1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
28 //===----------------------------------------------------------------------===//
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallSet.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/MC/MCInstrItineraries.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetMachine.h"
51 #include "llvm/Target/TargetRegisterInfo.h"
52 #include "llvm/Target/TargetSubtargetInfo.h"
55 #define DEBUG_TYPE "twoaddrinstr"
57 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
58 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
59 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
60 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
61 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
62 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up");
63 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down");
65 // Temporary flag to disable rescheduling.
67 EnableRescheduling("twoaddr-reschedule",
68 cl::desc("Coalesce copies by rescheduling (default=true)"),
69 cl::init(true), cl::Hidden);
72 class TwoAddressInstructionPass : public MachineFunctionPass {
74 const TargetInstrInfo *TII;
75 const TargetRegisterInfo *TRI;
76 const InstrItineraryData *InstrItins;
77 MachineRegisterInfo *MRI;
81 CodeGenOpt::Level OptLevel;
83 // The current basic block being processed.
84 MachineBasicBlock *MBB;
86 // Keep track the distance of a MI from the start of the current basic block.
87 DenseMap<MachineInstr*, unsigned> DistanceMap;
89 // Set of already processed instructions in the current block.
90 SmallPtrSet<MachineInstr*, 8> Processed;
92 // A map from virtual registers to physical registers which are likely targets
93 // to be coalesced to due to copies from physical registers to virtual
94 // registers. e.g. v1024 = move r0.
95 DenseMap<unsigned, unsigned> SrcRegMap;
97 // A map from virtual registers to physical registers which are likely targets
98 // to be coalesced to due to copies to physical registers from virtual
99 // registers. e.g. r1 = move v1024.
100 DenseMap<unsigned, unsigned> DstRegMap;
102 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
103 MachineBasicBlock::iterator OldPos);
105 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen);
107 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
109 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
110 MachineInstr *MI, unsigned Dist);
112 bool commuteInstruction(MachineInstr *MI,
113 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
115 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
117 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
118 MachineBasicBlock::iterator &nmi,
119 unsigned RegA, unsigned RegB, unsigned Dist);
121 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
123 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
124 MachineBasicBlock::iterator &nmi,
126 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
127 MachineBasicBlock::iterator &nmi,
130 bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
131 MachineBasicBlock::iterator &nmi,
132 unsigned SrcIdx, unsigned DstIdx,
133 unsigned Dist, bool shouldOnlyCommute);
135 bool tryInstructionCommute(MachineInstr *MI,
140 void scanUses(unsigned DstReg);
142 void processCopy(MachineInstr *MI);
144 typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList;
145 typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap;
146 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
147 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
148 void eliminateRegSequence(MachineBasicBlock::iterator&);
151 static char ID; // Pass identification, replacement for typeid
152 TwoAddressInstructionPass() : MachineFunctionPass(ID) {
153 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
156 void getAnalysisUsage(AnalysisUsage &AU) const override {
157 AU.setPreservesCFG();
158 AU.addRequired<AAResultsWrapperPass>();
159 AU.addPreserved<LiveVariables>();
160 AU.addPreserved<SlotIndexes>();
161 AU.addPreserved<LiveIntervals>();
162 AU.addPreservedID(MachineLoopInfoID);
163 AU.addPreservedID(MachineDominatorsID);
164 MachineFunctionPass::getAnalysisUsage(AU);
167 /// Pass entry point.
168 bool runOnMachineFunction(MachineFunction&) override;
170 } // end anonymous namespace
172 char TwoAddressInstructionPass::ID = 0;
173 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
174 "Two-Address instruction pass", false, false)
175 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
176 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
177 "Two-Address instruction pass", false, false)
179 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
181 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
183 /// A two-address instruction has been converted to a three-address instruction
184 /// to avoid clobbering a register. Try to sink it past the instruction that
185 /// would kill the above mentioned register to reduce register pressure.
186 bool TwoAddressInstructionPass::
187 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
188 MachineBasicBlock::iterator OldPos) {
189 // FIXME: Shouldn't we be trying to do this before we three-addressify the
190 // instruction? After this transformation is done, we no longer need
191 // the instruction to be in three-address form.
193 // Check if it's safe to move this instruction.
194 bool SeenStore = true; // Be conservative.
195 if (!MI->isSafeToMove(AA, SeenStore))
199 SmallSet<unsigned, 4> UseRegs;
201 for (const MachineOperand &MO : MI->operands()) {
204 unsigned MOReg = MO.getReg();
207 if (MO.isUse() && MOReg != SavedReg)
208 UseRegs.insert(MO.getReg());
212 // Don't try to move it if it implicitly defines a register.
215 // For now, don't move any instructions that define multiple registers.
217 DefReg = MO.getReg();
220 // Find the instruction that kills SavedReg.
221 MachineInstr *KillMI = nullptr;
223 LiveInterval &LI = LIS->getInterval(SavedReg);
224 assert(LI.end() != LI.begin() &&
225 "Reg should not have empty live interval.");
227 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
228 LiveInterval::const_iterator I = LI.find(MBBEndIdx);
229 if (I != LI.end() && I->start < MBBEndIdx)
233 KillMI = LIS->getInstructionFromIndex(I->end);
236 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) {
239 KillMI = UseMO.getParent();
244 // If we find the instruction that kills SavedReg, and it is in an
245 // appropriate location, we can try to sink the current instruction
247 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
248 KillMI == OldPos || KillMI->isTerminator())
251 // If any of the definitions are used by another instruction between the
252 // position and the kill use, then it's not safe to sink it.
254 // FIXME: This can be sped up if there is an easy way to query whether an
255 // instruction is before or after another instruction. Then we can use
256 // MachineRegisterInfo def / use instead.
