Revert "DebugInfo: Ensure that all debug location scope chains from instructions...
[oota-llvm.git] / lib / IR / Verifier.cpp
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 //  * Both of a binary operator's parameters are of the same type
17 //  * Verify that the indices of mem access instructions match other operands
18 //  * Verify that arithmetic and other things are only performed on first-class
19 //    types.  Verify that shifts & logicals only happen on integrals f.e.
20 //  * All of the constants in a switch statement are of the correct type
21 //  * The code is in valid SSA form
22 //  * It should be illegal to put a label into any other type (like a structure)
23 //    or to return one. [except constant arrays!]
24 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 //  * PHI nodes must have an entry for each predecessor, with no extras.
26 //  * PHI nodes must be the first thing in a basic block, all grouped together
27 //  * PHI nodes must have at least one entry
28 //  * All basic blocks should only end with terminator insts, not contain them
29 //  * The entry node to a function must not have predecessors
30 //  * All Instructions must be embedded into a basic block
31 //  * Functions cannot take a void-typed parameter
32 //  * Verify that a function's argument list agrees with it's declared type.
33 //  * It is illegal to specify a name for a void value.
34 //  * It is illegal to have a internal global value with no initializer
35 //  * It is illegal to have a ret instruction that returns a value that does not
36 //    agree with the function return value type.
37 //  * Function call argument types match the function prototype
38 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
39 //    only by the unwind edge of an invoke instruction.
40 //  * A landingpad instruction must be the first non-PHI instruction in the
41 //    block.
42 //  * All landingpad instructions must use the same personality function with
43 //    the same function.
44 //  * All other things that are tested by asserts spread about the code...
45 //
46 //===----------------------------------------------------------------------===//
47
48 #include "llvm/IR/Verifier.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/CallSite.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/ConstantRange.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugInfo.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/Dominators.h"
63 #include "llvm/IR/InlineAsm.h"
64 #include "llvm/IR/InstIterator.h"
65 #include "llvm/IR/InstVisitor.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Metadata.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/PassManager.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <algorithm>
77 #include <cstdarg>
78 using namespace llvm;
79
80 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(false));
81
82 namespace {
83 struct VerifierSupport {
84   raw_ostream &OS;
85   const Module *M;
86
87   /// \brief Track the brokenness of the module while recursively visiting.
88   bool Broken;
89
90   explicit VerifierSupport(raw_ostream &OS)
91       : OS(OS), M(nullptr), Broken(false) {}
92
93   void WriteValue(const Value *V) {
94     if (!V)
95       return;
96     if (isa<Instruction>(V)) {
97       OS << *V << '\n';
98     } else {
99       V->printAsOperand(OS, true, M);
100       OS << '\n';
101     }
102   }
103
104   void WriteType(Type *T) {
105     if (!T)
106       return;
107     OS << ' ' << *T;
108   }
109
110   void WriteComdat(const Comdat *C) {
111     if (!C)
112       return;
113     OS << *C;
114   }
115
116   // CheckFailed - A check failed, so print out the condition and the message
117   // that failed.  This provides a nice place to put a breakpoint if you want
118   // to see why something is not correct.
119   void CheckFailed(const Twine &Message, const Value *V1 = nullptr,
120                    const Value *V2 = nullptr, const Value *V3 = nullptr,
121                    const Value *V4 = nullptr) {
122     OS << Message.str() << "\n";
123     WriteValue(V1);
124     WriteValue(V2);
125     WriteValue(V3);
126     WriteValue(V4);
127     Broken = true;
128   }
129
130   void CheckFailed(const Twine &Message, const Value *V1, Type *T2,
131                    const Value *V3 = nullptr) {
132     OS << Message.str() << "\n";
133     WriteValue(V1);
134     WriteType(T2);
135     WriteValue(V3);
136     Broken = true;
137   }
138
139   void CheckFailed(const Twine &Message, Type *T1, Type *T2 = nullptr,
140                    Type *T3 = nullptr) {
141     OS << Message.str() << "\n";
142     WriteType(T1);
143     WriteType(T2);
144     WriteType(T3);
145     Broken = true;
146   }
147
148   void CheckFailed(const Twine &Message, const Comdat *C) {
149     OS << Message.str() << "\n";
150     WriteComdat(C);
151     Broken = true;
152   }
153 };
154 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
155   friend class InstVisitor<Verifier>;
156
157   LLVMContext *Context;
158   const DataLayout *DL;
159   DominatorTree DT;
160
161   /// \brief When verifying a basic block, keep track of all of the
162   /// instructions we have seen so far.
163   ///
164   /// This allows us to do efficient dominance checks for the case when an
165   /// instruction has an operand that is an instruction in the same block.
166   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
167
168   /// \brief Keep track of the metadata nodes that have been checked already.
169   SmallPtrSet<MDNode *, 32> MDNodes;
170
171   /// \brief The personality function referenced by the LandingPadInsts.
172   /// All LandingPadInsts within the same function must use the same
173   /// personality function.
174   const Value *PersonalityFn;
175
176 public:
177   explicit Verifier(raw_ostream &OS = dbgs())
178       : VerifierSupport(OS), Context(nullptr), DL(nullptr),
179         PersonalityFn(nullptr) {}
180
181   bool verify(const Function &F) {
182     M = F.getParent();
183     Context = &M->getContext();
184
185     // First ensure the function is well-enough formed to compute dominance
186     // information.
187     if (F.empty()) {
188       OS << "Function '" << F.getName()
189          << "' does not contain an entry block!\n";
190       return false;
191     }
192     for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
193       if (I->empty() || !I->back().isTerminator()) {
194         OS << "Basic Block in function '" << F.getName()
195            << "' does not have terminator!\n";
196         I->printAsOperand(OS, true);
197         OS << "\n";
198         return false;
199       }
200     }
201
202     // Now directly compute a dominance tree. We don't rely on the pass
203     // manager to provide this as it isolates us from a potentially
204     // out-of-date dominator tree and makes it significantly more complex to
205     // run this code outside of a pass manager.
206     // FIXME: It's really gross that we have to cast away constness here.
207     DT.recalculate(const_cast<Function &>(F));
208
209     Broken = false;
210     // FIXME: We strip const here because the inst visitor strips const.
211     visit(const_cast<Function &>(F));
212     InstsInThisBlock.clear();
213     PersonalityFn = nullptr;
214
215     return !Broken;
216   }
217
218   bool verify(const Module &M) {
219     this->M = &M;
220     Context = &M.getContext();
221     Broken = false;
222
223     // Scan through, checking all of the external function's linkage now...
224     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
225       visitGlobalValue(*I);
226
227       // Check to make sure function prototypes are okay.
228       if (I->isDeclaration())
229         visitFunction(*I);
230     }
231
232     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
233          I != E; ++I)
234       visitGlobalVariable(*I);
235
236     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
237          I != E; ++I)
238       visitGlobalAlias(*I);
239
240     for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
241                                                E = M.named_metadata_end();
242          I != E; ++I)
243       visitNamedMDNode(*I);
244
245     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
246       visitComdat(SMEC.getValue());
247
248     visitModuleFlags(M);
249     visitModuleIdents(M);
250
251     return !Broken;
252   }
253
254 private:
255   // Verification methods...
256   void visitGlobalValue(const GlobalValue &GV);
257   void visitGlobalVariable(const GlobalVariable &GV);
258   void visitGlobalAlias(const GlobalAlias &GA);
259   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
260   void visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *, 4> &Visited,
261                            const GlobalAlias &A, const Constant &C);
262   void visitNamedMDNode(const NamedMDNode &NMD);
263   void visitMDNode(MDNode &MD, Function *F);
264   void visitComdat(const Comdat &C);
265   void visitModuleIdents(const Module &M);
266   void visitModuleFlags(const Module &M);
267   void visitModuleFlag(const MDNode *Op,
268                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
269                        SmallVectorImpl<const MDNode *> &Requirements);
270   void visitFunction(const Function &F);
271   void visitBasicBlock(BasicBlock &BB);
272
273   // InstVisitor overrides...
274   using InstVisitor<Verifier>::visit;
275   void visit(Instruction &I);
276
277   void visitTruncInst(TruncInst &I);
278   void visitZExtInst(ZExtInst &I);
279   void visitSExtInst(SExtInst &I);
280   void visitFPTruncInst(FPTruncInst &I);
281   void visitFPExtInst(FPExtInst &I);
282   void visitFPToUIInst(FPToUIInst &I);
283   void visitFPToSIInst(FPToSIInst &I);
284   void visitUIToFPInst(UIToFPInst &I);
285   void visitSIToFPInst(SIToFPInst &I);
286   void visitIntToPtrInst(IntToPtrInst &I);
287   void visitPtrToIntInst(PtrToIntInst &I);
288   void visitBitCastInst(BitCastInst &I);
289   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
290   void visitPHINode(PHINode &PN);
291   void visitBinaryOperator(BinaryOperator &B);
292   void visitICmpInst(ICmpInst &IC);
293   void visitFCmpInst(FCmpInst &FC);
294   void visitExtractElementInst(ExtractElementInst &EI);
295   void visitInsertElementInst(InsertElementInst &EI);
296   void visitShuffleVectorInst(ShuffleVectorInst &EI);
297   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
298   void visitCallInst(CallInst &CI);
299   void visitInvokeInst(InvokeInst &II);
300   void visitGetElementPtrInst(GetElementPtrInst &GEP);
301   void visitLoadInst(LoadInst &LI);
302   void visitStoreInst(StoreInst &SI);
303   void verifyDominatesUse(Instruction &I, unsigned i);
304   void visitInstruction(Instruction &I);
305   void visitTerminatorInst(TerminatorInst &I);
306   void visitBranchInst(BranchInst &BI);
307   void visitReturnInst(ReturnInst &RI);
308   void visitSwitchInst(SwitchInst &SI);
309   void visitIndirectBrInst(IndirectBrInst &BI);
310   void visitSelectInst(SelectInst &SI);
311   void visitUserOp1(Instruction &I);
312   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
313   void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
314   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
315   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
316   void visitFenceInst(FenceInst &FI);
317   void visitAllocaInst(AllocaInst &AI);
318   void visitExtractValueInst(ExtractValueInst &EVI);
319   void visitInsertValueInst(InsertValueInst &IVI);
320   void visitLandingPadInst(LandingPadInst &LPI);
321
322   void VerifyCallSite(CallSite CS);
323   void verifyMustTailCall(CallInst &CI);
324   bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
325                         unsigned ArgNo, std::string &Suffix);
326   bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
327                            SmallVectorImpl<Type *> &ArgTys);
328   bool VerifyIntrinsicIsVarArg(bool isVarArg,
329                                ArrayRef<Intrinsic::IITDescriptor> &Infos);
330   bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
331   void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
332                             const Value *V);
333   void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
334                             bool isReturnValue, const Value *V);
335   void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
336                            const Value *V);
337
338   void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy);
339   void VerifyConstantExprBitcastType(const ConstantExpr *CE);
340 };
341 class DebugInfoVerifier : public VerifierSupport {
342 public:
343   explicit DebugInfoVerifier(raw_ostream &OS = dbgs()) : VerifierSupport(OS) {}
344
345   bool verify(const Module &M) {
346     this->M = &M;
347     verifyDebugInfo();
348     return !Broken;
349   }
350
351 private:
352   void verifyDebugInfo();
353   void processInstructions(DebugInfoFinder &Finder);
354   void processCallInst(DebugInfoFinder &Finder, const CallInst &CI);
355 };
356 } // End anonymous namespace
357
358 // Assert - We know that cond should be true, if not print an error message.
