1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the SelectionDAG::Legalize method.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/IR/CallingConv.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetFrameLowering.h"
35 #include "llvm/Target/TargetLowering.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetSubtargetInfo.h"
40 #define DEBUG_TYPE "legalizedag"
44 struct FloatSignAsInt;
46 //===----------------------------------------------------------------------===//
47 /// This takes an arbitrary SelectionDAG as input and
48 /// hacks on it until the target machine can handle it. This involves
49 /// eliminating value sizes the machine cannot handle (promoting small sizes to
50 /// large sizes or splitting up large values into small values) as well as
51 /// eliminating operations the machine cannot handle.
53 /// This code also does a small amount of optimization and recognition of idioms
54 /// as part of its processing. For example, if a target does not support a
55 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
56 /// will attempt merge setcc and brc instructions into brcc's.
58 class SelectionDAGLegalize {
59 const TargetMachine &TM;
60 const TargetLowering &TLI;
63 /// \brief The set of nodes which have already been legalized. We hold a
64 /// reference to it in order to update as necessary on node deletion.
65 SmallPtrSetImpl<SDNode *> &LegalizedNodes;
67 /// \brief A set of all the nodes updated during legalization.
68 SmallSetVector<SDNode *, 16> *UpdatedNodes;
70 EVT getSetCCResultType(EVT VT) const {
71 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
74 // Libcall insertion helpers.
77 SelectionDAGLegalize(SelectionDAG &DAG,
78 SmallPtrSetImpl<SDNode *> &LegalizedNodes,
79 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
80 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
81 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
83 /// \brief Legalizes the given operation.
84 void LegalizeOp(SDNode *Node);
87 SDValue OptimizeFloatStore(StoreSDNode *ST);
89 void LegalizeLoadOps(SDNode *Node);
90 void LegalizeStoreOps(SDNode *Node);
92 /// Some targets cannot handle a variable
93 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
94 /// is necessary to spill the vector being inserted into to memory, perform
95 /// the insert there, and then read the result back.
96 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
97 SDValue Idx, SDLoc dl);
98 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
99 SDValue Idx, SDLoc dl);
101 /// Return a vector shuffle operation which
102 /// performs the same shuffe in terms of order or result bytes, but on a type
103 /// whose vector element type is narrower than the original shuffle type.
104 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
105 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
106 SDValue N1, SDValue N2,
107 ArrayRef<int> Mask) const;
109 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
110 bool &NeedInvert, SDLoc dl);
112 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
113 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
114 unsigned NumOps, bool isSigned, SDLoc dl);
116 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
117 SDNode *Node, bool isSigned);
118 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
119 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
120 RTLIB::Libcall Call_F128,
121 RTLIB::Libcall Call_PPCF128);
122 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
123 RTLIB::Libcall Call_I8,
124 RTLIB::Libcall Call_I16,
125 RTLIB::Libcall Call_I32,
126 RTLIB::Libcall Call_I64,
127 RTLIB::Libcall Call_I128);
128 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
129 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
131 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl);
132 SDValue ExpandBUILD_VECTOR(SDNode *Node);
133 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
134 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
135 SmallVectorImpl<SDValue> &Results);
136 void getSignAsIntValue(FloatSignAsInt &State, SDLoc DL, SDValue Value) const;
137 SDValue modifySignAsInt(const FloatSignAsInt &State, SDLoc DL,
138 SDValue NewIntValue) const;
139 SDValue ExpandFCOPYSIGN(SDNode *Node) const;
140 SDValue ExpandFABS(SDNode *Node) const;
141 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
143 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
145 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
148 SDValue ExpandBITREVERSE(SDValue Op, SDLoc dl);
149 SDValue ExpandBSWAP(SDValue Op, SDLoc dl);
150 SDValue ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl);
152 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
153 SDValue ExpandInsertToVectorThroughStack(SDValue Op);
154 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
156 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
158 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
159 bool ExpandNode(SDNode *Node);
160 void ConvertNodeToLibcall(SDNode *Node);
161 void PromoteNode(SDNode *Node);
164 // Node replacement helpers
165 void ReplacedNode(SDNode *N) {
166 LegalizedNodes.erase(N);
168 UpdatedNodes->insert(N);
170 void ReplaceNode(SDNode *Old, SDNode *New) {
171 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
172 dbgs() << " with: "; New->dump(&DAG));
174 assert(Old->getNumValues() == New->getNumValues() &&
175 "Replacing one node with another that produces a different number "
177 DAG.ReplaceAllUsesWith(Old, New);
178 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
179 DAG.TransferDbgValues(SDValue(Old, i), SDValue(New, i));
181 UpdatedNodes->insert(New);
184 void ReplaceNode(SDValue Old, SDValue New) {
185 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
186 dbgs() << " with: "; New->dump(&DAG));
188 DAG.ReplaceAllUsesWith(Old, New);
189 DAG.TransferDbgValues(Old, New);
191 UpdatedNodes->insert(New.getNode());
192 ReplacedNode(Old.getNode());
194 void ReplaceNode(SDNode *Old, const SDValue *New) {
195 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
197 DAG.ReplaceAllUsesWith(Old, New);
198 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
199 DEBUG(dbgs() << (i == 0 ? " with: "
202 DAG.TransferDbgValues(SDValue(Old, i), New[i]);
204 UpdatedNodes->insert(New[i].getNode());
211 /// Return a vector shuffle operation which
212 /// performs the same shuffe in terms of order or result bytes, but on a type
213 /// whose vector element type is narrower than the original shuffle type.
214 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
216 SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
217 SDValue N1, SDValue N2,
218 ArrayRef<int> Mask) const {
219 unsigned NumMaskElts = VT.getVectorNumElements();
220 unsigned NumDestElts = NVT.getVectorNumElements();
221 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
223 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
225 if (NumEltsGrowth == 1)
226 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
228 SmallVector<int, 8> NewMask;
229 for (unsigned i = 0; i != NumMaskElts; ++i) {
231 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
233 NewMask.push_back(-1);
235 NewMask.push_back(Idx * NumEltsGrowth + j);
238 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
239 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
240 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
243 /// Expands the ConstantFP node to an integer constant or
244 /// a load from the constant pool.
246 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
250 // If a FP immediate is precise when represented as a float and if the
251 // target can do an extending load from float to double, we put it into
252 // the constant pool as a float, even if it's is statically typed as a
253 // double. This shrinks FP constants and canonicalizes them for targets where
254 // an FP extending load is the same cost as a normal load (such as on the x87
255 // fp stack or PPC FP unit).
256 EVT VT = CFP->getValueType(0);
257 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
259 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
260 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
261 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
266 while (SVT != MVT::f32 && SVT != MVT::f16) {
267 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
268 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
269 // Only do this if the target has a native EXTLOAD instruction from
271 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
272 TLI.ShouldShrinkFPConstant(OrigVT)) {
273 Type *SType = SVT.getTypeForEVT(*DAG.getContext());
274 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
281 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
282 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
284 SDValue Result = DAG.getExtLoad(
285 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
286 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
287 false, false, false, Alignment);
291 DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
292 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
293 false, false, false, Alignment);
297 /// Expands an unaligned store to 2 half-size stores.
298 static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
299 const TargetLowering &TLI,
300 SelectionDAGLegalize *DAGLegalize) {
301 assert(ST->getAddressingMode() == ISD::UNINDEXED &&
302 "unaligned indexed stores not implemented!");
303 SDValue Chain = ST->getChain();
304 SDValue Ptr = ST->getBasePtr();
305 SDValue Val = ST->getValue();
306 EVT VT = Val.getValueType();
307 int Alignment = ST->getAlignment();
308 unsigned AS = ST->getAddressSpace();
311 if (ST->getMemoryVT().isFloatingPoint() ||
312 ST->getMemoryVT().isVector()) {
313 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
314 if (TLI.isTypeLegal(intVT)) {
315 // Expand to a bitconvert of the value to the integer type of the
316 // same size, then a (misaligned) int store.
317 // FIXME: Does not handle truncating floating point stores!
318 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
319 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
320 ST->isVolatile(), ST->isNonTemporal(), Alignment);
321 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
324 // Do a (aligned) store to a stack slot, then copy from the stack slot
325 // to the final destination using (unaligned) integer loads and stores.
326 EVT StoredVT = ST->getMemoryVT();
328 TLI.getRegisterType(*DAG.getContext(),
329 EVT::getIntegerVT(*DAG.getContext(),
330 StoredVT.getSizeInBits()));
331 unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
332 unsigned RegBytes = RegVT.getSizeInBits() / 8;
333 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
335 // Make sure the stack slot is also aligned for the register type.
336 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
338 // Perform the original store, only redirected to the stack slot.
339 SDValue Store = DAG.getTruncStore(Chain, dl,
340 Val, StackPtr, MachinePointerInfo(),
341 StoredVT, false, false, 0);
342 SDValue Increment = DAG.getConstant(
343 RegBytes, dl, TLI.getPointerTy(DAG.getDataLayout(), AS));
344 SmallVector<SDValue, 8> Stores;
347 // Do all but one copies using the full register width.
348 for (unsigned i = 1; i < NumRegs; i++) {
349 // Load one integer register's worth from the stack slot.
350 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
351 MachinePointerInfo(),
352 false, false, false, 0);
353 // Store it to the final location. Remember the store.
354 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
355 ST->getPointerInfo().getWithOffset(Offset),
356 ST->isVolatile(), ST->isNonTemporal(),
357 MinAlign(ST->getAlignment(), Offset)));
358 // Increment the pointers.
360 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
362 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
365 // The last store may be partial. Do a truncating store. On big-endian
366 // machines this requires an extending load from the stack slot to ensure
367 // that the bits are in the right place.
368 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
369 8 * (StoredBytes - Offset));
371 // Load from the stack slot.
372 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
373 MachinePointerInfo(),
374 MemVT, false, false, false, 0);
376 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
378 .getWithOffset(Offset),
379 MemVT, ST->isVolatile(),
381 MinAlign(ST->getAlignment(), Offset),
383 // The order of the stores doesn't matter - say it with a TokenFactor.
384 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
385 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
388 assert(ST->getMemoryVT().isInteger() &&
389 !ST->getMemoryVT().isVector() &&
390 "Unaligned store of unknown type.");
391 // Get the half-size VT
392 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
393 int NumBits = NewStoredVT.getSizeInBits();
394 int IncrementSize = NumBits / 8;
396 // Divide the stored value in two parts.
397 SDValue ShiftAmount =
398 DAG.getConstant(NumBits, dl, TLI.getShiftAmountTy(Val.getValueType(),
399 DAG.getDataLayout()));
401 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
403 // Store the two parts
404 SDValue Store1, Store2;
405 Store1 = DAG.getTruncStore(Chain, dl,
406 DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
407 Ptr, ST->getPointerInfo(), NewStoredVT,
408 ST->isVolatile(), ST->isNonTemporal(), Alignment);
410 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
411 DAG.getConstant(IncrementSize, dl,
412 TLI.getPointerTy(DAG.getDataLayout(), AS)));
413 Alignment = MinAlign(Alignment, IncrementSize);
414 Store2 = DAG.getTruncStore(
415 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
416 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT,
417 ST->isVolatile(), ST->isNonTemporal(), Alignment, ST->getAAInfo());
420 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
421 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
424 /// Expands an unaligned load to 2 half-size loads.
426 ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
427 const TargetLowering &TLI,
428 SDValue &ValResult, SDValue &ChainResult) {
429 assert(LD->getAddressingMode() == ISD::UNINDEXED &&
430 "unaligned indexed loads not implemented!");
431 SDValue Chain = LD->getChain();
432 SDValue Ptr = LD->getBasePtr();
433 EVT VT = LD->getValueType(0);
434 EVT LoadedVT = LD->getMemoryVT();
436 if (VT.isFloatingPoint() || VT.isVector()) {
437 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
438 if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
439 // Expand to a (misaligned) integer load of the same size,
440 // then bitconvert to floating point or vector.
441 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
442 LD->getMemOperand());
443 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
445 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
446 ISD::ANY_EXTEND, dl, VT, Result);
449 ChainResult = newLoad.getValue(1);
453 // Copy the value to a (aligned) stack slot using (unaligned) integer
454 // loads and stores, then do a (aligned) load from the stack slot.
455 MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
456 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
457 unsigned RegBytes = RegVT.getSizeInBits() / 8;
458 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
460 // Make sure the stack slot is also aligned for the register type.
461 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
464 DAG.getConstant(RegBytes, dl, TLI.getPointerTy(DAG.getDataLayout()));
465 SmallVector<SDValue, 8> Stores;
466 SDValue StackPtr = StackBase;
469 // Do all but one copies using the full register width.
470 for (unsigned i = 1; i < NumRegs; i++) {
471 // Load one integer register's worth from the original location.
472 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
473 LD->getPointerInfo().getWithOffset(Offset),
474 LD->isVolatile(), LD->isNonTemporal(),
476 MinAlign(LD->getAlignment(), Offset),
478 // Follow the load with a store to the stack slot. Remember the store.
479 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
480 MachinePointerInfo(), false, false, 0));
481 // Increment the pointers.
483 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
484 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
488 // The last copy may be partial. Do an extending load.
489 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
490 8 * (LoadedBytes - Offset));
491 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
492 LD->getPointerInfo().getWithOffset(Offset),
493 MemVT, LD->isVolatile(),
496 MinAlign(LD->getAlignment(), Offset),
498 // Follow the load with a store to the stack slot. Remember the store.
499 // On big-endian machines this requires a truncating store to ensure
500 // that the bits end up in the right place.
501 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
502 MachinePointerInfo(), MemVT,
505 // The order of the stores doesn't matter - say it with a TokenFactor.
506 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
508 // Finally, perform the original load only redirected to the stack slot.
509 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
510 MachinePointerInfo(), LoadedVT, false,false, false,
513 // Callers expect a MERGE_VALUES node.
518 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
519 "Unaligned load of unsupported type.");
521 // Compute the new VT that is half the size of the old one. This is an
523 unsigned NumBits = LoadedVT.getSizeInBits();
525 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
528 unsigned Alignment = LD->getAlignment();
529 unsigned IncrementSize = NumBits / 8;
530 ISD::LoadExtType HiExtType = LD->getExtensionType();
532 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
533 if (HiExtType == ISD::NON_EXTLOAD)
534 HiExtType = ISD::ZEXTLOAD;
536 // Load the value in two parts
538 if (DAG.getDataLayout().isLittleEndian()) {
539 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
540 NewLoadedVT, LD->isVolatile(),
541 LD->isNonTemporal(), LD->isInvariant(), Alignment,
543 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
544 DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
545 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
546 LD->getPointerInfo().getWithOffset(IncrementSize),
547 NewLoadedVT, LD->isVolatile(),
548 LD->isNonTemporal(),LD->isInvariant(),
549 MinAlign(Alignment, IncrementSize), LD->getAAInfo());
551 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
552 NewLoadedVT, LD->isVolatile(),
553 LD->isNonTemporal(), LD->isInvariant(), Alignment,
555 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
556 DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
557 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
558 LD->getPointerInfo().getWithOffset(IncrementSize),
559 NewLoadedVT, LD->isVolatile(),
560 LD->isNonTemporal(), LD->isInvariant(),
561 MinAlign(Alignment, IncrementSize), LD->getAAInfo());
564 // aggregate the two parts
565 SDValue ShiftAmount =
566 DAG.getConstant(NumBits, dl, TLI.getShiftAmountTy(Hi.getValueType(),
567 DAG.getDataLayout()));
568 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
569 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
571 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
578 /// Some target cannot handle a variable insertion index for the
579 /// INSERT_VECTOR_ELT instruction. In this case, it
580 /// is necessary to spill the vector being inserted into to memory, perform
581 /// the insert there, and then read the result back.
