1 //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the VirtRegMap class.
12 // It also contains implementations of the Spiller interface, which, given a
13 // virtual register map and a machine function, eliminates all virtual
14 // references by replacing them with physical register references - adding spill
17 //===----------------------------------------------------------------------===//
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "LiveDebugVariables.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SparseSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
25 #include "llvm/CodeGen/LiveStackAnalysis.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/Target/TargetSubtargetInfo.h"
43 #define DEBUG_TYPE "regalloc"
45 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
46 STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting");
48 //===----------------------------------------------------------------------===//
49 // VirtRegMap implementation
50 //===----------------------------------------------------------------------===//
52 char VirtRegMap::ID = 0;
54 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
56 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
57 MRI = &mf.getRegInfo();
58 TII = mf.getSubtarget().getInstrInfo();
59 TRI = mf.getSubtarget().getRegisterInfo();
63 Virt2StackSlotMap.clear();
64 Virt2SplitMap.clear();
70 void VirtRegMap::grow() {
71 unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
72 Virt2PhysMap.resize(NumRegs);
73 Virt2StackSlotMap.resize(NumRegs);
74 Virt2SplitMap.resize(NumRegs);
77 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
78 int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
84 bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) {
85 unsigned Hint = MRI->getSimpleHint(VirtReg);
88 if (TargetRegisterInfo::isVirtualRegister(Hint))
90 return getPhys(VirtReg) == Hint;
93 bool VirtRegMap::hasKnownPreference(unsigned VirtReg) {
94 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
95 if (TargetRegisterInfo::isPhysicalRegister(Hint.second))
97 if (TargetRegisterInfo::isVirtualRegister(Hint.second))
98 return hasPhys(Hint.second);
102 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
103 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
104 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
105 "attempt to assign stack slot to already spilled register");
106 const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
107 return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
110 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
111 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
112 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
113 "attempt to assign stack slot to already spilled register");
115 (SS >= MF->getFrameInfo()->getObjectIndexBegin())) &&
116 "illegal fixed frame index");
117 Virt2StackSlotMap[virtReg] = SS;
120 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
121 OS << "********** REGISTER MAP **********\n";
122 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
123 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
124 if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
125 OS << '[' << PrintReg(Reg, TRI) << " -> "
126 << PrintReg(Virt2PhysMap[Reg], TRI) << "] "
127 << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
131 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
132 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
133 if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
134 OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
135 << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
141 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
142 void VirtRegMap::dump() const {
147 //===----------------------------------------------------------------------===//
149 //===----------------------------------------------------------------------===//
151 // The VirtRegRewriter is the last of the register allocator passes.
152 // It rewrites virtual registers to physical registers as specified in the
153 // VirtRegMap analysis. It also updates live-in information on basic blocks
154 // according to LiveIntervals.
157 class VirtRegRewriter : public MachineFunctionPass {
159 const TargetMachine *TM;
160 const TargetRegisterInfo *TRI;
161 const TargetInstrInfo *TII;
162 MachineRegisterInfo *MRI;
163 SlotIndexes *Indexes;
166 SparseSet<unsigned> PhysRegs;
169 void addMBBLiveIns();
172 VirtRegRewriter() : MachineFunctionPass(ID) {}
174 void getAnalysisUsage(AnalysisUsage &AU) const override;
176 bool runOnMachineFunction(MachineFunction&) override;
178 } // end anonymous namespace
180 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
182 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
183 "Virtual Register Rewriter", false, false)
184 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
185 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
186 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
187 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
188 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
189 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
190 "Virtual Register Rewriter", false, false)
192 char VirtRegRewriter::ID = 0;
194 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
195 AU.setPreservesCFG();
196 AU.addRequired<LiveIntervals>();
197 AU.addRequired<SlotIndexes>();
198 AU.addPreserved<SlotIndexes>();
199 AU.addRequired<LiveDebugVariables>();
200 AU.addRequired<LiveStacks>();
201 AU.addPreserved<LiveStacks>();
202 AU.addRequired<VirtRegMap>();
203 MachineFunctionPass::getAnalysisUsage(AU);
206 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
208 TM = &MF->getTarget();
209 TRI = MF->getSubtarget().getRegisterInfo();
210 TII = MF->getSubtarget().getInstrInfo();
211 MRI = &MF->getRegInfo();
212 Indexes = &getAnalysis<SlotIndexes>();
213 LIS = &getAnalysis<LiveIntervals>();
214 VRM = &getAnalysis<VirtRegMap>();
215 DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
216 << "********** Function: "
217 << MF->getName() << '\n');
220 // Add kill flags while we still have virtual registers.
