1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "sched-instrs"
16 #include "llvm/Operator.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
25 #include "llvm/MC/MCInstrItineraries.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 #include "llvm/Target/TargetSubtargetInfo.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/ADT/SmallSet.h"
35 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
36 const MachineLoopInfo &mli,
37 const MachineDominatorTree &mdt,
40 : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
41 InstrItins(mf.getTarget().getInstrItineraryData()), LIS(lis),
42 IsPostRA(IsPostRAFlag), UnitLatencies(false), LoopRegs(MLI, MDT),
44 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
46 assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
47 "Virtual registers must be removed prior to PostRA scheduling");
50 /// getUnderlyingObjectFromInt - This is the function that does the work of
51 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
52 static const Value *getUnderlyingObjectFromInt(const Value *V) {
54 if (const Operator *U = dyn_cast<Operator>(V)) {
55 // If we find a ptrtoint, we can transfer control back to the
56 // regular getUnderlyingObjectFromInt.
57 if (U->getOpcode() == Instruction::PtrToInt)
58 return U->getOperand(0);
59 // If we find an add of a constant or a multiplied value, it's
60 // likely that the other operand will lead us to the base
61 // object. We don't have to worry about the case where the
62 // object address is somehow being computed by the multiply,
63 // because our callers only care when the result is an
64 // identifibale object.
65 if (U->getOpcode() != Instruction::Add ||
66 (!isa<ConstantInt>(U->getOperand(1)) &&
67 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
73 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
77 /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
78 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
79 static const Value *getUnderlyingObject(const Value *V) {
80 // First just call Value::getUnderlyingObject to let it do what it does.
82 V = GetUnderlyingObject(V);
83 // If it found an inttoptr, use special code to continue climing.
84 if (Operator::getOpcode(V) != Instruction::IntToPtr)
86 const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
87 // If that succeeded in finding a pointer, continue the search.
88 if (!O->getType()->isPointerTy())
95 /// getUnderlyingObjectForInstr - If this machine instr has memory reference
96 /// information and it can be tracked to a normal reference to a known
97 /// object, return the Value for that object. Otherwise return null.
98 static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
99 const MachineFrameInfo *MFI,
102 if (!MI->hasOneMemOperand() ||
103 !(*MI->memoperands_begin())->getValue() ||
104 (*MI->memoperands_begin())->isVolatile())
107 const Value *V = (*MI->memoperands_begin())->getValue();
111 V = getUnderlyingObject(V);
112 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
113 // For now, ignore PseudoSourceValues which may alias LLVM IR values
114 // because the code that uses this function has no way to cope with
116 if (PSV->isAliased(MFI))
119 MayAlias = PSV->mayAlias(MFI);
123 if (isIdentifiedObject(V))
129 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *BB) {
130 LoopRegs.Deps.clear();
131 if (MachineLoop *ML = MLI.getLoopFor(BB))
132 if (BB == ML->getLoopLatch())
133 LoopRegs.VisitLoop(ML);
136 void ScheduleDAGInstrs::finishBlock() {
140 /// Initialize the map with the number of registers.
141 void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
142 PhysRegSet.setUniverse(Limit);
143 SUnits.resize(Limit);
146 /// Clear the map without deallocating storage.
147 void Reg2SUnitsMap::clear() {
148 for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
154 /// Initialize the DAG and common scheduler state for the current scheduling
155 /// region. This does not actually create the DAG, only clears it. The
156 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
158 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
159 MachineBasicBlock::iterator begin,
160 MachineBasicBlock::iterator end,
167 // Check to see if the scheduler cares about latencies.
168 UnitLatencies = forceUnitLatencies();
170 ScheduleDAG::clearDAG();
173 /// Close the current scheduling region. Don't clear any state in case the
174 /// driver wants to refer to the previous scheduling region.
175 void ScheduleDAGInstrs::exitRegion() {
179 /// addSchedBarrierDeps - Add dependencies from instructions in the current
180 /// list of instructions being scheduled to scheduling barrier by adding
181 /// the exit SU to the register defs and use list. This is because we want to
182 /// make sure instructions which define registers that are either used by
183 /// the terminator or are live-out are properly scheduled. This is
184 /// especially important when the definition latency of the return value(s)
185 /// are too high to be hidden by the branch or when the liveout registers
186 /// used by instructions in the fallthrough block.