359 #define Assert(C, M) \
360   do { if (!(C)) { CheckFailed(M); return; } } while (0)
361 #define Assert1(C, M, V1) \
362   do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
363 #define Assert2(C, M, V1, V2) \
364   do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
365 #define Assert3(C, M, V1, V2, V3) \
366   do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
367 #define Assert4(C, M, V1, V2, V3, V4) \
368   do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
369
370 void Verifier::visit(Instruction &I) {
371   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
372     Assert1(I.getOperand(i) != nullptr, "Operand is null", &I);
373   InstVisitor<Verifier>::visit(I);
374 }
375
376
377 void Verifier::visitGlobalValue(const GlobalValue &GV) {
378   Assert1(!GV.isDeclaration() || GV.isMaterializable() ||
379               GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
380           "Global is external, but doesn't have external or weak linkage!",
381           &GV);
382
383   Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
384           "Only global variables can have appending linkage!", &GV);
385
386   if (GV.hasAppendingLinkage()) {
387     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
388     Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
389             "Only global arrays can have appending linkage!", GVar);
390   }
391 }
392
393 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
394   if (GV.hasInitializer()) {
395     Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
396             "Global variable initializer type does not match global "
397             "variable type!", &GV);
398
399     // If the global has common linkage, it must have a zero initializer and
400     // cannot be constant.
401     if (GV.hasCommonLinkage()) {
402       Assert1(GV.getInitializer()->isNullValue(),
403               "'common' global must have a zero initializer!", &GV);
404       Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
405               &GV);
406       Assert1(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
407     }
408   } else {
409     Assert1(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
410             "invalid linkage type for global declaration", &GV);
411   }
412
413   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
414                        GV.getName() == "llvm.global_dtors")) {
415     Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
416             "invalid linkage for intrinsic global variable", &GV);
417     // Don't worry about emitting an error for it not being an array,
418     // visitGlobalValue will complain on appending non-array.
419     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType()->getElementType())) {
420       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
421       PointerType *FuncPtrTy =
422           FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
423       // FIXME: Reject the 2-field form in LLVM 4.0.
424       Assert1(STy && (STy->getNumElements() == 2 ||
425                       STy->getNumElements() == 3) &&
426               STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
427               STy->getTypeAtIndex(1) == FuncPtrTy,
428               "wrong type for intrinsic global variable", &GV);
429       if (STy->getNumElements() == 3) {
430         Type *ETy = STy->getTypeAtIndex(2);
431         Assert1(ETy->isPointerTy() &&
432                     cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
433                 "wrong type for intrinsic global variable", &GV);
434       }
435     }
436   }
437
438   if (GV.hasName() && (GV.getName() == "llvm.used" ||
439                        GV.getName() == "llvm.compiler.used")) {
440     Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
441             "invalid linkage for intrinsic global variable", &GV);
442     Type *GVType = GV.getType()->getElementType();
443     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
444       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
445       Assert1(PTy, "wrong type for intrinsic global variable", &GV);
446       if (GV.hasInitializer()) {
447         const Constant *Init = GV.getInitializer();
448         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
449         Assert1(InitArray, "wrong initalizer for intrinsic global variable",
450                 Init);
451         for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
452           Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
453           Assert1(
454               isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V),
455               "invalid llvm.used member", V);
456           Assert1(V->hasName(), "members of llvm.used must be named", V);
457         }
458       }
459     }
460   }
461
462   Assert1(!GV.hasDLLImportStorageClass() ||
463           (GV.isDeclaration() && GV.hasExternalLinkage()) ||
464           GV.hasAvailableExternallyLinkage(),
465           "Global is marked as dllimport, but not external", &GV);
466
467   if (!GV.hasInitializer()) {
468     visitGlobalValue(GV);
469     return;
470   }
471
472   // Walk any aggregate initializers looking for bitcasts between address spaces
473   SmallPtrSet<const Value *, 4> Visited;
474   SmallVector<const Value *, 4> WorkStack;
475   WorkStack.push_back(cast<Value>(GV.getInitializer()));
476
477   while (!WorkStack.empty()) {
478     const Value *V = WorkStack.pop_back_val();
479     if (!Visited.insert(V))
480       continue;
481
482     if (const User *U = dyn_cast<User>(V)) {
483       for (unsigned I = 0, N = U->getNumOperands(); I != N; ++I)
484         WorkStack.push_back(U->getOperand(I));
485     }
486
487     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
488       VerifyConstantExprBitcastType(CE);
489       if (Broken)
490         return;
491     }
492   }
493
494   visitGlobalValue(GV);
495 }
496
497 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
498   SmallPtrSet<const GlobalAlias*, 4> Visited;
499   Visited.insert(&GA);
500   visitAliaseeSubExpr(Visited, GA, C);
501 }
502
503 void Verifier::visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *, 4> &Visited,
504                                    const GlobalAlias &GA, const Constant &C) {
505   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
506     Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA);
507
508     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
509       Assert1(Visited.insert(GA2), "Aliases cannot form a cycle", &GA);
510
511       Assert1(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
512               &GA);
513     } else {
514       // Only continue verifying subexpressions of GlobalAliases.
515       // Do not recurse into global initializers.
516       return;
517     }
518   }
519
520   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
521     VerifyConstantExprBitcastType(CE);
522
523   for (const Use &U : C.operands()) {
524     Value *V = &*U;
525     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
526       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
527     else if (const auto *C2 = dyn_cast<Constant>(V))
528       visitAliaseeSubExpr(Visited, GA, *C2);
529   }
530 }
531
532 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
533   Assert1(!GA.getName().empty(),
534           "Alias name cannot be empty!", &GA);
535   Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()),
536           "Alias should have private, internal, linkonce, weak, linkonce_odr, "
537           "weak_odr, or external linkage!",
538           &GA);
539   const Constant *Aliasee = GA.getAliasee();
540   Assert1(Aliasee, "Aliasee cannot be NULL!", &GA);
541   Assert1(GA.getType() == Aliasee->getType(),
542           "Alias and aliasee types should match!", &GA);
543
544   Assert1(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
545           "Aliasee should be either GlobalValue or ConstantExpr", &GA);
546
547   visitAliaseeSubExpr(GA, *Aliasee);
548
549   visitGlobalValue(GA);
550 }
551
552 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
553   for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
554     MDNode *MD = NMD.getOperand(i);
555     if (!MD)
556       continue;
557
558     Assert1(!MD->isFunctionLocal(),
559             "Named metadata operand cannot be function local!", MD);
560     visitMDNode(*MD, nullptr);
561   }
562 }
563
564 void Verifier::visitMDNode(MDNode &MD, Function *F) {
565   // Only visit each node once.  Metadata can be mutually recursive, so this
566   // avoids infinite recursion here, as well as being an optimization.
567   if (!MDNodes.insert(&MD))
568     return;
569
570   for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
571     Value *Op = MD.getOperand(i);
572     if (!Op)
573       continue;
574     if (isa<Constant>(Op) || isa<MDString>(Op))
575       continue;
576     if (MDNode *N = dyn_cast<MDNode>(Op)) {
577       Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
578               "Global metadata operand cannot be function local!", &MD, N);
579       visitMDNode(*N, F);
580       continue;
581     }
582     Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
583
584     // If this was an instruction, bb, or argument, verify that it is in the
585     // function that we expect.
586     Function *ActualF = nullptr;
587     if (Instruction *I = dyn_cast<Instruction>(Op))
588       ActualF = I->getParent()->getParent();
589     else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
590       ActualF = BB->getParent();
591     else if (Argument *A = dyn_cast<Argument>(Op))
592       ActualF = A->getParent();
593     assert(ActualF && "Unimplemented function local metadata case!");
594
595     Assert2(ActualF == F, "function-local metadata used in wrong function",
596             &MD, Op);
597   }
598 }
599
600 void Verifier::visitComdat(const Comdat &C) {
601   // All Comdat::SelectionKind values other than Comdat::Any require a
602   // GlobalValue with the same name as the Comdat.
603   const GlobalValue *GV = M->getNamedValue(C.getName());
604   if (C.getSelectionKind() != Comdat::Any)
605     Assert1(GV,
606             "comdat selection kind requires a global value with the same name",
607             &C);
608   // The Module is invalid if the GlobalValue has local linkage.  Allowing
609   // otherwise opens us up to seeing the underling global value get renamed if
610   // collisions occur.
611   if (GV)
612     Assert1(!GV->hasLocalLinkage(), "comdat global value has local linkage",
613             GV);
614 }
615
616 void Verifier::visitModuleIdents(const Module &M) {
617   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
618   if (!Idents) 
619     return;
620   
621   // llvm.ident takes a list of metadata entry. Each entry has only one string.
622   // Scan each llvm.ident entry and make sure that this requirement is met.
623   for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
624     const MDNode *N = Idents->getOperand(i);
625     Assert1(N->getNumOperands() == 1,
626             "incorrect number of operands in llvm.ident metadata", N);
627     Assert1(isa<MDString>(N->getOperand(0)),
628             ("invalid value for llvm.ident metadata entry operand"
629              "(the operand should be a string)"),
630             N->getOperand(0));
631   } 
632 }
633
634 void Verifier::visitModuleFlags(const Module &M) {
635   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
636   if (!Flags) return;
637
638   // Scan each flag, and track the flags and requirements.
639   DenseMap<const MDString*, const MDNode*> SeenIDs;
640   SmallVector<const MDNode*, 16> Requirements;
641   for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
642     visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
643   }
644
645   // Validate that the requirements in the module are valid.
646   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
647     const MDNode *Requirement = Requirements[I];
648     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
649     const Value *ReqValue = Requirement->getOperand(1);
650
651     const MDNode *Op = SeenIDs.lookup(Flag);
652     if (!Op) {
653       CheckFailed("invalid requirement on flag, flag is not present in module",
654                   Flag);
655       continue;
656     }
657
658     if (Op->getOperand(2) != ReqValue) {
659       CheckFailed(("invalid requirement on flag, "
660                    "flag does not have the required value"),
661                   Flag);
662       continue;
663     }
664   }
665 }
666
667 void
668 Verifier::visitModuleFlag(const MDNode *Op,
669                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
670                           SmallVectorImpl<const MDNode *> &Requirements) {
671   // Each module flag should have three arguments, the merge behavior (a
672   // constant int), the flag ID (an MDString), and the value.
673   Assert1(Op->getNumOperands() == 3,
674           "incorrect number of operands in module flag", Op);
675   ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0));
676   MDString *ID = dyn_cast<MDString>(Op->getOperand(1));
677   Assert1(Behavior,
678           "invalid behavior operand in module flag (expected constant integer)",
679           Op->getOperand(0));
680   unsigned BehaviorValue = Behavior->getZExtValue();
681   Assert1(ID,
682           "invalid ID operand in module flag (expected metadata string)",
683           Op->getOperand(1));
684
685   // Sanity check the values for behaviors with additional requirements.
686   switch (BehaviorValue) {
687   default:
688     Assert1(false,
689             "invalid behavior operand in module flag (unexpected constant)",
690             Op->getOperand(0));
691     break;
692
693   case Module::Error:
694   case Module::Warning:
695   case Module::Override:
696     // These behavior types accept any value.
697     break;
698
699   case Module::Require: {
700     // The value should itself be an MDNode with two operands, a flag ID (an
701     // MDString), and a value.
702     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
703     Assert1(Value && Value->getNumOperands() == 2,
704             "invalid value for 'require' module flag (expected metadata pair)",
705             Op->getOperand(2));
706     Assert1(isa<MDString>(Value->getOperand(0)),
707             ("invalid value for 'require' module flag "
708              "(first value operand should be a string)"),
709             Value->getOperand(0));
710
711     // Append it to the list of requirements, to check once all module flags are
712     // scanned.
713     Requirements.push_back(Value);
714     break;
715   }
716
717   case Module::Append:
718   case Module::AppendUnique: {
719     // These behavior types require the operand be an MDNode.
720     Assert1(isa<MDNode>(Op->getOperand(2)),
721             "invalid value for 'append'-type module flag "
722             "(expected a metadata node)", Op->getOperand(2));
723     break;
724   }
725   }
726
727   // Unless this is a "requires" flag, check the ID is unique.
