[MC] Allow MCObjectWriter's output stream to be swapped out
[oota-llvm.git] / lib / CodeGen / SelectionDAG / LegalizeTypes.h
1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DAGTypeLegalizer class.  This is a private interface
11 // shared between the code that implements the SelectionDAG::LegalizeTypes
12 // method.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
17 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
18
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Target/TargetLowering.h"
25
26 namespace llvm {
27
28 //===----------------------------------------------------------------------===//
29 /// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
30 /// on it until only value types the target machine can handle are left.  This
31 /// involves promoting small sizes to large sizes or splitting up large values
32 /// into small values.
33 ///
34 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
35   const TargetLowering &TLI;
36   SelectionDAG &DAG;
37 public:
38   // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
39   // about the state of the node.  The enum has all the values.
40   enum NodeIdFlags {
41     /// ReadyToProcess - All operands have been processed, so this node is ready
42     /// to be handled.
43     ReadyToProcess = 0,
44
45     /// NewNode - This is a new node, not before seen, that was created in the
46     /// process of legalizing some other node.
47     NewNode = -1,
48
49     /// Unanalyzed - This node's ID needs to be set to the number of its
50     /// unprocessed operands.
51     Unanalyzed = -2,
52
53     /// Processed - This is a node that has already been processed.
54     Processed = -3
55
56     // 1+ - This is a node which has this many unprocessed operands.
57   };
58 private:
59
60   /// ValueTypeActions - This is a bitvector that contains two bits for each
61   /// simple value type, where the two bits correspond to the LegalizeAction
62   /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
63   TargetLowering::ValueTypeActionImpl ValueTypeActions;
64
65   /// getTypeAction - Return how we should legalize values of this type.
66   TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
67     return TLI.getTypeAction(*DAG.getContext(), VT);
68   }
69
70   /// isTypeLegal - Return true if this type is legal on this target.
71   bool isTypeLegal(EVT VT) const {
72     return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
73   }
74
75   EVT getSetCCResultType(EVT VT) const {
76     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
77   }
78
79   /// IgnoreNodeResults - Pretend all of this node's results are legal.
80   bool IgnoreNodeResults(SDNode *N) const {
81     return N->getOpcode() == ISD::TargetConstant;
82   }
83
84   /// PromotedIntegers - For integer nodes that are below legal width, this map
85   /// indicates what promoted value to use.
86   SmallDenseMap<SDValue, SDValue, 8> PromotedIntegers;
87
88   /// ExpandedIntegers - For integer nodes that need to be expanded this map
89   /// indicates which operands are the expanded version of the input.
90   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedIntegers;
91
92   /// SoftenedFloats - For floating point nodes converted to integers of
93   /// the same size, this map indicates the converted value to use.
94   SmallDenseMap<SDValue, SDValue, 8> SoftenedFloats;
95
96   /// PromotedFloats - For floating point nodes that have a smaller precision
97   /// than the smallest supported precision, this map indicates what promoted
98   /// value to use.
99   SmallDenseMap<SDValue, SDValue, 8> PromotedFloats;
100
101   /// ExpandedFloats - For float nodes that need to be expanded this map
102   /// indicates which operands are the expanded version of the input.
103   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedFloats;
104
105   /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
106   /// scalar value of type 'ty' to use.
107   SmallDenseMap<SDValue, SDValue, 8> ScalarizedVectors;
108
109   /// SplitVectors - For nodes that need to be split this map indicates
110   /// which operands are the expanded version of the input.
111   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> SplitVectors;
112
113   /// WidenedVectors - For vector nodes that need to be widened, indicates
114   /// the widened value to use.
115   SmallDenseMap<SDValue, SDValue, 8> WidenedVectors;
116
117   /// ReplacedValues - For values that have been replaced with another,
118   /// indicates the replacement value to use.
119   SmallDenseMap<SDValue, SDValue, 8> ReplacedValues;
120
121   /// Worklist - This defines a worklist of nodes to process.  In order to be
122   /// pushed onto this worklist, all operands of a node must have already been
123   /// processed.
