1 //===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "llvm/BasicBlock.h"
17 #include "llvm/CodeGen/Passes.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/RegAllocRegistry.h"
24 #include "llvm/Target/TargetInstrInfo.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/ADT/IndexedMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
35 STATISTIC(NumStores, "Number of stores added");
36 STATISTIC(NumLoads , "Number of loads added");
37 STATISTIC(NumFolded, "Number of loads/stores folded into instructions");
40 static RegisterRegAlloc
41 localRegAlloc("local", " local register allocator",
42 createLocalRegisterAllocator);
45 class VISIBILITY_HIDDEN RALocal : public MachineFunctionPass {
48 RALocal() : MachineFunctionPass((intptr_t)&ID) {}
50 const TargetMachine *TM;
52 const MRegisterInfo *MRI;
53 const TargetInstrInfo *TII;
56 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
57 // values are spilled.
58 std::map<unsigned, int> StackSlotForVirtReg;
60 // Virt2PhysRegMap - This map contains entries for each virtual register
61 // that is currently available in a physical register.
62 IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
64 unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
65 return Virt2PhysRegMap[VirtReg];
68 // PhysRegsUsed - This array is effectively a map, containing entries for
69 // each physical register that currently has a value (ie, it is in
70 // Virt2PhysRegMap). The value mapped to is the virtual register
71 // corresponding to the physical register (the inverse of the
72 // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
73 // because it is used by a future instruction, and to -2 if it is not
74 // allocatable. If the entry for a physical register is -1, then the
75 // physical register is "not in the map".
77 std::vector<int> PhysRegsUsed;
79 // PhysRegsUseOrder - This contains a list of the physical registers that
80 // currently have a virtual register value in them. This list provides an
81 // ordering of registers, imposing a reallocation order. This list is only
82 // used if all registers are allocated and we have to spill one, in which
83 // case we spill the least recently used register. Entries at the front of
84 // the list are the least recently used registers, entries at the back are
85 // the most recently used.
87 std::vector<unsigned> PhysRegsUseOrder;
89 // VirtRegModified - This bitset contains information about which virtual
90 // registers need to be spilled back to memory when their registers are
91 // scavenged. If a virtual register has simply been rematerialized, there
92 // is no reason to spill it to memory when we need the register back.
94 BitVector VirtRegModified;
96 void markVirtRegModified(unsigned Reg, bool Val = true) {
97 assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
98 Reg -= MRegisterInfo::FirstVirtualRegister;
100 VirtRegModified.set(Reg);
102 VirtRegModified.reset(Reg);
105 bool isVirtRegModified(unsigned Reg) const {
106 assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
107 assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
108 && "Illegal virtual register!");
109 return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
112 void AddToPhysRegsUseOrder(unsigned Reg) {
113 std::vector<unsigned>::iterator It =
114 std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg);
115 if (It != PhysRegsUseOrder.end())
116 PhysRegsUseOrder.erase(It);
117 PhysRegsUseOrder.push_back(Reg);
120 void MarkPhysRegRecentlyUsed(unsigned Reg) {
121 if (PhysRegsUseOrder.empty() ||
122 PhysRegsUseOrder.back() == Reg) return; // Already most recently used
124 for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
125 if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
126 unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle
127 PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
128 // Add it to the end of the list
129 PhysRegsUseOrder.push_back(RegMatch);
131 return; // Found an exact match, exit early
136 virtual const char *getPassName() const {
137 return "Local Register Allocator";
140 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
141 AU.addRequired<LiveVariables>();
142 AU.addRequiredID(PHIEliminationID);
143 AU.addRequiredID(TwoAddressInstructionPassID);
144 MachineFunctionPass::getAnalysisUsage(AU);
148 /// runOnMachineFunction - Register allocate the whole function
149 bool runOnMachineFunction(MachineFunction &Fn);
151 /// AllocateBasicBlock - Register allocate the specified basic block.
