Add more DWARF 5 language constants.
[oota-llvm.git] / lib / CodeGen / TargetSchedule.cpp
1 //===-- llvm/Target/TargetSchedule.cpp - Sched Machine Model ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a wrapper around MCSchedModel that allows the interface
11 // to benefit from information currently only available in TargetInstrInfo.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/TargetSchedule.h"
16 #include "llvm/Support/CommandLine.h"
17 #include "llvm/Support/raw_ostream.h"
18 #include "llvm/Target/TargetInstrInfo.h"
19 #include "llvm/Target/TargetRegisterInfo.h"
20 #include "llvm/Target/TargetSubtargetInfo.h"
21
22 using namespace llvm;
23
24 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
25   cl::desc("Use TargetSchedModel for latency lookup"));
26
27 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
28   cl::desc("Use InstrItineraryData for latency lookup"));
29
30 bool TargetSchedModel::hasInstrSchedModel() const {
31   return EnableSchedModel && SchedModel.hasInstrSchedModel();
32 }
33
34 bool TargetSchedModel::hasInstrItineraries() const {
35   return EnableSchedItins && !InstrItins.isEmpty();
36 }
37
38 static unsigned gcd(unsigned Dividend, unsigned Divisor) {
39   // Dividend and Divisor will be naturally swapped as needed.
40   while(Divisor) {
41     unsigned Rem = Dividend % Divisor;
42     Dividend = Divisor;
43     Divisor = Rem;
44   };
45   return Dividend;
46 }
47 static unsigned lcm(unsigned A, unsigned B) {
48   unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
49   assert((LCM >= A && LCM >= B) && "LCM overflow");
50   return LCM;
51 }
52
53 void TargetSchedModel::init(const MCSchedModel &sm,
54                             const TargetSubtargetInfo *sti,
55                             const TargetInstrInfo *tii) {
56   SchedModel = sm;
57   STI = sti;
58   TII = tii;
59   STI->initInstrItins(InstrItins);
60
61   unsigned NumRes = SchedModel.getNumProcResourceKinds();
62   ResourceFactors.resize(NumRes);
63   ResourceLCM = SchedModel.IssueWidth;
64   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
65     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
66     if (NumUnits > 0)
67       ResourceLCM = lcm(ResourceLCM, NumUnits);
68   }
69   MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
70   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
71     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
72     ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
73   }
74 }
75
76 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
77                                           const MCSchedClassDesc *SC) const {
78   if (hasInstrItineraries()) {
79     int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
80     return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, MI);
81   }
82   if (hasInstrSchedModel()) {
83     if (!SC)
84       SC = resolveSchedClass(MI);
85     if (SC->isValid())
86       return SC->NumMicroOps;
87   }
88   return MI->isTransient() ? 0 : 1;
89 }
90
91 // The machine model may explicitly specify an invalid latency, which
92 // effectively means infinite latency. Since users of the TargetSchedule API
93 // don't know how to handle this, we convert it to a very large latency that is
94 // easy to distinguish when debugging the DAG but won't induce overflow.
95 static unsigned capLatency(int Cycles) {
96   return Cycles >= 0 ? Cycles : 1000;
97 }
98
99 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
100 /// evaluation of predicates that depend on instruction operands or flags.
101 const MCSchedClassDesc *TargetSchedModel::
102 resolveSchedClass(const MachineInstr *MI) const {
103
104   // Get the definition's scheduling class descriptor from this machine model.
105   unsigned SchedClass = MI->getDesc().getSchedClass();
106   const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
107   if (!SCDesc->isValid())
108     return SCDesc;
109
110 #ifndef NDEBUG
111   unsigned NIter = 0;
112 #endif
113   while (SCDesc->isVariant()) {
114     assert(++NIter < 6 && "Variants are nested deeper than the magic number");
115
116     SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
117     SCDesc = SchedModel.getSchedClassDesc(SchedClass);
118   }
119   return SCDesc;
120 }
121
122 /// Find the def index of this operand. This index maps to the machine model and
123 /// is independent of use operands. Def operands may be reordered with uses or
124 /// merged with uses without affecting the def index (e.g. before/after
125 /// regalloc). However, an instruction's def operands must never be reordered
126 /// with respect to each other.
127 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
128   unsigned DefIdx = 0;
129   for (unsigned i = 0; i != DefOperIdx; ++i) {
130     const MachineOperand &MO = MI->getOperand(i);
131     if (MO.isReg() && MO.isDef())
132       ++DefIdx;
133   }
134   return DefIdx;
135 }
136
137 /// Find the use index of this operand. This is independent of the instruction's
138 /// def operands.
139 ///
140 /// Note that uses are not determined by the operand's isUse property, which
141 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
142 /// a "use". The machine model allows an operand to be both a Def and Use.
143 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
144   unsigned UseIdx = 0;
145   for (unsigned i = 0; i != UseOperIdx; ++i) {
146     const MachineOperand &MO = MI->getOperand(i);
147     if (MO.isReg() && MO.readsReg())
148       ++UseIdx;
149   }
150   return UseIdx;
151 }
152
153 // Top-level API for clients that know the operand indices.