582 SDValue SelectionDAGLegalize::
583 PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
589 // If the target doesn't support this, we have to spill the input vector
590 // to a temporary stack slot, update the element, then reload it. This is
591 // badness. We could also load the value into a vector register (either
592 // with a "move to register" or "extload into register" instruction, then
593 // permute it into place, if the idx is a constant and if the idx is
594 // supported by the target.
595 EVT VT = Tmp1.getValueType();
596 EVT EltVT = VT.getVectorElementType();
597 EVT IdxVT = Tmp3.getValueType();
598 EVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
599 SDValue StackPtr = DAG.CreateStackTemporary(VT);
601 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
604 SDValue Ch = DAG.getStore(
605 DAG.getEntryNode(), dl, Tmp1, StackPtr,
606 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), false,
609 // Truncate or zero extend offset to target pointer type.
610 Tmp3 = DAG.getZExtOrTrunc(Tmp3, dl, PtrVT);
611 // Add the offset to the index.
612 unsigned EltSize = EltVT.getSizeInBits()/8;
613 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,
614 DAG.getConstant(EltSize, dl, IdxVT));
615 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
616 // Store the scalar value.
617 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
619 // Load the updated vector.
620 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
621 DAG.getMachineFunction(), SPFI),
622 false, false, false, 0);
626 SDValue SelectionDAGLegalize::
627 ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) {
628 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
629 // SCALAR_TO_VECTOR requires that the type of the value being inserted
630 // match the element type of the vector being created, except for
631 // integers in which case the inserted value can be over width.
632 EVT EltVT = Vec.getValueType().getVectorElementType();
633 if (Val.getValueType() == EltVT ||
634 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
635 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
636 Vec.getValueType(), Val);
638 unsigned NumElts = Vec.getValueType().getVectorNumElements();
639 // We generate a shuffle of InVec and ScVec, so the shuffle mask
640 // should be 0,1,2,3,4,5... with the appropriate element replaced with
642 SmallVector<int, 8> ShufOps;
643 for (unsigned i = 0; i != NumElts; ++i)
644 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
646 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
650 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
653 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
654 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
655 // FIXME: We shouldn't do this for TargetConstantFP's.
656 // FIXME: move this to the DAG Combiner! Note that we can't regress due
657 // to phase ordering between legalized code and the dag combiner. This
658 // probably means that we need to integrate dag combiner and legalizer
660 // We generally can't do this one for long doubles.
661 SDValue Chain = ST->getChain();
662 SDValue Ptr = ST->getBasePtr();
663 unsigned Alignment = ST->getAlignment();
664 bool isVolatile = ST->isVolatile();
665 bool isNonTemporal = ST->isNonTemporal();
666 AAMDNodes AAInfo = ST->getAAInfo();
668 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
669 if (CFP->getValueType(0) == MVT::f32 &&
670 TLI.isTypeLegal(MVT::i32)) {
671 SDValue Con = DAG.getConstant(CFP->getValueAPF().
672 bitcastToAPInt().zextOrTrunc(32),
673 SDLoc(CFP), MVT::i32);
674 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
675 isVolatile, isNonTemporal, Alignment, AAInfo);
678 if (CFP->getValueType(0) == MVT::f64) {
679 // If this target supports 64-bit registers, do a single 64-bit store.
680 if (TLI.isTypeLegal(MVT::i64)) {
681 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
682 zextOrTrunc(64), SDLoc(CFP), MVT::i64);
683 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
684 isVolatile, isNonTemporal, Alignment, AAInfo);
687 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
688 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
689 // stores. If the target supports neither 32- nor 64-bits, this
690 // xform is certainly not worth it.
691 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
692 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
693 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
694 if (DAG.getDataLayout().isBigEndian())
697 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
698 isNonTemporal, Alignment, AAInfo);
699 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
700 DAG.getConstant(4, dl, Ptr.getValueType()));
701 Hi = DAG.getStore(Chain, dl, Hi, Ptr,
702 ST->getPointerInfo().getWithOffset(4),
703 isVolatile, isNonTemporal, MinAlign(Alignment, 4U),
706 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
710 return SDValue(nullptr, 0);
713 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
714 StoreSDNode *ST = cast<StoreSDNode>(Node);
715 SDValue Chain = ST->getChain();
716 SDValue Ptr = ST->getBasePtr();
719 unsigned Alignment = ST->getAlignment();
720 bool isVolatile = ST->isVolatile();
721 bool isNonTemporal = ST->isNonTemporal();
722 AAMDNodes AAInfo = ST->getAAInfo();
724 if (!ST->isTruncatingStore()) {
725 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
726 ReplaceNode(ST, OptStore);
731 SDValue Value = ST->getValue();
732 MVT VT = Value.getSimpleValueType();
733 switch (TLI.getOperationAction(ISD::STORE, VT)) {
734 default: llvm_unreachable("This action is not supported yet!");
735 case TargetLowering::Legal: {
736 // If this is an unaligned store and the target doesn't support it,
738 EVT MemVT = ST->getMemoryVT();
739 unsigned AS = ST->getAddressSpace();
740 unsigned Align = ST->getAlignment();
741 const DataLayout &DL = DAG.getDataLayout();
742 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align))
743 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
746 case TargetLowering::Custom: {
747 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
748 if (Res && Res != SDValue(Node, 0))
749 ReplaceNode(SDValue(Node, 0), Res);
752 case TargetLowering::Promote: {
753 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
754 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
755 "Can only promote stores to same size type");
756 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
758 DAG.getStore(Chain, dl, Value, Ptr,
759 ST->getPointerInfo(), isVolatile,
760 isNonTemporal, Alignment, AAInfo);
761 ReplaceNode(SDValue(Node, 0), Result);
768 SDValue Value = ST->getValue();
770 EVT StVT = ST->getMemoryVT();
771 unsigned StWidth = StVT.getSizeInBits();
772 auto &DL = DAG.getDataLayout();
774 if (StWidth != StVT.getStoreSizeInBits()) {
775 // Promote to a byte-sized store with upper bits zero if not
776 // storing an integral number of bytes. For example, promote
777 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
778 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
779 StVT.getStoreSizeInBits());
780 Value = DAG.getZeroExtendInReg(Value, dl, StVT);
782 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
783 NVT, isVolatile, isNonTemporal, Alignment, AAInfo);
784 ReplaceNode(SDValue(Node, 0), Result);
785 } else if (StWidth & (StWidth - 1)) {
786 // If not storing a power-of-2 number of bits, expand as two stores.
787 assert(!StVT.isVector() && "Unsupported truncstore!");
788 unsigned RoundWidth = 1 << Log2_32(StWidth);
789 assert(RoundWidth < StWidth);
790 unsigned ExtraWidth = StWidth - RoundWidth;
791 assert(ExtraWidth < RoundWidth);
792 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
793 "Store size not an integral number of bytes!");
794 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
795 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
797 unsigned IncrementSize;
799 if (DL.isLittleEndian()) {
800 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
801 // Store the bottom RoundWidth bits.
802 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
804 isVolatile, isNonTemporal, Alignment,
807 // Store the remaining ExtraWidth bits.
808 IncrementSize = RoundWidth / 8;
809 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
810 DAG.getConstant(IncrementSize, dl,
811 Ptr.getValueType()));
813 ISD::SRL, dl, Value.getValueType(), Value,
814 DAG.getConstant(RoundWidth, dl,
815 TLI.getShiftAmountTy(Value.getValueType(), DL)));
816 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
817 ST->getPointerInfo().getWithOffset(IncrementSize),
818 ExtraVT, isVolatile, isNonTemporal,
819 MinAlign(Alignment, IncrementSize), AAInfo);
821 // Big endian - avoid unaligned stores.
822 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
823 // Store the top RoundWidth bits.
825 ISD::SRL, dl, Value.getValueType(), Value,
826 DAG.getConstant(ExtraWidth, dl,
827 TLI.getShiftAmountTy(Value.getValueType(), DL)));
828 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
829 RoundVT, isVolatile, isNonTemporal, Alignment,
832 // Store the remaining ExtraWidth bits.
833 IncrementSize = RoundWidth / 8;
834 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
835 DAG.getConstant(IncrementSize, dl,
836 Ptr.getValueType()));
837 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
838 ST->getPointerInfo().getWithOffset(IncrementSize),
839 ExtraVT, isVolatile, isNonTemporal,
840 MinAlign(Alignment, IncrementSize), AAInfo);
843 // The order of the stores doesn't matter.
844 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
845 ReplaceNode(SDValue(Node, 0), Result);
847 switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(),
848 StVT.getSimpleVT())) {
849 default: llvm_unreachable("This action is not supported yet!");
850 case TargetLowering::Legal: {
851 EVT MemVT = ST->getMemoryVT();
852 unsigned AS = ST->getAddressSpace();
853 unsigned Align = ST->getAlignment();
854 // If this is an unaligned store and the target doesn't support it,
856 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align))
857 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
860 case TargetLowering::Custom: {
861 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
862 if (Res && Res != SDValue(Node, 0))
863 ReplaceNode(SDValue(Node, 0), Res);
866 case TargetLowering::Expand:
867 assert(!StVT.isVector() &&
868 "Vector Stores are handled in LegalizeVectorOps");
870 // TRUNCSTORE:i16 i32 -> STORE i16
871 assert(TLI.isTypeLegal(StVT) &&
872 "Do not know how to expand this store!");
873 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
875 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
876 isVolatile, isNonTemporal, Alignment, AAInfo);
877 ReplaceNode(SDValue(Node, 0), Result);
884 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
885 LoadSDNode *LD = cast<LoadSDNode>(Node);
886 SDValue Chain = LD->getChain(); // The chain.
887 SDValue Ptr = LD->getBasePtr(); // The base pointer.
888 SDValue Value; // The value returned by the load op.
891 ISD::LoadExtType ExtType = LD->getExtensionType();
892 if (ExtType == ISD::NON_EXTLOAD) {
893 MVT VT = Node->getSimpleValueType(0);
894 SDValue RVal = SDValue(Node, 0);
895 SDValue RChain = SDValue(Node, 1);
897 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
898 default: llvm_unreachable("This action is not supported yet!");
899 case TargetLowering::Legal: {
900 EVT MemVT = LD->getMemoryVT();
901 unsigned AS = LD->getAddressSpace();
902 unsigned Align = LD->getAlignment();
903 const DataLayout &DL = DAG.getDataLayout();
904 // If this is an unaligned load and the target doesn't support it,
906 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align))
907 ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
910 case TargetLowering::Custom: {
911 SDValue Res = TLI.LowerOperation(RVal, DAG);
914 RChain = Res.getValue(1);
918 case TargetLowering::Promote: {
919 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
920 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
921 "Can only promote loads to same size type");
923 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
924 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
925 RChain = Res.getValue(1);
929 if (RChain.getNode() != Node) {
930 assert(RVal.getNode() != Node && "Load must be completely replaced");
931 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
932 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
934 UpdatedNodes->insert(RVal.getNode());
935 UpdatedNodes->insert(RChain.getNode());
942 EVT SrcVT = LD->getMemoryVT();
943 unsigned SrcWidth = SrcVT.getSizeInBits();
944 unsigned Alignment = LD->getAlignment();
945 bool isVolatile = LD->isVolatile();
946 bool isNonTemporal = LD->isNonTemporal();
947 bool isInvariant = LD->isInvariant();
948 AAMDNodes AAInfo = LD->getAAInfo();
950 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
951 // Some targets pretend to have an i1 loading operation, and actually
952 // load an i8. This trick is correct for ZEXTLOAD because the top 7
953 // bits are guaranteed to be zero; it helps the optimizers understand
954 // that these bits are zero. It is also useful for EXTLOAD, since it
955 // tells the optimizers that those bits are undefined. It would be
956 // nice to have an effective generic way of getting these benefits...
957 // Until such a way is found, don't insist on promoting i1 here.
959 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
960 TargetLowering::Promote)) {
961 // Promote to a byte-sized load if not loading an integral number of
962 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
963 unsigned NewWidth = SrcVT.getStoreSizeInBits();
964 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
967 // The extra bits are guaranteed to be zero, since we stored them that
968 // way. A zext load from NVT thus automatically gives zext from SrcVT.
970 ISD::LoadExtType NewExtType =
971 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
974 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
975 Chain, Ptr, LD->getPointerInfo(),
976 NVT, isVolatile, isNonTemporal, isInvariant, Alignment,
979 Ch = Result.getValue(1); // The chain.
981 if (ExtType == ISD::SEXTLOAD)
982 // Having the top bits zero doesn't help when sign extending.
983 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
984 Result.getValueType(),
985 Result, DAG.getValueType(SrcVT));
986 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
987 // All the top bits are guaranteed to be zero - inform the optimizers.
988 Result = DAG.getNode(ISD::AssertZext, dl,
989 Result.getValueType(), Result,
990 DAG.getValueType(SrcVT));
994 } else if (SrcWidth & (SrcWidth - 1)) {
995 // If not loading a power-of-2 number of bits, expand as two loads.
996 assert(!SrcVT.isVector() && "Unsupported extload!");
997 unsigned RoundWidth = 1 << Log2_32(SrcWidth);
998 assert(RoundWidth < SrcWidth);
999 unsigned ExtraWidth = SrcWidth - RoundWidth;
1000 assert(ExtraWidth < RoundWidth);
1001 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1002 "Load size not an integral number of bytes!");
1003 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1004 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1006 unsigned IncrementSize;
1007 auto &DL = DAG.getDataLayout();
1009 if (DL.isLittleEndian()) {
1010 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1011 // Load the bottom RoundWidth bits.
1012 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
1014 LD->getPointerInfo(), RoundVT, isVolatile,
1015 isNonTemporal, isInvariant, Alignment, AAInfo);
1017 // Load the remaining ExtraWidth bits.
1018 IncrementSize = RoundWidth / 8;
1019 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1020 DAG.getConstant(IncrementSize, dl,
1021 Ptr.getValueType()));
1022 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1023 LD->getPointerInfo().getWithOffset(IncrementSize),
1024 ExtraVT, isVolatile, isNonTemporal, isInvariant,
1025 MinAlign(Alignment, IncrementSize), AAInfo);
1027 // Build a factor node to remember that this load is independent of
1029 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1032 // Move the top bits to the right place.
1034 ISD::SHL, dl, Hi.getValueType(), Hi,
1035 DAG.getConstant(RoundWidth, dl,
1036 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
1038 // Join the hi and lo parts.
1039 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1041 // Big endian - avoid unaligned loads.
1042 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1043 // Load the top RoundWidth bits.
1044 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1045 LD->getPointerInfo(), RoundVT, isVolatile,
1046 isNonTemporal, isInvariant, Alignment, AAInfo);
1048 // Load the remaining ExtraWidth bits.
1049 IncrementSize = RoundWidth / 8;
1050 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1051 DAG.getConstant(IncrementSize, dl,
1052 Ptr.getValueType()));
1053 Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1054 dl, Node->getValueType(0), Chain, Ptr,
1055 LD->getPointerInfo().getWithOffset(IncrementSize),
1056 ExtraVT, isVolatile, isNonTemporal, isInvariant,
1057 MinAlign(Alignment, IncrementSize), AAInfo);
1059 // Build a factor node to remember that this load is independent of
1061 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1064 // Move the top bits to the right place.