257 MachineOperand *KillMO = nullptr;
258 MachineBasicBlock::iterator KillPos = KillMI;
261 unsigned NumVisited = 0;
262 for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) {
263 MachineInstr *OtherMI = I;
264 // DBG_VALUE cannot be counted against the limit.
265 if (OtherMI->isDebugValue())
267 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
270 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
271 MachineOperand &MO = OtherMI->getOperand(i);
274 unsigned MOReg = MO.getReg();
280 if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) {
281 if (OtherMI == KillMI && MOReg == SavedReg)
282 // Save the operand that kills the register. We want to unset the kill
283 // marker if we can sink MI past it.
285 else if (UseRegs.count(MOReg))
286 // One of the uses is killed before the destination.
291 assert(KillMO && "Didn't find kill");
294 // Update kill and LV information.
295 KillMO->setIsKill(false);
296 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
297 KillMO->setIsKill(true);
300 LV->replaceKillInstruction(SavedReg, KillMI, MI);
303 // Move instruction to its destination.
305 MBB->insert(KillPos, MI);
314 /// Return the MachineInstr* if it is the single def of the Reg in current BB.
315 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB,
316 const MachineRegisterInfo *MRI) {
317 MachineInstr *Ret = nullptr;
318 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
319 if (DefMI.getParent() != BB || DefMI.isDebugValue())
323 else if (Ret != &DefMI)
329 /// Check if there is a reversed copy chain from FromReg to ToReg:
330 /// %Tmp1 = copy %Tmp2;
331 /// %FromReg = copy %Tmp1;
332 /// %ToReg = add %FromReg ...
333 /// %Tmp2 = copy %ToReg;
334 /// MaxLen specifies the maximum length of the copy chain the func
335 /// can walk through.
336 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg,
338 unsigned TmpReg = FromReg;
339 for (int i = 0; i < Maxlen; i++) {
340 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
341 if (!Def || !Def->isCopy())
344 TmpReg = Def->getOperand(1).getReg();
352 /// Return true if there are no intervening uses between the last instruction
353 /// in the MBB that defines the specified register and the two-address
354 /// instruction which is being processed. It also returns the last def location
356 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
359 unsigned LastUse = Dist;
360 for (MachineOperand &MO : MRI->reg_operands(Reg)) {
361 MachineInstr *MI = MO.getParent();
362 if (MI->getParent() != MBB || MI->isDebugValue())
364 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
365 if (DI == DistanceMap.end())
367 if (MO.isUse() && DI->second < LastUse)
368 LastUse = DI->second;
369 if (MO.isDef() && DI->second > LastDef)
370 LastDef = DI->second;
373 return !(LastUse > LastDef && LastUse < Dist);
376 /// Return true if the specified MI is a copy instruction or an extract_subreg
377 /// instruction. It also returns the source and destination registers and
378 /// whether they are physical registers by reference.
379 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
380 unsigned &SrcReg, unsigned &DstReg,
381 bool &IsSrcPhys, bool &IsDstPhys) {
385 DstReg = MI.getOperand(0).getReg();
386 SrcReg = MI.getOperand(1).getReg();
387 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
388 DstReg = MI.getOperand(0).getReg();
389 SrcReg = MI.getOperand(2).getReg();
393 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
394 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
398 /// Test if the given register value, which is used by the
399 /// given instruction, is killed by the given instruction.
400 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
401 LiveIntervals *LIS) {
402 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) &&
403 !LIS->isNotInMIMap(MI)) {
404 // FIXME: Sometimes tryInstructionTransform() will add instructions and
405 // test whether they can be folded before keeping them. In this case it
406 // sets a kill before recursively calling tryInstructionTransform() again.
407 // If there is no interval available, we assume that this instruction is
408 // one of those. A kill flag is manually inserted on the operand so the
409 // check below will handle it.
410 LiveInterval &LI = LIS->getInterval(Reg);
411 // This is to match the kill flag version where undefs don't have kill
413 if (!LI.hasAtLeastOneValue())
416 SlotIndex useIdx = LIS->getInstructionIndex(MI);
417 LiveInterval::const_iterator I = LI.find(useIdx);
418 assert(I != LI.end() && "Reg must be live-in to use.");
419 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
422 return MI->killsRegister(Reg);
425 /// Test if the given register value, which is used by the given
426 /// instruction, is killed by the given instruction. This looks through
427 /// coalescable copies to see if the original value is potentially not killed.
429 /// For example, in this code:
431 /// %reg1034 = copy %reg1024
432 /// %reg1035 = copy %reg1025<kill>
433 /// %reg1036 = add %reg1034<kill>, %reg1035<kill>
435 /// %reg1034 is not considered to be killed, since it is copied from a
436 /// register which is not killed. Treating it as not killed lets the
437 /// normal heuristics commute the (two-address) add, which lets
438 /// coalescing eliminate the extra copy.
440 /// If allowFalsePositives is true then likely kills are treated as kills even
441 /// if it can't be proven that they are kills.
442 static bool isKilled(MachineInstr &MI, unsigned Reg,
443 const MachineRegisterInfo *MRI,
444 const TargetInstrInfo *TII,
446 bool allowFalsePositives) {
447 MachineInstr *DefMI = &MI;
449 // All uses of physical registers are likely to be kills.
450 if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
451 (allowFalsePositives || MRI->hasOneUse(Reg)))
453 if (!isPlainlyKilled(DefMI, Reg, LIS))
455 if (TargetRegisterInfo::isPhysicalRegister(Reg))
457 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
458 // If there are multiple defs, we can't do a simple analysis, so just
459 // go with what the kill flag says.
460 if (std::next(Begin) != MRI->def_end())
462 DefMI = Begin->getParent();
463 bool IsSrcPhys, IsDstPhys;
464 unsigned SrcReg, DstReg;
465 // If the def is something other than a copy, then it isn't going to
466 // be coalesced, so follow the kill flag.
467 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
473 /// Return true if the specified MI uses the specified register as a two-address
474 /// use. If so, return the destination register by reference.
