitWidth = HalfVT.getSizeInBits();
1728 for (unsigned i = 0; i < halfBitWidth; ++i) {
1729 const unsigned bitPos = halfBitWidth - i - 1;
1730 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1731 // Get value of high bit
1732 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1733 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1734 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1737 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1739 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1741 SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT);
1742 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1744 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1747 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1748 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1751 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi);
1752 Results.push_back(DIV);
1753 Results.push_back(REM);
1756 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1757 SelectionDAG &DAG) const {
1759 EVT VT = Op.getValueType();
1761 if (VT == MVT::i64) {
1762 SmallVector<SDValue, 2> Results;
1763 LowerUDIVREM64(Op, DAG, Results);
1764 return DAG.getMergeValues(Results, DL);
1767 SDValue Num = Op.getOperand(0);
1768 SDValue Den = Op.getOperand(1);
1770 if (VT == MVT::i32) {
1771 if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) &&
1772 DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) {
1773 // TODO: We technically could do this for i64, but shouldn't that just be
1774 // handled by something generally reducing 64-bit division on 32-bit
1775 // values to 32-bit?
1776 return LowerDIVREM24(Op, DAG, false);
1780 // RCP = URECIP(Den) = 2^32 / Den + e
1781 // e is rounding error.
1782 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1784 // RCP_LO = mul(RCP, Den) */
1785 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1787 // RCP_HI = mulhu (RCP, Den) */
1788 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1790 // NEG_RCP_LO = -RCP_LO
1791 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1794 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1795 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1798 // Calculate the rounding error from the URECIP instruction
1799 // E = mulhu(ABS_RCP_LO, RCP)
1800 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1802 // RCP_A_E = RCP + E
1803 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1805 // RCP_S_E = RCP - E
1806 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1808 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1809 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1812 // Quotient = mulhu(Tmp0, Num)
1813 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1815 // Num_S_Remainder = Quotient * Den
1816 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1818 // Remainder = Num - Num_S_Remainder
1819 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1821 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1822 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1823 DAG.getConstant(-1, DL, VT),
1824 DAG.getConstant(0, DL, VT),
1826 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1827 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1829 DAG.getConstant(-1, DL, VT),
1830 DAG.getConstant(0, DL, VT),
1832 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1833 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1836 // Calculate Division result:
1838 // Quotient_A_One = Quotient + 1
1839 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1840 DAG.getConstant(1, DL, VT));
1842 // Quotient_S_One = Quotient - 1
1843 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1844 DAG.getConstant(1, DL, VT));
1846 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1847 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1848 Quotient, Quotient_A_One, ISD::SETEQ);
1850 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1851 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1852 Quotient_S_One, Div, ISD::SETEQ);
1854 // Calculate Rem result:
1856 // Remainder_S_Den = Remainder - Den
1857 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1859 // Remainder_A_Den = Remainder + Den
1860 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1862 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1863 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1864 Remainder, Remainder_S_Den, ISD::SETEQ);
1866 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1867 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1868 Remainder_A_Den, Rem, ISD::SETEQ);
1873 return DAG.getMergeValues(Ops, DL);
1876 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1877 SelectionDAG &DAG) const {
1879 EVT VT = Op.getValueType();
1881 SDValue LHS = Op.getOperand(0);
1882 SDValue RHS = Op.getOperand(1);
1884 SDValue Zero = DAG.getConstant(0, DL, VT);
1885 SDValue NegOne = DAG.getConstant(-1, DL, VT);
1887 if (VT == MVT::i32 &&
1888 DAG.ComputeNumSignBits(LHS) > 8 &&
1889 DAG.ComputeNumSignBits(RHS) > 8) {
1890 return LowerDIVREM24(Op, DAG, true);
1892 if (VT == MVT::i64 &&
1893 DAG.ComputeNumSignBits(LHS) > 32 &&
1894 DAG.ComputeNumSignBits(RHS) > 32) {
1895 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1898 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1899 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1900 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1903 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1904 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1906 return DAG.getMergeValues(Res, DL);
1909 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1910 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1911 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1912 SDValue RSign = LHSign; // Remainder sign is the same as LHS
1914 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1915 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1917 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1918 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1920 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1921 SDValue Rem = Div.getValue(1);
1923 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1924 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1926 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1927 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1933 return DAG.getMergeValues(Res, DL);
1936 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1937 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1939 EVT VT = Op.getValueType();
1940 SDValue X = Op.getOperand(0);
1941 SDValue Y = Op.getOperand(1);
1943 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1944 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1945 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1947 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1950 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1952 SDValue Src = Op.getOperand(0);
1954 // result = trunc(src)
1955 // if (src > 0.0 && src != result)
1958 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1960 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1961 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1964 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1966 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1967 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1968 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1970 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1971 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1974 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) {
1975 const unsigned FractBits = 52;
1976 const unsigned ExpBits = 11;
1978 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1980 DAG.getConstant(FractBits - 32, SL, MVT::i32),
1981 DAG.getConstant(ExpBits, SL, MVT::i32));
1982 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1983 DAG.getConstant(1023, SL, MVT::i32));
1988 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1990 SDValue Src = Op.getOperand(0);
1992 assert(Op.getValueType() == MVT::f64);
1994 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1995 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1997 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1999 // Extract the upper half, since this is where we will find the sign and
2001 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2003 SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2005 const unsigned FractBits = 52;
2007 // Extract the sign bit.