1066 ISD::SHL, dl, Hi.getValueType(), Hi,
1067 DAG.getConstant(ExtraWidth, dl,
1068 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
1070 // Join the hi and lo parts.
1071 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1076 bool isCustom = false;
1077 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
1078 SrcVT.getSimpleVT())) {
1079 default: llvm_unreachable("This action is not supported yet!");
1080 case TargetLowering::Custom:
1083 case TargetLowering::Legal: {
1084 Value = SDValue(Node, 0);
1085 Chain = SDValue(Node, 1);
1088 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1089 if (Res.getNode()) {
1091 Chain = Res.getValue(1);
1094 // If this is an unaligned load and the target doesn't support it,
1096 EVT MemVT = LD->getMemoryVT();
1097 unsigned AS = LD->getAddressSpace();
1098 unsigned Align = LD->getAlignment();
1099 const DataLayout &DL = DAG.getDataLayout();
1100 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align))
1101 ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, Value, Chain);
1105 case TargetLowering::Expand:
1106 EVT DestVT = Node->getValueType(0);
1107 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
1108 // If the source type is not legal, see if there is a legal extload to
1109 // an intermediate type that we can then extend further.
1110 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
1111 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
1112 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
1113 // If we are loading a legal type, this is a non-extload followed by a
1115 ISD::LoadExtType MidExtType =
1116 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
1118 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
1119 SrcVT, LD->getMemOperand());
1121 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
1122 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1123 Chain = Load.getValue(1);
1127 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
1128 // normal undefined upper bits behavior to allow using an in-reg extend
1129 // with the illegal FP type, so load as an integer and do the
1130 // from-integer conversion.
1131 if (SrcVT.getScalarType() == MVT::f16) {
1132 EVT ISrcVT = SrcVT.changeTypeToInteger();
1133 EVT IDestVT = DestVT.changeTypeToInteger();
1134 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
1136 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT,
1138 LD->getMemOperand());
1139 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
1140 Chain = Result.getValue(1);
1145 assert(!SrcVT.isVector() &&
1146 "Vector Loads are handled in LegalizeVectorOps");
1148 // FIXME: This does not work for vectors on most targets. Sign-
1149 // and zero-extend operations are currently folded into extending
1150 // loads, whether they are legal or not, and then we end up here
1151 // without any support for legalizing them.
1152 assert(ExtType != ISD::EXTLOAD &&
1153 "EXTLOAD should always be supported!");
1154 // Turn the unsupported load into an EXTLOAD followed by an
1155 // explicit zero/sign extend inreg.
1156 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
1157 Node->getValueType(0),
1159 LD->getMemOperand());
1161 if (ExtType == ISD::SEXTLOAD)
1162 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1163 Result.getValueType(),
1164 Result, DAG.getValueType(SrcVT));
1166 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1168 Chain = Result.getValue(1);
1173 // Since loads produce two values, make sure to remember that we legalized
1175 if (Chain.getNode() != Node) {
1176 assert(Value.getNode() != Node && "Load must be completely replaced");
1177 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
1178 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
1180 UpdatedNodes->insert(Value.getNode());
1181 UpdatedNodes->insert(Chain.getNode());
1187 /// Return a legal replacement for the given operation, with all legal operands.
1188 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
1189 DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
1191 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
1195 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1196 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
1197 TargetLowering::TypeLegal &&
1198 "Unexpected illegal type!");
1200 for (const SDValue &Op : Node->op_values())
1201 assert((TLI.getTypeAction(*DAG.getContext(),
1202 Op.getValueType()) == TargetLowering::TypeLegal ||
1203 Op.getOpcode() == ISD::TargetConstant) &&
1204 "Unexpected illegal type!");
1207 // Figure out the correct action; the way to query this varies by opcode
1208 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
1209 bool SimpleFinishLegalizing = true;
1210 switch (Node->getOpcode()) {
1211 case ISD::INTRINSIC_W_CHAIN:
1212 case ISD::INTRINSIC_WO_CHAIN:
1213 case ISD::INTRINSIC_VOID:
1214 case ISD::STACKSAVE:
1215 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1218 Action = TLI.getOperationAction(Node->getOpcode(),
1219 Node->getValueType(0));
1220 if (Action != TargetLowering::Promote)
1221 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1223 case ISD::FP_TO_FP16:
1224 case ISD::SINT_TO_FP:
1225 case ISD::UINT_TO_FP:
1226 case ISD::EXTRACT_VECTOR_ELT:
1227 Action = TLI.getOperationAction(Node->getOpcode(),
1228 Node->getOperand(0).getValueType());
1230 case ISD::FP_ROUND_INREG:
1231 case ISD::SIGN_EXTEND_INREG: {
1232 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1233 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1236 case ISD::ATOMIC_STORE: {
1237 Action = TLI.getOperationAction(Node->getOpcode(),
1238 Node->getOperand(2).getValueType());
1241 case ISD::SELECT_CC:
1244 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1245 Node->getOpcode() == ISD::SETCC ? 2 :
1246 Node->getOpcode() == ISD::SETCCE ? 3 : 1;
1247 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1248 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1249 ISD::CondCode CCCode =
1250 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1251 Action = TLI.getCondCodeAction(CCCode, OpVT);
1252 if (Action == TargetLowering::Legal) {
1253 if (Node->getOpcode() == ISD::SELECT_CC)
1254 Action = TLI.getOperationAction(Node->getOpcode(),
1255 Node->getValueType(0));
1257 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1263 // FIXME: Model these properly. LOAD and STORE are complicated, and
1264 // STORE expects the unlegalized operand in some cases.
1265 SimpleFinishLegalizing = false;
1267 case ISD::CALLSEQ_START:
1268 case ISD::CALLSEQ_END:
1269 // FIXME: This shouldn't be necessary. These nodes have special properties
1270 // dealing with the recursive nature of legalization. Removing this
1271 // special case should be done as part of making LegalizeDAG non-recursive.
1272 SimpleFinishLegalizing = false;
1274 case ISD::EXTRACT_ELEMENT:
1275 case ISD::FLT_ROUNDS_:
1277 case ISD::MERGE_VALUES:
1278 case ISD::EH_RETURN:
1279 case ISD::FRAME_TO_ARGS_OFFSET:
1280 case ISD::EH_SJLJ_SETJMP:
1281 case ISD::EH_SJLJ_LONGJMP:
1282 case ISD::EH_SJLJ_SETUP_DISPATCH:
1283 // These operations lie about being legal: when they claim to be legal,
1284 // they should actually be expanded.
1285 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1286 if (Action == TargetLowering::Legal)
1287 Action = TargetLowering::Expand;
1289 case ISD::INIT_TRAMPOLINE:
1290 case ISD::ADJUST_TRAMPOLINE:
1291 case ISD::FRAMEADDR:
1292 case ISD::RETURNADDR:
1293 // These operations lie about being legal: when they claim to be legal,
1294 // they should actually be custom-lowered.
1295 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1296 if (Action == TargetLowering::Legal)
1297 Action = TargetLowering::Custom;
1299 case ISD::READCYCLECOUNTER:
1300 // READCYCLECOUNTER returns an i64, even if type legalization might have
1301 // expanded that to several smaller types.
1302 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1304 case ISD::READ_REGISTER:
1305 case ISD::WRITE_REGISTER:
1306 // Named register is legal in the DAG, but blocked by register name
1307 // selection if not implemented by target (to chose the correct register)
1308 // They'll be converted to Copy(To/From)Reg.
1309 Action = TargetLowering::Legal;
1311 case ISD::DEBUGTRAP:
1312 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1313 if (Action == TargetLowering::Expand) {
1314 // replace ISD::DEBUGTRAP with ISD::TRAP
1316 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1317 Node->getOperand(0));
1318 ReplaceNode(Node, NewVal.getNode());
1319 LegalizeOp(NewVal.getNode());
1325 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1326 Action = TargetLowering::Legal;
1328 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1333 if (SimpleFinishLegalizing) {
1334 SDNode *NewNode = Node;
1335 switch (Node->getOpcode()) {
1342 // Legalizing shifts/rotates requires adjusting the shift amount
1343 // to the appropriate width.
1344 if (!Node->getOperand(1).getValueType().isVector()) {
1346 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1347 Node->getOperand(1));
1348 HandleSDNode Handle(SAO);
1349 LegalizeOp(SAO.getNode());
1350 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1354 case ISD::SRL_PARTS:
1355 case ISD::SRA_PARTS:
1356 case ISD::SHL_PARTS:
1357 // Legalizing shifts/rotates requires adjusting the shift amount
1358 // to the appropriate width.
1359 if (!Node->getOperand(2).getValueType().isVector()) {
1361 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1362 Node->getOperand(2));
1363 HandleSDNode Handle(SAO);
1364 LegalizeOp(SAO.getNode());
1365 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1366 Node->getOperand(1),
1372 if (NewNode != Node) {
1373 ReplaceNode(Node, NewNode);
1377 case TargetLowering::Legal:
1379 case TargetLowering::Custom: {
1380 // FIXME: The handling for custom lowering with multiple results is
1382 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1383 if (Res.getNode()) {
1384 if (!(Res.getNode() != Node || Res.getResNo() != 0))
1387 if (Node->getNumValues() == 1) {
1388 // We can just directly replace this node with the lowered value.
1389 ReplaceNode(SDValue(Node, 0), Res);
1393 SmallVector<SDValue, 8> ResultVals;
1394 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1395 ResultVals.push_back(Res.getValue(i));
1396 ReplaceNode(Node, ResultVals.data());
1401 case TargetLowering::Expand:
1402 if (ExpandNode(Node))
1405 case TargetLowering::LibCall:
1406 ConvertNodeToLibcall(Node);
1408 case TargetLowering::Promote:
1414 switch (Node->getOpcode()) {
1421 llvm_unreachable("Do not know how to legalize this operator!");
1423 case ISD::CALLSEQ_START:
1424 case ISD::CALLSEQ_END:
1427 return LegalizeLoadOps(Node);
1430 return LegalizeStoreOps(Node);
1435 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1436 SDValue Vec = Op.getOperand(0);
1437 SDValue Idx = Op.getOperand(1);
1440 // Before we generate a new store to a temporary stack slot, see if there is
1441 // already one that we can use. There often is because when we scalarize
1442 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1443 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1444 // the vector. If all are expanded here, we don't want one store per vector
1446 SDValue StackPtr, Ch;
1447 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1448 UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1450 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1451 if (ST->isIndexed() || ST->isTruncatingStore() ||
1452 ST->getValue() != Vec)
1455 // Make sure that nothing else could have stored into the destination of
1457 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1460 StackPtr = ST->getBasePtr();
1461 Ch = SDValue(ST, 0);
1466 if (!Ch.getNode()) {
1467 // Store the value to a temporary stack slot, then LOAD the returned part.
1468 StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1469 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1470 MachinePointerInfo(), false, false, 0);
1473 // Add the offset to the index.
1475 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1476 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1477 DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType()));
1479 Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout()));
1480 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1484 if (Op.getValueType().isVector())
1485 NewLoad = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,
1486 MachinePointerInfo(), false, false, false, 0);
1488 NewLoad = DAG.getExtLoad(
1489 ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, MachinePointerInfo(),
1490 Vec.getValueType().getVectorElementType(), false, false, false, 0);
1492 // Replace the chain going out of the store, by the one out of the load.
1493 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1495 // We introduced a cycle though, so update the loads operands, making sure
1496 // to use the original store's chain as an incoming chain.
1497 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1499 NewLoadOperands[0] = Ch;
1501 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1505 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1506 assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1508 SDValue Vec = Op.getOperand(0);
1509 SDValue Part = Op.getOperand(1);
1510 SDValue Idx = Op.getOperand(2);
1513 // Store the value to a temporary stack slot, then LOAD the returned part.
1515 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1516 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1517 MachinePointerInfo PtrInfo =
1518 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1520 // First store the whole vector.
1521 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1524 // Then store the inserted part.
1526 // Add the offset to the index.
1528 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1530 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1531 DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType()));
1532 Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout()));
1534 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1537 // Store the subvector.
1538 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr,
1539 MachinePointerInfo(), false, false, 0);
1541 // Finally, load the updated vector.
1542 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1543 false, false, false, 0);
1546 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1547 // We can't handle this case efficiently. Allocate a sufficiently
1548 // aligned object on the stack, store each element into it, then load
1549 // the result as a vector.
1550 // Create the stack frame object.
1551 EVT VT = Node->getValueType(0);
1552 EVT EltVT = VT.getVectorElementType();
1554 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1555 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1556 MachinePointerInfo PtrInfo =
1557 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1559 // Emit a store of each element to the stack slot.
1560 SmallVector<SDValue, 8> Stores;
1561 unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1562 // Store (in the right endianness) the elements to memory.
1563 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1564 // Ignore undef elements.
1565 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1567 unsigned Offset = TypeByteSize*i;
1569 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType());
1570 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1572 // If the destination vector element type is narrower than the source
1573 // element type, only store the bits necessary.
1574 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1575 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1576 Node->getOperand(i), Idx,
1577 PtrInfo.getWithOffset(Offset),
1578 EltVT, false, false, 0));
1580 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1581 Node->getOperand(i), Idx,
1582 PtrInfo.getWithOffset(Offset),
1587 if (!Stores.empty()) // Not all undef elements?
1588 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1590 StoreChain = DAG.getEntryNode();
1592 // Result is a load from the stack slot.
1593 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1594 false, false, false, 0);
1598 /// Keeps track of state when getting the sign of a floating-point value as an
1600 struct FloatSignAsInt {
1605 MachinePointerInfo IntPointerInfo;
1606 MachinePointerInfo FloatPointerInfo;
1612 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1613 /// containing the sign bit if the target has no integer value capable of
1614 /// holding all bits of the floating-point value.
1615 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1616 SDLoc DL, SDValue Value) const {
1617 EVT FloatVT = Value.getValueType();
1618 unsigned NumBits = FloatVT.getSizeInBits();
1619 State.FloatVT = FloatVT;
1620 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1621 // Convert to an integer of the same size.
1622 if (TLI.isTypeLegal(IVT)) {
1623 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1624 State.SignMask = APInt::getSignBit(NumBits);
1628 auto &DataLayout = DAG.getDataLayout();
1629 // Store the float to memory, then load the sign part out as an integer.
1630 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1631 // First create a temporary that is aligned for both the load and store.
1632 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1633 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1634 // Then store the float to it.
1635 State.FloatPtr = StackPtr;
1636 MachineFunction &MF = DAG.getMachineFunction();
1637 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1638 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1639 State.FloatPointerInfo, false, false, 0);
1642 if (DataLayout.isBigEndian()) {
1643 assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1644 // Load out a legal integer with the same sign bit as the float.
1646 State.IntPointerInfo = State.FloatPointerInfo;
1648 // Advance the pointer so that the loaded byte will contain the sign bit.
1649 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1650 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
1651 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType()));
1652 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1656 State.IntPtr = IntPtr;
1657 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain,
1658 IntPtr, State.IntPointerInfo, MVT::i8,
1659 false, false, false, 0);
1660 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1663 /// Replace the integer value produced by getSignAsIntValue() with a new value
1664 /// and cast the result back to a floating-point type.