475 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
476 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
477 const MachineOperand &MO = MI.getOperand(i);
478 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
481 if (MI.isRegTiedToDefOperand(i, &ti)) {
482 DstReg = MI.getOperand(ti).getReg();
489 /// Given a register, if has a single in-basic block use, return the use
490 /// instruction if it's a copy or a two-address use.
492 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
493 MachineRegisterInfo *MRI,
494 const TargetInstrInfo *TII,
496 unsigned &DstReg, bool &IsDstPhys) {
497 if (!MRI->hasOneNonDBGUse(Reg))
498 // None or more than one use.
500 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
501 if (UseMI.getParent() != MBB)
505 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
510 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
511 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
517 /// Return the physical register the specified virtual register might be mapped
520 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
521 while (TargetRegisterInfo::isVirtualRegister(Reg)) {
522 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
523 if (SI == RegMap.end())
527 if (TargetRegisterInfo::isPhysicalRegister(Reg))
532 /// Return true if the two registers are equal or aliased.
534 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
539 return TRI->regsOverlap(RegA, RegB);
543 /// Return true if it's potentially profitable to commute the two-address
544 /// instruction that's being processed.
546 TwoAddressInstructionPass::
547 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
548 MachineInstr *MI, unsigned Dist) {
549 if (OptLevel == CodeGenOpt::None)
552 // Determine if it's profitable to commute this two address instruction. In
553 // general, we want no uses between this instruction and the definition of
554 // the two-address register.
556 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
557 // %reg1029<def> = MOV8rr %reg1028
558 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
559 // insert => %reg1030<def> = MOV8rr %reg1028
560 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
561 // In this case, it might not be possible to coalesce the second MOV8rr
562 // instruction if the first one is coalesced. So it would be profitable to
564 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
565 // %reg1029<def> = MOV8rr %reg1028
566 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
567 // insert => %reg1030<def> = MOV8rr %reg1029
568 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
570 if (!isPlainlyKilled(MI, regC, LIS))
573 // Ok, we have something like:
574 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
575 // let's see if it's worth commuting it.
577 // Look for situations like this:
578 // %reg1024<def> = MOV r1
579 // %reg1025<def> = MOV r0
580 // %reg1026<def> = ADD %reg1024, %reg1025
582 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
583 unsigned ToRegA = getMappedReg(regA, DstRegMap);
585 unsigned FromRegB = getMappedReg(regB, SrcRegMap);
586 unsigned FromRegC = getMappedReg(regC, SrcRegMap);
587 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
588 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
590 // Compute if any of the following are true:
591 // -RegB is not tied to a register and RegC is compatible with RegA.
592 // -RegB is tied to the wrong physical register, but RegC is.
593 // -RegB is tied to the wrong physical register, and RegC isn't tied.
594 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
596 // Don't compute if any of the following are true:
597 // -RegC is not tied to a register and RegB is compatible with RegA.
598 // -RegC is tied to the wrong physical register, but RegB is.
599 // -RegC is tied to the wrong physical register, and RegB isn't tied.
600 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
604 // If there is a use of regC between its last def (could be livein) and this
605 // instruction, then bail.
606 unsigned LastDefC = 0;
607 if (!noUseAfterLastDef(regC, Dist, LastDefC))
610 // If there is a use of regB between its last def (could be livein) and this
611 // instruction, then go ahead and make this transformation.
612 unsigned LastDefB = 0;
613 if (!noUseAfterLastDef(regB, Dist, LastDefB))
616 // Look for situation like this:
617 // %reg101 = MOV %reg100
619 // %reg103 = ADD %reg102, %reg101
621 // %reg100 = MOV %reg103
622 // If there is a reversed copy chain from reg101 to reg103, commute the ADD
623 // to eliminate an otherwise unavoidable copy.
625 // We can extend the logic further: If an pair of operands in an insn has
626 // been merged, the insn could be regarded as a virtual copy, and the virtual
627 // copy could also be used to construct a copy chain.
628 // To more generally minimize register copies, ideally the logic of two addr
629 // instruction pass should be integrated with register allocation pass where
630 // interference graph is available.
631 if (isRevCopyChain(regC, regA, 3))
634 if (isRevCopyChain(regB, regA, 3))
637 // Since there are no intervening uses for both registers, then commute
638 // if the def of regC is closer. Its live interval is shorter.
639 return LastDefB && LastDefC && LastDefC > LastDefB;
642 /// Commute a two-address instruction and update the basic block, distance map,
643 /// and live variables if needed. Return true if it is successful.
644 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
648 unsigned RegC = MI->getOperand(RegCIdx).getReg();
649 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
650 MachineInstr *NewMI = TII->commuteInstruction(MI, false, RegBIdx, RegCIdx);
652 if (NewMI == nullptr) {
653 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
657 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
658 assert(NewMI == MI &&
659 "TargetInstrInfo::commuteInstruction() should not return a new "
660 "instruction unless it was requested.");
662 // Update source register map.
663 unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
665 unsigned RegA = MI->getOperand(0).getReg();
666 SrcRegMap[RegA] = FromRegC;
672 /// Return true if it is profitable to convert the given 2-address instruction
673 /// to a 3-address one.
675 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
676 // Look for situations like this:
677 // %reg1024<def> = MOV r1
678 // %reg1025<def> = MOV r0
679 // %reg1026<def> = ADD %reg1024, %reg1025
681 // Turn ADD into a 3-address instruction to avoid a copy.
682 unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
685 unsigned ToRegA = getMappedReg(RegA, DstRegMap);
686 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
689 /// Convert the specified two-address instruction into a three address one.
690 /// Return true if this transformation was successful.
692 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
693 MachineBasicBlock::iterator &nmi,
694 unsigned RegA, unsigned RegB,
696 // FIXME: Why does convertToThreeAddress() need an iterator reference?
