1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Implementation of the MC-JIT runtime dynamic linker.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ExecutionEngine/RuntimeDyld.h"
15 #include "JITRegistrar.h"
16 #include "ObjectImageCommon.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldImpl.h"
19 #include "RuntimeDyldMachO.h"
20 #include "llvm/Object/ELF.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Support/MutexGuard.h"
25 using namespace llvm::object;
27 #define DEBUG_TYPE "dyld"
29 // Empty out-of-line virtual destructor as the key function.
30 RuntimeDyldImpl::~RuntimeDyldImpl() {}
32 // Pin the JITRegistrar's and ObjectImage*'s vtables to this file.
33 void JITRegistrar::anchor() {}
34 void ObjectImage::anchor() {}
35 void ObjectImageCommon::anchor() {}
39 void RuntimeDyldImpl::registerEHFrames() {}
41 void RuntimeDyldImpl::deregisterEHFrames() {}
43 // Resolve the relocations for all symbols we currently know about.
44 void RuntimeDyldImpl::resolveRelocations() {
45 MutexGuard locked(lock);
47 // First, resolve relocations associated with external symbols.
48 resolveExternalSymbols();
50 // Just iterate over the sections we have and resolve all the relocations
51 // in them. Gross overkill, but it gets the job done.
52 for (int i = 0, e = Sections.size(); i != e; ++i) {
53 // The Section here (Sections[i]) refers to the section in which the
54 // symbol for the relocation is located. The SectionID in the relocation
55 // entry provides the section to which the relocation will be applied.
56 uint64_t Addr = Sections[i].LoadAddress;
57 DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t"
58 << format("%p", (uint8_t *)Addr) << "\n");
59 resolveRelocationList(Relocations[i], Addr);
64 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
65 uint64_t TargetAddress) {
66 MutexGuard locked(lock);
67 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
68 if (Sections[i].Address == LocalAddress) {
69 reassignSectionAddress(i, TargetAddress);
73 llvm_unreachable("Attempting to remap address of unknown section!");
76 static error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
78 if (error_code EC = Sym.getAddress(Address))
81 if (Address == UnknownAddressOrSize) {
82 Result = UnknownAddressOrSize;
83 return object_error::success;
86 const ObjectFile *Obj = Sym.getObject();
87 section_iterator SecI(Obj->section_begin());
88 if (error_code EC = Sym.getSection(SecI))
91 if (SecI == Obj->section_end()) {
92 Result = UnknownAddressOrSize;
93 return object_error::success;
96 uint64_t SectionAddress;
97 if (error_code EC = SecI->getAddress(SectionAddress))
100 Result = Address - SectionAddress;
101 return object_error::success;
104 ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) {
105 MutexGuard locked(lock);
107 std::unique_ptr<ObjectImage> Obj(InputObject);
111 // Save information about our target
112 Arch = (Triple::ArchType)Obj->getArch();
113 IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian();
115 // Compute the memory size required to load all sections to be loaded
116 // and pass this information to the memory manager
117 if (MemMgr->needsToReserveAllocationSpace()) {
118 uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
119 computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW);
120 MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
123 // Symbols found in this object
124 StringMap<SymbolLoc> LocalSymbols;
125 // Used sections from the object file
126 ObjSectionToIDMap LocalSections;
128 // Common symbols requiring allocation, with their sizes and alignments
129 CommonSymbolMap CommonSymbols;
130 // Maximum required total memory to allocate all common symbols
131 uint64_t CommonSize = 0;
134 DEBUG(dbgs() << "Parse symbols:\n");
135 for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E;
137 object::SymbolRef::Type SymType;
139 Check(I->getType(SymType));
140 Check(I->getName(Name));
142 uint32_t Flags = I->getFlags();
144 bool IsCommon = Flags & SymbolRef::SF_Common;
146 // Add the common symbols to a list. We'll allocate them all below.