2008 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2009 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2011 // Extend back to to 64-bits.
2012 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
2014 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2016 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2017 const SDValue FractMask
2018 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2020 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2021 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2022 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2025 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2027 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2029 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2030 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2032 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2033 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2035 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2038 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2040 SDValue Src = Op.getOperand(0);
2042 assert(Op.getValueType() == MVT::f64);
2044 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
2045 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2046 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2048 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2049 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2051 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2053 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
2054 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2057 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2058 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2060 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2063 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2064 // FNEARBYINT and FRINT are the same, except in their handling of FP
2065 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2066 // rint, so just treat them as equivalent.
2067 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2070 // XXX - May require not supporting f32 denormals?
2071 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
2073 SDValue X = Op.getOperand(0);
2075 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
2077 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
2079 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
2081 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
2082 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
2083 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
2085 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
2088 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
2090 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2092 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
2094 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
2097 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2099 SDValue X = Op.getOperand(0);
2101 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2103 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2104 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2105 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
2106 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
2108 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2110 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2112 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2114 SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2116 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
2119 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2120 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2121 DAG.getConstant(INT64_C(0x0008000000000000), SL,
2125 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2126 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2127 DAG.getConstant(0, SL, MVT::i64), Tmp0,
2130 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2131 D, DAG.getConstant(0, SL, MVT::i64));
2132 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2134 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2135 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2137 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2138 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2139 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2141 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2143 DAG.getConstantFP(1.0, SL, MVT::f64),
2144 DAG.getConstantFP(0.0, SL, MVT::f64));
2146 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2148 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2149 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2154 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2155 EVT VT = Op.getValueType();
2158 return LowerFROUND32(Op, DAG);
2161 return LowerFROUND64(Op, DAG);
2163 llvm_unreachable("unhandled type");
2166 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2168 SDValue Src = Op.getOperand(0);
2170 // result = trunc(src);
2171 // if (src < 0.0 && src != result)
2174 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2176 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2177 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2180 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2182 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2183 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2184 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2186 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2187 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2190 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2191 bool Signed) const {
2193 SDValue Src = Op.getOperand(0);
2195 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2197 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2198 DAG.getConstant(0, SL, MVT::i32));
2199 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2200 DAG.getConstant(1, SL, MVT::i32));
2202 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2205 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2207 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2208 DAG.getConstant(32, SL, MVT::i32));
2210 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2213 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2214 SelectionDAG &DAG) const {
2215 SDValue S0 = Op.getOperand(0);
2216 if (S0.getValueType() != MVT::i64)
2219 EVT DestVT = Op.getValueType();
2220 if (DestVT == MVT::f64)
2221 return LowerINT_TO_FP64(Op, DAG, false);
2223 assert(DestVT == MVT::f32);
2227 // f32 uint_to_fp i64
2228 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
2229 DAG.getConstant(0, DL, MVT::i32));
2230 SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo);
2231 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
2232 DAG.getConstant(1, DL, MVT::i32));
2233 SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi);
2234 FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi,
2235 DAG.getConstantFP(4294967296.0f, DL, MVT::f32)); // 2^32
2236 return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
2239 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2240 SelectionDAG &DAG) const {
2241 SDValue Src = Op.getOperand(0);
2242 if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64)
2243 return LowerINT_TO_FP64(Op, DAG, true);
2248 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2249 bool Signed) const {
2252 SDValue Src = Op.getOperand(0);
2254 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2256 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2258 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2261 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2263 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2266 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2268 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2269 MVT::i32, FloorMul);
2270 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2272 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi);
2274 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2277 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2278 SelectionDAG &DAG) const {
2279 SDValue Src = Op.getOperand(0);
2281 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2282 return LowerFP64_TO_INT(Op, DAG, true);
2287 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2288 SelectionDAG &DAG) const {
2289 SDValue Src = Op.getOperand(0);
2291 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2292 return LowerFP64_TO_INT(Op, DAG, false);
2297 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2298 SelectionDAG &DAG) const {
2299 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2300 MVT VT = Op.getSimpleValueType();
2301 MVT ScalarVT = VT.getScalarType();
2306 SDValue Src = Op.getOperand(0);
2309 // TODO: Don't scalarize on Evergreen?