1665 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1666 SDLoc DL, SDValue NewIntValue) const {
1668 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1670 // Override the part containing the sign bit in the value stored on the stack.
1671 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1672 State.IntPointerInfo, MVT::i8, false, false,
1674 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1675 State.FloatPointerInfo, false, false, false, 0);
1678 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1680 SDValue Mag = Node->getOperand(0);
1681 SDValue Sign = Node->getOperand(1);
1683 // Get sign bit into an integer value.
1684 FloatSignAsInt SignAsInt;
1685 getSignAsIntValue(SignAsInt, DL, Sign);
1687 EVT IntVT = SignAsInt.IntValue.getValueType();
1688 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1689 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1692 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1693 EVT FloatVT = Mag.getValueType();
1694 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1695 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1696 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1697 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1698 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1699 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1700 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1703 // Transform values to integer, copy the sign bit and transform back.
1704 FloatSignAsInt MagAsInt;
1705 getSignAsIntValue(MagAsInt, DL, Mag);
1706 assert(SignAsInt.SignMask == MagAsInt.SignMask);
1707 SDValue ClearSignMask = DAG.getConstant(~SignAsInt.SignMask, DL, IntVT);
1708 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, MagAsInt.IntValue,
1710 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, IntVT, ClearedSign, SignBit);
1712 return modifySignAsInt(MagAsInt, DL, CopiedSign);
1715 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1717 SDValue Value = Node->getOperand(0);
1719 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1720 EVT FloatVT = Value.getValueType();
1721 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1722 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1723 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1726 // Transform value to integer, clear the sign bit and transform back.
1727 FloatSignAsInt ValueAsInt;
1728 getSignAsIntValue(ValueAsInt, DL, Value);
1729 EVT IntVT = ValueAsInt.IntValue.getValueType();
1730 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1731 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1733 return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1736 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1737 SmallVectorImpl<SDValue> &Results) {
1738 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1739 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1740 " not tell us which reg is the stack pointer!");
1742 EVT VT = Node->getValueType(0);
1743 SDValue Tmp1 = SDValue(Node, 0);
1744 SDValue Tmp2 = SDValue(Node, 1);
1745 SDValue Tmp3 = Node->getOperand(2);
1746 SDValue Chain = Tmp1.getOperand(0);
1748 // Chain the dynamic stack allocation so that it doesn't modify the stack
1749 // pointer when other instructions are using the stack.
1750 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl);
1752 SDValue Size = Tmp2.getOperand(1);
1753 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1754 Chain = SP.getValue(1);
1755 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1756 unsigned StackAlign =
1757 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
1758 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1759 if (Align > StackAlign)
1760 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1761 DAG.getConstant(-(uint64_t)Align, dl, VT));
1762 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1764 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1765 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1767 Results.push_back(Tmp1);
1768 Results.push_back(Tmp2);
1771 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1774 /// If the SETCC has been legalized using AND / OR, then the legalized node
1775 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1776 /// will be set to false.
1778 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1779 /// then the values of LHS and RHS will be swapped, CC will be set to the
1780 /// new condition, and NeedInvert will be set to false.
1782 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1783 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1784 /// will be set to true. The caller must invert the result of the SETCC with
1785 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1786 /// of a true/false result.
1788 /// \returns true if the SetCC has been legalized, false if it hasn't.
1789 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1790 SDValue &LHS, SDValue &RHS,
1794 MVT OpVT = LHS.getSimpleValueType();
1795 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1797 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1798 default: llvm_unreachable("Unknown condition code action!");
1799 case TargetLowering::Legal:
1802 case TargetLowering::Expand: {
1803 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1804 if (TLI.isCondCodeLegal(InvCC, OpVT)) {
1805 std::swap(LHS, RHS);
1806 CC = DAG.getCondCode(InvCC);
1809 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1812 default: llvm_unreachable("Don't know how to expand this condition!");
1814 assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
1815 == TargetLowering::Legal
1816 && "If SETO is expanded, SETOEQ must be legal!");
1817 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1819 assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
1820 == TargetLowering::Legal
1821 && "If SETUO is expanded, SETUNE must be legal!");
1822 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break;
1835 // If we are floating point, assign and break, otherwise fall through.
1836 if (!OpVT.isInteger()) {
1837 // We can use the 4th bit to tell if we are the unordered
1838 // or ordered version of the opcode.
1839 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1840 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1841 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1844 // Fallthrough if we are unsigned integer.
1849 // We only support using the inverted operation, which is computed above
1850 // and not a different manner of supporting expanding these cases.
1851 llvm_unreachable("Don't know how to expand this condition!");
1854 // Try inverting the result of the inverse condition.
1855 InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ;
1856 if (TLI.isCondCodeLegal(InvCC, OpVT)) {
1857 CC = DAG.getCondCode(InvCC);
1861 // If inverting the condition didn't work then we have no means to expand
1863 llvm_unreachable("Don't know how to expand this condition!");
1866 SDValue SetCC1, SetCC2;
1867 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1868 // If we aren't the ordered or unorder operation,
1869 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1870 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1871 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1873 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1874 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1875 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1877 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1886 /// Emit a store/load combination to the stack. This stores
1887 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1888 /// a load from the stack slot to DestVT, extending it if needed.
1889 /// The resultant code need not be legal.
1890 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1894 // Create the stack frame object.
1895 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1896 SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1897 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1899 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1900 int SPFI = StackPtrFI->getIndex();
1901 MachinePointerInfo PtrInfo =
1902 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1904 unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1905 unsigned SlotSize = SlotVT.getSizeInBits();
1906 unsigned DestSize = DestVT.getSizeInBits();
1907 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1908 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1910 // Emit a store to the stack slot. Use a truncstore if the input value is
1911 // later than DestVT.
1914 if (SrcSize > SlotSize)
1915 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1916 PtrInfo, SlotVT, false, false, SrcAlign);
1918 assert(SrcSize == SlotSize && "Invalid store");
1919 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1920 PtrInfo, false, false, SrcAlign);
1923 // Result is a load from the stack slot.
1924 if (SlotSize == DestSize)
1925 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1926 false, false, false, DestAlign);
1928 assert(SlotSize < DestSize && "Unknown extension!");
1929 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1930 PtrInfo, SlotVT, false, false, false, DestAlign);
1933 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1935 // Create a vector sized/aligned stack slot, store the value to element #0,
1936 // then load the whole vector back out.
1937 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1939 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1940 int SPFI = StackPtrFI->getIndex();
1942 SDValue Ch = DAG.getTruncStore(
1943 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1944 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1945 Node->getValueType(0).getVectorElementType(), false, false, 0);
1947 Node->getValueType(0), dl, Ch, StackPtr,
1948 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), false,
1953 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1954 const TargetLowering &TLI, SDValue &Res) {
1955 unsigned NumElems = Node->getNumOperands();
1957 EVT VT = Node->getValueType(0);
1959 // Try to group the scalars into pairs, shuffle the pairs together, then
1960 // shuffle the pairs of pairs together, etc. until the vector has
1961 // been built. This will work only if all of the necessary shuffle masks
1964 // We do this in two phases; first to check the legality of the shuffles,
1965 // and next, assuming that all shuffles are legal, to create the new nodes.
1966 for (int Phase = 0; Phase < 2; ++Phase) {
1967 SmallVector<std::pair<SDValue, SmallVector<int, 16> >, 16> IntermedVals,
1969 for (unsigned i = 0; i < NumElems; ++i) {
1970 SDValue V = Node->getOperand(i);
1971 if (V.getOpcode() == ISD::UNDEF)
1976 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1977 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1980 while (IntermedVals.size() > 2) {
1981 NewIntermedVals.clear();
1982 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1983 // This vector and the next vector are shuffled together (simply to
1984 // append the one to the other).
1985 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1987 SmallVector<int, 16> FinalIndices;
1988 FinalIndices.reserve(IntermedVals[i].second.size() +
1989 IntermedVals[i+1].second.size());
1992 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1995 FinalIndices.push_back(IntermedVals[i].second[j]);
1997 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1999 ShuffleVec[k] = NumElems + j;
2000 FinalIndices.push_back(IntermedVals[i+1].second[j]);
2005 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
2006 IntermedVals[i+1].first,
2008 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
2010 NewIntermedVals.push_back(
2011 std::make_pair(Shuffle, std::move(FinalIndices)));
2014 // If we had an odd number of defined values, then append the last
2015 // element to the array of new vectors.
2016 if ((IntermedVals.size() & 1) != 0)
2017 NewIntermedVals.push_back(IntermedVals.back());
2019 IntermedVals.swap(NewIntermedVals);
2022 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
2023 "Invalid number of intermediate vectors");
2024 SDValue Vec1 = IntermedVals[0].first;
2026 if (IntermedVals.size() > 1)
2027 Vec2 = IntermedVals[1].first;
2029 Vec2 = DAG.getUNDEF(VT);
2031 SmallVector<int, 16> ShuffleVec(NumElems, -1);
2032 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
2033 ShuffleVec[IntermedVals[0].second[i]] = i;
2034 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
2035 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
2038 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
2039 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
2046 /// Expand a BUILD_VECTOR node on targets that don't
2047 /// support the operation, but do support the resultant vector type.
2048 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
2049 unsigned NumElems = Node->getNumOperands();
2050 SDValue Value1, Value2;
2052 EVT VT = Node->getValueType(0);
2053 EVT OpVT = Node->getOperand(0).getValueType();
2054 EVT EltVT = VT.getVectorElementType();
2056 // If the only non-undef value is the low element, turn this into a
2057 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
2058 bool isOnlyLowElement = true;
2059 bool MoreThanTwoValues = false;
2060 bool isConstant = true;
2061 for (unsigned i = 0; i < NumElems; ++i) {
2062 SDValue V = Node->getOperand(i);
2063 if (V.getOpcode() == ISD::UNDEF)
2066 isOnlyLowElement = false;
2067 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
2070 if (!Value1.getNode()) {
2072 } else if (!Value2.getNode()) {
2075 } else if (V != Value1 && V != Value2) {
2076 MoreThanTwoValues = true;
2080 if (!Value1.getNode())
2081 return DAG.getUNDEF(VT);
2083 if (isOnlyLowElement)
2084 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
2086 // If all elements are constants, create a load from the constant pool.
2088 SmallVector<Constant*, 16> CV;
2089 for (unsigned i = 0, e = NumElems; i != e; ++i) {
2090 if (ConstantFPSDNode *V =
2091 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
2092 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
2093 } else if (ConstantSDNode *V =
2094 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
2096 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
2098 // If OpVT and EltVT don't match, EltVT is not legal and the
2099 // element values have been promoted/truncated earlier. Undo this;
2100 // we don't want a v16i8 to become a v16i32 for example.
2101 const ConstantInt *CI = V->getConstantIntValue();
2102 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
2103 CI->getZExtValue()));
2106 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
2107 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
2108 CV.push_back(UndefValue::get(OpNTy));
2111 Constant *CP = ConstantVector::get(CV);
2113 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
2114 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2116 VT, dl, DAG.getEntryNode(), CPIdx,
2117 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2118 false, false, Alignment);
2121 SmallSet<SDValue, 16> DefinedValues;
2122 for (unsigned i = 0; i < NumElems; ++i) {
2123 if (Node->getOperand(i).getOpcode() == ISD::UNDEF)
2125 DefinedValues.insert(Node->getOperand(i));
2128 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
2129 if (!MoreThanTwoValues) {
2130 SmallVector<int, 8> ShuffleVec(NumElems, -1);
2131 for (unsigned i = 0; i < NumElems; ++i) {
2132 SDValue V = Node->getOperand(i);
2133 if (V.getOpcode() == ISD::UNDEF)
2135 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
2137 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
2138 // Get the splatted value into the low element of a vector register.
2139 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
2141 if (Value2.getNode())
2142 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2144 Vec2 = DAG.getUNDEF(VT);
2146 // Return shuffle(LowValVec, undef, <0,0,0,0>)
2147 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
2151 if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
2156 // Otherwise, we can't handle this case efficiently.
2157 return ExpandVectorBuildThroughStack(Node);
2160 // Expand a node into a call to a libcall. If the result value
2161 // does not fit into a register, return the lo part and set the hi part to the
2162 // by-reg argument. If it does fit into a single register, return the result
2163 // and leave the Hi part unset.
2164 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2166 TargetLowering::ArgListTy Args;
2167 TargetLowering::ArgListEntry Entry;
2168 for (const SDValue &Op : Node->op_values()) {
2169 EVT ArgVT = Op.getValueType();
2170 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2173 Entry.isSExt = isSigned;
2174 Entry.isZExt = !isSigned;
2175 Args.push_back(Entry);
2177 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2178 TLI.getPointerTy(DAG.getDataLayout()));
2180 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2182 // By default, the input chain to this libcall is the entry node of the
2183 // function. If the libcall is going to be emitted as a tail call then
2184 // TLI.isUsedByReturnOnly will change it to the right chain if the return
2185 // node which is being folded has a non-entry input chain.
2186 SDValue InChain = DAG.getEntryNode();
2188 // isTailCall may be true since the callee does not reference caller stack
2189 // frame. Check if it's in the right position.
2190 SDValue TCChain = InChain;
2191 bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain);
2195 TargetLowering::CallLoweringInfo CLI(DAG);
2196 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
2197 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2198 .setTailCall(isTailCall).setSExtResult(isSigned).setZExtResult(!isSigned);
2200 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2202 if (!CallInfo.second.getNode())
2203 // It's a tailcall, return the chain (which is the DAG root).
2204 return DAG.getRoot();
2206 return CallInfo.first;
2209 /// Generate a libcall taking the given operands as arguments
2210 /// and returning a result of type RetVT.
2211 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
2212 const SDValue *Ops, unsigned NumOps,
2213 bool isSigned, SDLoc dl) {
2214 TargetLowering::ArgListTy Args;
2215 Args.reserve(NumOps);
2217 TargetLowering::ArgListEntry Entry;
2218 for (unsigned i = 0; i != NumOps; ++i) {
2219 Entry.Node = Ops[i];
2220 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2221 Entry.isSExt = isSigned;
2222 Entry.isZExt = !isSigned;
2223 Args.push_back(Entry);
2225 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2226 TLI.getPointerTy(DAG.getDataLayout()));
2228 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2230 TargetLowering::CallLoweringInfo CLI(DAG);
2231 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
2232 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2233 .setSExtResult(isSigned).setZExtResult(!isSigned);
2235 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
2237 return CallInfo.first;
2240 // Expand a node into a call to a libcall. Similar to
2241 // ExpandLibCall except that the first operand is the in-chain.