148 Check(I->getAlignment(Align));
150 Check(I->getSize(Size));
151 CommonSize += Size + Align;
152 CommonSymbols[*I] = CommonSymbolInfo(Size, Align);
154 if (SymType == object::SymbolRef::ST_Function ||
155 SymType == object::SymbolRef::ST_Data ||
156 SymType == object::SymbolRef::ST_Unknown) {
158 StringRef SectionData;
160 section_iterator SI = Obj->end_sections();
161 Check(getOffset(*I, SectOffset));
162 Check(I->getSection(SI));
163 if (SI == Obj->end_sections())
165 Check(SI->getContents(SectionData));
166 Check(SI->isText(IsCode));
168 findOrEmitSection(*Obj, *SI, IsCode, LocalSections);
169 LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
170 DEBUG(dbgs() << "\tOffset: " << format("%p", (uintptr_t)SectOffset)
171 << " flags: " << Flags << " SID: " << SectionID);
172 GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
175 DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
178 // Allocate common symbols
180 emitCommonSymbols(*Obj, CommonSymbols, CommonSize, LocalSymbols);
182 // Parse and process relocations
183 DEBUG(dbgs() << "Parse relocations:\n");
184 for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections();
186 unsigned SectionID = 0;
188 section_iterator RelocatedSection = SI->getRelocatedSection();
190 relocation_iterator I = SI->relocation_begin();
191 relocation_iterator E = SI->relocation_end();
193 if (I == E && !ProcessAllSections)
197 Check(RelocatedSection->isText(IsCode));
199 findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections);
200 DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
203 I = processRelocationRef(SectionID, I, *Obj, LocalSections, LocalSymbols,
207 // Give the subclasses a chance to tie-up any loose ends.
208 finalizeLoad(LocalSections);
210 return Obj.release();
213 // A helper method for computeTotalAllocSize.
214 // Computes the memory size required to allocate sections with the given sizes,
215 // assuming that all sections are allocated with the given alignment
217 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
218 uint64_t Alignment) {
219 uint64_t TotalSize = 0;
220 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
221 uint64_t AlignedSize =
222 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
223 TotalSize += AlignedSize;
228 // Compute an upper bound of the memory size that is required to load all
230 void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
232 uint64_t &DataSizeRO,
233 uint64_t &DataSizeRW) {
234 // Compute the size of all sections required for execution
235 std::vector<uint64_t> CodeSectionSizes;
236 std::vector<uint64_t> ROSectionSizes;
237 std::vector<uint64_t> RWSectionSizes;
238 uint64_t MaxAlignment = sizeof(void *);
240 // Collect sizes of all sections to be loaded;
241 // also determine the max alignment of all sections
242 for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
244 const SectionRef &Section = *SI;
247 Check(Section.isRequiredForExecution(IsRequired));
249 // Consider only the sections that are required to be loaded for execution
251 uint64_t DataSize = 0;
252 uint64_t Alignment64 = 0;
254 bool IsReadOnly = false;
256 Check(Section.getSize(DataSize));
257 Check(Section.getAlignment(Alignment64));
258 Check(Section.isText(IsCode));
259 Check(Section.isReadOnlyData(IsReadOnly));
260 Check(Section.getName(Name));
261 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
263 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
264 uint64_t SectionSize = DataSize + StubBufSize;
266 // The .eh_frame section (at least on Linux) needs an extra four bytes
268 // with zeroes added at the end. For MachO objects, this section has a
269 // slightly different name, so this won't have any effect for MachO
271 if (Name == ".eh_frame")
274 if (SectionSize > 0) {
275 // save the total size of the section
277 CodeSectionSizes.push_back(SectionSize);
278 } else if (IsReadOnly) {
279 ROSectionSizes.push_back(SectionSize);
281 RWSectionSizes.push_back(SectionSize);
283 // update the max alignment
284 if (Alignment > MaxAlignment) {
285 MaxAlignment = Alignment;
291 // Compute the size of all common symbols
292 uint64_t CommonSize = 0;
293 for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); I != E;
295 uint32_t Flags = I->getFlags();
296 if (Flags & SymbolRef::SF_Common) {
297 // Add the common symbols to a list. We'll allocate them all below.
299 Check(I->getSize(Size));
303 if (CommonSize != 0) {
304 RWSectionSizes.push_back(CommonSize);
307 // Compute the required allocation space for each different type of sections
308 // (code, read-only data, read-write data) assuming that all sections are
309 // allocated with the max alignment. Note that we cannot compute with the
310 // individual alignments of the sections, because then the required size
311 // depends on the order, in which the sections are allocated.
