Remove unecessary if statements when looping on ImplicitDefs.
[oota-llvm.git] / lib / CodeGen / RegAllocLinearScan.cpp
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
11 //
12 //===----------------------------------------------------------------------===//
13 #define DEBUG_TYPE "regalloc"
14 #include "llvm/Function.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/SSARegMap.h"
22 #include "llvm/Target/MRegisterInfo.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Target/TargetRegInfo.h"
26 #include "llvm/Support/CFG.h"
27 #include "Support/Debug.h"
28 #include "Support/DepthFirstIterator.h"
29 #include "Support/Statistic.h"
30 #include "Support/STLExtras.h"
31 #include <iostream>
32
33 using namespace llvm;
34
35 namespace {
36     Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled");
37
38     class RA : public MachineFunctionPass {
39     public:
40         typedef std::vector<const LiveIntervals::Interval*> IntervalPtrs;
41
42     private:
43         MachineFunction* mf_;
44         const TargetMachine* tm_;
45         const MRegisterInfo* mri_;
46         MachineBasicBlock* currentMbb_;
47         MachineBasicBlock::iterator currentInstr_;
48         typedef LiveIntervals::Intervals Intervals;
49         const Intervals* li_;
50         IntervalPtrs active_, inactive_;
51
52         typedef std::vector<unsigned> Regs;
53         Regs tempUseOperands_;
54         Regs tempDefOperands_;
55
56         Regs reserved_;
57
58         typedef LiveIntervals::MachineBasicBlockPtrs MachineBasicBlockPtrs;
59         MachineBasicBlockPtrs mbbs_;
60
61         typedef std::vector<unsigned> Phys2VirtMap;
62         Phys2VirtMap p2vMap_;
63
64         typedef std::map<unsigned, unsigned> Virt2PhysMap;
65         Virt2PhysMap v2pMap_;
66
67         typedef std::map<unsigned, int> Virt2StackSlotMap;
68         Virt2StackSlotMap v2ssMap_;
69
70         int instrAdded_;
71
72     public:
73         virtual const char* getPassName() const {
74             return "Linear Scan Register Allocator";
75         }
76
77         virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78             AU.addRequired<LiveVariables>();
79             AU.addRequired<LiveIntervals>();
80             MachineFunctionPass::getAnalysisUsage(AU);
81         }
82
83     private:
84         /// runOnMachineFunction - register allocate the whole function
85         bool runOnMachineFunction(MachineFunction&);
86
87         /// processActiveIntervals - expire old intervals and move
88         /// non-overlapping ones to the incative list
89         void processActiveIntervals(Intervals::const_iterator cur);
90
91         /// processInactiveIntervals - expire old intervals and move
92         /// overlapping ones to the active list
93         void processInactiveIntervals(Intervals::const_iterator cur);
94
95         /// assignStackSlotAtInterval - choose and spill
96         /// interval. Currently we spill the interval with the last
97         /// end point in the active and inactive lists and the current
98         /// interval
99         void assignStackSlotAtInterval(Intervals::const_iterator cur);
100
101         ///
102         /// register handling helpers
103         ///
104
105         /// reservePhysReg - reserves a physical register and spills
106         /// any value assigned to it if any
107         void reservePhysReg(unsigned reg);
108
109         /// clearReservedPhysReg - marks pysical register as free for
110         /// use
111         void clearReservedPhysReg(unsigned reg);
112
113         /// physRegAvailable - returns true if the specifed physical
114         /// register is available
115         bool physRegAvailable(unsigned physReg);
116
117         /// getFreePhysReg - return a free physical register for this
118         /// virtual register if we have one, otherwise return 0
119         unsigned getFreePhysReg(unsigned virtReg);
120
121
122         /// tempPhysRegAvailable - returns true if the specifed
123         /// temporary physical register is available
124         bool tempPhysRegAvailable(unsigned physReg);
125
126         /// getFreeTempPhysReg - return a free temprorary physical
127         /// register for this register class if we have one (should