2242 std::pair<SDValue, SDValue>
2243 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2246 SDValue InChain = Node->getOperand(0);
2248 TargetLowering::ArgListTy Args;
2249 TargetLowering::ArgListEntry Entry;
2250 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2251 EVT ArgVT = Node->getOperand(i).getValueType();
2252 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2253 Entry.Node = Node->getOperand(i);
2255 Entry.isSExt = isSigned;
2256 Entry.isZExt = !isSigned;
2257 Args.push_back(Entry);
2259 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2260 TLI.getPointerTy(DAG.getDataLayout()));
2262 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2264 TargetLowering::CallLoweringInfo CLI(DAG);
2265 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
2266 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2267 .setSExtResult(isSigned).setZExtResult(!isSigned);
2269 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2274 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2275 RTLIB::Libcall Call_F32,
2276 RTLIB::Libcall Call_F64,
2277 RTLIB::Libcall Call_F80,
2278 RTLIB::Libcall Call_F128,
2279 RTLIB::Libcall Call_PPCF128) {
2281 switch (Node->getSimpleValueType(0).SimpleTy) {
2282 default: llvm_unreachable("Unexpected request for libcall!");
2283 case MVT::f32: LC = Call_F32; break;
2284 case MVT::f64: LC = Call_F64; break;
2285 case MVT::f80: LC = Call_F80; break;
2286 case MVT::f128: LC = Call_F128; break;
2287 case MVT::ppcf128: LC = Call_PPCF128; break;
2289 return ExpandLibCall(LC, Node, false);
2292 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2293 RTLIB::Libcall Call_I8,
2294 RTLIB::Libcall Call_I16,
2295 RTLIB::Libcall Call_I32,
2296 RTLIB::Libcall Call_I64,
2297 RTLIB::Libcall Call_I128) {
2299 switch (Node->getSimpleValueType(0).SimpleTy) {
2300 default: llvm_unreachable("Unexpected request for libcall!");
2301 case MVT::i8: LC = Call_I8; break;
2302 case MVT::i16: LC = Call_I16; break;
2303 case MVT::i32: LC = Call_I32; break;
2304 case MVT::i64: LC = Call_I64; break;
2305 case MVT::i128: LC = Call_I128; break;
2307 return ExpandLibCall(LC, Node, isSigned);
2310 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2312 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2313 SmallVectorImpl<SDValue> &Results) {
2314 unsigned Opcode = Node->getOpcode();
2315 bool isSigned = Opcode == ISD::SDIVREM;
2318 switch (Node->getSimpleValueType(0).SimpleTy) {
2319 default: llvm_unreachable("Unexpected request for libcall!");
2320 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2321 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2322 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2323 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2324 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2327 // The input chain to this libcall is the entry node of the function.
2328 // Legalizing the call will automatically add the previous call to the
2330 SDValue InChain = DAG.getEntryNode();
2332 EVT RetVT = Node->getValueType(0);
2333 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2335 TargetLowering::ArgListTy Args;
2336 TargetLowering::ArgListEntry Entry;
2337 for (const SDValue &Op : Node->op_values()) {
2338 EVT ArgVT = Op.getValueType();
2339 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2342 Entry.isSExt = isSigned;
2343 Entry.isZExt = !isSigned;
2344 Args.push_back(Entry);
2347 // Also pass the return address of the remainder.
2348 SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2350 Entry.Ty = RetTy->getPointerTo();
2351 Entry.isSExt = isSigned;
2352 Entry.isZExt = !isSigned;
2353 Args.push_back(Entry);
2355 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2356 TLI.getPointerTy(DAG.getDataLayout()));
2359 TargetLowering::CallLoweringInfo CLI(DAG);
2360 CLI.setDebugLoc(dl).setChain(InChain)
2361 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2362 .setSExtResult(isSigned).setZExtResult(!isSigned);
2364 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2366 // Remainder is loaded back from the stack frame.
2367 SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2368 MachinePointerInfo(), false, false, false, 0);
2369 Results.push_back(CallInfo.first);
2370 Results.push_back(Rem);
2373 /// Return true if sincos libcall is available.
2374 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2376 switch (Node->getSimpleValueType(0).SimpleTy) {
2377 default: llvm_unreachable("Unexpected request for libcall!");
2378 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2379 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2380 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2381 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2382 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2384 return TLI.getLibcallName(LC) != nullptr;
2387 /// Return true if sincos libcall is available and can be used to combine sin
2389 static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
2390 const TargetMachine &TM) {
2391 if (!isSinCosLibcallAvailable(Node, TLI))
2393 // GNU sin/cos functions set errno while sincos does not. Therefore
2394 // combining sin and cos is only safe if unsafe-fpmath is enabled.
2395 bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU;
2396 if (isGNU && !TM.Options.UnsafeFPMath)
2401 /// Only issue sincos libcall if both sin and cos are needed.
2402 static bool useSinCos(SDNode *Node) {
2403 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2404 ? ISD::FCOS : ISD::FSIN;
2406 SDValue Op0 = Node->getOperand(0);
2407 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2408 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2412 // The other user might have been turned into sincos already.
2413 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2419 /// Issue libcalls to sincos to compute sin / cos pairs.
2421 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2422 SmallVectorImpl<SDValue> &Results) {
2424 switch (Node->getSimpleValueType(0).SimpleTy) {
2425 default: llvm_unreachable("Unexpected request for libcall!");
2426 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2427 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2428 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2429 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2430 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2433 // The input chain to this libcall is the entry node of the function.
2434 // Legalizing the call will automatically add the previous call to the
2436 SDValue InChain = DAG.getEntryNode();
2438 EVT RetVT = Node->getValueType(0);
2439 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2441 TargetLowering::ArgListTy Args;
2442 TargetLowering::ArgListEntry Entry;
2444 // Pass the argument.
2445 Entry.Node = Node->getOperand(0);
2447 Entry.isSExt = false;
2448 Entry.isZExt = false;
2449 Args.push_back(Entry);
2451 // Pass the return address of sin.
2452 SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2453 Entry.Node = SinPtr;
2454 Entry.Ty = RetTy->getPointerTo();
2455 Entry.isSExt = false;
2456 Entry.isZExt = false;
2457 Args.push_back(Entry);
2459 // Also pass the return address of the cos.
2460 SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2461 Entry.Node = CosPtr;
2462 Entry.Ty = RetTy->getPointerTo();
2463 Entry.isSExt = false;
2464 Entry.isZExt = false;
2465 Args.push_back(Entry);
2467 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2468 TLI.getPointerTy(DAG.getDataLayout()));
2471 TargetLowering::CallLoweringInfo CLI(DAG);
2472 CLI.setDebugLoc(dl).setChain(InChain)
2473 .setCallee(TLI.getLibcallCallingConv(LC),
2474 Type::getVoidTy(*DAG.getContext()), Callee, std::move(Args), 0);
2476 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2478 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr,
2479 MachinePointerInfo(), false, false, false, 0));
2480 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr,
2481 MachinePointerInfo(), false, false, false, 0));
2484 /// This function is responsible for legalizing a
2485 /// INT_TO_FP operation of the specified operand when the target requests that
2486 /// we expand it. At this point, we know that the result and operand types are
2487 /// legal for the target.
2488 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2492 // TODO: Should any fast-math-flags be set for the created nodes?
2494 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2495 // simple 32-bit [signed|unsigned] integer to float/double expansion
2497 // Get the stack frame index of a 8 byte buffer.
2498 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2500 // word offset constant for Hi/Lo address computation
2501 SDValue WordOff = DAG.getConstant(sizeof(int), dl,
2502 StackSlot.getValueType());
2503 // set up Hi and Lo (into buffer) address based on endian
2504 SDValue Hi = StackSlot;
2505 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2506 StackSlot, WordOff);
2507 if (DAG.getDataLayout().isLittleEndian())
2510 // if signed map to unsigned space
2513 // constant used to invert sign bit (signed to unsigned mapping)
2514 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
2515 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2519 // store the lo of the constructed double - based on integer input
2520 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2521 Op0Mapped, Lo, MachinePointerInfo(),
2523 // initial hi portion of constructed double
2524 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2525 // store the hi of the constructed double - biased exponent
2526 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2527 MachinePointerInfo(),
2529 // load the constructed double
2530 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2531 MachinePointerInfo(), false, false, false, 0);
2532 // FP constant to bias correct the final result
2533 SDValue Bias = DAG.getConstantFP(isSigned ?
2534 BitsToDouble(0x4330000080000000ULL) :
2535 BitsToDouble(0x4330000000000000ULL),
2537 // subtract the bias
2538 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2541 // handle final rounding
2542 if (DestVT == MVT::f64) {
2545 } else if (DestVT.bitsLT(MVT::f64)) {
2546 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2547 DAG.getIntPtrConstant(0, dl));
2548 } else if (DestVT.bitsGT(MVT::f64)) {
2549 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2553 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2554 // Code below here assumes !isSigned without checking again.
2556 // Implementation of unsigned i64 to f64 following the algorithm in
2557 // __floatundidf in compiler_rt. This implementation has the advantage
2558 // of performing rounding correctly, both in the default rounding mode
2559 // and in all alternate rounding modes.
2560 // TODO: Generalize this for use with other types.
2561 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2563 DAG.getConstant(UINT64_C(0x4330000000000000), dl, MVT::i64);
2564 SDValue TwoP84PlusTwoP52 =
2565 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), dl,
2568 DAG.getConstant(UINT64_C(0x4530000000000000), dl, MVT::i64);
2570 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2571 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2572 DAG.getConstant(32, dl, MVT::i64));
2573 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2574 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2575 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2576 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2577 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2579 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2582 // Implementation of unsigned i64 to f32.
2583 // TODO: Generalize this for use with other types.
2584 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2585 // For unsigned conversions, convert them to signed conversions using the
2586 // algorithm from the x86_64 __floatundidf in compiler_rt.
2588 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2590 SDValue ShiftConst = DAG.getConstant(
2591 1, dl, TLI.getShiftAmountTy(Op0.getValueType(), DAG.getDataLayout()));
2592 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2593 SDValue AndConst = DAG.getConstant(1, dl, MVT::i64);
2594 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2595 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2597 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2598 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2600 // TODO: This really should be implemented using a branch rather than a
2601 // select. We happen to get lucky and machinesink does the right
2602 // thing most of the time. This would be a good candidate for a
2603 //pseudo-op, or, even better, for whole-function isel.
2604 SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2605 Op0, DAG.getConstant(0, dl, MVT::i64), ISD::SETLT);
2606 return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast);
2609 // Otherwise, implement the fully general conversion.
2611 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2612 DAG.getConstant(UINT64_C(0xfffffffffffff800), dl, MVT::i64));
2613 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2614 DAG.getConstant(UINT64_C(0x800), dl, MVT::i64));
2615 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2616 DAG.getConstant(UINT64_C(0x7ff), dl, MVT::i64));
2617 SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), And2,
2618 DAG.getConstant(UINT64_C(0), dl, MVT::i64),
2620 SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0);
2621 SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0,
2622 DAG.getConstant(UINT64_C(0x0020000000000000), dl,
2625 SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0);
2626 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType(), DAG.getDataLayout());
2628 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2629 DAG.getConstant(32, dl, SHVT));
2630 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2631 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2633 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), dl,
2635 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2636 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2637 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2638 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2639 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2640 DAG.getIntPtrConstant(0, dl));
2643 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2645 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()),
2647 DAG.getConstant(0, dl, Op0.getValueType()),
2649 SDValue Zero = DAG.getIntPtrConstant(0, dl),
2650 Four = DAG.getIntPtrConstant(4, dl);
2651 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2652 SignSet, Four, Zero);
2654 // If the sign bit of the integer is set, the large number will be treated
2655 // as a negative number. To counteract this, the dynamic code adds an
2656 // offset depending on the data type.
2658 switch (Op0.getSimpleValueType().SimpleTy) {
2659 default: llvm_unreachable("Unsupported integer type!");
2660 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2661 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2662 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2663 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2665 if (DAG.getDataLayout().isLittleEndian())
2667 Constant *FudgeFactor = ConstantInt::get(
2668 Type::getInt64Ty(*DAG.getContext()), FF);
2671 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2672 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2673 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2674 Alignment = std::min(Alignment, 4u);
2676 if (DestVT == MVT::f32)
2677 FudgeInReg = DAG.getLoad(
2678 MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2679 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2680 false, false, Alignment);
2682 SDValue Load = DAG.getExtLoad(
2683 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2684 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2685 false, false, false, Alignment);
2686 HandleSDNode Handle(Load);
2687 LegalizeOp(Load.getNode());
2688 FudgeInReg = Handle.getValue();
2691 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2694 /// This function is responsible for legalizing a
2695 /// *INT_TO_FP operation of the specified operand when the target requests that
2696 /// we promote it. At this point, we know that the result and operand types are
2697 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2698 /// operation that takes a larger input.
2699 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2703 // First step, figure out the appropriate *INT_TO_FP operation to use.
2704 EVT NewInTy = LegalOp.getValueType();
2706 unsigned OpToUse = 0;
2708 // Scan for the appropriate larger type to use.
2710 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2711 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2713 // If the target supports SINT_TO_FP of this type, use it.
2714 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2715 OpToUse = ISD::SINT_TO_FP;
2718 if (isSigned) continue;
2720 // If the target supports UINT_TO_FP of this type, use it.
2721 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2722 OpToUse = ISD::UINT_TO_FP;
2726 // Otherwise, try a larger type.
2729 // Okay, we found the operation and type to use. Zero extend our input to the
2730 // desired type then run the operation on it.
2731 return DAG.getNode(OpToUse, dl, DestVT,
2732 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2733 dl, NewInTy, LegalOp));
2736 /// This function is responsible for legalizing a
2737 /// FP_TO_*INT operation of the specified operand when the target requests that
2738 /// we promote it. At this point, we know that the result and operand types are
2739 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2740 /// operation that returns a larger result.
2741 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2745 // First step, figure out the appropriate FP_TO*INT operation to use.
2746 EVT NewOutTy = DestVT;
2748 unsigned OpToUse = 0;
2750 // Scan for the appropriate larger type to use.
2752 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2753 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2755 // A larger signed type can hold all unsigned values of the requested type,
2756 // so using FP_TO_SINT is valid
2757 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2758 OpToUse = ISD::FP_TO_SINT;
2762 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2763 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2764 OpToUse = ISD::FP_TO_UINT;
2768 // Otherwise, try a larger type.
2772 // Okay, we found the operation and type to use.
2773 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2775 // Truncate the result of the extended FP_TO_*INT operation to the desired
2777 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2780 /// Open code the operations for BITREVERSE.
2781 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, SDLoc dl) {
2782 EVT VT = Op.getValueType();
2783 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2784 unsigned Sz = VT.getScalarSizeInBits();
2787 Tmp = DAG.getConstant(0, dl, VT);
2788 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2791 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2794 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2797 Shift = Shift.shl(J);
2798 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2799 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2805 /// Open code the operations for BSWAP of the specified operation.
2806 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) {
2807 EVT VT = Op.getValueType();
2808 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2809 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2810 switch (VT.getSimpleVT().SimpleTy) {
2811 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2813 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2814 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2815 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2817 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2818 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2819 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2820 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2821 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2822 DAG.getConstant(0xFF0000, dl, VT));
2823 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2824 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2825 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2826 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2828 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2829 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2830 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2831 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2832 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2833 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2834 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2835 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2836 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2837 DAG.getConstant(255ULL<<48, dl, VT));
2838 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2839 DAG.getConstant(255ULL<<40, dl, VT));
2840 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2841 DAG.getConstant(255ULL<<32, dl, VT));
2842 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2843 DAG.getConstant(255ULL<<24, dl, VT));
2844 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2845 DAG.getConstant(255ULL<<16, dl, VT));
2846 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2847 DAG.getConstant(255ULL<<8 , dl, VT));
2848 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2849 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2850 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2851 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2852 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2853 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2854 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2858 /// Expand the specified bitcount instruction into operations.
2859 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2862 default: llvm_unreachable("Cannot expand this yet!");
2864 EVT VT = Op.getValueType();
2865 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2866 unsigned Len = VT.getSizeInBits();
2868 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2869 "CTPOP not implemented for this type.");
2871 // This is the "best" algorithm from
2872 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2874 SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)),
2876 SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)),
2878 SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)),
2880 SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)),
2883 // v = v - ((v >> 1) & 0x55555555...)
