1 //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the VirtRegMap class.
12 // It also contains implementations of the Spiller interface, which, given a
13 // virtual register map and a machine function, eliminates all virtual
14 // references by replacing them with physical register references - adding spill
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "regalloc"
20 #include "llvm/CodeGen/VirtRegMap.h"
21 #include "LiveDebugVariables.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
25 #include "llvm/CodeGen/LiveStackAnalysis.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
42 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
43 STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting");
45 //===----------------------------------------------------------------------===//
46 // VirtRegMap implementation
47 //===----------------------------------------------------------------------===//
49 char VirtRegMap::ID = 0;
51 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
53 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
54 MRI = &mf.getRegInfo();
55 TII = mf.getTarget().getInstrInfo();
56 TRI = mf.getTarget().getRegisterInfo();
60 Virt2StackSlotMap.clear();
61 Virt2SplitMap.clear();
67 void VirtRegMap::grow() {
68 unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
69 Virt2PhysMap.resize(NumRegs);
70 Virt2StackSlotMap.resize(NumRegs);
71 Virt2SplitMap.resize(NumRegs);
74 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
75 int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
81 bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) {
82 unsigned Hint = MRI->getSimpleHint(VirtReg);
85 if (TargetRegisterInfo::isVirtualRegister(Hint))
87 return getPhys(VirtReg) == Hint;
90 bool VirtRegMap::hasKnownPreference(unsigned VirtReg) {
91 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
92 if (TargetRegisterInfo::isPhysicalRegister(Hint.second))
94 if (TargetRegisterInfo::isVirtualRegister(Hint.second))
95 return hasPhys(Hint.second);
99 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
100 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
101 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
102 "attempt to assign stack slot to already spilled register");
103 const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
104 return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
107 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
108 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
109 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
110 "attempt to assign stack slot to already spilled register");
112 (SS >= MF->getFrameInfo()->getObjectIndexBegin())) &&
113 "illegal fixed frame index");
114 Virt2StackSlotMap[virtReg] = SS;
117 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
118 OS << "********** REGISTER MAP **********\n";
119 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
120 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
121 if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
122 OS << '[' << PrintReg(Reg, TRI) << " -> "
123 << PrintReg(Virt2PhysMap[Reg], TRI) << "] "
124 << MRI->getRegClass(Reg)->getName() << "\n";
128 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
129 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
130 if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
131 OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
132 << "] " << MRI->getRegClass(Reg)->getName() << "\n";
138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139 void VirtRegMap::dump() const {
144 //===----------------------------------------------------------------------===//
146 //===----------------------------------------------------------------------===//
148 // The VirtRegRewriter is the last of the register allocator passes.
149 // It rewrites virtual registers to physical registers as specified in the
150 // VirtRegMap analysis. It also updates live-in information on basic blocks
151 // according to LiveIntervals.
154 class VirtRegRewriter : public MachineFunctionPass {
156 const TargetMachine *TM;
157 const TargetRegisterInfo *TRI;
158 const TargetInstrInfo *TII;
159 MachineRegisterInfo *MRI;
160 SlotIndexes *Indexes;
165 void addMBBLiveIns();
168 VirtRegRewriter() : MachineFunctionPass(ID) {}
170 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
172 virtual bool runOnMachineFunction(MachineFunction&);
174 } // end anonymous namespace
176 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
178 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
179 "Virtual Register Rewriter", false, false)
180 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
181 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
182 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
183 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
184 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
185 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
186 "Virtual Register Rewriter", false, false)
188 char VirtRegRewriter::ID = 0;
190 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
191 AU.setPreservesCFG();
192 AU.addRequired<LiveIntervals>();
193 AU.addRequired<SlotIndexes>();
194 AU.addPreserved<SlotIndexes>();
195 AU.addRequired<LiveDebugVariables>();
196 AU.addRequired<LiveStacks>();
197 AU.addPreserved<LiveStacks>();
198 AU.addRequired<VirtRegMap>();
199 MachineFunctionPass::getAnalysisUsage(AU);
202 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
204 TM = &MF->getTarget();
205 TRI = TM->getRegisterInfo();
206 TII = TM->getInstrInfo();
207 MRI = &MF->getRegInfo();
208 Indexes = &getAnalysis<SlotIndexes>();
209 LIS = &getAnalysis<LiveIntervals>();
210 VRM = &getAnalysis<VirtRegMap>();
211 DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
212 << "********** Function: "
213 << MF->getName() << '\n');
216 // Add kill flags while we still have virtual registers.
217 LIS->addKillFlags(VRM);
219 // Live-in lists on basic blocks are required for physregs.
222 // Rewrite virtual registers.
225 // Write out new DBG_VALUE instructions.
226 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
228 // All machine operands and other references to virtual registers have been
229 // replaced. Remove the virtual registers and release all the transient data.