187 void ScheduleDAGInstrs::addSchedBarrierDeps() {
188 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
189 ExitSU.setInstr(ExitMI);
190 bool AllDepKnown = ExitMI &&
191 (ExitMI->isCall() || ExitMI->isBarrier());
192 if (ExitMI && AllDepKnown) {
193 // If it's a call or a barrier, add dependencies on the defs and uses of
195 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
196 const MachineOperand &MO = ExitMI->getOperand(i);
197 if (!MO.isReg() || MO.isDef()) continue;
198 unsigned Reg = MO.getReg();
199 if (Reg == 0) continue;
201 if (TRI->isPhysicalRegister(Reg))
202 Uses[Reg].push_back(&ExitSU);
204 assert(!IsPostRA && "Virtual register encountered after regalloc.");
207 // For others, e.g. fallthrough, conditional branch, assume the exit
208 // uses all the registers that are livein to the successor blocks.
209 SmallSet<unsigned, 8> Seen;
210 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
211 SE = BB->succ_end(); SI != SE; ++SI)
212 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
213 E = (*SI)->livein_end(); I != E; ++I) {
215 if (Seen.insert(Reg))
216 Uses[Reg].push_back(&ExitSU);
221 /// MO is an operand of SU's instruction that defines a physical register. Add
222 /// data dependencies from SU to any uses of the physical register.
223 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU,
224 const MachineOperand &MO) {
225 assert(MO.isDef() && "expect physreg def");
227 // Ask the target if address-backscheduling is desirable, and if so how much.
228 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
229 unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
230 unsigned DataLatency = SU->Latency;
232 for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
233 if (!Uses.contains(*Alias))
235 std::vector<SUnit*> &UseList = Uses[*Alias];
236 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
237 SUnit *UseSU = UseList[i];
240 unsigned LDataLatency = DataLatency;
241 // Optionally add in a special extra latency for nodes that
243 // TODO: Perhaps we should get rid of
244 // SpecialAddressLatency and just move this into
245 // adjustSchedDependency for the targets that care about it.
246 if (SpecialAddressLatency != 0 && !UnitLatencies &&
248 MachineInstr *UseMI = UseSU->getInstr();
249 const MCInstrDesc &UseMCID = UseMI->getDesc();
250 int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias);
251 assert(RegUseIndex >= 0 && "UseMI doesn't use register!");
252 if (RegUseIndex >= 0 &&
253 (UseMI->mayLoad() || UseMI->mayStore()) &&
254 (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
255 UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
256 LDataLatency += SpecialAddressLatency;
258 // Adjust the dependence latency using operand def/use
259 // information (if any), and then allow the target to
260 // perform its own adjustments.
261 const SDep& dep = SDep(SU, SDep::Data, LDataLatency, *Alias);
262 if (!UnitLatencies) {
263 computeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
264 ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
271 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
272 /// this SUnit to following instructions in the same scheduling region that
273 /// depend the physical register referenced at OperIdx.
274 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
275 const MachineInstr *MI = SU->getInstr();
276 const MachineOperand &MO = MI->getOperand(OperIdx);
278 // Optionally add output and anti dependencies. For anti
279 // dependencies we use a latency of 0 because for a multi-issue
280 // target we want to allow the defining instruction to issue
281 // in the same cycle as the using instruction.
282 // TODO: Using a latency of 1 here for output dependencies assumes
283 // there's no cost for reusing registers.
284 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
285 for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
286 if (!Defs.contains(*Alias))
288 std::vector<SUnit *> &DefList = Defs[*Alias];
289 for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
290 SUnit *DefSU = DefList[i];
291 if (DefSU == &ExitSU)
294 (Kind != SDep::Output || !MO.isDead() ||
295 !DefSU->getInstr()->registerDefIsDead(*Alias))) {
296 if (Kind == SDep::Anti)
297 DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
299 unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
301 DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
308 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
309 // retrieve the existing SUnits list for this register's uses.
310 // Push this SUnit on the use list.
311 Uses[MO.getReg()].push_back(SU);
314 addPhysRegDataDeps(SU, MO);
316 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
317 // retrieve the existing SUnits list for this register's defs.
318 std::vector<SUnit *> &DefList = Defs[MO.getReg()];
320 // If a def is going to wrap back around to the top of the loop,
322 if (!UnitLatencies && DefList.empty()) {
323 LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg());
324 if (I != LoopRegs.Deps.end()) {
325 const MachineOperand *UseMO = I->second.first;
326 unsigned Count = I->second.second;
327 const MachineInstr *UseMI = UseMO->getParent();
328 unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
329 const MCInstrDesc &UseMCID = UseMI->getDesc();
330 const TargetSubtargetInfo &ST =
331 TM.getSubtarget<TargetSubtargetInfo>();
332 unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
333 // TODO: If we knew the total depth of the region here, we could
334 // handle the case where the whole loop is inside the region but
335 // is large enough that the isScheduleHigh trick isn't needed.