2884 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2885 DAG.getNode(ISD::AND, dl, VT,
2886 DAG.getNode(ISD::SRL, dl, VT, Op,
2887 DAG.getConstant(1, dl, ShVT)),
2889 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2890 Op = DAG.getNode(ISD::ADD, dl, VT,
2891 DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2892 DAG.getNode(ISD::AND, dl, VT,
2893 DAG.getNode(ISD::SRL, dl, VT, Op,
2894 DAG.getConstant(2, dl, ShVT)),
2896 // v = (v + (v >> 4)) & 0x0F0F0F0F...
2897 Op = DAG.getNode(ISD::AND, dl, VT,
2898 DAG.getNode(ISD::ADD, dl, VT, Op,
2899 DAG.getNode(ISD::SRL, dl, VT, Op,
2900 DAG.getConstant(4, dl, ShVT))),
2902 // v = (v * 0x01010101...) >> (Len - 8)
2903 Op = DAG.getNode(ISD::SRL, dl, VT,
2904 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2905 DAG.getConstant(Len - 8, dl, ShVT));
2909 case ISD::CTLZ_ZERO_UNDEF:
2910 // This trivially expands to CTLZ.
2911 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2913 // for now, we do this:
2914 // x = x | (x >> 1);
2915 // x = x | (x >> 2);
2917 // x = x | (x >>16);
2918 // x = x | (x >>32); // for 64-bit input
2919 // return popcount(~x);
2921 // Ref: "Hacker's Delight" by Henry Warren
2922 EVT VT = Op.getValueType();
2923 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2924 unsigned len = VT.getSizeInBits();
2925 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2926 SDValue Tmp3 = DAG.getConstant(1ULL << i, dl, ShVT);
2927 Op = DAG.getNode(ISD::OR, dl, VT, Op,
2928 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2930 Op = DAG.getNOT(dl, Op, VT);
2931 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2933 case ISD::CTTZ_ZERO_UNDEF:
2934 // This trivially expands to CTTZ.
2935 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2937 // for now, we use: { return popcount(~x & (x - 1)); }
2938 // unless the target has ctlz but not ctpop, in which case we use:
2939 // { return 32 - nlz(~x & (x-1)); }
2940 // Ref: "Hacker's Delight" by Henry Warren
2941 EVT VT = Op.getValueType();
2942 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2943 DAG.getNOT(dl, Op, VT),
2944 DAG.getNode(ISD::SUB, dl, VT, Op,
2945 DAG.getConstant(1, dl, VT)));
2946 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2947 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2948 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2949 return DAG.getNode(ISD::SUB, dl, VT,
2950 DAG.getConstant(VT.getSizeInBits(), dl, VT),
2951 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2952 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2957 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2958 SmallVector<SDValue, 8> Results;
2960 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2962 switch (Node->getOpcode()) {
2965 case ISD::CTLZ_ZERO_UNDEF:
2967 case ISD::CTTZ_ZERO_UNDEF:
2968 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2969 Results.push_back(Tmp1);
2971 case ISD::BITREVERSE:
2972 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2975 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2977 case ISD::FRAMEADDR:
2978 case ISD::RETURNADDR:
2979 case ISD::FRAME_TO_ARGS_OFFSET:
2980 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2982 case ISD::FLT_ROUNDS_:
2983 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2985 case ISD::EH_RETURN:
2989 case ISD::EH_SJLJ_LONGJMP:
2990 // If the target didn't expand these, there's nothing to do, so just
2991 // preserve the chain and be done.
2992 Results.push_back(Node->getOperand(0));
2994 case ISD::READCYCLECOUNTER:
2995 // If the target didn't expand this, just return 'zero' and preserve the
2997 Results.append(Node->getNumValues() - 1,
2998 DAG.getConstant(0, dl, Node->getValueType(0)));
2999 Results.push_back(Node->getOperand(0));
3001 case ISD::EH_SJLJ_SETJMP:
3002 // If the target didn't expand this, just return 'zero' and preserve the
3004 Results.push_back(DAG.getConstant(0, dl, MVT::i32));
3005 Results.push_back(Node->getOperand(0));
3007 case ISD::ATOMIC_LOAD: {
3008 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
3009 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
3010 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
3011 SDValue Swap = DAG.getAtomicCmpSwap(
3012 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
3013 Node->getOperand(0), Node->getOperand(1), Zero, Zero,
3014 cast<AtomicSDNode>(Node)->getMemOperand(),
3015 cast<AtomicSDNode>(Node)->getOrdering(),
3016 cast<AtomicSDNode>(Node)->getOrdering(),
3017 cast<AtomicSDNode>(Node)->getSynchScope());
3018 Results.push_back(Swap.getValue(0));
3019 Results.push_back(Swap.getValue(1));
3022 case ISD::ATOMIC_STORE: {
3023 // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
3024 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
3025 cast<AtomicSDNode>(Node)->getMemoryVT(),
3026 Node->getOperand(0),
3027 Node->getOperand(1), Node->getOperand(2),
3028 cast<AtomicSDNode>(Node)->getMemOperand(),
3029 cast<AtomicSDNode>(Node)->getOrdering(),
3030 cast<AtomicSDNode>(Node)->getSynchScope());
3031 Results.push_back(Swap.getValue(1));
3034 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
3035 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
3036 // splits out the success value as a comparison. Expanding the resulting
3037 // ATOMIC_CMP_SWAP will produce a libcall.
3038 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
3039 SDValue Res = DAG.getAtomicCmpSwap(
3040 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
3041 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
3042 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand(),
3043 cast<AtomicSDNode>(Node)->getSuccessOrdering(),
3044 cast<AtomicSDNode>(Node)->getFailureOrdering(),
3045 cast<AtomicSDNode>(Node)->getSynchScope());
3047 SDValue Success = DAG.getSetCC(SDLoc(Node), Node->getValueType(1),
3048 Res, Node->getOperand(2), ISD::SETEQ);
3050 Results.push_back(Res.getValue(0));
3051 Results.push_back(Success);
3052 Results.push_back(Res.getValue(1));
3055 case ISD::DYNAMIC_STACKALLOC:
3056 ExpandDYNAMIC_STACKALLOC(Node, Results);
3058 case ISD::MERGE_VALUES:
3059 for (unsigned i = 0; i < Node->getNumValues(); i++)
3060 Results.push_back(Node->getOperand(i));
3063 EVT VT = Node->getValueType(0);
3065 Results.push_back(DAG.getConstant(0, dl, VT));
3067 assert(VT.isFloatingPoint() && "Unknown value type!");
3068 Results.push_back(DAG.getConstantFP(0, dl, VT));
3074 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
3075 Node->getValueType(0), dl);
3076 Results.push_back(Tmp1);
3078 case ISD::FP_EXTEND:
3079 Tmp1 = EmitStackConvert(Node->getOperand(0),
3080 Node->getOperand(0).getValueType(),
3081 Node->getValueType(0), dl);
3082 Results.push_back(Tmp1);
3084 case ISD::SIGN_EXTEND_INREG: {
3085 // NOTE: we could fall back on load/store here too for targets without
3086 // SAR. However, it is doubtful that any exist.
3087 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3088 EVT VT = Node->getValueType(0);
3089 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3092 unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
3093 ExtraVT.getScalarType().getSizeInBits();
3094 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
3095 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3096 Node->getOperand(0), ShiftCst);
3097 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3098 Results.push_back(Tmp1);
3101 case ISD::FP_ROUND_INREG: {
3102 // The only way we can lower this is to turn it into a TRUNCSTORE,
3103 // EXTLOAD pair, targeting a temporary location (a stack slot).
3105 // NOTE: there is a choice here between constantly creating new stack
3106 // slots and always reusing the same one. We currently always create
3107 // new ones, as reuse may inhibit scheduling.
3108 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3109 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
3110 Node->getValueType(0), dl);
3111 Results.push_back(Tmp1);
3114 case ISD::SINT_TO_FP:
3115 case ISD::UINT_TO_FP:
3116 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
3117 Node->getOperand(0), Node->getValueType(0), dl);
3118 Results.push_back(Tmp1);
3120 case ISD::FP_TO_SINT:
3121 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
3122 Results.push_back(Tmp1);
3124 case ISD::FP_TO_UINT: {
3125 SDValue True, False;
3126 EVT VT = Node->getOperand(0).getValueType();
3127 EVT NVT = Node->getValueType(0);
3128 APFloat apf(DAG.EVTToAPFloatSemantics(VT),
3129 APInt::getNullValue(VT.getSizeInBits()));
3130 APInt x = APInt::getSignBit(NVT.getSizeInBits());
3131 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
3132 Tmp1 = DAG.getConstantFP(apf, dl, VT);
3133 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT),
3134 Node->getOperand(0),
3136 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
3137 // TODO: Should any fast-math-flags be set for the FSUB?
3138 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
3139 DAG.getNode(ISD::FSUB, dl, VT,
3140 Node->getOperand(0), Tmp1));
3141 False = DAG.getNode(ISD::XOR, dl, NVT, False,
3142 DAG.getConstant(x, dl, NVT));
3143 Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False);
3144 Results.push_back(Tmp1);
3148 Results.push_back(DAG.expandVAArg(Node));
3149 Results.push_back(Results[0].getValue(1));
3152 Results.push_back(DAG.expandVACopy(Node));
3154 case ISD::EXTRACT_VECTOR_ELT:
3155 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3156 // This must be an access of the only element. Return it.
3157 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3158 Node->getOperand(0));
3160 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3161 Results.push_back(Tmp1);
3163 case ISD::EXTRACT_SUBVECTOR:
3164 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3166 case ISD::INSERT_SUBVECTOR:
3167 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3169 case ISD::CONCAT_VECTORS: {
3170 Results.push_back(ExpandVectorBuildThroughStack(Node));
3173 case ISD::SCALAR_TO_VECTOR:
3174 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3176 case ISD::INSERT_VECTOR_ELT:
3177 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3178 Node->getOperand(1),
3179 Node->getOperand(2), dl));
3181 case ISD::VECTOR_SHUFFLE: {
3182 SmallVector<int, 32> NewMask;
3183 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3185 EVT VT = Node->getValueType(0);
3186 EVT EltVT = VT.getVectorElementType();
3187 SDValue Op0 = Node->getOperand(0);
3188 SDValue Op1 = Node->getOperand(1);
3189 if (!TLI.isTypeLegal(EltVT)) {
3191 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3193 // BUILD_VECTOR operands are allowed to be wider than the element type.
3194 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
3196 if (NewEltVT.bitsLT(EltVT)) {
3198 // Convert shuffle node.
3199 // If original node was v4i64 and the new EltVT is i32,
3200 // cast operands to v8i32 and re-build the mask.
3202 // Calculate new VT, the size of the new VT should be equal to original.
3204 EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3205 VT.getSizeInBits() / NewEltVT.getSizeInBits());
3206 assert(NewVT.bitsEq(VT));
3208 // cast operands to new VT
3209 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3210 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3212 // Convert the shuffle mask
3213 unsigned int factor =
3214 NewVT.getVectorNumElements()/VT.getVectorNumElements();
3216 // EltVT gets smaller
3219 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3221 for (unsigned fi = 0; fi < factor; ++fi)
3222 NewMask.push_back(Mask[i]);
3225 for (unsigned fi = 0; fi < factor; ++fi)
3226 NewMask.push_back(Mask[i]*factor+fi);
3234 unsigned NumElems = VT.getVectorNumElements();
3235 SmallVector<SDValue, 16> Ops;
3236 for (unsigned i = 0; i != NumElems; ++i) {
3238 Ops.push_back(DAG.getUNDEF(EltVT));
3241 unsigned Idx = Mask[i];
3243 Ops.push_back(DAG.getNode(
3244 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3245 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
3247 Ops.push_back(DAG.getNode(
3248 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3249 DAG.getConstant(Idx - NumElems, dl,
3250 TLI.getVectorIdxTy(DAG.getDataLayout()))));
3253 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3254 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3255 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3256 Results.push_back(Tmp1);
3259 case ISD::EXTRACT_ELEMENT: {
3260 EVT OpTy = Node->getOperand(0).getValueType();
3261 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3263 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3264 DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3265 TLI.getShiftAmountTy(
3266 Node->getOperand(0).getValueType(),
3267 DAG.getDataLayout())));
3268 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3271 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3272 Node->getOperand(0));
3274 Results.push_back(Tmp1);
3277 case ISD::STACKSAVE:
3278 // Expand to CopyFromReg if the target set
3279 // StackPointerRegisterToSaveRestore.
3280 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3281 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3282 Node->getValueType(0)));
3283 Results.push_back(Results[0].getValue(1));
3285 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3286 Results.push_back(Node->getOperand(0));
3289 case ISD::STACKRESTORE:
3290 // Expand to CopyToReg if the target set
3291 // StackPointerRegisterToSaveRestore.
3292 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3293 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3294 Node->getOperand(1)));
3296 Results.push_back(Node->getOperand(0));
3299 case ISD::FCOPYSIGN:
3300 Results.push_back(ExpandFCOPYSIGN(Node));
3303 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3304 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3305 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3306 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3307 Node->getOperand(0));
3308 Results.push_back(Tmp1);
3311 Results.push_back(ExpandFABS(Node));
3317 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3319 switch (Node->getOpcode()) {
3320 default: llvm_unreachable("How did we get here?");
3321 case ISD::SMAX: Pred = ISD::SETGT; break;
3322 case ISD::SMIN: Pred = ISD::SETLT; break;
3323 case ISD::UMAX: Pred = ISD::SETUGT; break;
3324 case ISD::UMIN: Pred = ISD::SETULT; break;
3326 Tmp1 = Node->getOperand(0);
3327 Tmp2 = Node->getOperand(1);
3328 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3329 Results.push_back(Tmp1);
3335 EVT VT = Node->getValueType(0);
3336 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3337 // fcos which share the same operand and both are used.
3338 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3339 canCombineSinCosLibcall(Node, TLI, TM))
3340 && useSinCos(Node)) {
3341 SDVTList VTs = DAG.getVTList(VT, VT);
3342 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3343 if (Node->getOpcode() == ISD::FCOS)
3344 Tmp1 = Tmp1.getValue(1);
3345 Results.push_back(Tmp1);
3350 llvm_unreachable("Illegal fmad should never be formed");
3352 case ISD::FP16_TO_FP:
3353 if (Node->getValueType(0) != MVT::f32) {
3354 // We can extend to types bigger than f32 in two steps without changing
3355 // the result. Since "f16 -> f32" is much more commonly available, give
3356 // CodeGen the option of emitting that before resorting to a libcall.
3358 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3360 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3363 case ISD::FP_TO_FP16:
3364 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3365 SDValue Op = Node->getOperand(0);
3366 MVT SVT = Op.getSimpleValueType();
3367 if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3368 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3369 // Under fastmath, we can expand this node into a fround followed by
3370 // a float-half conversion.
3371 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3372 DAG.getIntPtrConstant(0, dl));
3374 DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, FloatVal));
3378 case ISD::ConstantFP: {
3379 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3380 // Check to see if this FP immediate is already legal.
3381 // If this is a legal constant, turn it into a TargetConstantFP node.