2310 unsigned NElts = VT.getVectorNumElements();
2311 SmallVector<SDValue, 8> Args;
2312 DAG.ExtractVectorElements(Src, Args, 0, NElts);
2314 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2315 for (unsigned I = 0; I < NElts; ++I)
2316 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2318 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args);
2321 //===----------------------------------------------------------------------===//
2322 // Custom DAG optimizations
2323 //===----------------------------------------------------------------------===//
2325 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2326 APInt KnownZero, KnownOne;
2327 EVT VT = Op.getValueType();
2328 DAG.computeKnownBits(Op, KnownZero, KnownOne);
2330 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
2333 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2334 EVT VT = Op.getValueType();
2336 // In order for this to be a signed 24-bit value, bit 23, must
2338 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2339 // as unsigned 24-bit values.
2340 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
2343 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
2345 SelectionDAG &DAG = DCI.DAG;
2346 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2347 EVT VT = Op.getValueType();
2349 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2350 APInt KnownZero, KnownOne;
2351 TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2352 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
2353 DCI.CommitTargetLoweringOpt(TLO);
2356 template <typename IntTy>
2357 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0,
2358 uint32_t Offset, uint32_t Width, SDLoc DL) {
2359 if (Width + Offset < 32) {
2360 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2361 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2362 return DAG.getConstant(Result, DL, MVT::i32);
2365 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2368 static bool usesAllNormalStores(SDNode *LoadVal) {
2369 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) {
2370 if (!ISD::isNormalStore(*I))
2377 // If we have a copy of an illegal type, replace it with a load / store of an
2378 // equivalently sized legal type. This avoids intermediate bit pack / unpack
2379 // instructions emitted when handling extloads and truncstores. Ideally we could
2380 // recognize the pack / unpack pattern to eliminate it.
2381 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2382 DAGCombinerInfo &DCI) const {
2383 if (!DCI.isBeforeLegalize())
2386 StoreSDNode *SN = cast<StoreSDNode>(N);
2387 SDValue Value = SN->getValue();
2388 EVT VT = Value.getValueType();
2390 if (isTypeLegal(VT) || SN->isVolatile() ||
2391 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8)
2394 LoadSDNode *LoadVal = cast<LoadSDNode>(Value);
2395 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal))
2398 EVT MemVT = LoadVal->getMemoryVT();
2401 SelectionDAG &DAG = DCI.DAG;
2402 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT);
2404 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
2406 LoadVal->getChain(),
2407 LoadVal->getBasePtr(),
2408 LoadVal->getOffset(),
2410 LoadVal->getMemOperand());
2412 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0));
2413 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false);
2415 return DAG.getStore(SN->getChain(), SL, NewLoad,
2416 SN->getBasePtr(), SN->getMemOperand());
2419 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2420 DAGCombinerInfo &DCI) const {
2421 if (N->getValueType(0) != MVT::i64)
2424 // i64 (shl x, 32) -> (build_pair 0, x)
2426 // Doing this with moves theoretically helps MI optimizations that understand
2427 // copies. 2 v_mov_b32_e32 will have the same code size / cycle count as
2428 // v_lshl_b64. In the SALU case, I think this is slightly worse since it
2429 // doubles the code size and I'm unsure about cycle count.