124   SmallVector<SDNode*, 128> Worklist;
125
126 public:
127   explicit DAGTypeLegalizer(SelectionDAG &dag)
128     : TLI(dag.getTargetLoweringInfo()), DAG(dag),
129     ValueTypeActions(TLI.getValueTypeActions()) {
130     static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
131                   "Too many value types for ValueTypeActions to hold!");
132   }
133
134   /// run - This is the main entry point for the type legalizer.  This does a
135   /// top-down traversal of the dag, legalizing types as it goes.  Returns
136   /// "true" if it made any changes.
137   bool run();
138
139   void NoteDeletion(SDNode *Old, SDNode *New) {
140     ExpungeNode(Old);
141     ExpungeNode(New);
142     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
143       ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
144   }
145
146   SelectionDAG &getDAG() const { return DAG; }
147
148 private:
149   SDNode *AnalyzeNewNode(SDNode *N);
150   void AnalyzeNewValue(SDValue &Val);
151   void ExpungeNode(SDNode *N);
152   void PerformExpensiveChecks();
153   void RemapValue(SDValue &N);
154
155   // Common routines.
156   SDValue BitConvertToInteger(SDValue Op);
157   SDValue BitConvertVectorToIntegerVector(SDValue Op);
158   SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
159   bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
160   bool CustomWidenLowerNode(SDNode *N, EVT VT);
161
162   /// DisintegrateMERGE_VALUES - Replace each result of the given MERGE_VALUES
163   /// node with the corresponding input operand, except for the result 'ResNo',
164   /// for which the corresponding input operand is returned.
165   SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
166
167   SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
168   SDValue JoinIntegers(SDValue Lo, SDValue Hi);
169   SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
170
171   std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
172                                                  SDNode *Node, bool isSigned);
173   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
174
175   SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
176   void ReplaceValueWith(SDValue From, SDValue To);
177   void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
178   void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
179                     SDValue &Lo, SDValue &Hi);
180
181   //===--------------------------------------------------------------------===//
182   // Integer Promotion Support: LegalizeIntegerTypes.cpp
183   //===--------------------------------------------------------------------===//
184
185   /// GetPromotedInteger - Given a processed operand Op which was promoted to a
186   /// larger integer type, this returns the promoted value.  The low bits of the
187   /// promoted value corresponding to the original type are exactly equal to Op.
188   /// The extra bits contain rubbish, so the promoted value may need to be zero-
189   /// or sign-extended from the original type before it is usable (the helpers
190   /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
191   /// For example, if Op is an i16 and was promoted to an i32, then this method
192   /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
193   /// 16 bits of which contain rubbish.
194   SDValue GetPromotedInteger(SDValue Op) {
195     SDValue &PromotedOp = PromotedIntegers[Op];
196     RemapValue(PromotedOp);
197     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
198     return PromotedOp;
199   }
200   void SetPromotedInteger(SDValue Op, SDValue Result);
201
202   /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
203   /// final size.
204   SDValue SExtPromotedInteger(SDValue Op) {
205     EVT OldVT = Op.getValueType();
206     SDLoc dl(Op);
207     Op = GetPromotedInteger(Op);
208     return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
209                        DAG.getValueType(OldVT));
210   }
211
212   /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
213   /// final size.
214   SDValue ZExtPromotedInteger(SDValue Op) {
215     EVT OldVT = Op.getValueType();
216     SDLoc dl(Op);
217     Op = GetPromotedInteger(Op);
218     return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
219   }
220
221   // Integer Result Promotion.