312 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
313 DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
314 DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
317 // compute stub buffer size for the given section
318 unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj,
319 const SectionRef &Section) {
320 unsigned StubSize = getMaxStubSize();
324 // FIXME: this is an inefficient way to handle this. We should computed the
325 // necessary section allocation size in loadObject by walking all the sections
327 unsigned StubBufSize = 0;
328 for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
330 section_iterator RelSecI = SI->getRelocatedSection();
331 if (!(RelSecI == Section))
334 for (const RelocationRef &Reloc : SI->relocations()) {
336 StubBufSize += StubSize;
340 // Get section data size and alignment
341 uint64_t Alignment64;
343 Check(Section.getSize(DataSize));
344 Check(Section.getAlignment(Alignment64));
346 // Add stubbuf size alignment
347 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
348 unsigned StubAlignment = getStubAlignment();
349 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
350 if (StubAlignment > EndAlignment)
351 StubBufSize += StubAlignment - EndAlignment;
355 void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
356 const CommonSymbolMap &CommonSymbols,
358 SymbolTableMap &SymbolTable) {
359 // Allocate memory for the section
360 unsigned SectionID = Sections.size();
361 uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void *),
362 SectionID, StringRef(), false);
364 report_fatal_error("Unable to allocate memory for common symbols!");
366 Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
367 memset(Addr, 0, TotalSize);
369 DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
370 << format("%p", Addr) << " DataSize: " << TotalSize << "\n");
372 // Assign the address of each symbol
373 for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
374 itEnd = CommonSymbols.end(); it != itEnd; ++it) {
375 uint64_t Size = it->second.first;
376 uint64_t Align = it->second.second;
378 it->first.getName(Name);
380 // This symbol has an alignment requirement.
381 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
383 Offset += AlignOffset;
384 DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
385 << format("%p\n", Addr));
387 Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
388 SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
394 unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
395 const SectionRef &Section, bool IsCode) {
398 uint64_t Alignment64;
399 Check(Section.getContents(data));
400 Check(Section.getAlignment(Alignment64));
402 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
408 unsigned PaddingSize = 0;
409 unsigned StubBufSize = 0;
411 Check(Section.isRequiredForExecution(IsRequired));
412 Check(Section.isVirtual(IsVirtual));
413 Check(Section.isZeroInit(IsZeroInit));
414 Check(Section.isReadOnlyData(IsReadOnly));
415 Check(Section.getSize(DataSize));
416 Check(Section.getName(Name));
418 StubBufSize = computeSectionStubBufSize(Obj, Section);
420 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
421 // with zeroes added at the end. For MachO objects, this section has a
422 // slightly different name, so this won't have any effect for MachO objects.
423 if (Name == ".eh_frame")
427 unsigned SectionID = Sections.size();
429 const char *pData = nullptr;
431 // Some sections, such as debug info, don't need to be loaded for execution.
432 // Leave those where they are.
434 Allocate = DataSize + PaddingSize + StubBufSize;
435 Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID,
437 : MemMgr->allocateDataSection(Allocate, Alignment, SectionID,
440 report_fatal_error("Unable to allocate section memory!");
442 // Virtual sections have no data in the object image, so leave pData = 0
446 // Zero-initialize or copy the data from the image
447 if (IsZeroInit || IsVirtual)
448 memset(Addr, 0, DataSize);
450 memcpy(Addr, pData, DataSize);
452 // Fill in any extra bytes we allocated for padding
453 if (PaddingSize != 0) {
454 memset(Addr + DataSize, 0, PaddingSize);
455 // Update the DataSize variable so that the stub offset is set correctly.
456 DataSize += PaddingSize;
459 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
460 << " obj addr: " << format("%p", pData)
461 << " new addr: " << format("%p", Addr)
462 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
463 << " Allocate: " << Allocate << "\n");
464 Obj.updateSectionAddress(Section, (uint64_t)Addr);
466 // Even if we didn't load the section, we need to record an entry for it
467 // to handle later processing (and by 'handle' I mean don't do anything
468 // with these sections).
471 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
472 << " obj addr: " << format("%p", data.data()) << " new addr: 0"
473 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
474 << " Allocate: " << Allocate << "\n");
477 Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
481 unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
482 const SectionRef &Section,
484 ObjSectionToIDMap &LocalSections) {
486 unsigned SectionID = 0;
487 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
488 if (i != LocalSections.end())
489 SectionID = i->second;
491 SectionID = emitSection(Obj, Section, IsCode);
492 LocalSections[Section] = SectionID;
497 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
498 unsigned SectionID) {
499 Relocations[SectionID].push_back(RE);
502 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
503 StringRef SymbolName) {
504 // Relocation by symbol. If the symbol is found in the global symbol table,
505 // create an appropriate section relocation. Otherwise, add it to
506 // ExternalSymbolRelocations.
507 SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
508 if (Loc == GlobalSymbolTable.end()) {
509 ExternalSymbolRelocations[SymbolName].push_back(RE);
511 // Copy the RE since we want to modify its addend.
512 RelocationEntry RECopy = RE;
513 RECopy.Addend += Loc->second.second;
514 Relocations[Loc->second.first].push_back(RECopy);
518 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
519 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
520 // This stub has to be able to access the full address space,
521 // since symbol lookup won't necessarily find a handy, in-range,
522 // PLT stub for functions which could be anywhere.
523 uint32_t *StubAddr = (uint32_t *)Addr;
525 // Stub can use ip0 (== x16) to calculate address
526 *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
528 *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
530 *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
532 *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
534 *StubAddr = 0xd61f0200; // br ip0
537 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
538 // TODO: There is only ARM far stub now. We should add the Thumb stub,
539 // and stubs for branches Thumb - ARM and ARM - Thumb.
540 uint32_t *StubAddr = (uint32_t *)Addr;
541 *StubAddr = 0xe51ff004; // ldr pc,<label>
542 return (uint8_t *)++StubAddr;
543 } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
544 uint32_t *StubAddr = (uint32_t *)Addr;
545 // 0: 3c190000 lui t9,%hi(addr).
546 // 4: 27390000 addiu t9,t9,%lo(addr).
547 // 8: 03200008 jr t9.
549 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
550 const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
552 *StubAddr = LuiT9Instr;
554 *StubAddr = AdduiT9Instr;
556 *StubAddr = JrT9Instr;
558 *StubAddr = NopInstr;
560 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
561 // PowerPC64 stub: the address points to a function descriptor
562 // instead of the function itself. Load the function address
563 // on r11 and sets it to control register. Also loads the function
564 // TOC in r2 and environment pointer to r11.
565 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
566 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
567 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
568 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
569 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
570 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
571 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
572 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
573 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
574 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
575 writeInt32BE(Addr+40, 0x4E800420); // bctr
578 } else if (Arch == Triple::systemz) {
579 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
580 writeInt16BE(Addr+2, 0x0000);
581 writeInt16BE(Addr+4, 0x0004);
582 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
583 // 8-byte address stored at Addr + 8
585 } else if (Arch == Triple::x86_64) {
587 *(Addr+1) = 0x25; // rip
588 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
593 // Assign an address to a symbol name and resolve all the relocations
594 // associated with it.
595 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
597 // The address to use for relocation resolution is not
598 // the address of the local section buffer. We must be doing
599 // a remote execution environment of some sort. Relocations can't
600 // be applied until all the sections have been moved. The client must
601 // trigger this with a call to MCJIT::finalize() or
602 // RuntimeDyld::resolveRelocations().
604 // Addr is a uint64_t because we can't assume the pointer width
605 // of the target is the same as that of the host. Just use a generic
606 // "big enough" type.
607 Sections[SectionID].LoadAddress = Addr;
610 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
612 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
613 const RelocationEntry &RE = Relocs[i];
614 // Ignore relocations for sections that were not loaded
615 if (Sections[RE.SectionID].Address == nullptr)
617 resolveRelocation(RE, Value);
621 void RuntimeDyldImpl::resolveExternalSymbols() {
622 while (!ExternalSymbolRelocations.empty()) {
623 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
625 StringRef Name = i->first();
626 if (Name.size() == 0) {
627 // This is an absolute symbol, use an address of zero.
628 DEBUG(dbgs() << "Resolving absolute relocations."
630 RelocationList &Relocs = i->second;
631 resolveRelocationList(Relocs, 0);
634 SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
635 if (Loc == GlobalSymbolTable.end()) {
636 // This is an external symbol, try to get its address from
638 Addr = MemMgr->getSymbolAddress(Name.data());
639 // The call to getSymbolAddress may have caused additional modules to
640 // be loaded, which may have added new entries to the
641 // ExternalSymbolRelocations map. Consquently, we need to update our
642 // iterator. This is also why retrieval of the relocation list
643 // associated with this symbol is deferred until below this point.
644 // New entries may have been added to the relocation list.
645 i = ExternalSymbolRelocations.find(Name);
647 // We found the symbol in our global table. It was probably in a
648 // Module that we loaded previously.
649 SymbolLoc SymLoc = Loc->second;
650 Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second;
653 // FIXME: Implement error handling that doesn't kill the host program!
655 report_fatal_error("Program used external function '" + Name +
656 "' which could not be resolved!");
658 updateGOTEntries(Name, Addr);
659 DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
660 << format("0x%lx", Addr) << "\n");
661 // This list may have been updated when we called getSymbolAddress, so
662 // don't change this code to get the list earlier.
663 RelocationList &Relocs = i->second;
664 resolveRelocationList(Relocs, Addr);
667 ExternalSymbolRelocations.erase(i);
671 //===----------------------------------------------------------------------===//
672 // RuntimeDyld class implementation
673 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
674 // FIXME: There's a potential issue lurking here if a single instance of
675 // RuntimeDyld is used to load multiple objects. The current implementation
676 // associates a single memory manager with a RuntimeDyld instance. Even
677 // though the public class spawns a new 'impl' instance for each load,
678 // they share a single memory manager. This can become a problem when page
679 // permissions are applied.
682 ProcessAllSections = false;
685 RuntimeDyld::~RuntimeDyld() { delete Dyld; }
687 static std::unique_ptr<RuntimeDyldELF>
688 createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections) {
689 std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM));
690 Dyld->setProcessAllSections(ProcessAllSections);
694 static std::unique_ptr<RuntimeDyldMachO>
695 createRuntimeDyldMachO(RTDyldMemoryManager *MM, bool ProcessAllSections) {
696 std::unique_ptr<RuntimeDyldMachO> Dyld(new RuntimeDyldMachO(MM));
697 Dyld->setProcessAllSections(ProcessAllSections);
701 ObjectImage *RuntimeDyld::loadObject(std::unique_ptr<ObjectFile> InputObject) {
702 std::unique_ptr<ObjectImage> InputImage;
704 ObjectFile &Obj = *InputObject;
706 if (InputObject->isELF()) {
707 InputImage.reset(RuntimeDyldELF::createObjectImageFromFile(std::move(InputObject)));
709 Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release();
710 } else if (InputObject->isMachO()) {
711 InputImage.reset(RuntimeDyldMachO::createObjectImageFromFile(std::move(InputObject)));
713 Dyld = createRuntimeDyldMachO(MM, ProcessAllSections).release();
715 report_fatal_error("Incompatible object format!");
717 if (!Dyld->isCompatibleFile(&Obj))
718 report_fatal_error("Incompatible object format!");
720 Dyld->loadObject(InputImage.get());
721 return InputImage.release();
724 ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
725 std::unique_ptr<ObjectImage> InputImage;
726 sys::fs::file_magic Type = sys::fs::identify_magic(InputBuffer->getBuffer());
729 case sys::fs::file_magic::elf_relocatable:
730 case sys::fs::file_magic::elf_executable:
731 case sys::fs::file_magic::elf_shared_object:
732 case sys::fs::file_magic::elf_core:
733 InputImage.reset(RuntimeDyldELF::createObjectImage(InputBuffer));
735 Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release();
737 case sys::fs::file_magic::macho_object:
738 case sys::fs::file_magic::macho_executable:
739 case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
740 case sys::fs::file_magic::macho_core:
741 case sys::fs::file_magic::macho_preload_executable:
742 case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
743 case sys::fs::file_magic::macho_dynamic_linker:
744 case sys::fs::file_magic::macho_bundle:
745 case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
746 case sys::fs::file_magic::macho_dsym_companion:
747 InputImage.reset(RuntimeDyldMachO::createObjectImage(InputBuffer));
749 Dyld = createRuntimeDyldMachO(MM, ProcessAllSections).release();
751 case sys::fs::file_magic::unknown:
752 case sys::fs::file_magic::bitcode:
753 case sys::fs::file_magic::archive:
754 case sys::fs::file_magic::coff_object:
755 case sys::fs::file_magic::coff_import_library:
756 case sys::fs::file_magic::pecoff_executable:
757 case sys::fs::file_magic::macho_universal_binary:
758 case sys::fs::file_magic::windows_resource:
759 report_fatal_error("Incompatible object format!");
762 if (!Dyld->isCompatibleFormat(InputBuffer))
763 report_fatal_error("Incompatible object format!");
765 Dyld->loadObject(InputImage.get());
766 return InputImage.release();
769 void *RuntimeDyld::getSymbolAddress(StringRef Name) {
772 return Dyld->getSymbolAddress(Name);
775 uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
778 return Dyld->getSymbolLoadAddress(Name);
781 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
783 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
784 Dyld->reassignSectionAddress(SectionID, Addr);
787 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
788 uint64_t TargetAddress) {
789 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
792 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
794 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
796 void RuntimeDyld::registerEHFrames() {
798 Dyld->registerEHFrames();
801 void RuntimeDyld::deregisterEHFrames() {
803 Dyld->deregisterEHFrames();
806 } // end namespace llvm