152 void AllocateBasicBlock(MachineBasicBlock &MBB);
155 /// areRegsEqual - This method returns true if the specified registers are
156 /// related to each other. To do this, it checks to see if they are equal
157 /// or if the first register is in the alias set of the second register.
159 bool areRegsEqual(unsigned R1, unsigned R2) const {
160 if (R1 == R2) return true;
161 for (const unsigned *AliasSet = MRI->getAliasSet(R2);
162 *AliasSet; ++AliasSet) {
163 if (*AliasSet == R1) return true;
168 /// getStackSpaceFor - This returns the frame index of the specified virtual
169 /// register on the stack, allocating space if necessary.
170 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
172 /// removePhysReg - This method marks the specified physical register as no
173 /// longer being in use.
175 void removePhysReg(unsigned PhysReg);
177 /// spillVirtReg - This method spills the value specified by PhysReg into
178 /// the virtual register slot specified by VirtReg. It then updates the RA
179 /// data structures to indicate the fact that PhysReg is now available.
181 void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
182 unsigned VirtReg, unsigned PhysReg);
184 /// spillPhysReg - This method spills the specified physical register into
185 /// the virtual register slot associated with it. If OnlyVirtRegs is set to
186 /// true, then the request is ignored if the physical register does not
187 /// contain a virtual register.
189 void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
190 unsigned PhysReg, bool OnlyVirtRegs = false);
192 /// assignVirtToPhysReg - This method updates local state so that we know
193 /// that PhysReg is the proper container for VirtReg now. The physical
194 /// register must not be used for anything else when this is called.
196 void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
198 /// isPhysRegAvailable - Return true if the specified physical register is
199 /// free and available for use. This also includes checking to see if
200 /// aliased registers are all free...
202 bool isPhysRegAvailable(unsigned PhysReg) const;
204 /// getFreeReg - Look to see if there is a free register available in the
205 /// specified register class. If not, return 0.
207 unsigned getFreeReg(const TargetRegisterClass *RC);
209 /// getReg - Find a physical register to hold the specified virtual
210 /// register. If all compatible physical registers are used, this method
211 /// spills the last used virtual register to the stack, and uses that
214 unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
217 /// reloadVirtReg - This method transforms the specified specified virtual
218 /// register use to refer to a physical register. This method may do this
219 /// in one of several ways: if the register is available in a physical
220 /// register already, it uses that physical register. If the value is not
221 /// in a physical register, and if there are physical registers available,
222 /// it loads it into a register. If register pressure is high, and it is
223 /// possible, it tries to fold the load of the virtual register into the
224 /// instruction itself. It avoids doing this if register pressure is low to
225 /// improve the chance that subsequent instructions can use the reloaded
226 /// value. This method returns the modified instruction.
228 MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
232 void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
235 char RALocal::ID = 0;
238 /// getStackSpaceFor - This allocates space for the specified virtual register
239 /// to be held on the stack.
240 int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
241 // Find the location Reg would belong...
242 std::map<unsigned, int>::iterator I =StackSlotForVirtReg.lower_bound(VirtReg);
244 if (I != StackSlotForVirtReg.end() && I->first == VirtReg)
245 return I->second; // Already has space allocated?
247 // Allocate a new stack object for this spill location...
248 int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
251 // Assign the slot...
252 StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx));
257 /// removePhysReg - This method marks the specified physical register as no
258 /// longer being in use.
260 void RALocal::removePhysReg(unsigned PhysReg) {
261 PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
263 std::vector<unsigned>::iterator It =
264 std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
265 if (It != PhysRegsUseOrder.end())
266 PhysRegsUseOrder.erase(It);
270 /// spillVirtReg - This method spills the value specified by PhysReg into the
271 /// virtual register slot specified by VirtReg. It then updates the RA data
272 /// structures to indicate the fact that PhysReg is now available.