128         /// never return 0)
129         unsigned getFreeTempPhysReg(const TargetRegisterClass* rc);
130
131         /// getFreeTempPhysReg - return a free temprorary physical
132         /// register for this virtual register if we have one (should
133         /// never return 0)
134         unsigned getFreeTempPhysReg(unsigned virtReg) {
135             const TargetRegisterClass* rc =
136                 mf_->getSSARegMap()->getRegClass(virtReg);
137             return getFreeTempPhysReg(rc);
138         }
139
140         /// assignVirt2PhysReg - assigns the free physical register to
141         /// the virtual register passed as arguments
142         void assignVirt2PhysReg(unsigned virtReg, unsigned physReg);
143
144         /// clearVirtReg - free the physical register associated with this
145         /// virtual register and disassociate virtual->physical and
146         /// physical->virtual mappings
147         void clearVirtReg(unsigned virtReg);
148
149         /// assignVirt2StackSlot - assigns this virtual register to a
150         /// stack slot
151         void assignVirt2StackSlot(unsigned virtReg);
152
153         /// getStackSlot - returns the offset of the specified
154         /// register on the stack
155         int getStackSlot(unsigned virtReg);
156
157         /// spillVirtReg - spills the virtual register
158         void spillVirtReg(unsigned virtReg);
159
160         /// loadPhysReg - loads to the physical register the value of
161         /// the virtual register specifed. Virtual register must have
162         /// an assigned stack slot
163         void loadVirt2PhysReg(unsigned virtReg, unsigned physReg);
164
165         void printVirt2PhysMap() const {
166             std::cerr << "allocated registers:\n";
167             for (Virt2PhysMap::const_iterator
168                      i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) {
169                 std::cerr << '[' << i->first << ','
170                           << mri_->getName(i->second) << "]\n";
171             }
172             std::cerr << '\n';
173         }
174         void printIntervals(const char* const str,
175                             RA::IntervalPtrs::const_iterator i,
176                             RA::IntervalPtrs::const_iterator e) const {
177             if (str) std::cerr << str << " intervals:\n";
178             for (; i != e; ++i) {
179                 std::cerr << "\t\t" << **i << " -> ";
180                 if ((*i)->reg < MRegisterInfo::FirstVirtualRegister) {
181                     std::cerr << mri_->getName((*i)->reg);
182                 }
183                 else {
184                     std::cerr << mri_->getName(v2pMap_.find((*i)->reg)->second);
185                 }
186                 std::cerr << '\n';
187             }
188         }
189     };
190 }
191
192 bool RA::runOnMachineFunction(MachineFunction &fn) {
193     mf_ = &fn;
194     tm_ = &fn.getTarget();
195     mri_ = tm_->getRegisterInfo();
196     li_ = &getAnalysis<LiveIntervals>().getIntervals();
197     active_.clear();
198     inactive_.clear();
199     mbbs_ = getAnalysis<LiveIntervals>().getOrderedMachineBasicBlockPtrs();
200     p2vMap_.resize(MRegisterInfo::FirstVirtualRegister-1);
201     p2vMap_.clear();
202     v2pMap_.clear();
203     v2ssMap_.clear();
204
205     DEBUG(
206         for (MachineBasicBlockPtrs::iterator
207                  mbbi = mbbs_.begin(), mbbe = mbbs_.end();
208              mbbi != mbbe; ++mbbi) {
209             MachineBasicBlock* mbb = *mbbi;
210             std::cerr << mbb->getBasicBlock()->getName() << '\n';
211             for (MachineBasicBlock::iterator
212                      ii = mbb->begin(), ie = mbb->end();
213                  ii != ie; ++ii) {
214                 MachineInstr* instr = *ii;
215                      
216                 std::cerr << "\t";
217                 instr->print(std::cerr, *tm_);
218             }
219         }
220         );
221
222     // FIXME: this will work only for the X86 backend. I need to
223     // device an algorthm to select the minimal (considering register
224     // aliasing) number of temp registers to reserve so that we have 2
225     // registers for each register class available.