2430 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2431 if (!RHS || RHS->getZExtValue() != 32)
2434 SDValue LHS = N->getOperand(0);
2437 SelectionDAG &DAG = DCI.DAG;
2439 // Extract low 32-bits.
2440 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2442 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2443 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, Zero, Lo);
2446 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2447 DAGCombinerInfo &DCI) const {
2448 EVT VT = N->getValueType(0);
2450 if (VT.isVector() || VT.getSizeInBits() > 32)
2453 SelectionDAG &DAG = DCI.DAG;
2456 SDValue N0 = N->getOperand(0);
2457 SDValue N1 = N->getOperand(1);
2460 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2461 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2462 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2463 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
2464 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2465 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2466 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2467 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
2472 // We need to use sext even for MUL_U24, because MUL_U24 is used
2473 // for signed multiply of 8 and 16-bit types.
2474 return DAG.getSExtOrTrunc(Mul, DL, VT);
2477 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
2478 DAGCombinerInfo &DCI) const {
2479 SelectionDAG &DAG = DCI.DAG;
2482 switch(N->getOpcode()) {
2486 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2489 return performShlCombine(N, DCI);
2492 return performMulCombine(N, DCI);
2493 case AMDGPUISD::MUL_I24:
2494 case AMDGPUISD::MUL_U24: {
2495 SDValue N0 = N->getOperand(0);
2496 SDValue N1 = N->getOperand(1);
2497 simplifyI24(N0, DCI);
2498 simplifyI24(N1, DCI);
2502 SDValue Cond = N->getOperand(0);
2503 if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) {
2504 EVT VT = N->getValueType(0);
2505 SDValue LHS = Cond.getOperand(0);
2506 SDValue RHS = Cond.getOperand(1);
2507 SDValue CC = Cond.getOperand(2);
2509 SDValue True = N->getOperand(1);
2510 SDValue False = N->getOperand(2);
2513 return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
2515 // TODO: Implement min / max Evergreen instructions.
2516 if (VT == MVT::i32 &&
2517 Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
2518 return CombineIMinMax(DL, VT, LHS, RHS, True, False, CC, DAG);
2524 case AMDGPUISD::BFE_I32:
2525 case AMDGPUISD::BFE_U32: {
2526 assert(!N->getValueType(0).isVector() &&
2527 "Vector handling of BFE not implemented");
2528 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
2532 uint32_t WidthVal = Width->getZExtValue() & 0x1f;
2534 return DAG.getConstant(0, DL, MVT::i32);
2536 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2540 SDValue BitsFrom = N->getOperand(0);
2541 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
2543 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
2545 if (OffsetVal == 0) {
2546 // This is already sign / zero extended, so try to fold away extra BFEs.
2547 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
2549 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
2550 if (OpSignBits >= SignBits)
2553 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
2555 // This is a sign_extend_inreg. Replace it to take advantage of existing
2556 // DAG Combines. If not eliminated, we will match back to BFE during
2559 // TODO: The sext_inreg of extended types ends, although we can could
2560 // handle them in a single BFE.
2561 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
2562 DAG.getValueType(SmallVT));
2565 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
2568 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
2570 return constantFoldBFE<int32_t>(DAG,
2571 CVal->getSExtValue(),
2577 return constantFoldBFE<uint32_t>(DAG,
2578 CVal->getZExtValue(),
2584 if ((OffsetVal + WidthVal) >= 32) {
2585 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
2586 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2587 BitsFrom, ShiftVal);
2590 if (BitsFrom.hasOneUse()) {
2591 APInt Demanded = APInt::getBitsSet(32,
2593 OffsetVal + WidthVal);
2595 APInt KnownZero, KnownOne;
2596 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2597 !DCI.isBeforeLegalizeOps());
2598 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2599 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
2600 TLI.SimplifyDemandedBits(BitsFrom, Demanded,
2601 KnownZero, KnownOne, TLO)) {
2602 DCI.CommitTargetLoweringOpt(TLO);
2610 return performStoreCombine(N, DCI);
2615 //===----------------------------------------------------------------------===//
2617 //===----------------------------------------------------------------------===//
2619 void AMDGPUTargetLowering::getOriginalFunctionArgs(
2622 const SmallVectorImpl<ISD::InputArg> &Ins,
2623 SmallVectorImpl<ISD::InputArg> &OrigIns) const {
2625 for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
2626 if (Ins[i].ArgVT == Ins[i].VT) {
2627 OrigIns.push_back(Ins[i]);
2632 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
2633 // Vector has been split into scalars.