3382 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3383 Results.push_back(ExpandConstantFP(CFP, true));
3387 EVT VT = Node->getValueType(0);
3388 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3389 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3390 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(Node)->Flags;
3391 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3392 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3393 Results.push_back(Tmp1);
3398 EVT VT = Node->getValueType(0);
3399 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3400 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3401 "Don't know how to expand this subtraction!");
3402 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3403 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3405 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3406 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3411 EVT VT = Node->getValueType(0);
3412 bool isSigned = Node->getOpcode() == ISD::SREM;
3413 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3414 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3415 Tmp2 = Node->getOperand(0);
3416 Tmp3 = Node->getOperand(1);
3417 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3418 SDVTList VTs = DAG.getVTList(VT, VT);
3419 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3420 Results.push_back(Tmp1);
3421 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3423 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3424 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3425 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3426 Results.push_back(Tmp1);
3432 bool isSigned = Node->getOpcode() == ISD::SDIV;
3433 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3434 EVT VT = Node->getValueType(0);
3435 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3436 SDVTList VTs = DAG.getVTList(VT, VT);
3437 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3438 Node->getOperand(1));
3439 Results.push_back(Tmp1);
3445 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3447 EVT VT = Node->getValueType(0);
3448 SDVTList VTs = DAG.getVTList(VT, VT);
3449 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3450 "If this wasn't legal, it shouldn't have been created!");
3451 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3452 Node->getOperand(1));
3453 Results.push_back(Tmp1.getValue(1));
3457 EVT VT = Node->getValueType(0);
3458 SDVTList VTs = DAG.getVTList(VT, VT);
3459 // See if multiply or divide can be lowered using two-result operations.
3460 // We just need the low half of the multiply; try both the signed
3461 // and unsigned forms. If the target supports both SMUL_LOHI and
3462 // UMUL_LOHI, form a preference by checking which forms of plain
3463 // MULH it supports.
3464 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3465 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3466 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3467 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3468 unsigned OpToUse = 0;
3469 if (HasSMUL_LOHI && !HasMULHS) {
3470 OpToUse = ISD::SMUL_LOHI;
3471 } else if (HasUMUL_LOHI && !HasMULHU) {
3472 OpToUse = ISD::UMUL_LOHI;
3473 } else if (HasSMUL_LOHI) {
3474 OpToUse = ISD::SMUL_LOHI;
3475 } else if (HasUMUL_LOHI) {
3476 OpToUse = ISD::UMUL_LOHI;
3479 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3480 Node->getOperand(1)));
3485 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3486 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3487 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3488 TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3489 TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3490 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG)) {
3491 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3492 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3494 DAG.getConstant(HalfType.getSizeInBits(), dl,
3495 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3496 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3497 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3503 SDValue LHS = Node->getOperand(0);
3504 SDValue RHS = Node->getOperand(1);
3505 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3506 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3508 Results.push_back(Sum);
3509 EVT ResultType = Node->getValueType(1);
3510 EVT OType = getSetCCResultType(Node->getValueType(0));
3512 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
3514 // LHSSign -> LHS >= 0
3515 // RHSSign -> RHS >= 0
3516 // SumSign -> Sum >= 0
3519 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3521 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3523 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3524 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3525 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3526 Node->getOpcode() == ISD::SADDO ?
3527 ISD::SETEQ : ISD::SETNE);
3529 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3530 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3532 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3533 Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType));
3538 SDValue LHS = Node->getOperand(0);
3539 SDValue RHS = Node->getOperand(1);
3540 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3541 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3543 Results.push_back(Sum);
3545 EVT ResultType = Node->getValueType(1);
3546 EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3548 = Node->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT;
3549 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3551 Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType));
3556 EVT VT = Node->getValueType(0);
3557 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3558 SDValue LHS = Node->getOperand(0);
3559 SDValue RHS = Node->getOperand(1);
3562 static const unsigned Ops[2][3] =
3563 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3564 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3565 bool isSigned = Node->getOpcode() == ISD::SMULO;
3566 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3567 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3568 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3569 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3570 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3572 TopHalf = BottomHalf.getValue(1);
3573 } else if (TLI.isTypeLegal(WideVT)) {
3574 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3575 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3576 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3577 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3578 DAG.getIntPtrConstant(0, dl));
3579 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3580 DAG.getIntPtrConstant(1, dl));
3582 // We can fall back to a libcall with an illegal type for the MUL if we
3583 // have a libcall big enough.
3584 // Also, we can fall back to a division in some cases, but that's a big
3585 // performance hit in the general case.
3586 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3587 if (WideVT == MVT::i16)
3588 LC = RTLIB::MUL_I16;
3589 else if (WideVT == MVT::i32)
3590 LC = RTLIB::MUL_I32;
3591 else if (WideVT == MVT::i64)
3592 LC = RTLIB::MUL_I64;
3593 else if (WideVT == MVT::i128)
3594 LC = RTLIB::MUL_I128;
3595 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3597 // The high part is obtained by SRA'ing all but one of the bits of low
3599 unsigned LoSize = VT.getSizeInBits();
3601 DAG.getNode(ISD::SRA, dl, VT, RHS,
3602 DAG.getConstant(LoSize - 1, dl,
3603 TLI.getPointerTy(DAG.getDataLayout())));
3605 DAG.getNode(ISD::SRA, dl, VT, LHS,
3606 DAG.getConstant(LoSize - 1, dl,
3607 TLI.getPointerTy(DAG.getDataLayout())));
3609 // Here we're passing the 2 arguments explicitly as 4 arguments that are
3610 // pre-lowered to the correct types. This all depends upon WideVT not
3611 // being a legal type for the architecture and thus has to be split to
3613 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3614 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3615 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3616 DAG.getIntPtrConstant(0, dl));
3617 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3618 DAG.getIntPtrConstant(1, dl));
3619 // Ret is a node with an illegal type. Because such things are not
3620 // generally permitted during this phase of legalization, make sure the
3621 // node has no more uses. The above EXTRACT_ELEMENT nodes should have been
3623 assert(Ret->use_empty() &&
3624 "Unexpected uses of illegally type from expanded lib call.");
3628 Tmp1 = DAG.getConstant(
3629 VT.getSizeInBits() - 1, dl,
3630 TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
3631 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3632 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1,
3635 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf,
3636 DAG.getConstant(0, dl, VT), ISD::SETNE);
3638 Results.push_back(BottomHalf);
3639 Results.push_back(TopHalf);
3642 case ISD::BUILD_PAIR: {
3643 EVT PairTy = Node->getValueType(0);
3644 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3645 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3647 ISD::SHL, dl, PairTy, Tmp2,
3648 DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3649 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3650 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3654 Tmp1 = Node->getOperand(0);
3655 Tmp2 = Node->getOperand(1);
3656 Tmp3 = Node->getOperand(2);
3657 if (Tmp1.getOpcode() == ISD::SETCC) {
3658 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3660 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3662 Tmp1 = DAG.getSelectCC(dl, Tmp1,
3663 DAG.getConstant(0, dl, Tmp1.getValueType()),
3664 Tmp2, Tmp3, ISD::SETNE);
3666 Results.push_back(Tmp1);
3669 SDValue Chain = Node->getOperand(0);
3670 SDValue Table = Node->getOperand(1);
3671 SDValue Index = Node->getOperand(2);
3673 EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
3675 const DataLayout &TD = DAG.getDataLayout();
3676 unsigned EntrySize =
3677 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3679 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3680 DAG.getConstant(EntrySize, dl, Index.getValueType()));
3681 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3684 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3685 SDValue LD = DAG.getExtLoad(
3686 ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3687 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT,
3688 false, false, false, 0);
3690 if (TM.getRelocationModel() == Reloc::PIC_) {
3691 // For PIC, the sequence is:
3692 // BRIND(load(Jumptable + index) + RelocBase)
3693 // RelocBase can be JumpTable, GOT or some sort of global base.
3694 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3695 TLI.getPICJumpTableRelocBase(Table, DAG));
3697 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3698 Results.push_back(Tmp1);
3702 // Expand brcond's setcc into its constituent parts and create a BR_CC
3704 Tmp1 = Node->getOperand(0);
3705 Tmp2 = Node->getOperand(1);
3706 if (Tmp2.getOpcode() == ISD::SETCC) {
3707 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3708 Tmp1, Tmp2.getOperand(2),
3709 Tmp2.getOperand(0), Tmp2.getOperand(1),
3710 Node->getOperand(2));
3712 // We test only the i1 bit. Skip the AND if UNDEF.
3713 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3714 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3715 DAG.getConstant(1, dl, Tmp2.getValueType()));
3716 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3717 DAG.getCondCode(ISD::SETNE), Tmp3,
3718 DAG.getConstant(0, dl, Tmp3.getValueType()),
3719 Node->getOperand(2));
3721 Results.push_back(Tmp1);
3724 Tmp1 = Node->getOperand(0);
3725 Tmp2 = Node->getOperand(1);
3726 Tmp3 = Node->getOperand(2);
3727 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
3728 Tmp3, NeedInvert, dl);
3731 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3732 // condition code, create a new SETCC node.
3734 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3737 // If we expanded the SETCC by inverting the condition code, then wrap
3738 // the existing SETCC in a NOT to restore the intended condition.
3740 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3742 Results.push_back(Tmp1);
3746 // Otherwise, SETCC for the given comparison type must be completely
3747 // illegal; expand it into a SELECT_CC.
3748 EVT VT = Node->getValueType(0);
3750 switch (TLI.getBooleanContents(Tmp1->getValueType(0))) {
3751 case TargetLowering::ZeroOrOneBooleanContent:
3752 case TargetLowering::UndefinedBooleanContent:
3755 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3759 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3760 DAG.getConstant(TrueValue, dl, VT),
3761 DAG.getConstant(0, dl, VT),
3763 Results.push_back(Tmp1);
3766 case ISD::SELECT_CC: {
3767 Tmp1 = Node->getOperand(0); // LHS
3768 Tmp2 = Node->getOperand(1); // RHS
3769 Tmp3 = Node->getOperand(2); // True
3770 Tmp4 = Node->getOperand(3); // False
3771 EVT VT = Node->getValueType(0);
3772 SDValue CC = Node->getOperand(4);
3773 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3775 if (TLI.isCondCodeLegal(CCOp, Tmp1.getSimpleValueType())) {
3776 // If the condition code is legal, then we need to expand this
3777 // node using SETCC and SELECT.
3778 EVT CmpVT = Tmp1.getValueType();
3779 assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3780 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3783 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT);
3784 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC);
3785 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3789 // SELECT_CC is legal, so the condition code must not be.
3790 bool Legalized = false;
3791 // Try to legalize by inverting the condition. This is for targets that
3792 // might support an ordered version of a condition, but not the unordered
3793 // version (or vice versa).
3794 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp,
3795 Tmp1.getValueType().isInteger());
3796 if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) {
3797 // Use the new condition code and swap true and false
3799 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3801 // If The inverse is not legal, then try to swap the arguments using
3802 // the inverse condition code.
3803 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3804 if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) {
3805 // The swapped inverse condition is legal, so swap true and false,
3808 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3813 Legalized = LegalizeSetCCCondCode(
3814 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert,
3817 assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3819 // If we expanded the SETCC by inverting the condition code, then swap
3820 // the True/False operands to match.
3822 std::swap(Tmp3, Tmp4);
3824 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3825 // condition code, create a new SELECT_CC node.
3827 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3828 Tmp1, Tmp2, Tmp3, Tmp4, CC);
3830 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3831 CC = DAG.getCondCode(ISD::SETNE);
3832 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3833 Tmp2, Tmp3, Tmp4, CC);
3836 Results.push_back(Tmp1);
3840 Tmp1 = Node->getOperand(0); // Chain
3841 Tmp2 = Node->getOperand(2); // LHS
3842 Tmp3 = Node->getOperand(3); // RHS
3843 Tmp4 = Node->getOperand(1); // CC
3845 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
3846 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl);
3848 assert(Legalized && "Can't legalize BR_CC with legal condition!");
3850 // If we expanded the SETCC by inverting the condition code, then wrap
3851 // the existing SETCC in a NOT to restore the intended condition.
3853 Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0));
3855 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3857 if (Tmp4.getNode()) {
3858 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3859 Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3861 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3862 Tmp4 = DAG.getCondCode(ISD::SETNE);
3863 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3864 Tmp2, Tmp3, Node->getOperand(4));
3866 Results.push_back(Tmp1);
3869 case ISD::BUILD_VECTOR:
3870 Results.push_back(ExpandBUILD_VECTOR(Node));
3875 // Scalarize vector SRA/SRL/SHL.
3876 EVT VT = Node->getValueType(0);
3877 assert(VT.isVector() && "Unable to legalize non-vector shift");
3878 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3879 unsigned NumElem = VT.getVectorNumElements();
3881 SmallVector<SDValue, 8> Scalars;
3882 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3883 SDValue Ex = DAG.getNode(
3884 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0),
3885 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3886 SDValue Sh = DAG.getNode(
3887 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1),
3888 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3889 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3890 VT.getScalarType(), Ex, Sh));
3893 DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), Scalars);
3894 ReplaceNode(SDValue(Node, 0), Result);
3897 case ISD::GLOBAL_OFFSET_TABLE:
3898 case ISD::GlobalAddress:
3899 case ISD::GlobalTLSAddress:
3900 case ISD::ExternalSymbol:
3901 case ISD::ConstantPool:
3902 case ISD::JumpTable:
3903 case ISD::INTRINSIC_W_CHAIN:
3904 case ISD::INTRINSIC_WO_CHAIN:
3905 case ISD::INTRINSIC_VOID:
3906 // FIXME: Custom lowering for these operations shouldn't return null!
3910 // Replace the original node with the legalized result.
3911 if (Results.empty())
3914 ReplaceNode(Node, Results.data());
3918 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3919 SmallVector<SDValue, 8> Results;
3921 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
3922 unsigned Opc = Node->getOpcode();
3924 case ISD::ATOMIC_FENCE: {
3925 // If the target didn't lower this, lower it to '__sync_synchronize()' call
3926 // FIXME: handle "fence singlethread" more efficiently.
3927 TargetLowering::ArgListTy Args;
3929 TargetLowering::CallLoweringInfo CLI(DAG);
3931 .setChain(Node->getOperand(0))
3932 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3933 DAG.getExternalSymbol("__sync_synchronize",
3934 TLI.getPointerTy(DAG.getDataLayout())),
3935 std::move(Args), 0);
3937 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3939 Results.push_back(CallResult.second);
3942 // By default, atomic intrinsics are marked Legal and lowered. Targets
3943 // which don't support them directly, however, may want libcalls, in which
3944 // case they mark them Expand, and we get here.