728   if (BehaviorValue != Module::Require) {
729     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
730     Assert1(Inserted,
731             "module flag identifiers must be unique (or of 'require' type)",
732             ID);
733   }
734 }
735
736 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
737                                     bool isFunction, const Value *V) {
738   unsigned Slot = ~0U;
739   for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
740     if (Attrs.getSlotIndex(I) == Idx) {
741       Slot = I;
742       break;
743     }
744
745   assert(Slot != ~0U && "Attribute set inconsistency!");
746
747   for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
748          I != E; ++I) {
749     if (I->isStringAttribute())
750       continue;
751
752     if (I->getKindAsEnum() == Attribute::NoReturn ||
753         I->getKindAsEnum() == Attribute::NoUnwind ||
754         I->getKindAsEnum() == Attribute::NoInline ||
755         I->getKindAsEnum() == Attribute::AlwaysInline ||
756         I->getKindAsEnum() == Attribute::OptimizeForSize ||
757         I->getKindAsEnum() == Attribute::StackProtect ||
758         I->getKindAsEnum() == Attribute::StackProtectReq ||
759         I->getKindAsEnum() == Attribute::StackProtectStrong ||
760         I->getKindAsEnum() == Attribute::NoRedZone ||
761         I->getKindAsEnum() == Attribute::NoImplicitFloat ||
762         I->getKindAsEnum() == Attribute::Naked ||
763         I->getKindAsEnum() == Attribute::InlineHint ||
764         I->getKindAsEnum() == Attribute::StackAlignment ||
765         I->getKindAsEnum() == Attribute::UWTable ||
766         I->getKindAsEnum() == Attribute::NonLazyBind ||
767         I->getKindAsEnum() == Attribute::ReturnsTwice ||
768         I->getKindAsEnum() == Attribute::SanitizeAddress ||
769         I->getKindAsEnum() == Attribute::SanitizeThread ||
770         I->getKindAsEnum() == Attribute::SanitizeMemory ||
771         I->getKindAsEnum() == Attribute::MinSize ||
772         I->getKindAsEnum() == Attribute::NoDuplicate ||
773         I->getKindAsEnum() == Attribute::Builtin ||
774         I->getKindAsEnum() == Attribute::NoBuiltin ||
775         I->getKindAsEnum() == Attribute::Cold ||
776         I->getKindAsEnum() == Attribute::OptimizeNone ||
777         I->getKindAsEnum() == Attribute::JumpTable) {
778       if (!isFunction) {
779         CheckFailed("Attribute '" + I->getAsString() +
780                     "' only applies to functions!", V);
781         return;
782       }
783     } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
784                I->getKindAsEnum() == Attribute::ReadNone) {
785       if (Idx == 0) {
786         CheckFailed("Attribute '" + I->getAsString() +
787                     "' does not apply to function returns");
788         return;
789       }
790     } else if (isFunction) {
791       CheckFailed("Attribute '" + I->getAsString() +
792                   "' does not apply to functions!", V);
793       return;
794     }
795   }
796 }
797
798 // VerifyParameterAttrs - Check the given attributes for an argument or return
799 // value of the specified type.  The value V is printed in error messages.
800 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
801                                     bool isReturnValue, const Value *V) {
802   if (!Attrs.hasAttributes(Idx))
803     return;
804
805   VerifyAttributeTypes(Attrs, Idx, false, V);
806
807   if (isReturnValue)
808     Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
809             !Attrs.hasAttribute(Idx, Attribute::Nest) &&
810             !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
811             !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
812             !Attrs.hasAttribute(Idx, Attribute::Returned) &&
813             !Attrs.hasAttribute(Idx, Attribute::InAlloca),
814             "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
815             "'returned' do not apply to return values!", V);
816
817   // Check for mutually incompatible attributes.  Only inreg is compatible with
818   // sret.
819   unsigned AttrCount = 0;
820   AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
821   AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
822   AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
823                Attrs.hasAttribute(Idx, Attribute::InReg);
824   AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
825   Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
826                           "and 'sret' are incompatible!", V);
827
828   Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
829             Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
830           "'inalloca and readonly' are incompatible!", V);
831
832   Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
833             Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes "
834           "'sret and returned' are incompatible!", V);
835
836   Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
837             Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes "
838           "'zeroext and signext' are incompatible!", V);
839
840   Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
841             Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
842           "'readnone and readonly' are incompatible!", V);
843
844   Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
845             Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes "
846           "'noinline and alwaysinline' are incompatible!", V);
847
848   Assert1(!AttrBuilder(Attrs, Idx).
849             hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
850           "Wrong types for attribute: " +
851           AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V);
852
853   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
854     if (!PTy->getElementType()->isSized()) {
855       Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
856               !Attrs.hasAttribute(Idx, Attribute::InAlloca),
857               "Attributes 'byval' and 'inalloca' do not support unsized types!",
858               V);
859     }
860   } else {
861     Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal),
862             "Attribute 'byval' only applies to parameters with pointer type!",
863             V);
864   }
865 }
866
867 // VerifyFunctionAttrs - Check parameter attributes against a function type.
868 // The value V is printed in error messages.
869 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
870                                    const Value *V) {
871   if (Attrs.isEmpty())
872     return;
873
874   bool SawNest = false;
875   bool SawReturned = false;
876   bool SawSRet = false;
877
878   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
879     unsigned Idx = Attrs.getSlotIndex(i);
880
881     Type *Ty;
882     if (Idx == 0)
883       Ty = FT->getReturnType();
884     else if (Idx-1 < FT->getNumParams())
885       Ty = FT->getParamType(Idx-1);
886     else
887       break;  // VarArgs attributes, verified elsewhere.
888
889     VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
890
891     if (Idx == 0)
892       continue;
893
894     if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
895       Assert1(!SawNest, "More than one parameter has attribute nest!", V);
896       SawNest = true;
897     }
898
899     if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
900       Assert1(!SawReturned, "More than one parameter has attribute returned!",
901               V);
902       Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible "
903               "argument and return types for 'returned' attribute", V);
904       SawReturned = true;
905     }
906
907     if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
908       Assert1(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
909       Assert1(Idx == 1 || Idx == 2,
910               "Attribute 'sret' is not on first or second parameter!", V);
911       SawSRet = true;
912     }
913
914     if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
915       Assert1(Idx == FT->getNumParams(),
916               "inalloca isn't on the last parameter!", V);
917     }
918   }
919
920   if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
921     return;
922
923   VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
924
925   Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
926                                Attribute::ReadNone) &&
927             Attrs.hasAttribute(AttributeSet::FunctionIndex,
928                                Attribute::ReadOnly)),
929           "Attributes 'readnone and readonly' are incompatible!", V);
930
931   Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
932                                Attribute::NoInline) &&
933             Attrs.hasAttribute(AttributeSet::FunctionIndex,
934                                Attribute::AlwaysInline)),
935           "Attributes 'noinline and alwaysinline' are incompatible!", V);
936
937   if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 
938                          Attribute::OptimizeNone)) {
939     Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex,
940                                Attribute::NoInline),
941             "Attribute 'optnone' requires 'noinline'!", V);
942
943     Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
944                                 Attribute::OptimizeForSize),
945             "Attributes 'optsize and optnone' are incompatible!", V);
946
947     Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
948                                 Attribute::MinSize),
949             "Attributes 'minsize and optnone' are incompatible!", V);
950   }
951
952   if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
953                          Attribute::JumpTable)) {
954     const GlobalValue *GV = cast<GlobalValue>(V);
955     Assert1(GV->hasUnnamedAddr(),
956             "Attribute 'jumptable' requires 'unnamed_addr'", V);
957
958   }
959 }
960
961 void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) {
962   // Get the size of the types in bits, we'll need this later
963   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
964   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
965
966   // BitCast implies a no-op cast of type only. No bits change.
967   // However, you can't cast pointers to anything but pointers.
968   Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
969           "Bitcast requires both operands to be pointer or neither", V);
970   Assert1(SrcBitSize == DestBitSize,
971           "Bitcast requires types of same width", V);
972
973   // Disallow aggregates.
974   Assert1(!SrcTy->isAggregateType(),
975           "Bitcast operand must not be aggregate", V);
976   Assert1(!DestTy->isAggregateType(),
977           "Bitcast type must not be aggregate", V);
978
979   // Without datalayout, assume all address spaces are the same size.
980   // Don't check if both types are not pointers.
981   // Skip casts between scalars and vectors.
982   if (!DL ||
983       !SrcTy->isPtrOrPtrVectorTy() ||
984       !DestTy->isPtrOrPtrVectorTy() ||
985       SrcTy->isVectorTy() != DestTy->isVectorTy()) {
986     return;
987   }
988
989   unsigned SrcAS = SrcTy->getPointerAddressSpace();
990   unsigned DstAS = DestTy->getPointerAddressSpace();
991
992   Assert1(SrcAS == DstAS,
993           "Bitcasts between pointers of different address spaces is not legal."
994           "Use AddrSpaceCast instead.", V);
995 }
996
997 void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
998   if (CE->getOpcode() == Instruction::BitCast) {
999     Type *SrcTy = CE->getOperand(0)->getType();
1000     Type *DstTy = CE->getType();
1001     VerifyBitcastType(CE, DstTy, SrcTy);
1002   }
1003 }
1004
1005 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1006   if (Attrs.getNumSlots() == 0)
1007     return true;
1008
1009   unsigned LastSlot = Attrs.getNumSlots() - 1;
1010   unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1011   if (LastIndex <= Params
1012       || (LastIndex == AttributeSet::FunctionIndex
1013           && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1014     return true;
1015
1016   return false;
1017 }
1018
1019 // visitFunction - Verify that a function is ok.
1020 //
1021 void Verifier::visitFunction(const Function &F) {
1022   // Check function arguments.
1023   FunctionType *FT = F.getFunctionType();
1024   unsigned NumArgs = F.arg_size();
1025
1026   Assert1(Context == &F.getContext(),
1027           "Function context does not match Module context!", &F);
1028
1029   Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1030   Assert2(FT->getNumParams() == NumArgs,
1031           "# formal arguments must match # of arguments for function type!",
1032           &F, FT);
1033   Assert1(F.getReturnType()->isFirstClassType() ||
1034           F.getReturnType()->isVoidTy() ||
1035           F.getReturnType()->isStructTy(),
1036           "Functions cannot return aggregate values!", &F);
1037
1038   Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1039           "Invalid struct return type!", &F);
1040
1041   AttributeSet Attrs = F.getAttributes();
1042
1043   Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
1044           "Attribute after last parameter!", &F);
1045
1046   // Check function attributes.
1047   VerifyFunctionAttrs(FT, Attrs, &F);
1048
1049   // On function declarations/definitions, we do not support the builtin
1050   // attribute. We do not check this in VerifyFunctionAttrs since that is
1051   // checking for Attributes that can/can not ever be on functions.
1052   Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1053                               Attribute::Builtin),
1054           "Attribute 'builtin' can only be applied to a callsite.", &F);
1055
1056   // Check that this function meets the restrictions on this calling convention.
1057   switch (F.getCallingConv()) {
1058   default:
1059     break;
1060   case CallingConv::C:
1061     break;
1062   case CallingConv::Fast:
1063   case CallingConv::Cold:
1064   case CallingConv::X86_FastCall:
1065   case CallingConv::X86_ThisCall:
1066   case CallingConv::Intel_OCL_BI:
1067   case CallingConv::PTX_Kernel:
1068   case CallingConv::PTX_Device:
1069     Assert1(!F.isVarArg(),
1070             "Varargs functions must have C calling conventions!", &F);
1071     break;
1072   }
1073
1074   bool isLLVMdotName = F.getName().size() >= 5 &&
1075                        F.getName().substr(0, 5) == "llvm.";
1076
1077   // Check that the argument values match the function type for this function...
1078   unsigned i = 0;
1079   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
1080        ++I, ++i) {
1081     Assert2(I->getType() == FT->getParamType(i),
1082             "Argument value does not match function argument type!",
1083             I, FT->getParamType(i));
1084     Assert1(I->getType()->isFirstClassType(),
1085             "Function arguments must have first-class types!", I);
1086     if (!isLLVMdotName)
1087       Assert2(!I->getType()->isMetadataTy(),
1088               "Function takes metadata but isn't an intrinsic", I, &F);
1089   }
1090
1091   if (F.isMaterializable()) {
1092     // Function has a body somewhere we can't see.
1093   } else if (F.isDeclaration()) {
1094     Assert1(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
1095             "invalid linkage type for function declaration", &F);
1096   } else {
1097     // Verify that this function (which has a body) is not named "llvm.*".  It
1098     // is not legal to define intrinsics.
1099     Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1100
1101     // Check the entry node
1102     const BasicBlock *Entry = &F.getEntryBlock();
1103     Assert1(pred_begin(Entry) == pred_end(Entry),
1104             "Entry block to function must not have predecessors!", Entry);
1105
1106     // The address of the entry block cannot be taken, unless it is dead.
1107     if (Entry->hasAddressTaken()) {
1108       Assert1(!BlockAddress::lookup(Entry)->isConstantUsed(),
1109               "blockaddress may not be used with the entry block!", Entry);
1110     }
1111   }
1112
1113   // If this function is actually an intrinsic, verify that it is only used in
1114   // direct call/invokes, never having its "address taken".
1115   if (F.getIntrinsicID()) {
1116     const User *U;
1117     if (F.hasAddressTaken(&U))
1118       Assert1(0, "Invalid user of intrinsic instruction!", U);
1119   }
1120
1121   Assert1(!F.hasDLLImportStorageClass() ||
1122           (F.isDeclaration() && F.hasExternalLinkage()) ||
1123           F.hasAvailableExternallyLinkage(),
1124           "Function is marked as dllimport, but not external.", &F);
1125 }
1126
1127 // verifyBasicBlock - Verify that a basic block is well formed...
1128 //
1129 void Verifier::visitBasicBlock(BasicBlock &BB) {
1130   InstsInThisBlock.clear();
1131
1132   // Ensure that basic blocks have terminators!
1133   Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
1134
1135   // Check constraints that this basic block imposes on all of the PHI nodes in
1136   // it.
1137   if (isa<PHINode>(BB.front())) {
1138     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
1139     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
1140     std::sort(Preds.begin(), Preds.end());
1141     PHINode *PN;
1142     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1143       // Ensure that PHI nodes have at least one entry!
1144       Assert1(PN->getNumIncomingValues() != 0,
1145               "PHI nodes must have at least one entry.  If the block is dead, "
1146               "the PHI should be removed!", PN);
1147       Assert1(PN->getNumIncomingValues() == Preds.size(),
1148               "PHINode should have one entry for each predecessor of its "
1149               "parent basic block!", PN);
1150
1151       // Get and sort all incoming values in the PHI node...
1152       Values.clear();
1153       Values.reserve(PN->getNumIncomingValues());
1154       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1155         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1156                                         PN->getIncomingValue(i)));
1157       std::sort(Values.begin(), Values.end());
1158
1159       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1160         // Check to make sure that if there is more than one entry for a
1161         // particular basic block in this PHI node, that the incoming values are
1162         // all identical.
1163         //
1164         Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
1165                 Values[i].second == Values[i-1].second,
1166                 "PHI node has multiple entries for the same basic block with "
1167                 "different incoming values!", PN, Values[i].first,
1168                 Values[i].second, Values[i-1].second);
1169
1170         // Check to make sure that the predecessors and PHI node entries are
1171         // matched up.
1172         Assert3(Values[i].first == Preds[i],
1173                 "PHI node entries do not match predecessors!", PN,
1174                 Values[i].first, Preds[i]);
1175       }
1176     }
1177   }
1178 }
1179
1180 void Verifier::visitTerminatorInst(TerminatorInst &I) {
1181   // Ensure that terminators only exist at the end of the basic block.
1182   Assert1(&I == I.getParent()->getTerminator(),
1183           "Terminator found in the middle of a basic block!", I.getParent());
1184   visitInstruction(I);
1185 }
1186
1187 void Verifier::visitBranchInst(BranchInst &BI) {
1188   if (BI.isConditional()) {
1189     Assert2(BI.getCondition()->getType()->isIntegerTy(1),
1190             "Branch condition is not 'i1' type!", &BI, BI.getCondition());
1191   }
1192   visitTerminatorInst(BI);
1193 }
1194
1195 void Verifier::visitReturnInst(ReturnInst &RI) {
1196   Function *F = RI.getParent()->getParent();
1197   unsigned N = RI.getNumOperands();
1198   if (F->getReturnType()->isVoidTy())
1199     Assert2(N == 0,
1200             "Found return instr that returns non-void in Function of void "
1201             "return type!", &RI, F->getReturnType());
1202   else
1203     Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
1204             "Function return type does not match operand "
1205             "type of return inst!", &RI, F->getReturnType());
1206
1207   // Check to make sure that the return value has necessary properties for
1208   // terminators...
1209   visitTerminatorInst(RI);
1210 }
1211
1212 void Verifier::visitSwitchInst(SwitchInst &SI) {
1213   // Check to make sure that all of the constants in the switch instruction
1214   // have the same type as the switched-on value.
1215   Type *SwitchTy = SI.getCondition()->getType();
1216   SmallPtrSet<ConstantInt*, 32> Constants;
1217   for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1218     Assert1(i.getCaseValue()->getType() == SwitchTy,
1219             "Switch constants must all be same type as switch value!", &SI);
1220     Assert2(Constants.insert(i.getCaseValue()),
1221             "Duplicate integer as switch case", &SI, i.getCaseValue());
1222   }
1223
1224   visitTerminatorInst(SI);
1225 }
1226
1227 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1228   Assert1(BI.getAddress()->getType()->isPointerTy(),
1229           "Indirectbr operand must have pointer type!", &BI);
1230   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
1231     Assert1(BI.getDestination(i)->getType()->isLabelTy(),
1232             "Indirectbr destinations must all have pointer type!", &BI);
1233
1234   visitTerminatorInst(BI);
1235 }
1236
1237 void Verifier::visitSelectInst(SelectInst &SI) {
1238   Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
1239                                           SI.getOperand(2)),
1240           "Invalid operands for select instruction!", &SI);
1241
1242   Assert1(SI.getTrueValue()->getType() == SI.getType(),
1243           "Select values must have same type as select instruction!", &SI);
1244   visitInstruction(SI);
1245 }
1246
1247 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
1248 /// a pass, if any exist, it's an error.
1249 ///
1250 void Verifier::visitUserOp1(Instruction &I) {
1251   Assert1(0, "User-defined operators should not live outside of a pass!", &I);
1252 }
1253
1254 void Verifier::visitTruncInst(TruncInst &I) {
1255   // Get the source and destination types
1256   Type *SrcTy = I.getOperand(0)->getType();
1257   Type *DestTy = I.getType();
1258
1259   // Get the size of the types in bits, we'll need this later
1260   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1261   unsigned DestBitSize = DestTy->getScalarSizeInBits();
1262
1263   Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
1264   Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
1265   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1266           "trunc source and destination must both be a vector or neither", &I);
1267   Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
1268
1269   visitInstruction(I);
1270 }
1271
1272 void Verifier::visitZExtInst(ZExtInst &I) {
1273   // Get the source and destination types
1274   Type *SrcTy = I.getOperand(0)->getType();
1275   Type *DestTy = I.getType();
1276
1277   // Get the size of the types in bits, we'll need this later
1278   Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
1279   Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
1280   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1281           "zext source and destination must both be a vector or neither", &I);
1282   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1283   unsigned DestBitSize = DestTy->getScalarSizeInBits();
1284
1285   Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
1286
1287   visitInstruction(I);
1288 }
1289
1290 void Verifier::visitSExtInst(SExtInst &I) {
1291   // Get the source and destination types
1292   Type *SrcTy = I.getOperand(0)->getType();
1293   Type *DestTy = I.getType();
1294
1295   // Get the size of the types in bits, we'll need this later
1296   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1297   unsigned DestBitSize = DestTy->getScalarSizeInBits();
1298
1299   Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
1300   Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
1301   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1302           "sext source and destination must both be a vector or neither", &I);
1303   Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
1304
1305   visitInstruction(I);
1306 }
1307
1308 void Verifier::visitFPTruncInst(FPTruncInst &I) {
1309   // Get the source and destination types
1310   Type *SrcTy = I.getOperand(0)->getType();
1311   Type *DestTy = I.getType();
1312   // Get the size of the types in bits, we'll need this later
1313   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1314   unsigned DestBitSize = DestTy->getScalarSizeInBits();
1315
1316   Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
1317   Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
1318   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1319           "fptrunc source and destination must both be a vector or neither",&I);
1320   Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
1321
1322   visitInstruction(I);
1323 }
1324
1325 void Verifier::visitFPExtInst(FPExtInst &I) {
1326   // Get the source and destination types
1327   Type *SrcTy = I.getOperand(0)->getType();
1328   Type *DestTy = I.getType();
1329
1330   // Get the size of the types in bits, we'll need this later
1331   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1332   unsigned DestBitSize = DestTy->getScalarSizeInBits();
1333
1334   Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
1335   Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
1336   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1337           "fpext source and destination must both be a vector or neither", &I);
1338   Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
1339
1340   visitInstruction(I);
1341 }
1342
1343 void Verifier::visitUIToFPInst(UIToFPInst &I) {
1344   // Get the source and destination types
1345   Type *SrcTy = I.getOperand(0)->getType();
1346   Type *DestTy = I.getType();
1347
1348   bool SrcVec = SrcTy->isVectorTy();
1349   bool DstVec = DestTy->isVectorTy();
1350
1351   Assert1(SrcVec == DstVec,
1352           "UIToFP source and dest must both be vector or scalar", &I);
1353   Assert1(SrcTy->isIntOrIntVectorTy(),
1354           "UIToFP source must be integer or integer vector", &I);
1355   Assert1(DestTy->isFPOrFPVectorTy(),
1356           "UIToFP result must be FP or FP vector", &I);
1357
1358   if (SrcVec && DstVec)
1359     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1360             cast<VectorType>(DestTy)->getNumElements(),
1361             "UIToFP source and dest vector length mismatch", &I);
1362
1363   visitInstruction(I);
1364 }
1365
1366 void Verifier::visitSIToFPInst(SIToFPInst &I) {
1367   // Get the source and destination types
1368   Type *SrcTy = I.getOperand(0)->getType();
1369   Type *DestTy = I.getType();
1370
1371   bool SrcVec = SrcTy->isVectorTy();
1372   bool DstVec = DestTy->isVectorTy();
1373
1374   Assert1(SrcVec == DstVec,
1375           "SIToFP source and dest must both be vector or scalar", &I);
1376   Assert1(SrcTy->isIntOrIntVectorTy(),
1377           "SIToFP source must be integer or integer vector", &I);
1378   Assert1(DestTy->isFPOrFPVectorTy(),
1379           "SIToFP result must be FP or FP vector", &I);
1380
1381   if (SrcVec && DstVec)
1382     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1383             cast<VectorType>(DestTy)->getNumElements(),
1384             "SIToFP source and dest vector length mismatch", &I);
1385
1386   visitInstruction(I);
1387 }
1388
1389 void Verifier::visitFPToUIInst(FPToUIInst &I) {
1390   // Get the source and destination types
1391   Type *SrcTy = I.getOperand(0)->getType();
1392   Type *DestTy = I.getType();
1393
1394   bool SrcVec = SrcTy->isVectorTy();
1395   bool DstVec = DestTy->isVectorTy();
1396
1397   Assert1(SrcVec == DstVec,
1398           "FPToUI source and dest must both be vector or scalar", &I);
1399   Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1400           &I);
1401   Assert1(DestTy->isIntOrIntVectorTy(),
1402           "FPToUI result must be integer or integer vector", &I);
1403
1404   if (SrcVec && DstVec)
1405     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1406             cast<VectorType>(DestTy)->getNumElements(),
1407             "FPToUI source and dest vector length mismatch", &I);
1408
1409   visitInstruction(I);
1410 }
1411
1412 void Verifier::visitFPToSIInst(FPToSIInst &I) {
1413   // Get the source and destination types
1414   Type *SrcTy = I.getOperand(0)->getType();
1415   Type *DestTy = I.getType();
1416
1417   bool SrcVec = SrcTy->isVectorTy();
1418   bool DstVec = DestTy->isVectorTy();
1419
1420   Assert1(SrcVec == DstVec,
1421           "FPToSI source and dest must both be vector or scalar", &I);
1422   Assert1(SrcTy->isFPOrFPVectorTy(),
1423           "FPToSI source must be FP or FP vector", &I);
1424   Assert1(DestTy->isIntOrIntVectorTy(),
1425           "FPToSI result must be integer or integer vector", &I);
1426
1427   if (SrcVec && DstVec)
1428     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1429             cast<VectorType>(DestTy)->getNumElements(),
1430             "FPToSI source and dest vector length mismatch", &I);
1431
1432   visitInstruction(I);
1433 }
1434
1435 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1436   // Get the source and destination types
1437   Type *SrcTy = I.getOperand(0)->getType();
1438   Type *DestTy = I.getType();
1439
1440   Assert1(SrcTy->getScalarType()->isPointerTy(),
1441           "PtrToInt source must be pointer", &I);
1442   Assert1(DestTy->getScalarType()->isIntegerTy(),
1443           "PtrToInt result must be integral", &I);
1444   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1445           "PtrToInt type mismatch", &I);
1446
1447   if (SrcTy->isVectorTy()) {
1448     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1449     VectorType *VDest = dyn_cast<VectorType>(DestTy);
1450     Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1451           "PtrToInt Vector width mismatch", &I);
1452   }
1453
1454   visitInstruction(I);
1455 }
1456
1457 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1458   // Get the source and destination types
1459   Type *SrcTy = I.getOperand(0)->getType();
1460   Type *DestTy = I.getType();
1461
1462   Assert1(SrcTy->getScalarType()->isIntegerTy(),
1463           "IntToPtr source must be an integral", &I);
1464   Assert1(DestTy->getScalarType()->isPointerTy(),
1465           "IntToPtr result must be a pointer",&I);
1466   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1467           "IntToPtr type mismatch", &I);
1468   if (SrcTy->isVectorTy()) {
1469     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1470     VectorType *VDest = dyn_cast<VectorType>(DestTy);
1471     Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1472           "IntToPtr Vector width mismatch", &I);
1473   }
1474   visitInstruction(I);
1475 }
1476
1477 void Verifier::visitBitCastInst(BitCastInst &I) {
1478   Type *SrcTy = I.getOperand(0)->getType();
1479   Type *DestTy = I.getType();
1480   VerifyBitcastType(&I, DestTy, SrcTy);
1481   visitInstruction(I);
1482 }
1483
1484 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
1485   Type *SrcTy = I.getOperand(0)->getType();
1486   Type *DestTy = I.getType();
1487
1488   Assert1(SrcTy->isPtrOrPtrVectorTy(),
1489           "AddrSpaceCast source must be a pointer", &I);
1490   Assert1(DestTy->isPtrOrPtrVectorTy(),
1491           "AddrSpaceCast result must be a pointer", &I);
1492   Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
1493           "AddrSpaceCast must be between different address spaces", &I);
1494   if (SrcTy->isVectorTy())
1495     Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
1496             "AddrSpaceCast vector pointer number of elements mismatch", &I);
1497   visitInstruction(I);
1498 }
1499
1500 /// visitPHINode - Ensure that a PHI node is well formed.
1501 ///
1502 void Verifier::visitPHINode(PHINode &PN) {
1503   // Ensure that the PHI nodes are all grouped together at the top of the block.
1504   // This can be tested by checking whether the instruction before this is
1505   // either nonexistent (because this is begin()) or is a PHI node.  If not,
1506   // then there is some other instruction before a PHI.
1507   Assert2(&PN == &PN.getParent()->front() ||
1508           isa<PHINode>(--BasicBlock::iterator(&PN)),
1509           "PHI nodes not grouped at top of basic block!",
1510           &PN, PN.getParent());
1511
1512   // Check that all of the values of the PHI node have the same type as the
1513   // result, and that the incoming blocks are really basic blocks.
1514   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1515     Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1516             "PHI node operands are not the same type as the result!", &PN);
1517   }
1518
1519   // All other PHI node constraints are checked in the visitBasicBlock method.
1520
1521   visitInstruction(PN);
1522 }
1523
1524 void Verifier::VerifyCallSite(CallSite CS) {
1525   Instruction *I = CS.getInstruction();
1526
1527   Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1528           "Called function must be a pointer!", I);
1529   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1530
1531   Assert1(FPTy->getElementType()->isFunctionTy(),
1532           "Called function is not pointer to function type!", I);
1533   FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1534
1535   // Verify that the correct number of arguments are being passed
1536   if (FTy->isVarArg())
1537     Assert1(CS.arg_size() >= FTy->getNumParams(),
1538             "Called function requires more parameters than were provided!",I);
1539   else
1540     Assert1(CS.arg_size() == FTy->getNumParams(),
1541             "Incorrect number of arguments passed to called function!", I);
1542
1543   // Verify that all arguments to the call match the function type.
1544   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1545     Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1546             "Call parameter type does not match function signature!",
1547             CS.getArgument(i), FTy->getParamType(i), I);
1548
1549   AttributeSet Attrs = CS.getAttributes();
1550
1551   Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1552           "Attribute after last parameter!", I);
1553
1554   // Verify call attributes.
1555   VerifyFunctionAttrs(FTy, Attrs, I);
1556
1557   // Conservatively check the inalloca argument.
1558   // We have a bug if we can find that there is an underlying alloca without
1559   // inalloca.
1560   if (CS.hasInAllocaArgument()) {
1561     Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
1562     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
1563       Assert2(AI->isUsedWithInAlloca(),
1564               "inalloca argument for call has mismatched alloca", AI, I);
1565   }
1566
1567   if (FTy->isVarArg()) {
1568     // FIXME? is 'nest' even legal here?
1569     bool SawNest = false;
1570     bool SawReturned = false;
1571
1572     for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
1573       if (Attrs.hasAttribute(Idx, Attribute::Nest))
1574         SawNest = true;
1575       if (Attrs.hasAttribute(Idx, Attribute::Returned))
1576         SawReturned = true;
1577     }
1578
1579     // Check attributes on the varargs part.
1580     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1581       Type *Ty = CS.getArgument(Idx-1)->getType();
1582       VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
1583
1584       if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1585         Assert1(!SawNest, "More than one parameter has attribute nest!", I);
1586         SawNest = true;
1587       }
1588
1589       if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1590         Assert1(!SawReturned, "More than one parameter has attribute returned!",
1591                 I);
1592         Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
1593                 "Incompatible argument and return types for 'returned' "
1594                 "attribute", I);
1595         SawReturned = true;
1596       }
1597
1598       Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet),
1599               "Attribute 'sret' cannot be used for vararg call arguments!", I);
1600
1601       if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
1602         Assert1(Idx == CS.arg_size(), "inalloca isn't on the last argument!",
1603                 I);
1604     }
1605   }
1606
1607   // Verify that there's no metadata unless it's a direct call to an intrinsic.
1608   if (CS.getCalledFunction() == nullptr ||
1609       !CS.getCalledFunction()->getName().startswith("llvm.")) {
1610     for (FunctionType::param_iterator PI = FTy->param_begin(),
1611            PE = FTy->param_end(); PI != PE; ++PI)
1612       Assert1(!(*PI)->isMetadataTy(),
1613               "Function has metadata parameter but isn't an intrinsic", I);
1614   }
1615
1616   visitInstruction(*I);
1617 }
1618
1619 /// Two types are "congruent" if they are identical, or if they are both pointer
1620 /// types with different pointee types and the same address space.
1621 static bool isTypeCongruent(Type *L, Type *R) {
1622   if (L == R)
1623     return true;
1624   PointerType *PL = dyn_cast<PointerType>(L);
1625   PointerType *PR = dyn_cast<PointerType>(R);
1626   if (!PL || !PR)
1627     return false;
1628   return PL->getAddressSpace() == PR->getAddressSpace();
1629 }
1630
1631 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
1632   static const Attribute::AttrKind ABIAttrs[] = {
1633       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
1634       Attribute::InReg, Attribute::Returned};
1635   AttrBuilder Copy;
1636   for (auto AK : ABIAttrs) {
1637     if (Attrs.hasAttribute(I + 1, AK))
1638       Copy.addAttribute(AK);
1639   }
1640   if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
1641     Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
1642   return Copy;
1643 }
1644
1645 void Verifier::verifyMustTailCall(CallInst &CI) {
1646   Assert1(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
1647
1648   // - The caller and callee prototypes must match.  Pointer types of
1649   //   parameters or return types may differ in pointee type, but not
1650   //   address space.
1651   Function *F = CI.getParent()->getParent();
1652   auto GetFnTy = [](Value *V) {
1653     return cast<FunctionType>(
1654         cast<PointerType>(V->getType())->getElementType());
1655   };
1656   FunctionType *CallerTy = GetFnTy(F);
1657   FunctionType *CalleeTy = GetFnTy(CI.getCalledValue());
1658   Assert1(CallerTy->getNumParams() == CalleeTy->getNumParams(),
1659           "cannot guarantee tail call due to mismatched parameter counts", &CI);
1660   Assert1(CallerTy->isVarArg() == CalleeTy->isVarArg(),
1661           "cannot guarantee tail call due to mismatched varargs", &CI);
1662   Assert1(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
1663           "cannot guarantee tail call due to mismatched return types", &CI);
1664   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
1665     Assert1(
1666         isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
1667         "cannot guarantee tail call due to mismatched parameter types", &CI);
1668   }
1669
1670   // - The calling conventions of the caller and callee must match.
1671   Assert1(F->getCallingConv() == CI.getCallingConv(),
1672           "cannot guarantee tail call due to mismatched calling conv", &CI);
1673
1674   // - All ABI-impacting function attributes, such as sret, byval, inreg,
1675   //   returned, and inalloca, must match.
1676   AttributeSet CallerAttrs = F->getAttributes();
1677   AttributeSet CalleeAttrs = CI.getAttributes();
1678   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
1679     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
1680     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
1681     Assert2(CallerABIAttrs == CalleeABIAttrs,
1682             "cannot guarantee tail call due to mismatched ABI impacting "
1683             "function attributes", &CI, CI.getOperand(I));
1684   }
1685
1686   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
1687   //   or a pointer bitcast followed by a ret instruction.
1688   // - The ret instruction must return the (possibly bitcasted) value
1689   //   produced by the call or void.
1690   Value *RetVal = &CI;
1691   Instruction *Next = CI.getNextNode();
1692
1693   // Handle the optional bitcast.
1694   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
1695     Assert1(BI->getOperand(0) == RetVal,
1696             "bitcast following musttail call must use the call", BI);
1697     RetVal = BI;
1698     Next = BI->getNextNode();
1699   }
1700
1701   // Check the return.
1702   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
1703   Assert1(Ret, "musttail call must be precede a ret with an optional bitcast",
1704           &CI);
1705   Assert1(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
1706           "musttail call result must be returned", Ret);
1707 }
1708
1709 void Verifier::visitCallInst(CallInst &CI) {
1710   VerifyCallSite(&CI);
1711
1712   if (CI.isMustTailCall())
1713     verifyMustTailCall(CI);
1714
1715   if (Function *F = CI.getCalledFunction())
1716     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1717       visitIntrinsicFunctionCall(ID, CI);
1718 }
1719
1720 void Verifier::visitInvokeInst(InvokeInst &II) {
1721   VerifyCallSite(&II);
1722
1723   // Verify that there is a landingpad instruction as the first non-PHI
1724   // instruction of the 'unwind' destination.
1725   Assert1(II.getUnwindDest()->isLandingPad(),
1726           "The unwind destination does not have a landingpad instruction!",&II);
1727
1728   visitTerminatorInst(II);
1729 }
1730
1731 /// visitBinaryOperator - Check that both arguments to the binary operator are
1732 /// of the same type!
1733 ///
1734 void Verifier::visitBinaryOperator(BinaryOperator &B) {
1735   Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1736           "Both operands to a binary operator are not of the same type!", &B);
1737
1738   switch (B.getOpcode()) {
1739   // Check that integer arithmetic operators are only used with
1740   // integral operands.
1741   case Instruction::Add:
1742   case Instruction::Sub:
1743   case Instruction::Mul:
1744   case Instruction::SDiv:
1745   case Instruction::UDiv:
1746   case Instruction::SRem:
1747   case Instruction::URem:
1748     Assert1(B.getType()->isIntOrIntVectorTy(),
1749             "Integer arithmetic operators only work with integral types!", &B);
1750     Assert1(B.getType() == B.getOperand(0)->getType(),
1751             "Integer arithmetic operators must have same type "
1752             "for operands and result!", &B);
1753     break;
1754   // Check that floating-point arithmetic operators are only used with
1755   // floating-point operands.
1756   case Instruction::FAdd:
1757   case Instruction::FSub:
1758   case Instruction::FMul:
1759   case Instruction::FDiv:
1760   case Instruction::FRem:
1761     Assert1(B.getType()->isFPOrFPVectorTy(),
1762             "Floating-point arithmetic operators only work with "
1763             "floating-point types!", &B);
1764     Assert1(B.getType() == B.getOperand(0)->getType(),
1765             "Floating-point arithmetic operators must have same type "
1766             "for operands and result!", &B);
1767     break;
1768   // Check that logical operators are only used with integral operands.
1769   case Instruction::And:
1770   case Instruction::Or:
1771   case Instruction::Xor:
1772     Assert1(B.getType()->isIntOrIntVectorTy(),
1773             "Logical operators only work with integral types!", &B);
1774     Assert1(B.getType() == B.getOperand(0)->getType(),
1775             "Logical operators must have same type for operands and result!",
1776             &B);
1777     break;
1778   case Instruction::Shl:
1779   case Instruction::LShr:
1780   case Instruction::AShr:
1781     Assert1(B.getType()->isIntOrIntVectorTy(),
1782             "Shifts only work with integral types!", &B);
1783     Assert1(B.getType() == B.getOperand(0)->getType(),
1784             "Shift return type must be same as operands!", &B);
1785     break;
1786   default:
1787     llvm_unreachable("Unknown BinaryOperator opcode!");
1788   }
1789
1790   visitInstruction(B);
1791 }
1792
1793 void Verifier::visitICmpInst(ICmpInst &IC) {
1794   // Check that the operands are the same type
1795   Type *Op0Ty = IC.getOperand(0)->getType();
1796   Type *Op1Ty = IC.getOperand(1)->getType();
1797   Assert1(Op0Ty == Op1Ty,
1798           "Both operands to ICmp instruction are not of the same type!", &IC);
1799   // Check that the operands are the right type
1800   Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
1801           "Invalid operand types for ICmp instruction", &IC);
1802   // Check that the predicate is valid.
1803   Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1804           IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1805           "Invalid predicate in ICmp instruction!", &IC);
1806
1807   visitInstruction(IC);
1808 }
1809
1810 void Verifier::visitFCmpInst(FCmpInst &FC) {
1811   // Check that the operands are the same type
1812   Type *Op0Ty = FC.getOperand(0)->getType();
1813   Type *Op1Ty = FC.getOperand(1)->getType();
1814   Assert1(Op0Ty == Op1Ty,
1815           "Both operands to FCmp instruction are not of the same type!", &FC);
1816   // Check that the operands are the right type
1817   Assert1(Op0Ty->isFPOrFPVectorTy(),
1818           "Invalid operand types for FCmp instruction", &FC);
1819   // Check that the predicate is valid.
1820   Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1821           FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1822           "Invalid predicate in FCmp instruction!", &FC);
1823
1824   visitInstruction(FC);
1825 }
1826
1827 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1828   Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1829                                               EI.getOperand(1)),
1830           "Invalid extractelement operands!", &EI);
1831   visitInstruction(EI);
1832 }
1833
1834 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1835   Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1836                                              IE.getOperand(1),
1837                                              IE.getOperand(2)),
1838           "Invalid insertelement operands!", &IE);
1839   visitInstruction(IE);
1840 }
1841
1842 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1843   Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1844                                              SV.getOperand(2)),
1845           "Invalid shufflevector operands!", &SV);
1846   visitInstruction(SV);
1847 }
1848
1849 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1850   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
1851
1852   Assert1(isa<PointerType>(TargetTy),
1853     "GEP base pointer is not a vector or a vector of pointers", &GEP);
1854   Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
1855           "GEP into unsized type!", &GEP);
1856   Assert1(GEP.getPointerOperandType()->isVectorTy() ==
1857           GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
1858           &GEP);
1859
1860   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1861   Type *ElTy =
1862     GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
1863   Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1864
1865   Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
1866           cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
1867           == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
1868
1869   if (GEP.getPointerOperandType()->isVectorTy()) {
1870     // Additional checks for vector GEPs.
1871     unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
1872     Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
1873             "Vector GEP result width doesn't match operand's", &GEP);
1874     for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1875       Type *IndexTy = Idxs[i]->getType();
1876       Assert1(IndexTy->isVectorTy(),
1877               "Vector GEP must have vector indices!", &GEP);
1878       unsigned IndexWidth = IndexTy->getVectorNumElements();
1879       Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
1880     }
1881   }
1882   visitInstruction(GEP);
1883 }
1884
1885 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1886   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1887 }
1888
1889 void Verifier::visitLoadInst(LoadInst &LI) {
1890   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1891   Assert1(PTy, "Load operand must be a pointer.", &LI);
1892   Type *ElTy = PTy->getElementType();
1893   Assert2(ElTy == LI.getType(),
1894           "Load result type does not match pointer operand type!", &LI, ElTy);
1895   if (LI.isAtomic()) {
1896     Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
1897             "Load cannot have Release ordering", &LI);
1898     Assert1(LI.getAlignment() != 0,
1899             "Atomic load must specify explicit alignment", &LI);
1900     if (!ElTy->isPointerTy()) {
1901       Assert2(ElTy->isIntegerTy(),
1902               "atomic load operand must have integer type!",
1903               &LI, ElTy);
1904       unsigned Size = ElTy->getPrimitiveSizeInBits();
1905       Assert2(Size >= 8 && !(Size & (Size - 1)),
1906               "atomic load operand must be power-of-two byte-sized integer",
1907               &LI, ElTy);
1908     }
1909   } else {
1910     Assert1(LI.getSynchScope() == CrossThread,
1911             "Non-atomic load cannot have SynchronizationScope specified", &LI);
1912   }
1913
1914   if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
1915     unsigned NumOperands = Range->getNumOperands();
1916     Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
1917     unsigned NumRanges = NumOperands / 2;
1918     Assert1(NumRanges >= 1, "It should have at least one range!", Range);
1919
1920     ConstantRange LastRange(1); // Dummy initial value
1921     for (unsigned i = 0; i < NumRanges; ++i) {
1922       ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
1923       Assert1(Low, "The lower limit must be an integer!", Low);
1924       ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
1925       Assert1(High, "The upper limit must be an integer!", High);
1926       Assert1(High->getType() == Low->getType() &&
1927               High->getType() == ElTy, "Range types must match load type!",
1928               &LI);
1929
1930       APInt HighV = High->getValue();
1931       APInt LowV = Low->getValue();
1932       ConstantRange CurRange(LowV, HighV);
1933       Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
1934               "Range must not be empty!", Range);
1935       if (i != 0) {
1936         Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
1937                 "Intervals are overlapping", Range);
1938         Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
1939                 Range);
1940         Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
1941                 Range);
1942       }
1943       LastRange = ConstantRange(LowV, HighV);
1944     }
1945     if (NumRanges > 2) {
1946       APInt FirstLow =
1947         dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
1948       APInt FirstHigh =
1949         dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
1950       ConstantRange FirstRange(FirstLow, FirstHigh);
1951       Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
1952               "Intervals are overlapping", Range);
1953       Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
1954               Range);
1955     }
1956
1957
1958   }
1959
1960   visitInstruction(LI);
1961 }
1962
1963 void Verifier::visitStoreInst(StoreInst &SI) {
1964   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1965   Assert1(PTy, "Store operand must be a pointer.", &SI);
1966   Type *ElTy = PTy->getElementType();
1967   Assert2(ElTy == SI.getOperand(0)->getType(),
1968           "Stored value type does not match pointer operand type!",
1969           &SI, ElTy);
1970   if (SI.isAtomic()) {
1971     Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
1972             "Store cannot have Acquire ordering", &SI);
1973     Assert1(SI.getAlignment() != 0,
1974             "Atomic store must specify explicit alignment", &SI);
1975     if (!ElTy->isPointerTy()) {
1976       Assert2(ElTy->isIntegerTy(),
1977               "atomic store operand must have integer type!",
1978               &SI, ElTy);
1979       unsigned Size = ElTy->getPrimitiveSizeInBits();
1980       Assert2(Size >= 8 && !(Size & (Size - 1)),
1981               "atomic store operand must be power-of-two byte-sized integer",
1982               &SI, ElTy);
1983     }
1984   } else {
1985     Assert1(SI.getSynchScope() == CrossThread,
1986             "Non-atomic store cannot have SynchronizationScope specified", &SI);
1987   }
1988   visitInstruction(SI);
1989 }
1990
1991 void Verifier::visitAllocaInst(AllocaInst &AI) {
1992   SmallPtrSet<const Type*, 4> Visited;
1993   PointerType *PTy = AI.getType();
1994   Assert1(PTy->getAddressSpace() == 0,
1995           "Allocation instruction pointer not in the generic address space!",
1996           &AI);
1997   Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type",
1998           &AI);
1999   Assert1(AI.getArraySize()->getType()->isIntegerTy(),
2000           "Alloca array size must have integer type", &AI);
2001
2002   visitInstruction(AI);
2003 }
2004
2005 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
2006
2007   // FIXME: more conditions???
2008   Assert1(CXI.getSuccessOrdering() != NotAtomic,
2009           "cmpxchg instructions must be atomic.", &CXI);
2010   Assert1(CXI.getFailureOrdering() != NotAtomic,
2011           "cmpxchg instructions must be atomic.", &CXI);
2012   Assert1(CXI.getSuccessOrdering() != Unordered,
2013           "cmpxchg instructions cannot be unordered.", &CXI);
2014   Assert1(CXI.getFailureOrdering() != Unordered,
2015           "cmpxchg instructions cannot be unordered.", &CXI);
2016   Assert1(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
2017           "cmpxchg instructions be at least as constrained on success as fail",
2018           &CXI);
2019   Assert1(CXI.getFailureOrdering() != Release &&
2020               CXI.getFailureOrdering() != AcquireRelease,
2021           "cmpxchg failure ordering cannot include release semantics", &CXI);
2022
2023   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
2024   Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
2025   Type *ElTy = PTy->getElementType();
2026   Assert2(ElTy->isIntegerTy(),
2027           "cmpxchg operand must have integer type!",
2028           &CXI, ElTy);
2029   unsigned Size = ElTy->getPrimitiveSizeInBits();
2030   Assert2(Size >= 8 && !(Size & (Size - 1)),
2031           "cmpxchg operand must be power-of-two byte-sized integer",
2032           &CXI, ElTy);
2033   Assert2(ElTy == CXI.getOperand(1)->getType(),
2034           "Expected value type does not match pointer operand type!",
2035           &CXI, ElTy);
2036   Assert2(ElTy == CXI.getOperand(2)->getType(),
2037           "Stored value type does not match pointer operand type!",
2038           &CXI, ElTy);
2039   visitInstruction(CXI);
2040 }
2041
2042 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
2043   Assert1(RMWI.getOrdering() != NotAtomic,
2044           "atomicrmw instructions must be atomic.", &RMWI);
2045   Assert1(RMWI.getOrdering() != Unordered,
2046           "atomicrmw instructions cannot be unordered.", &RMWI);
2047   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
2048   Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
2049   Type *ElTy = PTy->getElementType();
2050   Assert2(ElTy->isIntegerTy(),
2051           "atomicrmw operand must have integer type!",
2052           &RMWI, ElTy);
2053   unsigned Size = ElTy->getPrimitiveSizeInBits();
2054   Assert2(Size >= 8 && !(Size & (Size - 1)),
2055           "atomicrmw operand must be power-of-two byte-sized integer",
2056           &RMWI, ElTy);
2057   Assert2(ElTy == RMWI.getOperand(1)->getType(),
2058           "Argument value type does not match pointer operand type!",
2059           &RMWI, ElTy);
2060   Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
2061           RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
2062           "Invalid binary operation!", &RMWI);
2063   visitInstruction(RMWI);
2064 }
2065
2066 void Verifier::visitFenceInst(FenceInst &FI) {
2067   const AtomicOrdering Ordering = FI.getOrdering();
2068   Assert1(Ordering == Acquire || Ordering == Release ||
2069           Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
2070           "fence instructions may only have "
2071           "acquire, release, acq_rel, or seq_cst ordering.", &FI);
2072   visitInstruction(FI);
2073 }
2074
2075 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
2076   Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
2077                                            EVI.getIndices()) ==
2078           EVI.getType(),
2079           "Invalid ExtractValueInst operands!", &EVI);
2080
2081   visitInstruction(EVI);
2082 }
2083
2084 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
2085   Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
2086                                            IVI.getIndices()) ==
2087           IVI.getOperand(1)->getType(),
2088           "Invalid InsertValueInst operands!", &IVI);
2089
2090   visitInstruction(IVI);
2091 }
2092
2093 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
2094   BasicBlock *BB = LPI.getParent();
2095
2096   // The landingpad instruction is ill-formed if it doesn't have any clauses and
2097   // isn't a cleanup.
2098   Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
2099           "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
2100
2101   // The landingpad instruction defines its parent as a landing pad block. The
2102   // landing pad block may be branched to only by the unwind edge of an invoke.
2103   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
2104     const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
2105     Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
2106             "Block containing LandingPadInst must be jumped to "
2107             "only by the unwind edge of an invoke.", &LPI);
2108   }
2109
2110   // The landingpad instruction must be the first non-PHI instruction in the
2111   // block.
2112   Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
2113           "LandingPadInst not the first non-PHI instruction in the block.",
2114           &LPI);
2115
2116   // The personality functions for all landingpad instructions within the same
2117   // function should match.
2118   if (PersonalityFn)
2119     Assert1(LPI.getPersonalityFn() == PersonalityFn,
2120             "Personality function doesn't match others in function", &LPI);
2121   PersonalityFn = LPI.getPersonalityFn();
2122
2123   // All operands must be constants.
2124   Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
2125           &LPI);
2126   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
2127     Constant *Clause = LPI.getClause(i);
2128     if (LPI.isCatch(i)) {
2129       Assert1(isa<PointerType>(Clause->getType()),
2130               "Catch operand does not have pointer type!", &LPI);
2131     } else {
2132       Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
2133       Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
2134               "Filter operand is not an array of constants!", &LPI);
2135     }
2136   }
2137
2138   visitInstruction(LPI);
2139 }
2140
2141 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
2142   Instruction *Op = cast<Instruction>(I.getOperand(i));
2143   // If the we have an invalid invoke, don't try to compute the dominance.
2144   // We already reject it in the invoke specific checks and the dominance
2145   // computation doesn't handle multiple edges.
2146   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
2147     if (II->getNormalDest() == II->getUnwindDest())
2148       return;
2149   }
2150
2151   const Use &U = I.getOperandUse(i);
2152   Assert2(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
2153           "Instruction does not dominate all uses!", Op, &I);
2154 }
2155
2156 /// verifyInstruction - Verify that an instruction is well formed.
2157 ///
2158 void Verifier::visitInstruction(Instruction &I) {
2159   BasicBlock *BB = I.getParent();
2160   Assert1(BB, "Instruction not embedded in basic block!", &I);
2161
2162   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
2163     for (User *U : I.users()) {
2164       Assert1(U != (User*)&I || !DT.isReachableFromEntry(BB),
2165               "Only PHI nodes may reference their own value!", &I);
2166     }
2167   }
2168
2169   // Check that void typed values don't have names
2170   Assert1(!I.getType()->isVoidTy() || !I.hasName(),
2171           "Instruction has a name, but provides a void value!", &I);
2172
2173   // Check that the return value of the instruction is either void or a legal
2174   // value type.
2175   Assert1(I.getType()->isVoidTy() ||
2176           I.getType()->isFirstClassType(),
2177           "Instruction returns a non-scalar type!", &I);
2178
2179   // Check that the instruction doesn't produce metadata. Calls are already
2180   // checked against the callee type.
2181   Assert1(!I.getType()->isMetadataTy() ||
2182           isa<CallInst>(I) || isa<InvokeInst>(I),
2183           "Invalid use of metadata!", &I);
2184
2185   // Check that all uses of the instruction, if they are instructions
2186   // themselves, actually have parent basic blocks.  If the use is not an
2187   // instruction, it is an error!
2188   for (Use &U : I.uses()) {
2189     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
2190       Assert2(Used->getParent() != nullptr, "Instruction referencing"
2191               " instruction not embedded in a basic block!", &I, Used);
2192     else {
2193       CheckFailed("Use of instruction is not an instruction!", U);
2194       return;
2195     }
2196   }
2197
2198   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2199     Assert1(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
2200
2201     // Check to make sure that only first-class-values are operands to
2202     // instructions.
2203     if (!I.getOperand(i)->getType()->isFirstClassType()) {
2204       Assert1(0, "Instruction operands must be first-class values!", &I);
2205     }
2206
2207     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
2208       // Check to make sure that the "address of" an intrinsic function is never
2209       // taken.
2210       Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
2211               "Cannot take the address of an intrinsic!", &I);
2212       Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
2213               F->getIntrinsicID() == Intrinsic::donothing,
2214               "Cannot invoke an intrinsinc other than donothing", &I);
2215       Assert1(F->getParent() == M, "Referencing function in another module!",
2216               &I);
2217     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
2218       Assert1(OpBB->getParent() == BB->getParent(),
2219               "Referring to a basic block in another function!", &I);
2220     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
2221       Assert1(OpArg->getParent() == BB->getParent(),
2222               "Referring to an argument in another function!", &I);
2223     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
2224       Assert1(GV->getParent() == M, "Referencing global in another module!",
2225               &I);
2226     } else if (isa<Instruction>(I.getOperand(i))) {
2227       verifyDominatesUse(I, i);
2228     } else if (isa<InlineAsm>(I.getOperand(i))) {
2229       Assert1((i + 1 == e && isa<CallInst>(I)) ||
2230               (i + 3 == e && isa<InvokeInst>(I)),
2231               "Cannot take the address of an inline asm!", &I);
2232     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
2233       if (CE->getType()->isPtrOrPtrVectorTy()) {
2234         // If we have a ConstantExpr pointer, we need to see if it came from an
2235         // illegal bitcast (inttoptr <constant int> )
2236         SmallVector<const ConstantExpr *, 4> Stack;
2237         SmallPtrSet<const ConstantExpr *, 4> Visited;
2238         Stack.push_back(CE);
2239
2240         while (!Stack.empty()) {
2241           const ConstantExpr *V = Stack.pop_back_val();
2242           if (!Visited.insert(V))
2243             continue;
2244
2245           VerifyConstantExprBitcastType(V);
2246
2247           for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
2248             if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
2249               Stack.push_back(Op);
2250           }
2251         }
2252       }
2253     }
2254   }
2255
2256   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
2257     Assert1(I.getType()->isFPOrFPVectorTy(),
2258             "fpmath requires a floating point result!", &I);
2259     Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
2260     Value *Op0 = MD->getOperand(0);
2261     if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
2262       APFloat Accuracy = CFP0->getValueAPF();
2263       Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
2264               "fpmath accuracy not a positive number!", &I);
2265     } else {
2266       Assert1(false, "invalid fpmath accuracy!", &I);
2267     }
2268   }
2269
2270   MDNode *MD = I.getMetadata(LLVMContext::MD_range);
2271   Assert1(!MD || isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
2272           "Ranges are only for loads, calls and invokes!", &I);
2273
2274   InstsInThisBlock.insert(&I);
2275 }
2276
2277 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
2278 /// intrinsic argument or return value) matches the type constraints specified
2279 /// by the .td file (e.g. an "any integer" argument really is an integer).
2280 ///
2281 /// This return true on error but does not print a message.
2282 bool Verifier::VerifyIntrinsicType(Type *Ty,
2283                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
2284                                    SmallVectorImpl<Type*> &ArgTys) {
2285   using namespace Intrinsic;
2286
2287   // If we ran out of descriptors, there are too many arguments.
2288   if (Infos.empty()) return true;
2289   IITDescriptor D = Infos.front();
2290   Infos = Infos.slice(1);
2291
2292   switch (D.Kind) {
2293   case IITDescriptor::Void: return !Ty->isVoidTy();
2294   case IITDescriptor::VarArg: return true;
2295   case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
2296   case IITDescriptor::Metadata: return !Ty->isMetadataTy();
2297   case IITDescriptor::Half: return !Ty->isHalfTy();
2298   case IITDescriptor::Float: return !Ty->isFloatTy();
2299   case IITDescriptor::Double: return !Ty->isDoubleTy();
2300   case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
2301   case IITDescriptor::Vector: {
2302     VectorType *VT = dyn_cast<VectorType>(Ty);
2303     return !VT || VT->getNumElements() != D.Vector_Width ||
2304            VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
2305   }
2306   case IITDescriptor::Pointer: {
2307     PointerType *PT = dyn_cast<PointerType>(Ty);
2308     return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
2309            VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
2310   }
2311
2312   case IITDescriptor::Struct: {
2313     StructType *ST = dyn_cast<StructType>(Ty);
2314     if (!ST || ST->getNumElements() != D.Struct_NumElements)
2315       return true;
2316
2317     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
2318       if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
2319         return true;
2320     return false;
2321   }
2322
2323   case IITDescriptor::Argument:
2324     // Two cases here - If this is the second occurrence of an argument, verify
2325     // that the later instance matches the previous instance.
2326     if (D.getArgumentNumber() < ArgTys.size())
2327       return Ty != ArgTys[D.getArgumentNumber()];
2328
2329     // Otherwise, if this is the first instance of an argument, record it and
2330     // verify the "Any" kind.
2331     assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
2332     ArgTys.push_back(Ty);
2333
2334     switch (D.getArgumentKind()) {
2335     case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
2336     case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
2337     case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
2338     case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
2339     }
2340     llvm_unreachable("all argument kinds not covered");
2341
2342   case IITDescriptor::ExtendArgument: {
2343     // This may only be used when referring to a previous vector argument.
2344     if (D.getArgumentNumber() >= ArgTys.size())
2345       return true;
2346
2347     Type *NewTy = ArgTys[D.getArgumentNumber()];
2348     if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
2349       NewTy = VectorType::getExtendedElementVectorType(VTy);
2350     else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
2351       NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
2352     else
2353       return true;
2354
2355     return Ty != NewTy;
2356   }
2357   case IITDescriptor::TruncArgument: {
2358     // This may only be used when referring to a previous vector argument.
2359     if (D.getArgumentNumber() >= ArgTys.size())
2360       return true;
2361
2362     Type *NewTy = ArgTys[D.getArgumentNumber()];
2363     if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
2364       NewTy = VectorType::getTruncatedElementVectorType(VTy);
2365     else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
2366       NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
2367     else
2368       return true;
2369
2370     return Ty != NewTy;
2371   }
2372   case IITDescriptor::HalfVecArgument:
2373     // This may only be used when referring to a previous vector argument.
2374     return D.getArgumentNumber() >= ArgTys.size() ||
2375            !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
2376            VectorType::getHalfElementsVectorType(
2377                          cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
2378   }
2379   llvm_unreachable("unhandled");
2380 }
2381
2382 /// \brief Verify if the intrinsic has variable arguments.
2383 /// This method is intended to be called after all the fixed arguments have been
2384 /// verified first.
2385 ///
2386 /// This method returns true on error and does not print an error message.
2387 bool
2388 Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
2389                                   ArrayRef<Intrinsic::IITDescriptor> &Infos) {
2390   using namespace Intrinsic;
2391
2392   // If there are no descriptors left, then it can't be a vararg.
2393   if (Infos.empty())
2394     return isVarArg ? true : false;
2395
2396   // There should be only one descriptor remaining at this point.
2397   if (Infos.size() != 1)
2398     return true;
2399
2400   // Check and verify the descriptor.
2401   IITDescriptor D = Infos.front();
2402   Infos = Infos.slice(1);
2403   if (D.Kind == IITDescriptor::VarArg)
2404     return isVarArg ? false : true;
2405
2406   return true;
2407 }
2408
2409 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
2410 ///
2411 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
2412   Function *IF = CI.getCalledFunction();
2413   Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
2414           IF);
2415
2416   // Verify that the intrinsic prototype lines up with what the .td files
2417   // describe.
2418   FunctionType *IFTy = IF->getFunctionType();
2419   bool IsVarArg = IFTy->isVarArg();
2420
2421   SmallVector<Intrinsic::IITDescriptor, 8> Table;
2422   getIntrinsicInfoTableEntries(ID, Table);
2423   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
2424
2425   SmallVector<Type *, 4> ArgTys;
2426   Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
2427           "Intrinsic has incorrect return type!", IF);
2428   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
2429     Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
2430             "Intrinsic has incorrect argument type!", IF);
2431
2432   // Verify if the intrinsic call matches the vararg property.
2433   if (IsVarArg)
2434     Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
2435             "Intrinsic was not defined with variable arguments!", IF);
2436   else
2437     Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
2438             "Callsite was not defined with variable arguments!", IF);
2439
2440   // All descriptors should be absorbed by now.
2441   Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
2442
2443   // Now that we have the intrinsic ID and the actual argument types (and we
2444   // know they are legal for the intrinsic!) get the intrinsic name through the
2445   // usual means.  This allows us to verify the mangling of argument types into
2446   // the name.
2447   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
2448   Assert1(ExpectedName == IF->getName(),
2449           "Intrinsic name not mangled correctly for type arguments! "
2450           "Should be: " + ExpectedName, IF);
2451
2452   // If the intrinsic takes MDNode arguments, verify that they are either global
2453   // or are local to *this* function.
2454   for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
2455     if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
2456       visitMDNode(*MD, CI.getParent()->getParent());
2457
2458   switch (ID) {
2459   default:
2460     break;
2461   case Intrinsic::ctlz:  // llvm.ctlz
2462   case Intrinsic::cttz:  // llvm.cttz
2463     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2464             "is_zero_undef argument of bit counting intrinsics must be a "
2465             "constant int", &CI);
2466     break;
2467   case Intrinsic::dbg_declare: {  // llvm.dbg.declare
2468     Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
2469                 "invalid llvm.dbg.declare intrinsic call 1", &CI);
2470     MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
2471     Assert1(MD->getNumOperands() == 1,
2472                 "invalid llvm.dbg.declare intrinsic call 2", &CI);
2473   } break;
2474   case Intrinsic::memcpy:
2475   case Intrinsic::memmove:
2476   case Intrinsic::memset:
2477     Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
2478             "alignment argument of memory intrinsics must be a constant int",
2479             &CI);
2480     Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
2481             "isvolatile argument of memory intrinsics must be a constant int",
2482             &CI);
2483     break;
2484   case Intrinsic::gcroot:
2485   case Intrinsic::gcwrite:
2486   case Intrinsic::gcread:
2487     if (ID == Intrinsic::gcroot) {
2488       AllocaInst *AI =
2489         dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
2490       Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
2491       Assert1(isa<Constant>(CI.getArgOperand(1)),
2492               "llvm.gcroot parameter #2 must be a constant.", &CI);
2493       if (!AI->getType()->getElementType()->isPointerTy()) {
2494         Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
2495                 "llvm.gcroot parameter #1 must either be a pointer alloca, "
2496                 "or argument #2 must be a non-null constant.", &CI);
2497       }
2498     }
2499
2500     Assert1(CI.getParent()->getParent()->hasGC(),
2501             "Enclosing function does not use GC.", &CI);
2502     break;
2503   case Intrinsic::init_trampoline:
2504     Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
2505             "llvm.init_trampoline parameter #2 must resolve to a function.",
2506             &CI);
2507     break;
2508   case Intrinsic::prefetch:
2509     Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
2510             isa<ConstantInt>(CI.getArgOperand(2)) &&
2511             cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
2512             cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
2513             "invalid arguments to llvm.prefetch",
2514             &CI);
2515     break;
2516   case Intrinsic::stackprotector:
2517     Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
2518             "llvm.stackprotector parameter #2 must resolve to an alloca.",
2519             &CI);
2520     break;
2521   case Intrinsic::lifetime_start:
2522   case Intrinsic::lifetime_end:
2523   case Intrinsic::invariant_start:
2524     Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
2525             "size argument of memory use markers must be a constant integer",
2526             &CI);
2527     break;
2528   case Intrinsic::invariant_end:
2529     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2530             "llvm.invariant.end parameter #2 must be a constant integer", &CI);
2531     break;
2532   }
2533 }
2534
2535 void DebugInfoVerifier::verifyDebugInfo() {
2536   if (!VerifyDebugInfo)
2537     return;
2538
2539   DebugInfoFinder Finder;
2540   Finder.processModule(*M);
2541   processInstructions(Finder);
2542
2543   // Verify Debug Info.
2544   //
2545   // NOTE:  The loud braces are necessary for MSVC compatibility.
2546   for (DICompileUnit CU : Finder.compile_units()) {
2547     Assert1(CU.Verify(), "DICompileUnit does not Verify!", CU);
2548   }
2549   for (DISubprogram S : Finder.subprograms()) {
2550     Assert1(S.Verify(), "DISubprogram does not Verify!", S);
2551   }
2552   for (DIGlobalVariable GV : Finder.global_variables()) {
2553     Assert1(GV.Verify(), "DIGlobalVariable does not Verify!", GV);
2554   }
2555   for (DIType T : Finder.types()) {
2556     Assert1(T.Verify(), "DIType does not Verify!", T);
2557   }
2558   for (DIScope S : Finder.scopes()) {
2559     Assert1(S.Verify(), "DIScope does not Verify!", S);
2560   }
2561 }
2562
2563 void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) {
2564   for (const Function &F : *M)
2565     for (auto I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2566       if (MDNode *MD = I->getMetadata(LLVMContext::MD_dbg))
2567         Finder.processLocation(*M, DILocation(MD));
2568       if (const CallInst *CI = dyn_cast<CallInst>(&*I))
2569         processCallInst(Finder, *CI);
2570     }
2571 }
2572
2573 void DebugInfoVerifier::processCallInst(DebugInfoFinder &Finder,
2574                                         const CallInst &CI) {
2575   if (Function *F = CI.getCalledFunction())
2576     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2577       switch (ID) {
2578       case Intrinsic::dbg_declare:
2579         Finder.processDeclare(*M, cast<DbgDeclareInst>(&CI));
2580         break;
2581       case Intrinsic::dbg_value:
2582         Finder.processValue(*M, cast<DbgValueInst>(&CI));
2583         break;
2584       default:
2585         break;
2586       }
2587 }
2588
2589 //===----------------------------------------------------------------------===//
2590 //  Implement the public interfaces to this file...
2591 //===----------------------------------------------------------------------===//
2592
2593 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
2594   Function &F = const_cast<Function &>(f);
2595   assert(!F.isDeclaration() && "Cannot verify external functions");
2596
2597   raw_null_ostream NullStr;
2598   Verifier V(OS ? *OS : NullStr);
2599
2600   // Note that this function's return value is inverted from what you would
2601   // expect of a function called "verify".
2602   return !V.verify(F);
2603 }
2604
2605 bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
2606   raw_null_ostream NullStr;
2607   Verifier V(OS ? *OS : NullStr);
2608
2609   bool Broken = false;
2610   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
2611     if (!I->isDeclaration())
2612       Broken |= !V.verify(*I);
2613
2614   // Note that this function's return value is inverted from what you would
2615   // expect of a function called "verify".
2616   DebugInfoVerifier DIV(OS ? *OS : NullStr);
2617   return !V.verify(M) || !DIV.verify(M) || Broken;
2618 }
2619
2620 namespace {
2621 struct VerifierLegacyPass : public FunctionPass {
2622   static char ID;
2623
2624   Verifier V;
2625   bool FatalErrors;
2626
2627   VerifierLegacyPass() : FunctionPass(ID), FatalErrors(true) {
2628     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2629   }
2630   explicit VerifierLegacyPass(bool FatalErrors)
2631       : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
2632     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2633   }
2634
2635   bool runOnFunction(Function &F) override {
2636     if (!V.verify(F) && FatalErrors)
2637       report_fatal_error("Broken function found, compilation aborted!");
2638
2639     return false;
2640   }
2641
2642   bool doFinalization(Module &M) override {
2643     if (!V.verify(M) && FatalErrors)
2644       report_fatal_error("Broken module found, compilation aborted!");
2645
2646     return false;
2647   }
2648
2649   void getAnalysisUsage(AnalysisUsage &AU) const override {
2650     AU.setPreservesAll();
2651   }
2652 };
2653 struct DebugInfoVerifierLegacyPass : public ModulePass {
2654   static char ID;
2655
2656   DebugInfoVerifier V;
2657   bool FatalErrors;
2658
2659   DebugInfoVerifierLegacyPass() : ModulePass(ID), FatalErrors(true) {
2660     initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2661   }
2662   explicit DebugInfoVerifierLegacyPass(bool FatalErrors)
2663       : ModulePass(ID), V(dbgs()), FatalErrors(FatalErrors) {
2664     initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2665   }
2666
2667   bool runOnModule(Module &M) override {
2668     if (!V.verify(M) && FatalErrors)
2669       report_fatal_error("Broken debug info found, compilation aborted!");
2670
2671     return false;
2672   }
2673
2674   void getAnalysisUsage(AnalysisUsage &AU) const override {
2675     AU.setPreservesAll();
2676   }
2677 };
2678 }
2679
2680 char VerifierLegacyPass::ID = 0;
2681 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
2682
2683 char DebugInfoVerifierLegacyPass::ID = 0;
2684 INITIALIZE_PASS(DebugInfoVerifierLegacyPass, "verify-di", "Debug Info Verifier",
2685                 false, false)
2686
2687 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
2688   return new VerifierLegacyPass(FatalErrors);
2689 }
2690
2691 ModulePass *llvm::createDebugInfoVerifierPass(bool FatalErrors) {
2692   return new DebugInfoVerifierLegacyPass(FatalErrors);
2693 }
2694
2695 PreservedAnalyses VerifierPass::run(Module *M) {
2696   if (verifyModule(*M, &dbgs()) && FatalErrors)
2697     report_fatal_error("Broken module found, compilation aborted!");
2698
2699   return PreservedAnalyses::all();
2700 }
2701
2702 PreservedAnalyses VerifierPass::run(Function *F) {
2703   if (verifyFunction(*F, &dbgs()) && FatalErrors)
2704     report_fatal_error("Broken function found, compilation aborted!");
2705
2706   return PreservedAnalyses::all();
2707 }