336 if (UseMOIdx < UseMCID.getNumOperands()) {
337 // Currently, we only support scheduling regions consisting of
338 // single basic blocks. Check to see if the instruction is in
339 // the same region by checking to see if it has the same parent.
340 if (UseMI->getParent() != MI->getParent()) {
341 unsigned Latency = SU->Latency;
342 if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
343 Latency += SpecialAddressLatency;
344 // This is a wild guess as to the portion of the latency which
345 // will be overlapped by work done outside the current
346 // scheduling region.
347 Latency -= std::min(Latency, Count);
348 // Add the artificial edge.
349 ExitSU.addPred(SDep(SU, SDep::Order, Latency,
350 /*Reg=*/0, /*isNormalMemory=*/false,
351 /*isMustAlias=*/false,
352 /*isArtificial=*/true));
353 } else if (SpecialAddressLatency > 0 &&
354 UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
355 // The entire loop body is within the current scheduling region
356 // and the latency of this operation is assumed to be greater
357 // than the latency of the loop.
358 // TODO: Recursively mark data-edge predecessors as
359 // isScheduleHigh too.
360 SU->isScheduleHigh = true;
363 LoopRegs.Deps.erase(I);
367 // clear this register's use list
368 if (Uses.contains(MO.getReg()))
369 Uses[MO.getReg()].clear();
374 // Calls will not be reordered because of chain dependencies (see
375 // below). Since call operands are dead, calls may continue to be added
376 // to the DefList making dependence checking quadratic in the size of
377 // the block. Instead, we leave only one call at the back of the
380 while (!DefList.empty() && DefList.back()->isCall)
383 // Defs are pushed in the order they are visited and never reordered.
384 DefList.push_back(SU);
388 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
389 /// to instructions that occur later in the same scheduling region if they read
390 /// from or write to the virtual register defined at OperIdx.
392 /// TODO: Hoist loop induction variable increments. This has to be
393 /// reevaluated. Generally, IV scheduling should be done before coalescing.
394 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
395 const MachineInstr *MI = SU->getInstr();
396 unsigned Reg = MI->getOperand(OperIdx).getReg();
398 // SSA defs do not have output/anti dependencies.
399 // The current operand is a def, so we have at least one.
400 if (llvm::next(MRI.def_begin(Reg)) == MRI.def_end())
403 // Add output dependence to the next nearest def of this vreg.
405 // Unless this definition is dead, the output dependence should be
406 // transitively redundant with antidependencies from this definition's
407 // uses. We're conservative for now until we have a way to guarantee the uses
408 // are not eliminated sometime during scheduling. The output dependence edge
409 // is also useful if output latency exceeds def-use latency.
410 VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
411 if (DefI == VRegDefs.end())
412 VRegDefs.insert(VReg2SUnit(Reg, SU));
414 SUnit *DefSU = DefI->SU;
415 if (DefSU != SU && DefSU != &ExitSU) {
416 unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
418 DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
424 /// addVRegUseDeps - Add a register data dependency if the instruction that
425 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
426 /// register antidependency from this SUnit to instructions that occur later in
427 /// the same scheduling region if they write the virtual register.
429 /// TODO: Handle ExitSU "uses" properly.
430 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
431 MachineInstr *MI = SU->getInstr();
432 unsigned Reg = MI->getOperand(OperIdx).getReg();
434 // Lookup this operand's reaching definition.
435 assert(LIS && "vreg dependencies requires LiveIntervals");
436 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot();
437 LiveInterval *LI = &LIS->getInterval(Reg);
438 VNInfo *VNI = LI->getVNInfoBefore(UseIdx);
439 // VNI will be valid because MachineOperand::readsReg() is checked by caller.
440 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
441 // Phis and other noninstructions (after coalescing) have a NULL Def.
443 SUnit *DefSU = getSUnit(Def);
445 // The reaching Def lives within this scheduling region.
446 // Create a data dependence.
448 // TODO: Handle "special" address latencies cleanly.
449 const SDep &dep = SDep(DefSU, SDep::Data, DefSU->Latency, Reg);
450 if (!UnitLatencies) {
451 // Adjust the dependence latency using operand def/use information, then
452 // allow the target to perform its own adjustments.
453 computeOperandLatency(DefSU, SU, const_cast<SDep &>(dep));
454 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
455 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
461 // Add antidependence to the following def of the vreg it uses.