221 LIS->addKillFlags(VRM);
223 // Live-in lists on basic blocks are required for physregs.
226 // Rewrite virtual registers.
229 // Write out new DBG_VALUE instructions.
230 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
232 // All machine operands and other references to virtual registers have been
233 // replaced. Remove the virtual registers and release all the transient data.
235 MRI->clearVirtRegs();
239 // Compute MBB live-in lists from virtual register live ranges and their
241 void VirtRegRewriter::addMBBLiveIns() {
242 SmallVector<MachineBasicBlock*, 16> LiveIn;
243 for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
244 unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
245 if (MRI->reg_nodbg_empty(VirtReg))
247 LiveInterval &LI = LIS->getInterval(VirtReg);
248 if (LI.empty() || LIS->intervalIsInOneMBB(LI))
250 // This is a virtual register that is live across basic blocks. Its
251 // assigned PhysReg must be marked as live-in to those blocks.
252 unsigned PhysReg = VRM->getPhys(VirtReg);
253 assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
255 if (LI.hasSubRanges()) {
256 for (LiveInterval::SubRange &S : LI.subranges()) {
257 for (const auto &Seg : S.segments) {
258 if (!Indexes->findLiveInMBBs(Seg.start, Seg.end, LiveIn))
260 for (MCSubRegIndexIterator SR(PhysReg, TRI); SR.isValid(); ++SR) {
261 unsigned SubReg = SR.getSubReg();
262 unsigned SubRegIndex = SR.getSubRegIndex();
263 unsigned SubRegLaneMask = TRI->getSubRegIndexLaneMask(SubRegIndex);
264 if ((SubRegLaneMask & S.LaneMask) == 0)
266 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
267 LiveIn[i]->addLiveIn(SubReg);
274 // Scan the segments of LI.
275 for (const auto &Seg : LI.segments) {
276 if (!Indexes->findLiveInMBBs(Seg.start, Seg.end, LiveIn))
278 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i)
279 LiveIn[i]->addLiveIn(PhysReg);
285 // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
286 // each MBB's LiveIns set before calling addLiveIn on them.
287 for (MachineBasicBlock &MBB : *MF)
288 MBB.sortUniqueLiveIns();
291 void VirtRegRewriter::rewrite() {
292 bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
293 SmallVector<unsigned, 8> SuperDeads;
294 SmallVector<unsigned, 8> SuperDefs;
295 SmallVector<unsigned, 8> SuperKills;
296 SmallPtrSet<const MachineInstr *, 4> NoReturnInsts;
298 // Here we have a SparseSet to hold which PhysRegs are actually encountered
299 // in the MF we are about to iterate over so that later when we call
300 // setPhysRegUsed, we are only doing it for physRegs that were actually found
301 // in the program and not for all of the possible physRegs for the given
302 // target architecture. If the target has a lot of physRegs, then for a small
303 // program there will be a significant compile time reduction here.
305 PhysRegs.setUniverse(TRI->getNumRegs());
307 // The function with uwtable should guarantee that the stack unwinder
308 // can unwind the stack to the previous frame. Thus, we can't apply the
309 // noreturn optimization if the caller function has uwtable attribute.
310 bool HasUWTable = MF->getFunction()->hasFnAttribute(Attribute::UWTable);
312 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
313 MBBI != MBBE; ++MBBI) {
314 DEBUG(MBBI->print(dbgs(), Indexes));
315 bool IsExitBB = MBBI->succ_empty();
316 for (MachineBasicBlock::instr_iterator
317 MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
318 MachineInstr *MI = MII;
321 // Check if this instruction is a call to a noreturn function. If this
322 // is a call to noreturn function and we don't need the stack unwinding
323 // functionality (i.e. this function does not have uwtable attribute and
324 // the callee function has the nounwind attribute), then we can ignore
325 // the definitions set by this instruction.