222   void PromoteIntegerResult(SDNode *N, unsigned ResNo);
223   SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
224   SDValue PromoteIntRes_AssertSext(SDNode *N);
225   SDValue PromoteIntRes_AssertZext(SDNode *N);
226   SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
227   SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
228   SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
229   SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
230   SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
231   SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
232   SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
233   SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
234   SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
235   SDValue PromoteIntRes_BITCAST(SDNode *N);
236   SDValue PromoteIntRes_BSWAP(SDNode *N);
237   SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
238   SDValue PromoteIntRes_Constant(SDNode *N);
239   SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
240   SDValue PromoteIntRes_CTLZ(SDNode *N);
241   SDValue PromoteIntRes_CTPOP(SDNode *N);
242   SDValue PromoteIntRes_CTTZ(SDNode *N);
243   SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
244   SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
245   SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
246   SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
247   SDValue PromoteIntRes_LOAD(LoadSDNode *N);
248   SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
249   SDValue PromoteIntRes_Overflow(SDNode *N);
250   SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
251   SDValue PromoteIntRes_SDIV(SDNode *N);
252   SDValue PromoteIntRes_SELECT(SDNode *N);
253   SDValue PromoteIntRes_VSELECT(SDNode *N);
254   SDValue PromoteIntRes_SELECT_CC(SDNode *N);
255   SDValue PromoteIntRes_SETCC(SDNode *N);
256   SDValue PromoteIntRes_SHL(SDNode *N);
257   SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
258   SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
259   SDValue PromoteIntRes_SRA(SDNode *N);
260   SDValue PromoteIntRes_SRL(SDNode *N);
261   SDValue PromoteIntRes_TRUNCATE(SDNode *N);
262   SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
263   SDValue PromoteIntRes_UDIV(SDNode *N);
264   SDValue PromoteIntRes_UNDEF(SDNode *N);
265   SDValue PromoteIntRes_VAARG(SDNode *N);
266   SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
267
268   // Integer Operand Promotion.
269   bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
270   SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
271   SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
272   SDValue PromoteIntOp_BITCAST(SDNode *N);
273   SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
274   SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
275   SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
276   SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
277   SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
278   SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
279   SDValue PromoteIntOp_EXTRACT_ELEMENT(SDNode *N);
280   SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
281   SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
282   SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
283   SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
284   SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
285   SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
286   SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
287   SDValue PromoteIntOp_VSETCC(SDNode *N, unsigned OpNo);
288   SDValue PromoteIntOp_Shift(SDNode *N);
289   SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
290   SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
291   SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
292   SDValue PromoteIntOp_TRUNCATE(SDNode *N);
293   SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
294   SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
295   SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
296   SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
297
298   void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
299
300   //===--------------------------------------------------------------------===//
301   // Integer Expansion Support: LegalizeIntegerTypes.cpp
302   //===--------------------------------------------------------------------===//
303
304   /// GetExpandedInteger - Given a processed operand Op which was expanded into
305   /// two integers of half the size, this returns the two halves.  The low bits
306   /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
307   /// For example, if Op is an i64 which was expanded into two i32's, then this
308   /// method returns the two i32's, with Lo being equal to the lower 32 bits of
309   /// Op, and Hi being equal to the upper 32 bits.
310   void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
311   void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
312
313   // Integer Result Expansion.
314   void ExpandIntegerResult(SDNode *N, unsigned ResNo);
315   void ExpandIntRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
316                                        SDValue &Lo, SDValue &Hi);
317   void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
318   void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
319   void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
320   void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
321   void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
322   void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
323   void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
324   void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
325   void ExpandIntRes_READCYCLECOUNTER  (SDNode *N, SDValue &Lo, SDValue &Hi);
326   void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
327   void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
328   void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
329   void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
330   void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
331   void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
332
333   void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
334   void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
335   void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
336   void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
337   void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
338   void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
339   void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
340   void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
341   void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
342   void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
343   void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
344
345   void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
346   void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
347   void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
348
349   void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
350
351   void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
352                              SDValue &Lo, SDValue &Hi);
353   bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
354   bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
355
356   // Integer Operand Expansion.
357   bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
358   SDValue ExpandIntOp_BITCAST(SDNode *N);
359   SDValue ExpandIntOp_BR_CC(SDNode *N);
360   SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
361   SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
362   SDValue ExpandIntOp_SELECT_CC(SDNode *N);
363   SDValue ExpandIntOp_SETCC(SDNode *N);
364   SDValue ExpandIntOp_Shift(SDNode *N);
365   SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
366   SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
367   SDValue ExpandIntOp_TRUNCATE(SDNode *N);
368   SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
369   SDValue ExpandIntOp_RETURNADDR(SDNode *N);
370   SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
371
372   void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
373                                   ISD::CondCode &CCCode, SDLoc dl);
374
375   //===--------------------------------------------------------------------===//
376   // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
377   //===--------------------------------------------------------------------===//
378
379   /// GetSoftenedFloat - Given a processed operand Op which was converted to an
380   /// integer of the same size, this returns the integer.  The integer contains
381   /// exactly the same bits as Op - only the type changed.  For example, if Op
382   /// is an f32 which was softened to an i32, then this method returns an i32,
383   /// the bits of which coincide with those of Op.