274 void RALocal::spillVirtReg(MachineBasicBlock &MBB,
275 MachineBasicBlock::iterator I,
276 unsigned VirtReg, unsigned PhysReg) {
277 assert(VirtReg && "Spilling a physical register is illegal!"
278 " Must not have appropriate kill for the register or use exists beyond"
279 " the intended one.");
280 DOUT << " Spilling register " << MRI->getName(PhysReg)
281 << " containing %reg" << VirtReg;
283 const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo();
285 if (!isVirtRegModified(VirtReg))
286 DOUT << " which has not been modified, so no store necessary!";
288 // Otherwise, there is a virtual register corresponding to this physical
289 // register. We only need to spill it into its stack slot if it has been
291 if (isVirtRegModified(VirtReg)) {
292 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
293 int FrameIndex = getStackSpaceFor(VirtReg, RC);
294 DOUT << " to stack slot #" << FrameIndex;
295 TII->storeRegToStackSlot(MBB, I, PhysReg, true, FrameIndex, RC);
296 ++NumStores; // Update statistics
299 getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
302 removePhysReg(PhysReg);
306 /// spillPhysReg - This method spills the specified physical register into the
307 /// virtual register slot associated with it. If OnlyVirtRegs is set to true,
308 /// then the request is ignored if the physical register does not contain a
309 /// virtual register.
311 void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
312 unsigned PhysReg, bool OnlyVirtRegs) {
313 if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
314 assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
315 if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
316 spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
318 // If the selected register aliases any other registers, we must make
319 // sure that one of the aliases isn't alive.
320 for (const unsigned *AliasSet = MRI->getAliasSet(PhysReg);
321 *AliasSet; ++AliasSet)
322 if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register.
323 PhysRegsUsed[*AliasSet] != -2) // If allocatable.
324 if (PhysRegsUsed[*AliasSet])
325 spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
330 /// assignVirtToPhysReg - This method updates local state so that we know
331 /// that PhysReg is the proper container for VirtReg now. The physical
332 /// register must not be used for anything else when this is called.
334 void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
335 assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
336 // Update information to note the fact that this register was just used, and
338 PhysRegsUsed[PhysReg] = VirtReg;
339 getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
340 AddToPhysRegsUseOrder(PhysReg); // New use of PhysReg
344 /// isPhysRegAvailable - Return true if the specified physical register is free
345 /// and available for use. This also includes checking to see if aliased
346 /// registers are all free...
348 bool RALocal::isPhysRegAvailable(unsigned PhysReg) const {
349 if (PhysRegsUsed[PhysReg] != -1) return false;
351 // If the selected register aliases any other allocated registers, it is
353 for (const unsigned *AliasSet = MRI->getAliasSet(PhysReg);
354 *AliasSet; ++AliasSet)
355 if (PhysRegsUsed[*AliasSet] != -1) // Aliased register in use?
356 return false; // Can't use this reg then.
361 /// getFreeReg - Look to see if there is a free register available in the
362 /// specified register class. If not, return 0.
364 unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) {
365 // Get iterators defining the range of registers that are valid to allocate in
366 // this class, which also specifies the preferred allocation order.
367 TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
368 TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
370 for (; RI != RE; ++RI)
371 if (isPhysRegAvailable(*RI)) { // Is reg unused?
372 assert(*RI != 0 && "Cannot use register!");
373 return *RI; // Found an unused register!
379 /// getReg - Find a physical register to hold the specified virtual
380 /// register. If all compatible physical registers are used, this method spills
381 /// the last used virtual register to the stack, and uses that register.
383 unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I,
385 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
387 // First check to see if we have a free register of the requested type...
388 unsigned PhysReg = getFreeReg(RC);
390 // If we didn't find an unused register, scavenge one now!
392 assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
394 // Loop over all of the preallocated registers from the least recently used
395 // to the most recently used. When we find one that is capable of holding
396 // our register, use it.
397 for (unsigned i = 0; PhysReg == 0; ++i) {
398 assert(i != PhysRegsUseOrder.size() &&
399 "Couldn't find a register of the appropriate class!");
401 unsigned R = PhysRegsUseOrder[i];
403 // We can only use this register if it holds a virtual register (ie, it
404 // can be spilled). Do not use it if it is an explicitly allocated
405 // physical register!
406 assert(PhysRegsUsed[R] != -1 &&
407 "PhysReg in PhysRegsUseOrder, but is not allocated?");
408 if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) {
409 // If the current register is compatible, use it.
410 if (RC->contains(R)) {
414 // If one of the registers aliased to the current register is
415 // compatible, use it.
416 for (const unsigned *AliasIt = MRI->getAliasSet(R);
417 *AliasIt; ++AliasIt) {
418 if (RC->contains(*AliasIt) &&
419 // If this is pinned down for some reason, don't use it. For
420 // example, if CL is pinned, and we run across CH, don't use
421 // CH as justification for using scavenging ECX (which will
423 PhysRegsUsed[*AliasIt] != 0 &&
425 // Make sure the register is allocatable. Don't allocate SIL on
427 PhysRegsUsed[*AliasIt] != -2) {
428 PhysReg = *AliasIt; // Take an aliased register
436 assert(PhysReg && "Physical register not assigned!?!?");
438 // At this point PhysRegsUseOrder[i] is the least recently used register of
439 // compatible register class. Spill it to memory and reap its remains.
440 spillPhysReg(MBB, I, PhysReg);
443 // Now that we know which register we need to assign this to, do it now!
444 assignVirtToPhysReg(VirtReg, PhysReg);
449 /// reloadVirtReg - This method transforms the specified specified virtual
450 /// register use to refer to a physical register. This method may do this in
451 /// one of several ways: if the register is available in a physical register
452 /// already, it uses that physical register. If the value is not in a physical
453 /// register, and if there are physical registers available, it loads it into a
454 /// register. If register pressure is high, and it is possible, it tries to
455 /// fold the load of the virtual register into the instruction itself. It
456 /// avoids doing this if register pressure is low to improve the chance that
457 /// subsequent instructions can use the reloaded value. This method returns the
458 /// modified instruction.
460 MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
462 unsigned VirtReg = MI->getOperand(OpNum).getReg();
464 // If the virtual register is already available, just update the instruction
466 if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
467 MarkPhysRegRecentlyUsed(PR); // Already have this value available!
468 MI->getOperand(OpNum).setReg(PR); // Assign the input register
472 // Otherwise, we need to fold it into the current instruction, or reload it.
473 // If we have registers available to hold the value, use them.
474 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
475 unsigned PhysReg = getFreeReg(RC);
476 int FrameIndex = getStackSpaceFor(VirtReg, RC);
478 if (PhysReg) { // Register is available, allocate it!
479 assignVirtToPhysReg(VirtReg, PhysReg);
480 } else { // No registers available.
481 // If we can fold this spill into this instruction, do so now.
482 SmallVector<unsigned, 2> Ops;
483 Ops.push_back(OpNum);
484 if (MachineInstr* FMI = TII->foldMemoryOperand(MI, Ops, FrameIndex)) {
486 // Since we changed the address of MI, make sure to update live variables
487 // to know that the new instruction has the properties of the old one.
488 LV->instructionChanged(MI, FMI);
489 return MBB.insert(MBB.erase(MI), FMI);
492 // It looks like we can't fold this virtual register load into this
493 // instruction. Force some poor hapless value out of the register file to
494 // make room for the new register, and reload it.
495 PhysReg = getReg(MBB, MI, VirtReg);
498 markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
500 DOUT << " Reloading %reg" << VirtReg << " into "
501 << MRI->getName(PhysReg) << "\n";
503 // Add move instruction(s)
504 const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo();
505 TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
506 ++NumLoads; // Update statistics
508 MF->getRegInfo().setPhysRegUsed(PhysReg);
509 MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
513 /// isReadModWriteImplicitKill - True if this is an implicit kill for a
514 /// read/mod/write register, i.e. update partial register.
515 static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
516 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
517 MachineOperand& MO = MI->getOperand(i);
518 if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() &&
519 MO.isDef() && !MO.isDead())
525 /// isReadModWriteImplicitDef - True if this is an implicit def for a
526 /// read/mod/write register, i.e. update partial register.
527 static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
528 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
529 MachineOperand& MO = MI->getOperand(i);
530 if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() &&
531 !MO.isDef() && MO.isKill())
537 void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
538 // loop over each instruction
539 MachineBasicBlock::iterator MII = MBB.begin();
540 const TargetInstrInfo &TII = *TM->getInstrInfo();
542 DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
543 if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());
545 // If this is the first basic block in the machine function, add live-in
546 // registers as active.
547 if (&MBB == &*MF->begin()) {
548 for (MachineRegisterInfo::livein_iterator I=MF->getRegInfo().livein_begin(),
549 E = MF->getRegInfo().livein_end(); I != E; ++I) {
550 unsigned Reg = I->first;
551 MF->getRegInfo().setPhysRegUsed(Reg);
552 PhysRegsUsed[Reg] = 0; // It is free and reserved now
553 AddToPhysRegsUseOrder(Reg);
554 for (const unsigned *AliasSet = MRI->getSubRegisters(Reg);
555 *AliasSet; ++AliasSet) {
556 if (PhysRegsUsed[*AliasSet] != -2) {
557 AddToPhysRegsUseOrder(*AliasSet);
558 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
559 MF->getRegInfo().setPhysRegUsed(*AliasSet);
565 // Otherwise, sequentially allocate each instruction in the MBB.
566 while (MII != MBB.end()) {
567 MachineInstr *MI = MII++;
568 const TargetInstrDesc &TID = MI->getDesc();
569 DEBUG(DOUT << "\nStarting RegAlloc of: " << *MI;
570 DOUT << " Regs have values: ";
571 for (unsigned i = 0; i != MRI->getNumRegs(); ++i)
572 if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
573 DOUT << "[" << MRI->getName(i)
574 << ",%reg" << PhysRegsUsed[i] << "] ";
577 // Loop over the implicit uses, making sure that they are at the head of the
578 // use order list, so they don't get reallocated.
579 if (TID.ImplicitUses) {
580 for (const unsigned *ImplicitUses = TID.ImplicitUses;
581 *ImplicitUses; ++ImplicitUses)
582 MarkPhysRegRecentlyUsed(*ImplicitUses);
585 SmallVector<unsigned, 8> Kills;
586 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
587 MachineOperand& MO = MI->getOperand(i);
588 if (MO.isRegister() && MO.isKill()) {
589 if (!MO.isImplicit())
590 Kills.push_back(MO.getReg());
591 else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
592 // These are extra physical register kills when a sub-register
593 // is defined (def of a sub-register is a read/mod/write of the
594 // larger registers). Ignore.
595 Kills.push_back(MO.getReg());
599 // Get the used operands into registers. This has the potential to spill
600 // incoming values if we are out of registers. Note that we completely
601 // ignore physical register uses here. We assume that if an explicit
602 // physical register is referenced by the instruction, that it is guaranteed
603 // to be live-in, or the input is badly hosed.
605 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
606 MachineOperand& MO = MI->getOperand(i);
607 // here we are looking for only used operands (never def&use)
608 if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
609 MRegisterInfo::isVirtualRegister(MO.getReg()))
610 MI = reloadVirtReg(MBB, MI, i);
613 // If this instruction is the last user of this register, kill the
614 // value, freeing the register being used, so it doesn't need to be
615 // spilled to memory.