154 unsigned TargetSchedModel::computeOperandLatency(
155   const MachineInstr *DefMI, unsigned DefOperIdx,
156   const MachineInstr *UseMI, unsigned UseOperIdx) const {
157
158   if (!hasInstrSchedModel() && !hasInstrItineraries())
159     return TII->defaultDefLatency(SchedModel, DefMI);
160
161   if (hasInstrItineraries()) {
162     int OperLatency = 0;
163     if (UseMI) {
164       OperLatency = TII->getOperandLatency(&InstrItins, DefMI, DefOperIdx,
165                                            UseMI, UseOperIdx);
166     }
167     else {
168       unsigned DefClass = DefMI->getDesc().getSchedClass();
169       OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
170     }
171     if (OperLatency >= 0)
172       return OperLatency;
173
174     // No operand latency was found.
175     unsigned InstrLatency = TII->getInstrLatency(&InstrItins, DefMI);
176
177     // Expected latency is the max of the stage latency and itinerary props.
178     // Rather than directly querying InstrItins stage latency, we call a TII
179     // hook to allow subtargets to specialize latency. This hook is only
180     // applicable to the InstrItins model. InstrSchedModel should model all
181     // special cases without TII hooks.
182     InstrLatency = std::max(InstrLatency,
183                             TII->defaultDefLatency(SchedModel, DefMI));
184     return InstrLatency;
185   }
186   // hasInstrSchedModel()
187   const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
188   unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
189   if (DefIdx < SCDesc->NumWriteLatencyEntries) {
190     // Lookup the definition's write latency in SubtargetInfo.
191     const MCWriteLatencyEntry *WLEntry =
192       STI->getWriteLatencyEntry(SCDesc, DefIdx);
193     unsigned WriteID = WLEntry->WriteResourceID;
194     unsigned Latency = capLatency(WLEntry->Cycles);
195     if (!UseMI)
196       return Latency;
197
198     // Lookup the use's latency adjustment in SubtargetInfo.
199     const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
200     if (UseDesc->NumReadAdvanceEntries == 0)
201       return Latency;
202     unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
203     int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
204     if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
205       return 0;
206     return Latency - Advance;
207   }
208   // If DefIdx does not exist in the model (e.g. implicit defs), then return
209   // unit latency (defaultDefLatency may be too conservative).
210 #ifndef NDEBUG
211   if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
212       && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()
213       && SchedModel.isComplete()) {
214     std::string Err;
215     raw_string_ostream ss(Err);
216     ss << "DefIdx " << DefIdx << " exceeds machine model writes for "
217        << *DefMI;
218     report_fatal_error(ss.str());
219   }
220 #endif
221   // FIXME: Automatically giving all implicit defs defaultDefLatency is
222   // undesirable. We should only do it for defs that are known to the MC
223   // desc like flags. Truly implicit defs should get 1 cycle latency.
224   return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, DefMI);
225 }
226
227 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
228   assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
229
230   unsigned SCIdx = TII->get(Opcode).getSchedClass();
231   const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SCIdx);
232   unsigned Latency = 0;
233
234   if (SCDesc->isValid() && !SCDesc->isVariant()) {
235     for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries;
236          DefIdx != DefEnd; ++DefIdx) {
237       // Lookup the definition's write latency in SubtargetInfo.
238       const MCWriteLatencyEntry *WLEntry =
239           STI->getWriteLatencyEntry(SCDesc, DefIdx);
240       Latency = std::max(Latency, capLatency(WLEntry->Cycles));
241     }
242     return Latency;
243   }
244
245   assert(Latency && "No MI sched latency");
246   return 0;
247 }
248
249 unsigned
250 TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
251                                       bool UseDefaultDefLatency) const {
252   // For the itinerary model, fall back to the old subtarget hook.
253   // Allow subtargets to compute Bundle latencies outside the machine model.
254   if (hasInstrItineraries() || MI->isBundle() ||
255       (!hasInstrSchedModel() && !UseDefaultDefLatency))
256     return TII->getInstrLatency(&InstrItins, MI);
257
258   if (hasInstrSchedModel()) {
259     const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
260     if (SCDesc->isValid()) {
261       unsigned Latency = 0;
262       for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries;
263            DefIdx != DefEnd; ++DefIdx) {
264         // Lookup the definition's write latency in SubtargetInfo.
265         const MCWriteLatencyEntry *WLEntry =
266           STI->getWriteLatencyEntry(SCDesc, DefIdx);
267         Latency = std::max(Latency, capLatency(WLEntry->Cycles));
268       }
269       return Latency;
270     }
271   }
272   return TII->defaultDefLatency(SchedModel, MI);
273 }
274
275 unsigned TargetSchedModel::
276 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
277                      const MachineInstr *DepMI) const {
278   if (SchedModel.MicroOpBufferSize <= 1)
279     return 1;
280
281   // MicroOpBufferSize > 1 indicates an out-of-order processor that can dispatch
282   // WAW dependencies in the same cycle.
283
284   // Treat predication as a data dependency for out-of-order cpus. In-order
285   // cpus do not need to treat predicated writes specially.
286   //
287   // TODO: The following hack exists because predication passes do not
288   // correctly append imp-use operands, and readsReg() strangely returns false
289   // for predicated defs.
290   unsigned Reg = DefMI->getOperand(DefOperIdx).getReg();
291   const MachineFunction &MF = *DefMI->getParent()->getParent();
292   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
293   if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI))
294     return computeInstrLatency(DefMI);
295
296   // If we have a per operand scheduling model, check if this def is writing
297   // an unbuffered resource. If so, it treated like an in-order cpu.
298   if (hasInstrSchedModel()) {
299     const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
300     if (SCDesc->isValid()) {
301       for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
302              *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
303         if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
304           return 1;
305       }
306     }
307   }
308   return 0;
309 }