384   SDValue GetSoftenedFloat(SDValue Op) {
385     SDValue &SoftenedOp = SoftenedFloats[Op];
386     RemapValue(SoftenedOp);
387     assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
388     return SoftenedOp;
389   }
390   void SetSoftenedFloat(SDValue Op, SDValue Result);
391
392   // Result Float to Integer Conversion.
393   void SoftenFloatResult(SDNode *N, unsigned OpNo);
394   SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
395   SDValue SoftenFloatRes_BITCAST(SDNode *N);
396   SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
397   SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
398   SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
399   SDValue SoftenFloatRes_FABS(SDNode *N);
400   SDValue SoftenFloatRes_FMINNUM(SDNode *N);
401   SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
402   SDValue SoftenFloatRes_FADD(SDNode *N);
403   SDValue SoftenFloatRes_FCEIL(SDNode *N);
404   SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
405   SDValue SoftenFloatRes_FCOS(SDNode *N);
406   SDValue SoftenFloatRes_FDIV(SDNode *N);
407   SDValue SoftenFloatRes_FEXP(SDNode *N);
408   SDValue SoftenFloatRes_FEXP2(SDNode *N);
409   SDValue SoftenFloatRes_FFLOOR(SDNode *N);
410   SDValue SoftenFloatRes_FLOG(SDNode *N);
411   SDValue SoftenFloatRes_FLOG2(SDNode *N);
412   SDValue SoftenFloatRes_FLOG10(SDNode *N);
413   SDValue SoftenFloatRes_FMA(SDNode *N);
414   SDValue SoftenFloatRes_FMUL(SDNode *N);
415   SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
416   SDValue SoftenFloatRes_FNEG(SDNode *N);
417   SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
418   SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
419   SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
420   SDValue SoftenFloatRes_FPOW(SDNode *N);
421   SDValue SoftenFloatRes_FPOWI(SDNode *N);
422   SDValue SoftenFloatRes_FREM(SDNode *N);
423   SDValue SoftenFloatRes_FRINT(SDNode *N);
424   SDValue SoftenFloatRes_FROUND(SDNode *N);
425   SDValue SoftenFloatRes_FSIN(SDNode *N);
426   SDValue SoftenFloatRes_FSQRT(SDNode *N);
427   SDValue SoftenFloatRes_FSUB(SDNode *N);
428   SDValue SoftenFloatRes_FTRUNC(SDNode *N);
429   SDValue SoftenFloatRes_LOAD(SDNode *N);
430   SDValue SoftenFloatRes_SELECT(SDNode *N);
431   SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
432   SDValue SoftenFloatRes_UNDEF(SDNode *N);
433   SDValue SoftenFloatRes_VAARG(SDNode *N);
434   SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
435
436   // Operand Float to Integer Conversion.
437   bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
438   SDValue SoftenFloatOp_BITCAST(SDNode *N);
439   SDValue SoftenFloatOp_BR_CC(SDNode *N);
440   SDValue SoftenFloatOp_FP_EXTEND(SDNode *N);
441   SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
442   SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
443   SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
444   SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
445   SDValue SoftenFloatOp_SETCC(SDNode *N);
446   SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
447
448   //===--------------------------------------------------------------------===//
449   // Float Expansion Support: LegalizeFloatTypes.cpp
450   //===--------------------------------------------------------------------===//
451
452   /// GetExpandedFloat - Given a processed operand Op which was expanded into
453   /// two floating point values of half the size, this returns the two halves.
454   /// The low bits of Op are exactly equal to the bits of Lo; the high bits
455   /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
456   /// into two f64's, then this method returns the two f64's, with Lo being
457   /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
458   void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
459   void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
460
461   // Float Result Expansion.