462 VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
463 if (DefI != VRegDefs.end() && DefI->SU != SU)
464 DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg));
467 /// Create an SUnit for each real instruction, numbered in top-down toplological
468 /// order. The instruction order A < B, implies that no edge exists from B to A.
470 /// Map each real instruction to its SUnit.
472 /// After initSUnits, the SUnits vector is cannot be resized and the scheduler
473 /// may hang onto SUnit pointers. We may relax this in the future by using SUnit
474 /// IDs instead of pointers.
475 void ScheduleDAGInstrs::initSUnits() {
476 // We'll be allocating one SUnit for each real instruction in the region,
477 // which is contained within a basic block.
478 SUnits.reserve(BB->size());
480 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
481 MachineInstr *MI = I;
482 if (MI->isDebugValue())
485 SUnit *SU = newSUnit(MI);
488 SU->isCall = MI->isCall();
489 SU->isCommutable = MI->isCommutable();
491 // Assign the Latency field of SU using target-provided information.
499 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA) {
500 // Create an SUnit for each real instruction.
503 // We build scheduling units by walking a block's instruction list from bottom
506 // Remember where a generic side-effecting instruction is as we procede.
507 SUnit *BarrierChain = 0, *AliasChain = 0;
509 // Memory references to specific known memory locations are tracked
510 // so that they can be given more precise dependencies. We track
511 // separately the known memory locations that may alias and those
512 // that are known not to alias
513 std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
514 std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
516 // Remove any stale debug info; sometimes BuildSchedGraph is called again
517 // without emitting the info from the previous call.
519 FirstDbgValue = NULL;
521 assert(Defs.empty() && Uses.empty() &&
522 "Only BuildGraph should update Defs/Uses");
523 Defs.setRegLimit(TRI->getNumRegs());
524 Uses.setRegLimit(TRI->getNumRegs());
526 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
527 // FIXME: Allow SparseSet to reserve space for the creation of virtual
528 // registers during scheduling. Don't artificially inflate the Universe
529 // because we want to assert that vregs are not created during DAG building.
530 VRegDefs.setUniverse(MRI.getNumVirtRegs());
532 // Model data dependencies between instructions being scheduled and the
534 addSchedBarrierDeps();
536 // Walk the list of instructions, from bottom moving up.
537 MachineInstr *PrevMI = NULL;
538 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
540 MachineInstr *MI = prior(MII);
542 DbgValues.push_back(std::make_pair(PrevMI, MI));
546 if (MI->isDebugValue()) {
551 assert(!MI->isTerminator() && !MI->isLabel() &&
552 "Cannot schedule terminators or labels!");
554 SUnit *SU = MISUnitMap[MI];
555 assert(SU && "No SUnit mapped to this MI");
557 // Add register-based dependencies (data, anti, and output).
558 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
559 const MachineOperand &MO = MI->getOperand(j);
560 if (!MO.isReg()) continue;
561 unsigned Reg = MO.getReg();
562 if (Reg == 0) continue;
564 if (TRI->isPhysicalRegister(Reg))
565 addPhysRegDeps(SU, j);
567 assert(!IsPostRA && "Virtual register encountered!");
569 addVRegDefDeps(SU, j);
570 else if (MO.readsReg()) // ignore undef operands
571 addVRegUseDeps(SU, j);
575 // Add chain dependencies.
576 // Chain dependencies used to enforce memory order should have
577 // latency of 0 (except for true dependency of Store followed by
578 // aliased Load... we estimate that with a single cycle of latency
579 // assuming the hardware will bypass)
580 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
581 // after stack slots are lowered to actual addresses.
582 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
583 // produce more precise dependence information.
584 #define STORE_LOAD_LATENCY 1
585 unsigned TrueMemOrderLatency = 0;
586 if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
587 (MI->hasVolatileMemoryRef() &&
588 (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
589 // Be conservative with these and add dependencies on all memory
590 // references, even those that are known to not alias.
591 for (std::map<const Value *, SUnit *>::iterator I =
592 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
593 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
595 for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
596 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
597 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
598 I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
600 NonAliasMemDefs.clear();
601 NonAliasMemUses.clear();
602 // Add SU to the barrier chain.
604 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
609 // Chain all possibly aliasing memory references though SU.
611 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
613 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
614 PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
615 for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
616 E = AliasMemDefs.end(); I != E; ++I) {
617 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
619 for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
620 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
621 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
622 I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
624 PendingLoads.clear();
625 AliasMemDefs.clear();
626 AliasMemUses.clear();
627 } else if (MI->mayStore()) {
628 bool MayAlias = true;
629 TrueMemOrderLatency = STORE_LOAD_LATENCY;
630 if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
631 // A store to a specific PseudoSourceValue. Add precise dependencies.