697 MachineFunction::iterator MFI = MBB->getIterator();
698 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV);
699 assert(MBB->getIterator() == MFI &&
700 "convertToThreeAddress changed iterator reference");
704 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
705 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
709 LIS->ReplaceMachineInstrInMaps(mi, NewMI);
711 if (NewMI->findRegisterUseOperand(RegB, false, TRI))
712 // FIXME: Temporary workaround. If the new instruction doesn't
713 // uses RegB, convertToThreeAddress must have created more
714 // then one instruction.
715 Sunk = sink3AddrInstruction(NewMI, RegB, mi);
717 MBB->erase(mi); // Nuke the old inst.
720 DistanceMap.insert(std::make_pair(NewMI, Dist));
725 // Update source and destination register maps.
726 SrcRegMap.erase(RegA);
727 DstRegMap.erase(RegB);
731 /// Scan forward recursively for only uses, update maps if the use is a copy or
732 /// a two-address instruction.
734 TwoAddressInstructionPass::scanUses(unsigned DstReg) {
735 SmallVector<unsigned, 4> VirtRegPairs;
739 unsigned Reg = DstReg;
740 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
741 NewReg, IsDstPhys)) {
742 if (IsCopy && !Processed.insert(UseMI).second)
745 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
746 if (DI != DistanceMap.end())
747 // Earlier in the same MBB.Reached via a back edge.
751 VirtRegPairs.push_back(NewReg);
754 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
756 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
757 VirtRegPairs.push_back(NewReg);
761 if (!VirtRegPairs.empty()) {
762 unsigned ToReg = VirtRegPairs.back();
763 VirtRegPairs.pop_back();
764 while (!VirtRegPairs.empty()) {
765 unsigned FromReg = VirtRegPairs.back();
766 VirtRegPairs.pop_back();
767 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
769 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
772 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
774 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
778 /// If the specified instruction is not yet processed, process it if it's a
779 /// copy. For a copy instruction, we find the physical registers the
780 /// source and destination registers might be mapped to. These are kept in
781 /// point-to maps used to determine future optimizations. e.g.
784 /// v1026 = add v1024, v1025
786 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
787 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
788 /// potentially joined with r1 on the output side. It's worthwhile to commute
789 /// 'add' to eliminate a copy.
790 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
791 if (Processed.count(MI))
794 bool IsSrcPhys, IsDstPhys;
795 unsigned SrcReg, DstReg;
796 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
799 if (IsDstPhys && !IsSrcPhys)
800 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
801 else if (!IsDstPhys && IsSrcPhys) {
802 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
804 assert(SrcRegMap[DstReg] == SrcReg &&
805 "Can't map to two src physical registers!");
810 Processed.insert(MI);
814 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
815 /// consider moving the instruction below the kill instruction in order to
816 /// eliminate the need for the copy.
817 bool TwoAddressInstructionPass::
818 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
819 MachineBasicBlock::iterator &nmi,
821 // Bail immediately if we don't have LV or LIS available. We use them to find
822 // kills efficiently.
826 MachineInstr *MI = &*mi;
827 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
828 if (DI == DistanceMap.end())
829 // Must be created from unfolded load. Don't waste time trying this.
832 MachineInstr *KillMI = nullptr;
834 LiveInterval &LI = LIS->getInterval(Reg);
835 assert(LI.end() != LI.begin() &&
836 "Reg should not have empty live interval.");
838 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
839 LiveInterval::const_iterator I = LI.find(MBBEndIdx);
840 if (I != LI.end() && I->start < MBBEndIdx)
844 KillMI = LIS->getInstructionFromIndex(I->end);
846 KillMI = LV->getVarInfo(Reg).findKill(MBB);
848 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
849 // Don't mess with copies, they may be coalesced later.
852 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
853 KillMI->isBranch() || KillMI->isTerminator())
854 // Don't move pass calls, etc.
858 if (isTwoAddrUse(*KillMI, Reg, DstReg))
861 bool SeenStore = true;
862 if (!MI->isSafeToMove(AA, SeenStore))
865 if (TII->getInstrLatency(InstrItins, MI) > 1)
866 // FIXME: Needs more sophisticated heuristics.
869 SmallSet<unsigned, 2> Uses;
870 SmallSet<unsigned, 2> Kills;
871 SmallSet<unsigned, 2> Defs;
872 for (const MachineOperand &MO : MI->operands()) {
875 unsigned MOReg = MO.getReg();
882 if (MOReg != Reg && (MO.isKill() ||
883 (LIS && isPlainlyKilled(MI, MOReg, LIS))))
888 // Move the copies connected to MI down as well.
889 MachineBasicBlock::iterator Begin = MI;
890 MachineBasicBlock::iterator AfterMI = std::next(Begin);
892 MachineBasicBlock::iterator End = AfterMI;
893 while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) {
894 Defs.insert(End->getOperand(0).getReg());
898 // Check if the reschedule will not break depedencies.
899 unsigned NumVisited = 0;
900 MachineBasicBlock::iterator KillPos = KillMI;
902 for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) {
903 MachineInstr *OtherMI = I;
904 // DBG_VALUE cannot be counted against the limit.
905 if (OtherMI->isDebugValue())
907 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
910 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
911 OtherMI->isBranch() || OtherMI->isTerminator())
912 // Don't move pass calls, etc.
914 for (const MachineOperand &MO : OtherMI->operands()) {
917 unsigned MOReg = MO.getReg();
921 if (Uses.count(MOReg))
922 // Physical register use would be clobbered.
924 if (!MO.isDead() && Defs.count(MOReg))
925 // May clobber a physical register def.
926 // FIXME: This may be too conservative. It's ok if the instruction
927 // is sunken completely below the use.