231 MRI->clearVirtRegs();
235 // Compute MBB live-in lists from virtual register live ranges and their
237 void VirtRegRewriter::addMBBLiveIns() {
238 SmallVector<MachineBasicBlock*, 16> LiveIn;
239 for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
240 unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
241 if (MRI->reg_nodbg_empty(VirtReg))
243 LiveInterval &LI = LIS->getInterval(VirtReg);
244 if (LI.empty() || LIS->intervalIsInOneMBB(LI))
246 // This is a virtual register that is live across basic blocks. Its
247 // assigned PhysReg must be marked as live-in to those blocks.
248 unsigned PhysReg = VRM->getPhys(VirtReg);
249 assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
251 // Scan the segments of LI.
252 for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I != E;
254 if (!Indexes->findLiveInMBBs(I->start, I->end, LiveIn))
256 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i)
257 if (!LiveIn[i]->isLiveIn(PhysReg))
258 LiveIn[i]->addLiveIn(PhysReg);
264 void VirtRegRewriter::rewrite() {
265 SmallVector<unsigned, 8> SuperDeads;
266 SmallVector<unsigned, 8> SuperDefs;
267 SmallVector<unsigned, 8> SuperKills;
268 SmallPtrSet<const MachineInstr *, 4> NoReturnInsts;
270 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
271 MBBI != MBBE; ++MBBI) {
272 DEBUG(MBBI->print(dbgs(), Indexes));
273 bool IsExitBB = MBBI->succ_empty();
274 for (MachineBasicBlock::instr_iterator
275 MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
276 MachineInstr *MI = MII;
279 // Check if this instruction is a call to a noreturn function.
280 // If so, all the definitions set by this instruction can be ignored.
281 if (IsExitBB && MI->isCall())
282 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
283 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
284 MachineOperand &MO = *MOI;
287 const Function *Func = dyn_cast<Function>(MO.getGlobal());
288 if (!Func || !Func->hasFnAttribute(Attribute::NoReturn) ||
289 // We need to keep correct unwind information
290 // even if the function will not return, since the
291 // runtime may need it.
292 !Func->hasFnAttribute(Attribute::NoUnwind))
294 NoReturnInsts.insert(MI);
298 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
299 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
300 MachineOperand &MO = *MOI;
302 // Make sure MRI knows about registers clobbered by regmasks.
304 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
306 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
308 unsigned VirtReg = MO.getReg();
309 unsigned PhysReg = VRM->getPhys(VirtReg);
310 assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
311 "Instruction uses unmapped VirtReg");
312 assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
314 // Preserve semantics of sub-register operands.
315 if (MO.getSubReg()) {
316 // A virtual register kill refers to the whole register, so we may
317 // have to add <imp-use,kill> operands for the super-register. A
318 // partial redef always kills and redefines the super-register.
319 if (MO.readsReg() && (MO.isDef() || MO.isKill()))
320 SuperKills.push_back(PhysReg);
323 // The <def,undef> flag only makes sense for sub-register defs, and
324 // we are substituting a full physreg. An <imp-use,kill> operand
325 // from the SuperKills list will represent the partial read of the
327 MO.setIsUndef(false);
329 // Also add implicit defs for the super-register.
331 SuperDeads.push_back(PhysReg);
333 SuperDefs.push_back(PhysReg);
336 // PhysReg operands cannot have subregister indexes.
337 PhysReg = TRI->getSubReg(PhysReg, MO.getSubReg());
338 assert(PhysReg && "Invalid SubReg for physical register");
341 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
342 // we need the inlining here.
346 // Add any missing super-register kills after rewriting the whole
348 while (!SuperKills.empty())
349 MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
351 while (!SuperDeads.empty())
352 MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
354 while (!SuperDefs.empty())
355 MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
357 DEBUG(dbgs() << "> " << *MI);
359 // Finally, remove any identity copies.
360 if (MI->isIdentityCopy()) {
362 if (MI->getNumOperands() == 2) {
363 DEBUG(dbgs() << "Deleting identity copy.\n");
365 Indexes->removeMachineInstrFromMaps(MI);
366 // It's safe to erase MI because MII has already been incremented.
367 MI->eraseFromParent();
369 // Transform identity copy to a KILL to deal with subregisters.
370 MI->setDesc(TII->get(TargetOpcode::KILL));
371 DEBUG(dbgs() << "Identity copy: " << *MI);
377 // Tell MRI about physical registers in use.
378 if (NoReturnInsts.empty()) {
379 for (unsigned Reg = 1, RegE = TRI->getNumRegs(); Reg != RegE; ++Reg)
380 if (!MRI->reg_nodbg_empty(Reg))
381 MRI->setPhysRegUsed(Reg);
383 for (unsigned Reg = 1, RegE = TRI->getNumRegs(); Reg != RegE; ++Reg) {
384 if (MRI->reg_nodbg_empty(Reg))
386 // Check if this register has a use that will impact the rest of the
387 // code. Uses in debug and noreturn instructions do not impact the
389 for (MachineRegisterInfo::reg_nodbg_iterator It =
390 MRI->reg_nodbg_begin(Reg),
391 EndIt = MRI->reg_nodbg_end(); It != EndIt; ++It) {
392 if (!NoReturnInsts.count(&(*It))) {
393 MRI->setPhysRegUsed(Reg);