326 if (!HasUWTable && IsExitBB && MI->isCall()) {
327 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
328 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
329 MachineOperand &MO = *MOI;
332 const Function *Func = dyn_cast<Function>(MO.getGlobal());
333 if (!Func || !Func->hasFnAttribute(Attribute::NoReturn) ||
334 // We need to keep correct unwind information
335 // even if the function will not return, since the
336 // runtime may need it.
337 !Func->hasFnAttribute(Attribute::NoUnwind))
339 NoReturnInsts.insert(MI);
344 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
345 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
346 MachineOperand &MO = *MOI;
348 // Make sure MRI knows about registers clobbered by regmasks.
350 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
352 // If we encounter a VirtReg or PhysReg then get at the PhysReg and add
353 // it to the physreg bitset. Later we use only the PhysRegs that were
354 // actually encountered in the MF to populate the MRI's used physregs.
355 if (MO.isReg() && MO.getReg())
357 TargetRegisterInfo::isVirtualRegister(MO.getReg()) ?
358 VRM->getPhys(MO.getReg()) :
361 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
363 unsigned VirtReg = MO.getReg();
364 unsigned PhysReg = VRM->getPhys(VirtReg);
365 assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
366 "Instruction uses unmapped VirtReg");
367 assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
369 // Preserve semantics of sub-register operands.
370 if (MO.getSubReg()) {
371 // A virtual register kill refers to the whole register, so we may
372 // have to add <imp-use,kill> operands for the super-register. A
373 // partial redef always kills and redefines the super-register.
374 if (NoSubRegLiveness && MO.readsReg()
375 && (MO.isDef() || MO.isKill()))
376 SuperKills.push_back(PhysReg);
379 // The <def,undef> flag only makes sense for sub-register defs, and
380 // we are substituting a full physreg. An <imp-use,kill> operand
381 // from the SuperKills list will represent the partial read of the
383 MO.setIsUndef(false);
385 // Also add implicit defs for the super-register.
386 if (NoSubRegLiveness) {
388 SuperDeads.push_back(PhysReg);
390 SuperDefs.push_back(PhysReg);
394 // PhysReg operands cannot have subregister indexes.
395 PhysReg = TRI->getSubReg(PhysReg, MO.getSubReg());
396 assert(PhysReg && "Invalid SubReg for physical register");
399 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
400 // we need the inlining here.
404 // Add any missing super-register kills after rewriting the whole
406 while (!SuperKills.empty())
407 MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
409 while (!SuperDeads.empty())
410 MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
412 while (!SuperDefs.empty())
413 MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
415 DEBUG(dbgs() << "> " << *MI);
417 // Finally, remove any identity copies.
418 if (MI->isIdentityCopy()) {
420 if (MI->getNumOperands() == 2) {
421 DEBUG(dbgs() << "Deleting identity copy.\n");
423 Indexes->removeMachineInstrFromMaps(MI);
424 // It's safe to erase MI because MII has already been incremented.
425 MI->eraseFromParent();
427 // Transform identity copy to a KILL to deal with subregisters.
428 MI->setDesc(TII->get(TargetOpcode::KILL));
429 DEBUG(dbgs() << "Identity copy: " << *MI);
435 // Tell MRI about physical registers in use.
436 if (NoReturnInsts.empty()) {
437 for (SparseSet<unsigned>::iterator
438 RegI = PhysRegs.begin(), E = PhysRegs.end(); RegI != E; ++RegI)
439 if (!MRI->reg_nodbg_empty(*RegI))
440 MRI->setPhysRegUsed(*RegI);
442 for (SparseSet<unsigned>::iterator
443 I = PhysRegs.begin(), E = PhysRegs.end(); I != E; ++I) {
445 if (MRI->reg_nodbg_empty(Reg))
447 // Check if this register has a use that will impact the rest of the
448 // code. Uses in debug and noreturn instructions do not impact the
450 for (MachineInstr &It : MRI->reg_nodbg_instructions(Reg)) {
451 if (!NoReturnInsts.count(&It)) {
452 MRI->setPhysRegUsed(Reg);