462   void ExpandFloatResult(SDNode *N, unsigned ResNo);
463   void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
464   void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
465   void ExpandFloatRes_FMINNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
466   void ExpandFloatRes_FMAXNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
467   void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
468   void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
469   void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
470   void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
471   void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
472   void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
473   void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
474   void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
475   void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
476   void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
477   void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
478   void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
479   void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
480   void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
481   void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
482   void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
483   void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
484   void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
485   void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
486   void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
487   void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
488   void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
489   void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
490   void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
491   void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
492   void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
493   void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
494
495   // Float Operand Expansion.
496   bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
497   SDValue ExpandFloatOp_BR_CC(SDNode *N);
498   SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
499   SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
500   SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
501   SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
502   SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
503   SDValue ExpandFloatOp_SETCC(SDNode *N);
504   SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
505
506   void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
507                                 ISD::CondCode &CCCode, SDLoc dl);
508
509
510   //===--------------------------------------------------------------------===//
511   // Float promotion support: LegalizeFloatTypes.cpp
512   //===--------------------------------------------------------------------===//
513
514   SDValue GetPromotedFloat(SDValue Op) {
515     SDValue &PromotedOp = PromotedFloats[Op];
516     RemapValue(PromotedOp);
517     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
518     return PromotedOp;
519   }
520   void SetPromotedFloat(SDValue Op, SDValue Result);
521
522   void PromoteFloatResult(SDNode *N, unsigned ResNo);
523   SDValue PromoteFloatRes_BITCAST(SDNode *N);
524   SDValue PromoteFloatRes_BinOp(SDNode *N);
525   SDValue PromoteFloatRes_ConstantFP(SDNode *N);
526   SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
527   SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
528   SDValue PromoteFloatRes_FMAD(SDNode *N);
529   SDValue PromoteFloatRes_FPOWI(SDNode *N);
530   SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
531   SDValue PromoteFloatRes_LOAD(SDNode *N);
532   SDValue PromoteFloatRes_SELECT(SDNode *N);
533   SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
534   SDValue PromoteFloatRes_UnaryOp(SDNode *N);
535   SDValue PromoteFloatRes_UNDEF(SDNode *N);
536   SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
537
538   bool PromoteFloatOperand(SDNode *N, unsigned ResNo);
539   SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
540   SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
541   SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
542   SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo);
543   SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
544   SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
545   SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
546
547   //===--------------------------------------------------------------------===//
548   // Scalarization Support: LegalizeVectorTypes.cpp
549   //===--------------------------------------------------------------------===//
550
551   /// GetScalarizedVector - Given a processed one-element vector Op which was
552   /// scalarized to its element type, this returns the element.  For example,
553   /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
554   SDValue GetScalarizedVector(SDValue Op) {
555     SDValue &ScalarizedOp = ScalarizedVectors[Op];
556     RemapValue(ScalarizedOp);
557     assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
558     return ScalarizedOp;
559   }
560   void SetScalarizedVector(SDValue Op, SDValue Result);
561
562   // Vector Result Scalarization: <1 x ty> -> ty.
563   void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
564   SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
565   SDValue ScalarizeVecRes_BinOp(SDNode *N);
566   SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
567   SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
568   SDValue ScalarizeVecRes_InregOp(SDNode *N);
569
570   SDValue ScalarizeVecRes_BITCAST(SDNode *N);
571   SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
572   SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
573   SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
574   SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
575   SDValue ScalarizeVecRes_FPOWI(SDNode *N);
576   SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
577   SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
578   SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
579   SDValue ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode *N);
580   SDValue ScalarizeVecRes_VSELECT(SDNode *N);
581   SDValue ScalarizeVecRes_SELECT(SDNode *N);
582   SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
583   SDValue ScalarizeVecRes_SETCC(SDNode *N);
584   SDValue ScalarizeVecRes_UNDEF(SDNode *N);
585   SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
586   SDValue ScalarizeVecRes_VSETCC(SDNode *N);
587
588   // Vector Operand Scalarization: <1 x ty> -> ty.