632 // Record the def in MemDefs, first adding a dep if there is
634 std::map<const Value *, SUnit *>::iterator I =
635 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
636 std::map<const Value *, SUnit *>::iterator IE =
637 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
639 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
640 /*isNormalMemory=*/true));
644 AliasMemDefs[V] = SU;
646 NonAliasMemDefs[V] = SU;
648 // Handle the uses in MemUses, if there are any.
649 std::map<const Value *, std::vector<SUnit *> >::iterator J =
650 ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
651 std::map<const Value *, std::vector<SUnit *> >::iterator JE =
652 ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
654 for (unsigned i = 0, e = J->second.size(); i != e; ++i)
655 J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
656 /*Reg=*/0, /*isNormalMemory=*/true));
660 // Add dependencies from all the PendingLoads, i.e. loads
661 // with no underlying object.
662 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
663 PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
664 // Add dependence on alias chain, if needed.
666 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
668 // Add dependence on barrier chain, if needed.
670 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
672 // Treat all other stores conservatively.
673 goto new_alias_chain;
676 if (!ExitSU.isPred(SU))
677 // Push store's up a bit to avoid them getting in between cmp
679 ExitSU.addPred(SDep(SU, SDep::Order, 0,
680 /*Reg=*/0, /*isNormalMemory=*/false,
681 /*isMustAlias=*/false,
682 /*isArtificial=*/true));
683 } else if (MI->mayLoad()) {
684 bool MayAlias = true;
685 TrueMemOrderLatency = 0;
686 if (MI->isInvariantLoad(AA)) {
687 // Invariant load, no chain dependencies needed!
690 getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
691 // A load from a specific PseudoSourceValue. Add precise dependencies.
692 std::map<const Value *, SUnit *>::iterator I =
693 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
694 std::map<const Value *, SUnit *>::iterator IE =
695 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
697 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
698 /*isNormalMemory=*/true));
700 AliasMemUses[V].push_back(SU);
702 NonAliasMemUses[V].push_back(SU);
704 // A load with no underlying object. Depend on all
705 // potentially aliasing stores.
706 for (std::map<const Value *, SUnit *>::iterator I =
707 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
708 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
710 PendingLoads.push_back(SU);
714 // Add dependencies on alias and barrier chains, if needed.
715 if (MayAlias && AliasChain)
716 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
718 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
723 FirstDbgValue = PrevMI;
728 PendingLoads.clear();
732 void ScheduleDAGInstrs::computeLatency(SUnit *SU) {
733 // Compute the latency for the node.
734 if (!InstrItins || InstrItins->isEmpty()) {
737 // Simplistic target-independent heuristic: assume that loads take
739 if (SU->getInstr()->mayLoad())
742 SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
746 void ScheduleDAGInstrs::computeOperandLatency(SUnit *Def, SUnit *Use,
748 if (!InstrItins || InstrItins->isEmpty())
751 // For a data dependency with a known register...
752 if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
755 const unsigned Reg = dep.getReg();
757 // ... find the definition of the register in the defining
759 MachineInstr *DefMI = Def->getInstr();
760 int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
762 const MachineOperand &MO = DefMI->getOperand(DefIdx);
763 if (MO.isReg() && MO.isImplicit() &&
764 DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
765 // This is an implicit def, getOperandLatency() won't return the correct
767 // %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
768 // %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
769 // What we want is to compute latency between def of %D6/%D7 and use of
771 unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
772 if (DefMI->getOperand(Op2).isReg())
775 MachineInstr *UseMI = Use->getInstr();
776 // For all uses of the register, calculate the maxmimum latency
779 for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
780 const MachineOperand &MO = UseMI->getOperand(i);
781 if (!MO.isReg() || !MO.isUse())
783 unsigned MOReg = MO.getReg();
787 int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
789 Latency = std::max(Latency, UseCycle);
792 // UseMI is null, then it must be a scheduling barrier.
793 if (!InstrItins || InstrItins->isEmpty())
795 unsigned DefClass = DefMI->getDesc().getSchedClass();
796 Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
799 // If we found a latency, then replace the existing dependence latency.
801 dep.setLatency(Latency);
805 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
806 SU->getInstr()->dump();
809 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
811 raw_string_ostream oss(s);
814 else if (SU == &ExitSU)
817 SU->getInstr()->print(oss);
821 /// Return the basic block label. It is not necessarilly unique because a block
822 /// contains multiple scheduling regions. But it is fine for visualization.
823 std::string ScheduleDAGInstrs::getDAGName() const {
824 return "dag." + BB->getFullName();