3945 case ISD::ATOMIC_SWAP:
3946 case ISD::ATOMIC_LOAD_ADD:
3947 case ISD::ATOMIC_LOAD_SUB:
3948 case ISD::ATOMIC_LOAD_AND:
3949 case ISD::ATOMIC_LOAD_OR:
3950 case ISD::ATOMIC_LOAD_XOR:
3951 case ISD::ATOMIC_LOAD_NAND:
3952 case ISD::ATOMIC_LOAD_MIN:
3953 case ISD::ATOMIC_LOAD_MAX:
3954 case ISD::ATOMIC_LOAD_UMIN:
3955 case ISD::ATOMIC_LOAD_UMAX:
3956 case ISD::ATOMIC_CMP_SWAP: {
3957 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3958 RTLIB::Libcall LC = RTLIB::getATOMIC(Opc, VT);
3959 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3961 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false);
3962 Results.push_back(Tmp.first);
3963 Results.push_back(Tmp.second);
3967 // If this operation is not supported, lower it to 'abort()' call
3968 TargetLowering::ArgListTy Args;
3969 TargetLowering::CallLoweringInfo CLI(DAG);
3971 .setChain(Node->getOperand(0))
3972 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3973 DAG.getExternalSymbol("abort",
3974 TLI.getPointerTy(DAG.getDataLayout())),
3975 std::move(Args), 0);
3976 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3978 Results.push_back(CallResult.second);
3982 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
3983 RTLIB::FMIN_F80, RTLIB::FMIN_F128,
3984 RTLIB::FMIN_PPCF128));
3987 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
3988 RTLIB::FMAX_F80, RTLIB::FMAX_F128,
3989 RTLIB::FMAX_PPCF128));
3992 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3993 RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3994 RTLIB::SQRT_PPCF128));
3997 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3998 RTLIB::SIN_F80, RTLIB::SIN_F128,
3999 RTLIB::SIN_PPCF128));
4002 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
4003 RTLIB::COS_F80, RTLIB::COS_F128,
4004 RTLIB::COS_PPCF128));
4007 // Expand into sincos libcall.
4008 ExpandSinCosLibCall(Node, Results);
4011 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
4012 RTLIB::LOG_F80, RTLIB::LOG_F128,
4013 RTLIB::LOG_PPCF128));
4016 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
4017 RTLIB::LOG2_F80, RTLIB::LOG2_F128,
4018 RTLIB::LOG2_PPCF128));
4021 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
4022 RTLIB::LOG10_F80, RTLIB::LOG10_F128,
4023 RTLIB::LOG10_PPCF128));
4026 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
4027 RTLIB::EXP_F80, RTLIB::EXP_F128,
4028 RTLIB::EXP_PPCF128));
4031 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
4032 RTLIB::EXP2_F80, RTLIB::EXP2_F128,
4033 RTLIB::EXP2_PPCF128));
4036 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
4037 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
4038 RTLIB::TRUNC_PPCF128));
4041 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
4042 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
4043 RTLIB::FLOOR_PPCF128));
4046 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4047 RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4048 RTLIB::CEIL_PPCF128));
4051 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4052 RTLIB::RINT_F80, RTLIB::RINT_F128,
4053 RTLIB::RINT_PPCF128));
4055 case ISD::FNEARBYINT:
4056 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4057 RTLIB::NEARBYINT_F64,
4058 RTLIB::NEARBYINT_F80,
4059 RTLIB::NEARBYINT_F128,
4060 RTLIB::NEARBYINT_PPCF128));
4063 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4067 RTLIB::ROUND_PPCF128));
4070 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
4071 RTLIB::POWI_F80, RTLIB::POWI_F128,
4072 RTLIB::POWI_PPCF128));
4075 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
4076 RTLIB::POW_F80, RTLIB::POW_F128,
4077 RTLIB::POW_PPCF128));
4080 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
4081 RTLIB::DIV_F80, RTLIB::DIV_F128,
4082 RTLIB::DIV_PPCF128));
4085 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
4086 RTLIB::REM_F80, RTLIB::REM_F128,
4087 RTLIB::REM_PPCF128));
4090 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4091 RTLIB::FMA_F80, RTLIB::FMA_F128,
4092 RTLIB::FMA_PPCF128));
4095 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4096 RTLIB::ADD_F80, RTLIB::ADD_F128,
4097 RTLIB::ADD_PPCF128));
4100 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4101 RTLIB::MUL_F80, RTLIB::MUL_F128,
4102 RTLIB::MUL_PPCF128));
4104 case ISD::FP16_TO_FP:
4105 if (Node->getValueType(0) == MVT::f32) {
4106 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4109 case ISD::FP_TO_FP16: {
4111 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4112 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4113 Results.push_back(ExpandLibCall(LC, Node, false));
4117 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4118 RTLIB::SUB_F80, RTLIB::SUB_F128,
4119 RTLIB::SUB_PPCF128));
4122 Results.push_back(ExpandIntLibCall(Node, true,
4124 RTLIB::SREM_I16, RTLIB::SREM_I32,
4125 RTLIB::SREM_I64, RTLIB::SREM_I128));
4128 Results.push_back(ExpandIntLibCall(Node, false,
4130 RTLIB::UREM_I16, RTLIB::UREM_I32,
4131 RTLIB::UREM_I64, RTLIB::UREM_I128));
4134 Results.push_back(ExpandIntLibCall(Node, true,
4136 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4137 RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4140 Results.push_back(ExpandIntLibCall(Node, false,
4142 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4143 RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4147 // Expand into divrem libcall
4148 ExpandDivRemLibCall(Node, Results);
4151 Results.push_back(ExpandIntLibCall(Node, false,
4153 RTLIB::MUL_I16, RTLIB::MUL_I32,
4154 RTLIB::MUL_I64, RTLIB::MUL_I128));
4158 // Replace the original node with the legalized result.
4159 if (!Results.empty())
4160 ReplaceNode(Node, Results.data());
4163 // Determine the vector type to use in place of an original scalar element when
4164 // promoting equally sized vectors.
4165 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4166 MVT EltVT, MVT NewEltVT) {
4167 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4168 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4169 assert(TLI.isTypeLegal(MidVT) && "unexpected");
4173 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4174 SmallVector<SDValue, 8> Results;
4175 MVT OVT = Node->getSimpleValueType(0);
4176 if (Node->getOpcode() == ISD::UINT_TO_FP ||
4177 Node->getOpcode() == ISD::SINT_TO_FP ||
4178 Node->getOpcode() == ISD::SETCC ||
4179 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4180 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4181 OVT = Node->getOperand(0).getSimpleValueType();
4183 if (Node->getOpcode() == ISD::BR_CC)
4184 OVT = Node->getOperand(2).getSimpleValueType();
4185 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4187 SDValue Tmp1, Tmp2, Tmp3;
4188 switch (Node->getOpcode()) {
4190 case ISD::CTTZ_ZERO_UNDEF:
4192 case ISD::CTLZ_ZERO_UNDEF:
4194 // Zero extend the argument.
4195 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4196 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4197 // already the correct result.
4198 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4199 if (Node->getOpcode() == ISD::CTTZ) {
4200 // FIXME: This should set a bit in the zero extended value instead.
4201 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT),
4202 Tmp1, DAG.getConstant(NVT.getSizeInBits(), dl, NVT),
4204 Tmp1 = DAG.getSelect(dl, NVT, Tmp2,
4205 DAG.getConstant(OVT.getSizeInBits(), dl, NVT), Tmp1);
4206 } else if (Node->getOpcode() == ISD::CTLZ ||
4207 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4208 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4209 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4210 DAG.getConstant(NVT.getSizeInBits() -
4211 OVT.getSizeInBits(), dl, NVT));
4213 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4216 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4217 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4218 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
4220 ISD::SRL, dl, NVT, Tmp1,
4221 DAG.getConstant(DiffBits, dl,
4222 TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4223 Results.push_back(Tmp1);
4226 case ISD::FP_TO_UINT:
4227 case ISD::FP_TO_SINT:
4228 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
4229 Node->getOpcode() == ISD::FP_TO_SINT, dl);
4230 Results.push_back(Tmp1);
4232 case ISD::UINT_TO_FP:
4233 case ISD::SINT_TO_FP:
4234 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
4235 Node->getOpcode() == ISD::SINT_TO_FP, dl);
4236 Results.push_back(Tmp1);
4239 SDValue Chain = Node->getOperand(0); // Get the chain.
4240 SDValue Ptr = Node->getOperand(1); // Get the pointer.
4243 if (OVT.isVector()) {
4244 TruncOp = ISD::BITCAST;
4246 assert(OVT.isInteger()
4247 && "VAARG promotion is supported only for vectors or integer types");
4248 TruncOp = ISD::TRUNCATE;
4251 // Perform the larger operation, then convert back
4252 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4253 Node->getConstantOperandVal(3));
4254 Chain = Tmp1.getValue(1);
4256 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4258 // Modified the chain result - switch anything that used the old chain to
4260 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4261 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4263 UpdatedNodes->insert(Tmp2.getNode());
4264 UpdatedNodes->insert(Chain.getNode());
4272 unsigned ExtOp, TruncOp;
4273 if (OVT.isVector()) {
4274 ExtOp = ISD::BITCAST;
4275 TruncOp = ISD::BITCAST;
4277 assert(OVT.isInteger() && "Cannot promote logic operation");
4278 ExtOp = ISD::ANY_EXTEND;
4279 TruncOp = ISD::TRUNCATE;
4281 // Promote each of the values to the new type.
4282 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4283 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4284 // Perform the larger operation, then convert back
4285 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4286 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4290 unsigned ExtOp, TruncOp;
4291 if (Node->getValueType(0).isVector() ||
4292 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4293 ExtOp = ISD::BITCAST;
4294 TruncOp = ISD::BITCAST;
4295 } else if (Node->getValueType(0).isInteger()) {
4296 ExtOp = ISD::ANY_EXTEND;
4297 TruncOp = ISD::TRUNCATE;
4299 ExtOp = ISD::FP_EXTEND;
4300 TruncOp = ISD::FP_ROUND;
4302 Tmp1 = Node->getOperand(0);
4303 // Promote each of the values to the new type.
4304 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4305 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4306 // Perform the larger operation, then round down.
4307 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4308 if (TruncOp != ISD::FP_ROUND)
4309 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4311 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4312 DAG.getIntPtrConstant(0, dl));
4313 Results.push_back(Tmp1);
4316 case ISD::VECTOR_SHUFFLE: {
4317 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4319 // Cast the two input vectors.
4320 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4321 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4323 // Convert the shuffle mask to the right # elements.
4324 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4325 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4326 Results.push_back(Tmp1);
4330 unsigned ExtOp = ISD::FP_EXTEND;
4331 if (NVT.isInteger()) {
4332 ISD::CondCode CCCode =
4333 cast<CondCodeSDNode>(Node->getOperand(2))->get();
4334 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4336 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4337 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4338 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
4339 Tmp1, Tmp2, Node->getOperand(2)));
4343 unsigned ExtOp = ISD::FP_EXTEND;
4344 if (NVT.isInteger()) {
4345 ISD::CondCode CCCode =
4346 cast<CondCodeSDNode>(Node->getOperand(1))->get();
4347 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4349 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4350 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4351 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4352 Node->getOperand(0), Node->getOperand(1),
4353 Tmp1, Tmp2, Node->getOperand(4)));
4364 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4365 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4366 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4368 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4369 Tmp3, DAG.getIntPtrConstant(0, dl)));
4373 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4374 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4375 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4377 DAG.getNode(ISD::FP_ROUND, dl, OVT,
4378 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4379 DAG.getIntPtrConstant(0, dl)));
4382 case ISD::FCOPYSIGN:
4384 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4385 Tmp2 = Node->getOperand(1);
4386 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4388 // fcopysign doesn't change anything but the sign bit, so
4389 // (fp_round (fcopysign (fpext a), b))
4391 // (fp_round (fpext a))
4392 // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4393 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4394 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4395 Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4401 case ISD::FNEARBYINT:
4414 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4415 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4416 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4417 Tmp2, DAG.getIntPtrConstant(0, dl)));
4420 case ISD::BUILD_VECTOR: {
4421 MVT EltVT = OVT.getVectorElementType();
4422 MVT NewEltVT = NVT.getVectorElementType();
4424 // Handle bitcasts to a different vector type with the same total bit size
4426 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4428 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4430 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4431 "Invalid promote type for build_vector");
4432 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4434 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4436 SmallVector<SDValue, 8> NewOps;
4437 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4438 SDValue Op = Node->getOperand(I);
4439 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4443 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4444 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4445 Results.push_back(CvtVec);
4448 case ISD::EXTRACT_VECTOR_ELT: {
4449 MVT EltVT = OVT.getVectorElementType();
4450 MVT NewEltVT = NVT.getVectorElementType();
4452 // Handle bitcasts to a different vector type with the same total bit size.
4454 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4456 // v4i32:castx = bitcast x:v2i64
4459 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4460 // (i32 (extract_vector_elt castx, (2 * y + 1)))
4463 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4464 "Invalid promote type for extract_vector_elt");
4465 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4467 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4468 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4470 SDValue Idx = Node->getOperand(1);
4471 EVT IdxVT = Idx.getValueType();
4473 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4474 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4476 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4478 SmallVector<SDValue, 8> NewOps;
4479 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4480 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4481 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4483 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4485 NewOps.push_back(Elt);
4488 SDValue NewVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MidVT, NewOps);
4490 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4493 case ISD::INSERT_VECTOR_ELT: {
4494 MVT EltVT = OVT.getVectorElementType();
4495 MVT NewEltVT = NVT.getVectorElementType();
4497 // Handle bitcasts to a different vector type with the same total bit size
4499 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4501 // v4i32:castx = bitcast x:v2i64
4502 // v2i32:casty = bitcast y:i64
4505 // (v4i32 insert_vector_elt
4506 // (v4i32 insert_vector_elt v4i32:castx,
4507 // (extract_vector_elt casty, 0), 2 * z),
4508 // (extract_vector_elt casty, 1), (2 * z + 1))
4510 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4511 "Invalid promote type for insert_vector_elt");
4512 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4514 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4515 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4517 SDValue Val = Node->getOperand(1);
4518 SDValue Idx = Node->getOperand(2);
4519 EVT IdxVT = Idx.getValueType();
4522 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4523 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4525 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4526 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4528 SDValue NewVec = CastVec;
4529 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4530 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4531 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4533 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4534 CastVal, IdxOffset);
4536 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4537 NewVec, Elt, InEltIdx);
4540 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4543 case ISD::SCALAR_TO_VECTOR: {
4544 MVT EltVT = OVT.getVectorElementType();
4545 MVT NewEltVT = NVT.getVectorElementType();
4547 // Handle bitcasts to different vector type with the smae total bit size.
4549 // e.g. v2i64 = scalar_to_vector x:i64
4551 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4554 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4555 SDValue Val = Node->getOperand(0);
4558 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4559 SDValue Undef = DAG.getUNDEF(MidVT);
4561 SmallVector<SDValue, 8> NewElts;
4562 NewElts.push_back(CastVal);
4563 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4564 NewElts.push_back(Undef);
4566 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4567 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4568 Results.push_back(CvtVec);
4573 // Replace the original node with the legalized result.
4574 if (!Results.empty())
4575 ReplaceNode(Node, Results.data());
4578 /// This is the entry point for the file.
4579 void SelectionDAG::Legalize() {
4580 AssignTopologicalOrder();
4582 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4583 SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4585 // Visit all the nodes. We start in topological order, so that we see
4586 // nodes with their original operands intact. Legalization can produce
4587 // new nodes which may themselves need to be legalized. Iterate until all
4588 // nodes have been legalized.
4590 bool AnyLegalized = false;
4591 for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4595 if (N->use_empty() && N != getRoot().getNode()) {
4601 if (LegalizedNodes.insert(N).second) {
4602 AnyLegalized = true;
4603 Legalizer.LegalizeOp(N);
4605 if (N->use_empty() && N != getRoot().getNode()) {
4616 // Remove dead nodes now.
4620 bool SelectionDAG::LegalizeOp(SDNode *N,
4621 SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4622 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4623 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4625 // Directly insert the node in question, and legalize it. This will recurse
4626 // as needed through operands.
4627 LegalizedNodes.insert(N);
4628 Legalizer.LegalizeOp(N);
4630 return LegalizedNodes.count(N);