2634 VT = Ins[i].ArgVT.getVectorElementType();
2635 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
2636 Ins[i].ArgVT.getVectorElementType() !=
2637 Ins[i].VT.getVectorElementType()) {
2638 // Vector elements have been promoted
2641 // Vector has been spilt into smaller vectors.
2645 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
2646 Ins[i].OrigArgIndex, Ins[i].PartOffset);
2647 OrigIns.push_back(Arg);
2651 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const {
2652 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2653 return CFP->isExactlyValue(1.0);
2655 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2656 return C->isAllOnesValue();
2661 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const {
2662 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2663 return CFP->getValueAPF().isZero();
2665 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2666 return C->isNullValue();
2671 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2672 const TargetRegisterClass *RC,
2673 unsigned Reg, EVT VT) const {
2674 MachineFunction &MF = DAG.getMachineFunction();
2675 MachineRegisterInfo &MRI = MF.getRegInfo();
2676 unsigned VirtualRegister;
2677 if (!MRI.isLiveIn(Reg)) {
2678 VirtualRegister = MRI.createVirtualRegister(RC);
2679 MRI.addLiveIn(Reg, VirtualRegister);
2681 VirtualRegister = MRI.getLiveInVirtReg(Reg);
2683 return DAG.getRegister(VirtualRegister, VT);
2686 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
2687 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
2688 uint64_t ArgOffset = MFI->ABIArgOffset;
2693 return ArgOffset + 4;
2695 llvm_unreachable("unexpected implicit parameter type");
2698 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
2700 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
2701 switch ((AMDGPUISD::NodeType)Opcode) {
2702 case AMDGPUISD::FIRST_NUMBER: break;
2704 NODE_NAME_CASE(CALL);
2705 NODE_NAME_CASE(UMUL);
2706 NODE_NAME_CASE(RET_FLAG);
2707 NODE_NAME_CASE(BRANCH_COND);
2710 NODE_NAME_CASE(DWORDADDR)
2711 NODE_NAME_CASE(FRACT)
2712 NODE_NAME_CASE(CLAMP)
2713 NODE_NAME_CASE(COS_HW)
2714 NODE_NAME_CASE(SIN_HW)
2715 NODE_NAME_CASE(FMAX_LEGACY)
2716 NODE_NAME_CASE(FMIN_LEGACY)
2717 NODE_NAME_CASE(FMAX3)
2718 NODE_NAME_CASE(SMAX3)
2719 NODE_NAME_CASE(UMAX3)
2720 NODE_NAME_CASE(FMIN3)
2721 NODE_NAME_CASE(SMIN3)
2722 NODE_NAME_CASE(UMIN3)
2723 NODE_NAME_CASE(URECIP)
2724 NODE_NAME_CASE(DIV_SCALE)
2725 NODE_NAME_CASE(DIV_FMAS)
2726 NODE_NAME_CASE(DIV_FIXUP)
2727 NODE_NAME_CASE(TRIG_PREOP)
2730 NODE_NAME_CASE(RSQ_LEGACY)
2731 NODE_NAME_CASE(RSQ_CLAMPED)
2732 NODE_NAME_CASE(LDEXP)
2733 NODE_NAME_CASE(FP_CLASS)
2734 NODE_NAME_CASE(DOT4)
2735 NODE_NAME_CASE(CARRY)
2736 NODE_NAME_CASE(BORROW)
2737 NODE_NAME_CASE(BFE_U32)
2738 NODE_NAME_CASE(BFE_I32)
2741 NODE_NAME_CASE(BREV)
2742 NODE_NAME_CASE(MUL_U24)
2743 NODE_NAME_CASE(MUL_I24)
2744 NODE_NAME_CASE(MAD_U24)
2745 NODE_NAME_CASE(MAD_I24)
2746 NODE_NAME_CASE(TEXTURE_FETCH)
2747 NODE_NAME_CASE(EXPORT)
2748 NODE_NAME_CASE(CONST_ADDRESS)
2749 NODE_NAME_CASE(REGISTER_LOAD)
2750 NODE_NAME_CASE(REGISTER_STORE)
2751 NODE_NAME_CASE(LOAD_CONSTANT)
2752 NODE_NAME_CASE(LOAD_INPUT)
2753 NODE_NAME_CASE(SAMPLE)
2754 NODE_NAME_CASE(SAMPLEB)
2755 NODE_NAME_CASE(SAMPLED)
2756 NODE_NAME_CASE(SAMPLEL)
2757 NODE_NAME_CASE(CVT_F32_UBYTE0)
2758 NODE_NAME_CASE(CVT_F32_UBYTE1)
2759 NODE_NAME_CASE(CVT_F32_UBYTE2)
2760 NODE_NAME_CASE(CVT_F32_UBYTE3)
2761 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
2762 NODE_NAME_CASE(CONST_DATA_PTR)