617 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
618 unsigned VirtReg = Kills[i];
619 unsigned PhysReg = VirtReg;
620 if (MRegisterInfo::isVirtualRegister(VirtReg)) {
621 // If the virtual register was never materialized into a register, it
622 // might not be in the map, but it won't hurt to zero it out anyway.
623 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
624 PhysReg = PhysRegSlot;
626 } else if (PhysRegsUsed[PhysReg] == -2) {
627 // Unallocatable register dead, ignore.
630 assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
631 "Silently clearing a virtual register?");
635 DOUT << " Last use of " << MRI->getName(PhysReg)
636 << "[%reg" << VirtReg <<"], removing it from live set\n";
637 removePhysReg(PhysReg);
638 for (const unsigned *AliasSet = MRI->getSubRegisters(PhysReg);
639 *AliasSet; ++AliasSet) {
640 if (PhysRegsUsed[*AliasSet] != -2) {
641 DOUT << " Last use of "
642 << MRI->getName(*AliasSet)
643 << "[%reg" << VirtReg <<"], removing it from live set\n";
644 removePhysReg(*AliasSet);
650 // Loop over all of the operands of the instruction, spilling registers that
651 // are defined, and marking explicit destinations in the PhysRegsUsed map.
652 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
653 MachineOperand& MO = MI->getOperand(i);
654 if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
655 MRegisterInfo::isPhysicalRegister(MO.getReg())) {
656 unsigned Reg = MO.getReg();
657 if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
658 // These are extra physical register defs when a sub-register
659 // is defined (def of a sub-register is a read/mod/write of the
660 // larger registers). Ignore.
661 if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
663 MF->getRegInfo().setPhysRegUsed(Reg);
664 spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
665 PhysRegsUsed[Reg] = 0; // It is free and reserved now
666 AddToPhysRegsUseOrder(Reg);
668 for (const unsigned *AliasSet = MRI->getSubRegisters(Reg);
669 *AliasSet; ++AliasSet) {
670 if (PhysRegsUsed[*AliasSet] != -2) {
671 MF->getRegInfo().setPhysRegUsed(*AliasSet);
672 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
673 AddToPhysRegsUseOrder(*AliasSet);
679 // Loop over the implicit defs, spilling them as well.
680 if (TID.ImplicitDefs) {
681 for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
682 *ImplicitDefs; ++ImplicitDefs) {
683 unsigned Reg = *ImplicitDefs;
684 if (PhysRegsUsed[Reg] != -2) {
685 spillPhysReg(MBB, MI, Reg, true);
686 AddToPhysRegsUseOrder(Reg);
687 PhysRegsUsed[Reg] = 0; // It is free and reserved now
689 MF->getRegInfo().setPhysRegUsed(Reg);
690 for (const unsigned *AliasSet = MRI->getSubRegisters(Reg);
691 *AliasSet; ++AliasSet) {
692 if (PhysRegsUsed[*AliasSet] != -2) {
693 AddToPhysRegsUseOrder(*AliasSet);
694 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
695 MF->getRegInfo().setPhysRegUsed(*AliasSet);
701 SmallVector<unsigned, 8> DeadDefs;
702 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
703 MachineOperand& MO = MI->getOperand(i);
704 if (MO.isRegister() && MO.isDead())
705 DeadDefs.push_back(MO.getReg());
708 // Okay, we have allocated all of the source operands and spilled any values
709 // that would be destroyed by defs of this instruction. Loop over the
710 // explicit defs and assign them to a register, spilling incoming values if
711 // we need to scavenge a register.
713 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
714 MachineOperand& MO = MI->getOperand(i);
715 if (MO.isRegister() && MO.isDef() && MO.getReg() &&
716 MRegisterInfo::isVirtualRegister(MO.getReg())) {
717 unsigned DestVirtReg = MO.getReg();
718 unsigned DestPhysReg;
720 // If DestVirtReg already has a value, use it.
721 if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
722 DestPhysReg = getReg(MBB, MI, DestVirtReg);
723 MF->getRegInfo().setPhysRegUsed(DestPhysReg);
724 markVirtRegModified(DestVirtReg);
725 MI->getOperand(i).setReg(DestPhysReg); // Assign the output register
729 // If this instruction defines any registers that are immediately dead,
732 for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
733 unsigned VirtReg = DeadDefs[i];
734 unsigned PhysReg = VirtReg;
735 if (MRegisterInfo::isVirtualRegister(VirtReg)) {
736 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
737 PhysReg = PhysRegSlot;
738 assert(PhysReg != 0);
740 } else if (PhysRegsUsed[PhysReg] == -2) {
741 // Unallocatable register dead, ignore.
746 DOUT << " Register " << MRI->getName(PhysReg)
747 << " [%reg" << VirtReg
748 << "] is never used, removing it frame live list\n";
749 removePhysReg(PhysReg);
750 for (const unsigned *AliasSet = MRI->getAliasSet(PhysReg);
751 *AliasSet; ++AliasSet) {
752 if (PhysRegsUsed[*AliasSet] != -2) {
753 DOUT << " Register " << MRI->getName(*AliasSet)
754 << " [%reg" << *AliasSet
755 << "] is never used, removing it frame live list\n";
756 removePhysReg(*AliasSet);
762 // Finally, if this is a noop copy instruction, zap it.
763 unsigned SrcReg, DstReg;
764 if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg) {
765 LV->removeVirtualRegistersKilled(MI);
766 LV->removeVirtualRegistersDead(MI);
771 MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
773 // Spill all physical registers holding virtual registers now.
774 for (unsigned i = 0, e = MRI->getNumRegs(); i != e; ++i)
775 if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
776 if (unsigned VirtReg = PhysRegsUsed[i])
777 spillVirtReg(MBB, MI, VirtReg, i);
782 // This checking code is very expensive.
784 for (unsigned i = MRegisterInfo::FirstVirtualRegister,
785 e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i)
786 if (unsigned PR = Virt2PhysRegMap[i]) {
787 cerr << "Register still mapped: " << i << " -> " << PR << "\n";
790 assert(AllOk && "Virtual registers still in phys regs?");
793 // Clear any physical register which appear live at the end of the basic
794 // block, but which do not hold any virtual registers. e.g., the stack
796 PhysRegsUseOrder.clear();
800 /// runOnMachineFunction - Register allocate the whole function
802 bool RALocal::runOnMachineFunction(MachineFunction &Fn) {
803 DOUT << "Machine Function " << "\n";
805 TM = &Fn.getTarget();
806 MRI = TM->getRegisterInfo();
807 TII = TM->getInstrInfo();
808 LV = &getAnalysis<LiveVariables>();
810 PhysRegsUsed.assign(MRI->getNumRegs(), -1);
812 // At various places we want to efficiently check to see whether a register
813 // is allocatable. To handle this, we mark all unallocatable registers as
814 // being pinned down, permanently.
816 BitVector Allocable = MRI->getAllocatableSet(Fn);
817 for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
819 PhysRegsUsed[i] = -2; // Mark the reg unallocable.
822 // initialize the virtual->physical register map to have a 'null'
823 // mapping for all virtual registers
824 unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg();
825 Virt2PhysRegMap.grow(LastVirtReg);
826 VirtRegModified.resize(LastVirtReg-MRegisterInfo::FirstVirtualRegister);
828 // Loop over all of the basic blocks, eliminating virtual register references
829 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
831 AllocateBasicBlock(*MBB);
833 StackSlotForVirtReg.clear();
834 PhysRegsUsed.clear();
835 VirtRegModified.clear();
836 Virt2PhysRegMap.clear();
840 FunctionPass *llvm::createLocalRegisterAllocator() {
841 return new RALocal();