589   bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
590   SDValue ScalarizeVecOp_BITCAST(SDNode *N);
591   SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
592   SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
593   SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
594   SDValue ScalarizeVecOp_VSELECT(SDNode *N);
595   SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
596   SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
597
598   //===--------------------------------------------------------------------===//
599   // Vector Splitting Support: LegalizeVectorTypes.cpp
600   //===--------------------------------------------------------------------===//
601
602   /// GetSplitVector - Given a processed vector Op which was split into vectors
603   /// of half the size, this method returns the halves.  The first elements of
604   /// Op coincide with the elements of Lo; the remaining elements of Op coincide
605   /// with the elements of Hi: Op is what you would get by concatenating Lo and
606   /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
607   /// this method returns the two v4i32's, with Lo corresponding to the first 4
608   /// elements of Op, and Hi to the last 4 elements.
609   void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
610   void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
611
612   // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
613   void SplitVectorResult(SDNode *N, unsigned OpNo);
614   void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
615   void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
616   void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
617   void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
618   void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
619
620   void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
621   void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
622   void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
623   void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
624   void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
625   void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
626   void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
627   void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi);
628   void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
629   void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
630   void SplitVecRes_MLOAD(MaskedLoadSDNode *N, SDValue &Lo, SDValue &Hi);
631   void SplitVecRes_MGATHER(MaskedGatherSDNode *N, SDValue &Lo, SDValue &Hi);
632   void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
633   void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi);
634   void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
635   void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
636   void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
637                                   SDValue &Hi);
638
639   // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
640   bool SplitVectorOperand(SDNode *N, unsigned OpNo);
641   SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
642   SDValue SplitVecOp_UnaryOp(SDNode *N);
643   SDValue SplitVecOp_TruncateHelper(SDNode *N);
644
645   SDValue SplitVecOp_BITCAST(SDNode *N);
646   SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
647   SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
648   SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
649   SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
650   SDValue SplitVecOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
651   SDValue SplitVecOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
652   SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
653   SDValue SplitVecOp_VSETCC(SDNode *N);
654   SDValue SplitVecOp_FP_ROUND(SDNode *N);
655   SDValue SplitVecOp_FCOPYSIGN(SDNode *N);
656
657   //===--------------------------------------------------------------------===//
658   // Vector Widening Support: LegalizeVectorTypes.cpp
659   //===--------------------------------------------------------------------===//
660
661   /// GetWidenedVector - Given a processed vector Op which was widened into a
662   /// larger vector, this method returns the larger vector.  The elements of
663   /// the returned vector consist of the elements of Op followed by elements
664   /// containing rubbish.  For example, if Op is a v2i32 that was widened to a
665   /// v4i32, then this method returns a v4i32 for which the first two elements
666   /// are the same as those of Op, while the last two elements contain rubbish.
667   SDValue GetWidenedVector(SDValue Op) {
668     SDValue &WidenedOp = WidenedVectors[Op];
669     RemapValue(WidenedOp);
670     assert(WidenedOp.getNode() && "Operand wasn't widened?");
671     return WidenedOp;
672   }
673   void SetWidenedVector(SDValue Op, SDValue Result);
674
675   // Widen Vector Result Promotion.
676   void WidenVectorResult(SDNode *N, unsigned ResNo);
677   SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
678   SDValue WidenVecRes_BITCAST(SDNode* N);
679   SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
680   SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
681   SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
682   SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
683   SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
684   SDValue WidenVecRes_LOAD(SDNode* N);
685   SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
686   SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
687   SDValue WidenVecRes_SIGN_EXTEND_INREG(SDNode* N);
688   SDValue WidenVecRes_SELECT(SDNode* N);
689   SDValue WidenVecRes_SELECT_CC(SDNode* N);
690   SDValue WidenVecRes_SETCC(SDNode* N);
691   SDValue WidenVecRes_UNDEF(SDNode *N);
692   SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
693   SDValue WidenVecRes_VSETCC(SDNode* N);
694
695   SDValue WidenVecRes_Ternary(SDNode *N);
696   SDValue WidenVecRes_Binary(SDNode *N);
697   SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
698   SDValue WidenVecRes_Convert(SDNode *N);
699   SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
700   SDValue WidenVecRes_POWI(SDNode *N);
701   SDValue WidenVecRes_Shift(SDNode *N);
702   SDValue WidenVecRes_Unary(SDNode *N);
703   SDValue WidenVecRes_InregOp(SDNode *N);
704
705   // Widen Vector Operand.