2763 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
2764 NODE_NAME_CASE(SENDMSG)
2765 NODE_NAME_CASE(INTERP_MOV)
2766 NODE_NAME_CASE(INTERP_P1)
2767 NODE_NAME_CASE(INTERP_P2)
2768 NODE_NAME_CASE(STORE_MSKOR)
2769 NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
2770 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
2775 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
2776 DAGCombinerInfo &DCI,
2777 unsigned &RefinementSteps,
2778 bool &UseOneConstNR) const {
2779 SelectionDAG &DAG = DCI.DAG;
2780 EVT VT = Operand.getValueType();
2782 if (VT == MVT::f32) {
2783 RefinementSteps = 0;
2784 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
2787 // TODO: There is also f64 rsq instruction, but the documentation is less
2788 // clear on its precision.
2793 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
2794 DAGCombinerInfo &DCI,
2795 unsigned &RefinementSteps) const {
2796 SelectionDAG &DAG = DCI.DAG;
2797 EVT VT = Operand.getValueType();
2799 if (VT == MVT::f32) {
2800 // Reciprocal, < 1 ulp error.
2802 // This reciprocal approximation converges to < 0.5 ulp error with one
2803 // newton rhapson performed with two fused multiple adds (FMAs).
2805 RefinementSteps = 0;
2806 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
2809 // TODO: There is also f64 rcp instruction, but the documentation is less
2810 // clear on its precision.
2815 static void computeKnownBitsForMinMax(const SDValue Op0,
2819 const SelectionDAG &DAG,
2821 APInt Op0Zero, Op0One;
2822 APInt Op1Zero, Op1One;
2823 DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth);
2824 DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth);
2826 KnownZero = Op0Zero & Op1Zero;
2827 KnownOne = Op0One & Op1One;
2830 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
2834 const SelectionDAG &DAG,
2835 unsigned Depth) const {
2837 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
2841 unsigned Opc = Op.getOpcode();
2846 case ISD::INTRINSIC_WO_CHAIN: {
2847 // FIXME: The intrinsic should just use the node.
2848 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
2849 case AMDGPUIntrinsic::AMDGPU_imax:
2850 case AMDGPUIntrinsic::AMDGPU_umax:
2851 case AMDGPUIntrinsic::AMDGPU_imin:
2852 case AMDGPUIntrinsic::AMDGPU_umin:
2853 computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2),
2854 KnownZero, KnownOne, DAG, Depth);
2862 case AMDGPUISD::CARRY:
2863 case AMDGPUISD::BORROW: {
2864 KnownZero = APInt::getHighBitsSet(32, 31);
2868 case AMDGPUISD::BFE_I32:
2869 case AMDGPUISD::BFE_U32: {
2870 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2874 unsigned BitWidth = 32;
2875 uint32_t Width = CWidth->getZExtValue() & 0x1f;
2877 if (Opc == AMDGPUISD::BFE_U32)
2878 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
2885 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
2887 const SelectionDAG &DAG,
2888 unsigned Depth) const {
2889 switch (Op.getOpcode()) {
2890 case AMDGPUISD::BFE_I32: {
2891 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2895 unsigned SignBits = 32 - Width->getZExtValue() + 1;
2896 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2897 if (!Offset || !Offset->isNullValue())
2900 // TODO: Could probably figure something out with non-0 offsets.
2901 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2902 return std::max(SignBits, Op0SignBits);
2905 case AMDGPUISD::BFE_U32: {
2906 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2907 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
2910 case AMDGPUISD::CARRY:
2911 case AMDGPUISD::BORROW: