DebugInfo: Drop fake DW_TAG_expression
[oota-llvm.git] / lib / IR / ConstantRange.cpp
1 //===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Represent a range of possible values that may occur when the program is run
11 // for an integral value.  This keeps track of a lower and upper bound for the
12 // constant, which MAY wrap around the end of the numeric range.  To do this, it
13 // keeps track of a [lower, upper) bound, which specifies an interval just like
14 // STL iterators.  When used with boolean values, the following are important
15 // ranges (other integral ranges use min/max values for special range values):
16 //
17 //  [F, F) = {}     = Empty set
18 //  [T, F) = {T}
19 //  [F, T) = {F}
20 //  [T, T) = {F, T} = Full set
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 using namespace llvm;
29
30 /// Initialize a full (the default) or empty set for the specified type.
31 ///
32 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
33   if (Full)
34     Lower = Upper = APInt::getMaxValue(BitWidth);
35   else
36     Lower = Upper = APInt::getMinValue(BitWidth);
37 }
38
39 /// Initialize a range to hold the single specified value.
40 ///
41 ConstantRange::ConstantRange(APIntMoveTy V)
42     : Lower(std::move(V)), Upper(Lower + 1) {}
43
44 ConstantRange::ConstantRange(APIntMoveTy L, APIntMoveTy U)
45     : Lower(std::move(L)), Upper(std::move(U)) {
46   assert(Lower.getBitWidth() == Upper.getBitWidth() &&
47          "ConstantRange with unequal bit widths");
48   assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
49          "Lower == Upper, but they aren't min or max value!");
50 }
51
52 ConstantRange ConstantRange::makeICmpRegion(unsigned Pred,
53                                             const ConstantRange &CR) {
54   if (CR.isEmptySet())
55     return CR;
56
57   uint32_t W = CR.getBitWidth();
58   switch (Pred) {
59     default: llvm_unreachable("Invalid ICmp predicate to makeICmpRegion()");
60     case CmpInst::ICMP_EQ:
61       return CR;
62     case CmpInst::ICMP_NE:
63       if (CR.isSingleElement())
64         return ConstantRange(CR.getUpper(), CR.getLower());
65       return ConstantRange(W);
66     case CmpInst::ICMP_ULT: {
67       APInt UMax(CR.getUnsignedMax());
68       if (UMax.isMinValue())
69         return ConstantRange(W, /* empty */ false);
70       return ConstantRange(APInt::getMinValue(W), UMax);
71     }
72     case CmpInst::ICMP_SLT: {
73       APInt SMax(CR.getSignedMax());
74       if (SMax.isMinSignedValue())
75         return ConstantRange(W, /* empty */ false);
76       return ConstantRange(APInt::getSignedMinValue(W), SMax);
77     }
78     case CmpInst::ICMP_ULE: {
79       APInt UMax(CR.getUnsignedMax());
80       if (UMax.isMaxValue())
81         return ConstantRange(W);
82       return ConstantRange(APInt::getMinValue(W), UMax + 1);
83     }
84     case CmpInst::ICMP_SLE: {
85       APInt SMax(CR.getSignedMax());
86       if (SMax.isMaxSignedValue())
87         return ConstantRange(W);
88       return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
89     }
90     case CmpInst::ICMP_UGT: {
91       APInt UMin(CR.getUnsignedMin());
92       if (UMin.isMaxValue())
93         return ConstantRange(W, /* empty */ false);
94       return ConstantRange(UMin + 1, APInt::getNullValue(W));
95     }
96     case CmpInst::ICMP_SGT: {
97       APInt SMin(CR.getSignedMin());
98       if (SMin.isMaxSignedValue())
99         return ConstantRange(W, /* empty */ false);
100       return ConstantRange(SMin + 1, APInt::getSignedMinValue(W));
101     }
102     case CmpInst::ICMP_UGE: {
103       APInt UMin(CR.getUnsignedMin());
104       if (UMin.isMinValue())
105         return ConstantRange(W);
106       return ConstantRange(UMin, APInt::getNullValue(W));
107     }
108     case CmpInst::ICMP_SGE: {
109       APInt SMin(CR.getSignedMin());
110       if (SMin.isMinSignedValue())
111         return ConstantRange(W);
112       return ConstantRange(SMin, APInt::getSignedMinValue(W));
113     }
114   }
115 }
116
117 /// isFullSet - Return true if this set contains all of the elements possible
118 /// for this data-type
119 bool ConstantRange::isFullSet() const {
120   return Lower == Upper && Lower.isMaxValue();
121 }
122
123 /// isEmptySet - Return true if this set contains no members.
124 ///
125 bool ConstantRange::isEmptySet() const {
126   return Lower == Upper && Lower.isMinValue();
127 }
128
129 /// isWrappedSet - Return true if this set wraps around the top of the range,
130 /// for example: [100, 8)
131 ///
132 bool ConstantRange::isWrappedSet() const {
133   return Lower.ugt(Upper);
134 }
135
136 /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of
137 /// its bitwidth, for example: i8 [120, 140).
138 ///
139 bool ConstantRange::isSignWrappedSet() const {
140   return contains(APInt::getSignedMaxValue(getBitWidth())) &&
141          contains(APInt::getSignedMinValue(getBitWidth()));
142 }
143
144 /// getSetSize - Return the number of elements in this set.
145 ///
146 APInt ConstantRange::getSetSize() const {
147   if (isFullSet()) {
148     APInt Size(getBitWidth()+1, 0);
149     Size.setBit(getBitWidth());
150     return Size;
151   }
152
153   // This is also correct for wrapped sets.
154   return (Upper - Lower).zext(getBitWidth()+1);
155 }
156
157 /// getUnsignedMax - Return the largest unsigned value contained in the
158 /// ConstantRange.
159 ///
160 APInt ConstantRange::getUnsignedMax() const {
161   if (isFullSet() || isWrappedSet())
162     return APInt::getMaxValue(getBitWidth());
163   return getUpper() - 1;
164 }
165
166 /// getUnsignedMin - Return the smallest unsigned value contained in the
167 /// ConstantRange.
168 ///
169 APInt ConstantRange::getUnsignedMin() const {
170   if (isFullSet() || (isWrappedSet() && getUpper() != 0))
171     return APInt::getMinValue(getBitWidth());
172   return getLower();
173 }
174
175 /// getSignedMax - Return the largest signed value contained in the
176 /// ConstantRange.
177 ///
178 APInt ConstantRange::getSignedMax() const {
179   APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
180   if (!isWrappedSet()) {
181     if (getLower().sle(getUpper() - 1))
182       return getUpper() - 1;
183     return SignedMax;
184   }
185   if (getLower().isNegative() == getUpper().isNegative())
186     return SignedMax;
187   return getUpper() - 1;
188 }
189
190 /// getSignedMin - Return the smallest signed value contained in the
191 /// ConstantRange.
192 ///
193 APInt ConstantRange::getSignedMin() const {
194   APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
195   if (!isWrappedSet()) {
196     if (getLower().sle(getUpper() - 1))
197       return getLower();
198     return SignedMin;
199   }
200   if ((getUpper() - 1).slt(getLower())) {
201     if (getUpper() != SignedMin)
202       return SignedMin;
203   }
204   return getLower();
205 }
206
207 /// contains - Return true if the specified value is in the set.
208 ///
209 bool ConstantRange::contains(const APInt &V) const {
210   if (Lower == Upper)
211     return isFullSet();
212
213   if (!isWrappedSet())
214     return Lower.ule(V) && V.ult(Upper);
215   return Lower.ule(V) || V.ult(Upper);
216 }
217
218 /// contains - Return true if the argument is a subset of this range.
219 /// Two equal sets contain each other. The empty set contained by all other
220 /// sets.
221 ///
222 bool ConstantRange::contains(const ConstantRange &Other) const {
223   if (isFullSet() || Other.isEmptySet()) return true;
224   if (isEmptySet() || Other.isFullSet()) return false;
225
226   if (!isWrappedSet()) {
227     if (Other.isWrappedSet())
228       return false;
229
230     return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
231   }
232
233   if (!Other.isWrappedSet())
234     return Other.getUpper().ule(Upper) ||
235            Lower.ule(Other.getLower());
236
237   return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
238 }
239
240 /// subtract - Subtract the specified constant from the endpoints of this
241 /// constant range.
242 ConstantRange ConstantRange::subtract(const APInt &Val) const {
243   assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
244   // If the set is empty or full, don't modify the endpoints.
245   if (Lower == Upper) 
246     return *this;
247   return ConstantRange(Lower - Val, Upper - Val);
248 }
249
250 /// \brief Subtract the specified range from this range (aka relative complement
251 /// of the sets).
252 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
253   return intersectWith(CR.inverse());
254 }
255
256 /// intersectWith - Return the range that results from the intersection of this
257 /// range with another range.  The resultant range is guaranteed to include all
258 /// elements contained in both input ranges, and to have the smallest possible
259 /// set size that does so.  Because there may be two intersections with the
260 /// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
261 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
262   assert(getBitWidth() == CR.getBitWidth() && 
263          "ConstantRange types don't agree!");
264
265   // Handle common cases.
266   if (   isEmptySet() || CR.isFullSet()) return *this;
267   if (CR.isEmptySet() ||    isFullSet()) return CR;
268
269   if (!isWrappedSet() && CR.isWrappedSet())
270     return CR.intersectWith(*this);
271
272   if (!isWrappedSet() && !CR.isWrappedSet()) {
273     if (Lower.ult(CR.Lower)) {
274       if (Upper.ule(CR.Lower))
275         return ConstantRange(getBitWidth(), false);
276
277       if (Upper.ult(CR.Upper))
278         return ConstantRange(CR.Lower, Upper);
279
280       return CR;
281     }
282     if (Upper.ult(CR.Upper))
283       return *this;
284
285     if (Lower.ult(CR.Upper))
286       return ConstantRange(Lower, CR.Upper);
287
288     return ConstantRange(getBitWidth(), false);
289   }
290
291   if (isWrappedSet() && !CR.isWrappedSet()) {
292     if (CR.Lower.ult(Upper)) {
293       if (CR.Upper.ult(Upper))
294         return CR;
295
296       if (CR.Upper.ule(Lower))
297         return ConstantRange(CR.Lower, Upper);
298
299       if (getSetSize().ult(CR.getSetSize()))
300         return *this;
301       return CR;
302     }
303     if (CR.Lower.ult(Lower)) {
304       if (CR.Upper.ule(Lower))
305         return ConstantRange(getBitWidth(), false);
306
307       return ConstantRange(Lower, CR.Upper);
308     }
309     return CR;
310   }
311
312   if (CR.Upper.ult(Upper)) {
313     if (CR.Lower.ult(Upper)) {
314       if (getSetSize().ult(CR.getSetSize()))
315         return *this;
316       return CR;
317     }
318
319     if (CR.Lower.ult(Lower))
320       return ConstantRange(Lower, CR.Upper);
321
322     return CR;
323   }
324   if (CR.Upper.ule(Lower)) {
325     if (CR.Lower.ult(Lower))
326       return *this;
327
328     return ConstantRange(CR.Lower, Upper);
329   }
330   if (getSetSize().ult(CR.getSetSize()))
331     return *this;
332   return CR;
333 }
334
335
336 /// unionWith - Return the range that results from the union of this range with
337 /// another range.  The resultant range is guaranteed to include the elements of
338 /// both sets, but may contain more.  For example, [3, 9) union [12,15) is
339 /// [3, 15), which includes 9, 10, and 11, which were not included in either
340 /// set before.
341 ///
342 ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
343   assert(getBitWidth() == CR.getBitWidth() && 
344          "ConstantRange types don't agree!");
345
346   if (   isFullSet() || CR.isEmptySet()) return *this;
347   if (CR.isFullSet() ||    isEmptySet()) return CR;
348
349   if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
350
351   if (!isWrappedSet() && !CR.isWrappedSet()) {
352     if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
353       // If the two ranges are disjoint, find the smaller gap and bridge it.
354       APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
355       if (d1.ult(d2))
356         return ConstantRange(Lower, CR.Upper);
357       return ConstantRange(CR.Lower, Upper);
358     }
359
360     APInt L = Lower, U = Upper;
361     if (CR.Lower.ult(L))
362       L = CR.Lower;
363     if ((CR.Upper - 1).ugt(U - 1))
364       U = CR.Upper;
365
366     if (L == 0 && U == 0)
367       return ConstantRange(getBitWidth());
368
369     return ConstantRange(L, U);
370   }
371
372   if (!CR.isWrappedSet()) {
373     // ------U   L-----  and  ------U   L----- : this
374     //   L--U                            L--U  : CR
375     if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
376       return *this;
377
378     // ------U   L----- : this
379     //    L---------U   : CR
380     if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
381       return ConstantRange(getBitWidth());
382
383     // ----U       L---- : this
384     //       L---U       : CR
385     //    <d1>  <d2>
386     if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
387       APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
388       if (d1.ult(d2))
389         return ConstantRange(Lower, CR.Upper);
390       return ConstantRange(CR.Lower, Upper);
391     }
392
393     // ----U     L----- : this
394     //        L----U    : CR
395     if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
396       return ConstantRange(CR.Lower, Upper);
397
398     // ------U    L---- : this
399     //    L-----U       : CR
400     assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) &&
401            "ConstantRange::unionWith missed a case with one range wrapped");
402     return ConstantRange(Lower, CR.Upper);
403   }
404
405   // ------U    L----  and  ------U    L---- : this
406   // -U  L-----------  and  ------------U  L : CR
407   if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
408     return ConstantRange(getBitWidth());
409
410   APInt L = Lower, U = Upper;
411   if (CR.Upper.ugt(U))
412     U = CR.Upper;
413   if (CR.Lower.ult(L))
414     L = CR.Lower;
415
416   return ConstantRange(L, U);
417 }
418
419 /// zeroExtend - Return a new range in the specified integer type, which must
420 /// be strictly larger than the current type.  The returned range will
421 /// correspond to the possible range of values as if the source range had been
422 /// zero extended.
423 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
424   if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
425
426   unsigned SrcTySize = getBitWidth();
427   assert(SrcTySize < DstTySize && "Not a value extension");
428   if (isFullSet() || isWrappedSet()) {
429     // Change into [0, 1 << src bit width)
430     APInt LowerExt(DstTySize, 0);
431     if (!Upper) // special case: [X, 0) -- not really wrapping around
432       LowerExt = Lower.zext(DstTySize);
433     return ConstantRange(LowerExt, APInt::getOneBitSet(DstTySize, SrcTySize));
434   }
435
436   return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
437 }
438
439 /// signExtend - Return a new range in the specified integer type, which must
440 /// be strictly larger than the current type.  The returned range will
441 /// correspond to the possible range of values as if the source range had been
442 /// sign extended.
443 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
444   if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
445
446   unsigned SrcTySize = getBitWidth();
447   assert(SrcTySize < DstTySize && "Not a value extension");
448
449   // special case: [X, INT_MIN) -- not really wrapping around
450   if (Upper.isMinSignedValue())
451     return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
452
453   if (isFullSet() || isSignWrappedSet()) {
454     return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
455                          APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
456   }
457
458   return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
459 }
460
461 /// truncate - Return a new range in the specified integer type, which must be
462 /// strictly smaller than the current type.  The returned range will
463 /// correspond to the possible range of values as if the source range had been
464 /// truncated to the specified type.
465 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
466   assert(getBitWidth() > DstTySize && "Not a value truncation");
467   if (isEmptySet())
468     return ConstantRange(DstTySize, /*isFullSet=*/false);
469   if (isFullSet())
470     return ConstantRange(DstTySize, /*isFullSet=*/true);
471
472   APInt MaxValue = APInt::getMaxValue(DstTySize).zext(getBitWidth());
473   APInt MaxBitValue(getBitWidth(), 0);
474   MaxBitValue.setBit(DstTySize);
475
476   APInt LowerDiv(Lower), UpperDiv(Upper);
477   ConstantRange Union(DstTySize, /*isFullSet=*/false);
478
479   // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
480   // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
481   // then we do the union with [MaxValue, Upper)
482   if (isWrappedSet()) {
483     // if Upper is greater than Max Value, it covers the whole truncated range.
484     if (Upper.uge(MaxValue))
485       return ConstantRange(DstTySize, /*isFullSet=*/true);
486
487     Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
488     UpperDiv = APInt::getMaxValue(getBitWidth());
489
490     // Union covers the MaxValue case, so return if the remaining range is just
491     // MaxValue.
492     if (LowerDiv == UpperDiv)
493       return Union;
494   }
495
496   // Chop off the most significant bits that are past the destination bitwidth.
497   if (LowerDiv.uge(MaxValue)) {
498     APInt Div(getBitWidth(), 0);
499     APInt::udivrem(LowerDiv, MaxBitValue, Div, LowerDiv);
500     UpperDiv = UpperDiv - MaxBitValue * Div;
501   }
502
503   if (UpperDiv.ule(MaxValue))
504     return ConstantRange(LowerDiv.trunc(DstTySize),
505                          UpperDiv.trunc(DstTySize)).unionWith(Union);
506
507   // The truncated value wrapps around. Check if we can do better than fullset.
508   APInt UpperModulo = UpperDiv - MaxBitValue;
509   if (UpperModulo.ult(LowerDiv))
510     return ConstantRange(LowerDiv.trunc(DstTySize),
511                          UpperModulo.trunc(DstTySize)).unionWith(Union);
512
513   return ConstantRange(DstTySize, /*isFullSet=*/true);
514 }
515
516 /// zextOrTrunc - make this range have the bit width given by \p DstTySize. The
517 /// value is zero extended, truncated, or left alone to make it that width.
518 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
519   unsigned SrcTySize = getBitWidth();
520   if (SrcTySize > DstTySize)
521     return truncate(DstTySize);
522   if (SrcTySize < DstTySize)
523     return zeroExtend(DstTySize);
524   return *this;
525 }
526
527 /// sextOrTrunc - make this range have the bit width given by \p DstTySize. The
528 /// value is sign extended, truncated, or left alone to make it that width.
529 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
530   unsigned SrcTySize = getBitWidth();
531   if (SrcTySize > DstTySize)
532     return truncate(DstTySize);
533   if (SrcTySize < DstTySize)
534     return signExtend(DstTySize);
535   return *this;
536 }
537
538 ConstantRange
539 ConstantRange::add(const ConstantRange &Other) const {
540   if (isEmptySet() || Other.isEmptySet())
541     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
542   if (isFullSet() || Other.isFullSet())
543     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
544
545   APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
546   APInt NewLower = getLower() + Other.getLower();
547   APInt NewUpper = getUpper() + Other.getUpper() - 1;
548   if (NewLower == NewUpper)
549     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
550
551   ConstantRange X = ConstantRange(NewLower, NewUpper);
552   if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
553     // We've wrapped, therefore, full set.
554     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
555
556   return X;
557 }
558
559 ConstantRange
560 ConstantRange::sub(const ConstantRange &Other) const {
561   if (isEmptySet() || Other.isEmptySet())
562     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
563   if (isFullSet() || Other.isFullSet())
564     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
565
566   APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
567   APInt NewLower = getLower() - Other.getUpper() + 1;
568   APInt NewUpper = getUpper() - Other.getLower();
569   if (NewLower == NewUpper)
570     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
571
572   ConstantRange X = ConstantRange(NewLower, NewUpper);
573   if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
574     // We've wrapped, therefore, full set.
575     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
576
577   return X;
578 }
579
580 ConstantRange
581 ConstantRange::multiply(const ConstantRange &Other) const {
582   // TODO: If either operand is a single element and the multiply is known to
583   // be non-wrapping, round the result min and max value to the appropriate
584   // multiple of that element. If wrapping is possible, at least adjust the
585   // range according to the greatest power-of-two factor of the single element.
586
587   if (isEmptySet() || Other.isEmptySet())
588     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
589
590   // Multiplication is signedness-independent. However different ranges can be
591   // obtained depending on how the input ranges are treated. These different
592   // ranges are all conservatively correct, but one might be better than the
593   // other. We calculate two ranges; one treating the inputs as unsigned
594   // and the other signed, then return the smallest of these ranges.
595
596   // Unsigned range first.
597   APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
598   APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
599   APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
600   APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
601
602   ConstantRange Result_zext = ConstantRange(this_min * Other_min,
603                                             this_max * Other_max + 1);
604   ConstantRange UR = Result_zext.truncate(getBitWidth());
605
606   // Now the signed range. Because we could be dealing with negative numbers
607   // here, the lower bound is the smallest of the cartesian product of the
608   // lower and upper ranges; for example:
609   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
610   // Similarly for the upper bound, swapping min for max.
611
612   this_min = getSignedMin().sext(getBitWidth() * 2);
613   this_max = getSignedMax().sext(getBitWidth() * 2);
614   Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
615   Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
616   
617   auto L = {this_min * Other_min, this_min * Other_max,
618             this_max * Other_min, this_max * Other_max};
619   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
620   ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
621   ConstantRange SR = Result_sext.truncate(getBitWidth());
622
623   return UR.getSetSize().ult(SR.getSetSize()) ? UR : SR;
624 }
625
626 ConstantRange
627 ConstantRange::smax(const ConstantRange &Other) const {
628   // X smax Y is: range(smax(X_smin, Y_smin),
629   //                    smax(X_smax, Y_smax))
630   if (isEmptySet() || Other.isEmptySet())
631     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
632   APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
633   APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
634   if (NewU == NewL)
635     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
636   return ConstantRange(NewL, NewU);
637 }
638
639 ConstantRange
640 ConstantRange::umax(const ConstantRange &Other) const {
641   // X umax Y is: range(umax(X_umin, Y_umin),
642   //                    umax(X_umax, Y_umax))
643   if (isEmptySet() || Other.isEmptySet())
644     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
645   APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
646   APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
647   if (NewU == NewL)
648     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
649   return ConstantRange(NewL, NewU);
650 }
651
652 ConstantRange
653 ConstantRange::udiv(const ConstantRange &RHS) const {
654   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0)
655     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
656   if (RHS.isFullSet())
657     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
658
659   APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
660
661   APInt RHS_umin = RHS.getUnsignedMin();
662   if (RHS_umin == 0) {
663     // We want the lowest value in RHS excluding zero. Usually that would be 1
664     // except for a range in the form of [X, 1) in which case it would be X.
665     if (RHS.getUpper() == 1)
666       RHS_umin = RHS.getLower();
667     else
668       RHS_umin = APInt(getBitWidth(), 1);
669   }
670
671   APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
672
673   // If the LHS is Full and the RHS is a wrapped interval containing 1 then
674   // this could occur.
675   if (Lower == Upper)
676     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
677
678   return ConstantRange(Lower, Upper);
679 }
680
681 ConstantRange
682 ConstantRange::binaryAnd(const ConstantRange &Other) const {
683   if (isEmptySet() || Other.isEmptySet())
684     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
685
686   // TODO: replace this with something less conservative
687
688   APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
689   if (umin.isAllOnesValue())
690     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
691   return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1);
692 }
693
694 ConstantRange
695 ConstantRange::binaryOr(const ConstantRange &Other) const {
696   if (isEmptySet() || Other.isEmptySet())
697     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
698
699   // TODO: replace this with something less conservative
700
701   APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
702   if (umax.isMinValue())
703     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
704   return ConstantRange(umax, APInt::getNullValue(getBitWidth()));
705 }
706
707 ConstantRange
708 ConstantRange::shl(const ConstantRange &Other) const {
709   if (isEmptySet() || Other.isEmptySet())
710     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
711
712   APInt min = getUnsignedMin().shl(Other.getUnsignedMin());
713   APInt max = getUnsignedMax().shl(Other.getUnsignedMax());
714
715   // there's no overflow!
716   APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros());
717   if (Zeros.ugt(Other.getUnsignedMax()))
718     return ConstantRange(min, max + 1);
719
720   // FIXME: implement the other tricky cases
721   return ConstantRange(getBitWidth(), /*isFullSet=*/true);
722 }
723
724 ConstantRange
725 ConstantRange::lshr(const ConstantRange &Other) const {
726   if (isEmptySet() || Other.isEmptySet())
727     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
728   
729   APInt max = getUnsignedMax().lshr(Other.getUnsignedMin());
730   APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
731   if (min == max + 1)
732     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
733
734   return ConstantRange(min, max + 1);
735 }
736
737 ConstantRange ConstantRange::inverse() const {
738   if (isFullSet())
739     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
740   if (isEmptySet())
741     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
742   return ConstantRange(Upper, Lower);
743 }
744
745 /// print - Print out the bounds to a stream...
746 ///
747 void ConstantRange::print(raw_ostream &OS) const {
748   if (isFullSet())
749     OS << "full-set";
750   else if (isEmptySet())
751     OS << "empty-set";
752   else
753     OS << "[" << Lower << "," << Upper << ")";
754 }
755
756 /// dump - Allow printing from a debugger easily...
757 ///
758 void ConstantRange::dump() const {
759   print(dbgs());
760 }