706   bool WidenVectorOperand(SDNode *N, unsigned OpNo);
707   SDValue WidenVecOp_BITCAST(SDNode *N);
708   SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
709   SDValue WidenVecOp_EXTEND(SDNode *N);
710   SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
711   SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
712   SDValue WidenVecOp_STORE(SDNode* N);
713   SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
714   SDValue WidenVecOp_SETCC(SDNode* N);
715
716   SDValue WidenVecOp_Convert(SDNode *N);
717   SDValue WidenVecOp_FCOPYSIGN(SDNode *N);
718
719   //===--------------------------------------------------------------------===//
720   // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
721   //===--------------------------------------------------------------------===//
722
723   /// Helper GenWidenVectorLoads - Helper function to generate a set of
724   /// loads to load a vector with a resulting wider type. It takes
725   ///   LdChain: list of chains for the load to be generated.
726   ///   Ld:      load to widen
727   SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
728                               LoadSDNode *LD);
729
730   /// GenWidenVectorExtLoads - Helper function to generate a set of extension
731   /// loads to load a ector with a resulting wider type.  It takes
732   ///   LdChain: list of chains for the load to be generated.
733   ///   Ld:      load to widen
734   ///   ExtType: extension element type
735   SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
736                                  LoadSDNode *LD, ISD::LoadExtType ExtType);
737
738   /// Helper genWidenVectorStores - Helper function to generate a set of
739   /// stores to store a widen vector into non-widen memory
740   ///   StChain: list of chains for the stores we have generated
741   ///   ST:      store of a widen value
742   void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
743
744   /// Helper genWidenVectorTruncStores - Helper function to generate a set of
745   /// stores to store a truncate widen vector into non-widen memory
746   ///   StChain: list of chains for the stores we have generated
747   ///   ST:      store of a widen value
748   void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
749                                  StoreSDNode *ST);
750
751   /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
752   /// input vector must have the same element type as NVT.
753   SDValue ModifyToType(SDValue InOp, EVT WidenVT);
754
755
756   //===--------------------------------------------------------------------===//
757   // Generic Splitting: LegalizeTypesGeneric.cpp
758   //===--------------------------------------------------------------------===//
759
760   // Legalization methods which only use that the illegal type is split into two
761   // not necessarily identical types.  As such they can be used for splitting
762   // vectors and expanding integers and floats.
763
764   void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
765     if (Op.getValueType().isVector())
766       GetSplitVector(Op, Lo, Hi);
767     else if (Op.getValueType().isInteger())
768       GetExpandedInteger(Op, Lo, Hi);
769     else
770       GetExpandedFloat(Op, Lo, Hi);
771   }
772
773   /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
774   /// high parts of the given value.
775   void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
776
777   // Generic Result Splitting.
778   void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
779                              SDValue &Lo, SDValue &Hi);
780   void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
781   void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
782   void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
783
784   //===--------------------------------------------------------------------===//
785   // Generic Expansion: LegalizeTypesGeneric.cpp
786   //===--------------------------------------------------------------------===//
787
788   // Legalization methods which only use that the illegal type is split into two
789   // identical types of half the size, and that the Lo/Hi part is stored first
790   // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
791   // such they can be used for expanding integers and floats.
792
793   void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
794     if (Op.getValueType().isInteger())
795       GetExpandedInteger(Op, Lo, Hi);
796     else
797       GetExpandedFloat(Op, Lo, Hi);
798   }
799
800
801   /// This function will split the integer \p Op into \p NumElements
802   /// operations of type \p EltVT and store them in \p Ops.
803   void IntegerToVector(SDValue Op, unsigned NumElements,
804                        SmallVectorImpl<SDValue> &Ops, EVT EltVT);
805
806   // Generic Result Expansion.
807   void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
808                                     SDValue &Lo, SDValue &Hi);
809   void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
810   void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
811   void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
812   void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
813   void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
814   void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
815
816   // Generic Operand Expansion.
817   SDValue ExpandOp_BITCAST          (SDNode *N);
818   SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
819   SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
820   SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
821   SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
822   SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
823 };
824
825 } // end namespace llvm.
826
827 #endif