930 if (Defs.count(MOReg))
932 bool isKill = MO.isKill() ||
933 (LIS && isPlainlyKilled(OtherMI, MOReg, LIS));
935 ((isKill && Uses.count(MOReg)) || Kills.count(MOReg)))
936 // Don't want to extend other live ranges and update kills.
938 if (MOReg == Reg && !isKill)
939 // We can't schedule across a use of the register in question.
941 // Ensure that if this is register in question, its the kill we expect.
942 assert((MOReg != Reg || OtherMI == KillMI) &&
943 "Found multiple kills of a register in a basic block");
948 // Move debug info as well.
949 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue())
953 MachineBasicBlock::iterator InsertPos = KillPos;
955 // We have to move the copies first so that the MBB is still well-formed
956 // when calling handleMove().
957 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
958 MachineInstr *CopyMI = MBBI;
960 MBB->splice(InsertPos, MBB, CopyMI);
961 LIS->handleMove(CopyMI);
964 End = std::next(MachineBasicBlock::iterator(MI));
967 // Copies following MI may have been moved as well.
968 MBB->splice(InsertPos, MBB, Begin, End);
969 DistanceMap.erase(DI);
971 // Update live variables
975 LV->removeVirtualRegisterKilled(Reg, KillMI);
976 LV->addVirtualRegisterKilled(Reg, MI);
979 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
983 /// Return true if the re-scheduling will put the given instruction too close
984 /// to the defs of its register dependencies.
985 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
987 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
988 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
991 return true; // MI is defining something KillMI uses
992 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
993 if (DDI == DistanceMap.end())
994 return true; // Below MI
995 unsigned DefDist = DDI->second;
996 assert(Dist > DefDist && "Visited def already?");
997 if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist))
1003 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
1004 /// consider moving the kill instruction above the current two-address
1005 /// instruction in order to eliminate the need for the copy.
1006 bool TwoAddressInstructionPass::
1007 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
1008 MachineBasicBlock::iterator &nmi,
1010 // Bail immediately if we don't have LV or LIS available. We use them to find
1011 // kills efficiently.
1015 MachineInstr *MI = &*mi;
1016 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1017 if (DI == DistanceMap.end())
1018 // Must be created from unfolded load. Don't waste time trying this.
1021 MachineInstr *KillMI = nullptr;
1023 LiveInterval &LI = LIS->getInterval(Reg);
1024 assert(LI.end() != LI.begin() &&
1025 "Reg should not have empty live interval.");
1027 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
1028 LiveInterval::const_iterator I = LI.find(MBBEndIdx);
1029 if (I != LI.end() && I->start < MBBEndIdx)
1033 KillMI = LIS->getInstructionFromIndex(I->end);
1035 KillMI = LV->getVarInfo(Reg).findKill(MBB);
1037 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1038 // Don't mess with copies, they may be coalesced later.
1042 if (isTwoAddrUse(*KillMI, Reg, DstReg))
1045 bool SeenStore = true;
1046 if (!KillMI->isSafeToMove(AA, SeenStore))
1049 SmallSet<unsigned, 2> Uses;
1050 SmallSet<unsigned, 2> Kills;
1051 SmallSet<unsigned, 2> Defs;
1052 SmallSet<unsigned, 2> LiveDefs;
1053 for (const MachineOperand &MO : KillMI->operands()) {
1056 unsigned MOReg = MO.getReg();
1060 if (isDefTooClose(MOReg, DI->second, MI))
1062 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
1063 if (MOReg == Reg && !isKill)
1066 if (isKill && MOReg != Reg)
1067 Kills.insert(MOReg);
1068 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1071 LiveDefs.insert(MOReg);
1075 // Check if the reschedule will not break depedencies.
1076 unsigned NumVisited = 0;
1077 MachineBasicBlock::iterator KillPos = KillMI;
1078 for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1079 MachineInstr *OtherMI = I;
1080 // DBG_VALUE cannot be counted against the limit.
1081 if (OtherMI->isDebugValue())
1083 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
1086 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
1087 OtherMI->isBranch() || OtherMI->isTerminator())
1088 // Don't move pass calls, etc.
1090 SmallVector<unsigned, 2> OtherDefs;
1091 for (const MachineOperand &MO : OtherMI->operands()) {
1094 unsigned MOReg = MO.getReg();
1098 if (Defs.count(MOReg))
1099 // Moving KillMI can clobber the physical register if the def has
1102 if (Kills.count(MOReg))
1103 // Don't want to extend other live ranges and update kills.
1105 if (OtherMI != MI && MOReg == Reg &&
1106 !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))))
1107 // We can't schedule across a use of the register in question.
1110 OtherDefs.push_back(MOReg);
1114 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1115 unsigned MOReg = OtherDefs[i];
1116 if (Uses.count(MOReg))
1118 if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1119 LiveDefs.count(MOReg))
1121 // Physical register def is seen.
1126 // Move the old kill above MI, don't forget to move debug info as well.
1127 MachineBasicBlock::iterator InsertPos = mi;
1128 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue())
1130 MachineBasicBlock::iterator From = KillMI;
1131 MachineBasicBlock::iterator To = std::next(From);
1132 while (std::prev(From)->isDebugValue())
1134 MBB->splice(InsertPos, MBB, From, To);
1136 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1137 DistanceMap.erase(DI);
1139 // Update live variables
1141 LIS->handleMove(KillMI);
1143 LV->removeVirtualRegisterKilled(Reg, KillMI);
1144 LV->addVirtualRegisterKilled(Reg, MI);
1147 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1151 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1152 /// given machine instruction to improve opportunities for coalescing and
1153 /// elimination of a register to register copy.
1155 /// 'DstOpIdx' specifies the index of MI def operand.
1156 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1157 /// operand is killed by the given instruction.
1158 /// The 'Dist' arguments provides the distance of MI from the start of the
1159 /// current basic block and it is used to determine if it is profitable
1160 /// to commute operands in the instruction.
1162 /// Returns true if the transformation happened. Otherwise, returns false.
1163 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
1168 unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg();
1169 unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
1170 unsigned OpsNum = MI->getDesc().getNumOperands();
1171 unsigned OtherOpIdx = MI->getDesc().getNumDefs();
1172 for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
1173 // The call of findCommutedOpIndices below only checks if BaseOpIdx
1174 // and OtherOpIdx are commutable, it does not really search for
1175 // other commutable operands and does not change the values of passed
1177 if (OtherOpIdx == BaseOpIdx ||
1178 !TII->findCommutedOpIndices(MI, BaseOpIdx, OtherOpIdx))
1181 unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
1182 bool AggressiveCommute = false;
1184 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1185 // operands. This makes the live ranges of DstOp and OtherOp joinable.
1187 !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
1190 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
1192 AggressiveCommute = true;
1195 // If it's profitable to commute, try to do so.
1196 if (DoCommute && commuteInstruction(MI, BaseOpIdx, OtherOpIdx, Dist)) {
1198 if (AggressiveCommute)
1206 /// For the case where an instruction has a single pair of tied register
1207 /// operands, attempt some transformations that may either eliminate the tied
1208 /// operands or improve the opportunities for coalescing away the register copy.
1209 /// Returns true if no copy needs to be inserted to untie mi's operands
1210 /// (either because they were untied, or because mi was rescheduled, and will
1211 /// be visited again later). If the shouldOnlyCommute flag is true, only
1212 /// instruction commutation is attempted.
1213 bool TwoAddressInstructionPass::
1214 tryInstructionTransform(MachineBasicBlock::iterator &mi,
1215 MachineBasicBlock::iterator &nmi,
1216 unsigned SrcIdx, unsigned DstIdx,
1217 unsigned Dist, bool shouldOnlyCommute) {
1218 if (OptLevel == CodeGenOpt::None)
1221 MachineInstr &MI = *mi;
1222 unsigned regA = MI.getOperand(DstIdx).getReg();
1223 unsigned regB = MI.getOperand(SrcIdx).getReg();
1225 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1226 "cannot make instruction into two-address form");
1227 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1229 if (TargetRegisterInfo::isVirtualRegister(regA))
1232 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
1234 // If the instruction is convertible to 3 Addr, instead
1235 // of returning try 3 Addr transformation aggresively and
1236 // use this variable to check later. Because it might be better.
1237 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1238 // instead of the following code.
1242 if (Commuted && !MI.isConvertibleTo3Addr())
1245 if (shouldOnlyCommute)
1248 // If there is one more use of regB later in the same MBB, consider
1249 // re-schedule this MI below it.
1250 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1255 // If we commuted, regB may have changed so we should re-sample it to avoid
1256 // confusing the three address conversion below.
1258 regB = MI.getOperand(SrcIdx).getReg();
1259 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1262 if (MI.isConvertibleTo3Addr()) {
1263 // This instruction is potentially convertible to a true
1264 // three-address instruction. Check if it is profitable.
1265 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1266 // Try to convert it.
1267 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1268 ++NumConvertedTo3Addr;
1269 return true; // Done with this instruction.
1274 // Return if it is commuted but 3 addr conversion is failed.
1278 // If there is one more use of regB later in the same MBB, consider
1279 // re-schedule it before this MI if it's legal.
1280 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1285 // If this is an instruction with a load folded into it, try unfolding
1286 // the load, e.g. avoid this:
1288 // addq (%rax), %rcx
1289 // in favor of this:
1290 // movq (%rax), %rcx
1292 // because it's preferable to schedule a load than a register copy.
1293 if (MI.mayLoad() && !regBKilled) {
1294 // Determine if a load can be unfolded.
1295 unsigned LoadRegIndex;
1297 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1298 /*UnfoldLoad=*/true,
1299 /*UnfoldStore=*/false,
1302 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1303 if (UnfoldMCID.getNumDefs() == 1) {
1305 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI);
1306 const TargetRegisterClass *RC =
1307 TRI->getAllocatableClass(
1308 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1309 unsigned Reg = MRI->createVirtualRegister(RC);
1310 SmallVector<MachineInstr *, 2> NewMIs;
1311 if (!TII->unfoldMemoryOperand(*MF, &MI, Reg,
1312 /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1314 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1317 assert(NewMIs.size() == 2 &&
1318 "Unfolded a load into multiple instructions!");
1319 // The load was previously folded, so this is the only use.
1320 NewMIs[1]->addRegisterKilled(Reg, TRI);
1322 // Tentatively insert the instructions into the block so that they
1323 // look "normal" to the transformation logic.
1324 MBB->insert(mi, NewMIs[0]);
1325 MBB->insert(mi, NewMIs[1]);
1327 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0]
1328 << "2addr: NEW INST: " << *NewMIs[1]);
1330 // Transform the instruction, now that it no longer has a load.
1331 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1332 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1333 MachineBasicBlock::iterator NewMI = NewMIs[1];
1334 bool TransformResult =
1335 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1336 (void)TransformResult;
1337 assert(!TransformResult &&
1338 "tryInstructionTransform() should return false.");
1339 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1340 // Success, or at least we made an improvement. Keep the unfolded
1341 // instructions and discard the original.
1343 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1344 MachineOperand &MO = MI.getOperand(i);
1346 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1349 if (NewMIs[0]->killsRegister(MO.getReg()))
1350 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1352 assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1353 "Kill missing after load unfold!");
1354 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1357 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1358 if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1359 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1361 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1362 "Dead flag missing after load unfold!");
1363 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1368 LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1371 SmallVector<unsigned, 4> OrigRegs;
1373 for (const MachineOperand &MO : MI.operands()) {
1375 OrigRegs.push_back(MO.getReg());
1379 MI.eraseFromParent();
1381 // Update LiveIntervals.
1383 MachineBasicBlock::iterator Begin(NewMIs[0]);
1384 MachineBasicBlock::iterator End(NewMIs[1]);
1385 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1390 // Transforming didn't eliminate the tie and didn't lead to an
1391 // improvement. Clean up the unfolded instructions and keep the
1393 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1394 NewMIs[0]->eraseFromParent();
1395 NewMIs[1]->eraseFromParent();
1404 // Collect tied operands of MI that need to be handled.
1405 // Rewrite trivial cases immediately.
1406 // Return true if any tied operands where found, including the trivial ones.
1407 bool TwoAddressInstructionPass::
1408 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1409 const MCInstrDesc &MCID = MI->getDesc();
1410 bool AnyOps = false;
1411 unsigned NumOps = MI->getNumOperands();
1413 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1414 unsigned DstIdx = 0;
1415 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1418 MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1419 MachineOperand &DstMO = MI->getOperand(DstIdx);
1420 unsigned SrcReg = SrcMO.getReg();
1421 unsigned DstReg = DstMO.getReg();
1422 // Tied constraint already satisfied?
1423 if (SrcReg == DstReg)
1426 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1428 // Deal with <undef> uses immediately - simply rewrite the src operand.
1429 if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1430 // Constrain the DstReg register class if required.
1431 if (TargetRegisterInfo::isVirtualRegister(DstReg))
1432 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
1434 MRI->constrainRegClass(DstReg, RC);
1435 SrcMO.setReg(DstReg);
1437 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1440 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1445 // Process a list of tied MI operands that all use the same source register.
1446 // The tied pairs are of the form (SrcIdx, DstIdx).
1448 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1449 TiedPairList &TiedPairs,
1451 bool IsEarlyClobber = false;
1452 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1453 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
1454 IsEarlyClobber |= DstMO.isEarlyClobber();
1457 bool RemovedKillFlag = false;
1458 bool AllUsesCopied = true;
1459 unsigned LastCopiedReg = 0;
1460 SlotIndex LastCopyIdx;
1462 unsigned SubRegB = 0;
1463 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1464 unsigned SrcIdx = TiedPairs[tpi].first;
1465 unsigned DstIdx = TiedPairs[tpi].second;
1467 const MachineOperand &DstMO = MI->getOperand(DstIdx);
1468 unsigned RegA = DstMO.getReg();
1470 // Grab RegB from the instruction because it may have changed if the
1471 // instruction was commuted.
1472 RegB = MI->getOperand(SrcIdx).getReg();
1473 SubRegB = MI->getOperand(SrcIdx).getSubReg();
1476 // The register is tied to multiple destinations (or else we would
1477 // not have continued this far), but this use of the register
1478 // already matches the tied destination. Leave it.
1479 AllUsesCopied = false;
1482 LastCopiedReg = RegA;
1484 assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
1485 "cannot make instruction into two-address form");
1488 // First, verify that we don't have a use of "a" in the instruction
1489 // (a = b + a for example) because our transformation will not
1490 // work. This should never occur because we are in SSA form.
1491 for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1492 assert(i == DstIdx ||
1493 !MI->getOperand(i).isReg() ||
1494 MI->getOperand(i).getReg() != RegA);
1498 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1499 TII->get(TargetOpcode::COPY), RegA);
1500 // If this operand is folding a truncation, the truncation now moves to the
1501 // copy so that the register classes remain valid for the operands.
1502 MIB.addReg(RegB, 0, SubRegB);
1503 const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1505 if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1506 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1508 "tied subregister must be a truncation");
1509 // The superreg class will not be used to constrain the subreg class.
1513 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1514 && "tied subregister must be a truncation");
1518 // Update DistanceMap.
1519 MachineBasicBlock::iterator PrevMI = MI;
1521 DistanceMap.insert(std::make_pair(PrevMI, Dist));
1522 DistanceMap[MI] = ++Dist;
1525 LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot();
1527 if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1528 LiveInterval &LI = LIS->getInterval(RegA);
1529 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1531 LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber);
1532 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
1536 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1538 MachineOperand &MO = MI->getOperand(SrcIdx);
1539 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1540 "inconsistent operand info for 2-reg pass");
1542 MO.setIsKill(false);
1543 RemovedKillFlag = true;
1546 // Make sure regA is a legal regclass for the SrcIdx operand.
1547 if (TargetRegisterInfo::isVirtualRegister(RegA) &&
1548 TargetRegisterInfo::isVirtualRegister(RegB))
1549 MRI->constrainRegClass(RegA, RC);
1551 // The getMatchingSuper asserts guarantee that the register class projected
1552 // by SubRegB is compatible with RegA with no subregister. So regardless of
1553 // whether the dest oper writes a subreg, the source oper should not.
1556 // Propagate SrcRegMap.
1557 SrcRegMap[RegA] = RegB;
1560 if (AllUsesCopied) {
1561 if (!IsEarlyClobber) {
1562 // Replace other (un-tied) uses of regB with LastCopiedReg.
1563 for (MachineOperand &MO : MI->operands()) {
1564 if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB &&
1567 MO.setIsKill(false);
1568 RemovedKillFlag = true;
1570 MO.setReg(LastCopiedReg);
1576 // Update live variables for regB.
1577 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) {
1578 MachineBasicBlock::iterator PrevMI = MI;
1580 LV->addVirtualRegisterKilled(RegB, PrevMI);
1583 // Update LiveIntervals.
1585 LiveInterval &LI = LIS->getInterval(RegB);
1586 SlotIndex MIIdx = LIS->getInstructionIndex(MI);
1587 LiveInterval::const_iterator I = LI.find(MIIdx);
1588 assert(I != LI.end() && "RegB must be live-in to use.");
1590 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
1591 if (I->end == UseIdx)
1592 LI.removeSegment(LastCopyIdx, UseIdx);
1595 } else if (RemovedKillFlag) {
1596 // Some tied uses of regB matched their destination registers, so
1597 // regB is still used in this instruction, but a kill flag was
1598 // removed from a different tied use of regB, so now we need to add
1599 // a kill flag to one of the remaining uses of regB.
1600 for (MachineOperand &MO : MI->operands()) {
1601 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1609 /// Reduce two-address instructions to two operands.
1610 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1612 const TargetMachine &TM = MF->getTarget();
1613 MRI = &MF->getRegInfo();
1614 TII = MF->getSubtarget().getInstrInfo();
1615 TRI = MF->getSubtarget().getRegisterInfo();
1616 InstrItins = MF->getSubtarget().getInstrItineraryData();
1617 LV = getAnalysisIfAvailable<LiveVariables>();
1618 LIS = getAnalysisIfAvailable<LiveIntervals>();
1619 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1620 OptLevel = TM.getOptLevel();
1622 bool MadeChange = false;
1624 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1625 DEBUG(dbgs() << "********** Function: "
1626 << MF->getName() << '\n');
1628 // This pass takes the function out of SSA form.
1631 TiedOperandMap TiedOperands;
1632 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
1633 MBBI != MBBE; ++MBBI) {
1636 DistanceMap.clear();
1640 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1642 MachineBasicBlock::iterator nmi = std::next(mi);
1643 if (mi->isDebugValue()) {
1648 // Expand REG_SEQUENCE instructions. This will position mi at the first
1649 // expanded instruction.
1650 if (mi->isRegSequence())
1651 eliminateRegSequence(mi);
1653 DistanceMap.insert(std::make_pair(mi, ++Dist));
1657 // First scan through all the tied register uses in this instruction
1658 // and record a list of pairs of tied operands for each register.
1659 if (!collectTiedOperands(mi, TiedOperands)) {
1664 ++NumTwoAddressInstrs;
1666 DEBUG(dbgs() << '\t' << *mi);
1668 // If the instruction has a single pair of tied operands, try some
1669 // transformations that may either eliminate the tied operands or
1670 // improve the opportunities for coalescing away the register copy.
1671 if (TiedOperands.size() == 1) {
1672 SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs
1673 = TiedOperands.begin()->second;
1674 if (TiedPairs.size() == 1) {
1675 unsigned SrcIdx = TiedPairs[0].first;
1676 unsigned DstIdx = TiedPairs[0].second;
1677 unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
1678 unsigned DstReg = mi->getOperand(DstIdx).getReg();
1679 if (SrcReg != DstReg &&
1680 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1681 // The tied operands have been eliminated or shifted further down
1682 // the block to ease elimination. Continue processing with 'nmi'.
1683 TiedOperands.clear();
1690 // Now iterate over the information collected above.
1691 for (auto &TO : TiedOperands) {
1692 processTiedPairs(mi, TO.second, Dist);
1693 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1696 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1697 if (mi->isInsertSubreg()) {
1698 // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1699 // To %reg:subidx = COPY %subreg
1700 unsigned SubIdx = mi->getOperand(3).getImm();
1701 mi->RemoveOperand(3);
1702 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1703 mi->getOperand(0).setSubReg(SubIdx);
1704 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1705 mi->RemoveOperand(1);
1706 mi->setDesc(TII->get(TargetOpcode::COPY));
1707 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1710 // Clear TiedOperands here instead of at the top of the loop
1711 // since most instructions do not have tied operands.
1712 TiedOperands.clear();
1718 MF->verify(this, "After two-address instruction pass");
1723 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1725 /// The instruction is turned into a sequence of sub-register copies:
1727 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1731 /// %dst:ssub0<def,undef> = COPY %v1
1732 /// %dst:ssub1<def> = COPY %v2
1734 void TwoAddressInstructionPass::
1735 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1736 MachineInstr *MI = MBBI;
1737 unsigned DstReg = MI->getOperand(0).getReg();
1738 if (MI->getOperand(0).getSubReg() ||
1739 TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1740 !(MI->getNumOperands() & 1)) {
1741 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1742 llvm_unreachable(nullptr);
1745 SmallVector<unsigned, 4> OrigRegs;
1747 OrigRegs.push_back(MI->getOperand(0).getReg());
1748 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2)
1749 OrigRegs.push_back(MI->getOperand(i).getReg());
1752 bool DefEmitted = false;
1753 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1754 MachineOperand &UseMO = MI->getOperand(i);
1755 unsigned SrcReg = UseMO.getReg();
1756 unsigned SubIdx = MI->getOperand(i+1).getImm();
1757 // Nothing needs to be inserted for <undef> operands.
1758 if (UseMO.isUndef())
1761 // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1762 // might insert a COPY that uses SrcReg after is was killed.
1763 bool isKill = UseMO.isKill();
1765 for (unsigned j = i + 2; j < e; j += 2)
1766 if (MI->getOperand(j).getReg() == SrcReg) {
1767 MI->getOperand(j).setIsKill();
1768 UseMO.setIsKill(false);
1773 // Insert the sub-register copy.
1774 MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1775 TII->get(TargetOpcode::COPY))
1776 .addReg(DstReg, RegState::Define, SubIdx)
1779 // The first def needs an <undef> flag because there is no live register
1782 CopyMI->getOperand(0).setIsUndef(true);
1783 // Return an iterator pointing to the first inserted instr.
1788 // Update LiveVariables' kill info.
1789 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
1790 LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1792 DEBUG(dbgs() << "Inserted: " << *CopyMI);
1795 MachineBasicBlock::iterator EndMBBI =
1796 std::next(MachineBasicBlock::iterator(MI));
1799 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1800 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1801 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1802 MI->RemoveOperand(j);
1804 DEBUG(dbgs() << "Eliminated: " << *MI);
1805 MI->eraseFromParent();
1808 // Udpate LiveIntervals.
1810 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);