226
227     // reserve R32: EDI, EBX,
228     //         R16:  DI,  BX,
229     //         R8:   DH,  BH,
230     //         RFP: FP5, FP6
231     reserved_.push_back(19); /* EDI */
232     reserved_.push_back(17); /* EBX */
233     reserved_.push_back(12); /*  DI */
234     reserved_.push_back( 7); /*  BX */
235     reserved_.push_back(11); /*  DH */
236     reserved_.push_back( 4); /*  BH */
237     reserved_.push_back(28); /* FP5 */
238     reserved_.push_back(29); /* FP6 */
239
240     // liner scan algorithm
241     for (Intervals::const_iterator
242              i = li_->begin(), e = li_->end(); i != e; ++i) {
243         DEBUG(std::cerr << "processing current interval: " << *i << '\n');
244
245         DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
246         DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end()));
247
248         processActiveIntervals(i);
249         // processInactiveIntervals(i);
250
251         // if this register is preallocated, look for an interval that
252         // overlaps with it and assign it to a memory location
253         if (i->reg < MRegisterInfo::FirstVirtualRegister) {
254             reservePhysReg(i->reg);
255             active_.push_back(&*i);
256         }
257         // otherwise we are allocating a virtual register. try to find
258         // a free physical register or spill an interval in order to
259         // assign it one (we could spill the current though).
260         else {
261             unsigned physReg = getFreePhysReg(i->reg);
262             if (!physReg) {
263                 assignStackSlotAtInterval(i);
264             }
265             else {
266                 assignVirt2PhysReg(i->reg, physReg);
267                 active_.push_back(&*i);
268             }
269         }
270     }
271     DEBUG(std::cerr << "finished register allocation\n");
272     DEBUG(printVirt2PhysMap());
273
274     DEBUG(std::cerr << "Rewrite machine code:\n");
275     for (MachineBasicBlockPtrs::iterator
276              mbbi = mbbs_.begin(), mbbe = mbbs_.end(); mbbi != mbbe; ++mbbi) {
277         instrAdded_ = 0;
278         currentMbb_ = *mbbi;
279
280         for (currentInstr_ = currentMbb_->begin();
281              currentInstr_ != currentMbb_->end(); ++currentInstr_) {
282
283             DEBUG(std::cerr << "\tinstruction: ";
284                   (*currentInstr_)->print(std::cerr, *tm_););
285
286             // use our current mapping and actually replace and
287             // virtual register with its allocated physical registers
288             DEBUG(std::cerr << "\t\treplacing virtual registers with mapped "
289                   "physical registers:\n");
290             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
291                  i != e; ++i) {
292                 MachineOperand& op = (*currentInstr_)->getOperand(i);
293                 if (op.isVirtualRegister()) {
294                     unsigned virtReg = op.getAllocatedRegNum();
295                     unsigned physReg = v2pMap_[virtReg];
296                     // if this virtual registers lives on the stack,
297                     // load it to a temporary physical register
298                     if (physReg) {
299                         DEBUG(std::cerr << "\t\t\t%reg" << virtReg
300                               << " -> " << mri_->getName(physReg) << '\n');
301                         (*currentInstr_)->SetMachineOperandReg(i, physReg);
302                     }
303                 }
304             }
305
306             DEBUG(std::cerr << "\t\tloading temporarily used operands to "
307                   "registers:\n");
308             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
309                  i != e; ++i) {
310                 MachineOperand& op = (*currentInstr_)->getOperand(i);
311                 if (op.isVirtualRegister() && op.opIsUse()) {
312                     unsigned virtReg = op.getAllocatedRegNum();
313                     unsigned physReg = v2pMap_[virtReg];
314                     if (!physReg) {
315                         physReg = getFreeTempPhysReg(virtReg);
316                     }
317                     loadVirt2PhysReg(virtReg, physReg);
318                     tempUseOperands_.push_back(virtReg);
319                     (*currentInstr_)->SetMachineOperandReg(i, physReg);
320                 }
321             }
322
323             DEBUG(std::cerr << "\t\tclearing temporarily used operands:\n");
324             for (unsigned i = 0, e = tempUseOperands_.size(); i != e; ++i) {
325                 clearVirtReg(tempUseOperands_[i]);
326             }
327             tempUseOperands_.clear();
328
329             DEBUG(std::cerr << "\t\tassigning temporarily defined operands to "
330                   "registers:\n");
331             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
332                  i != e; ++i) {
333                 MachineOperand& op = (*currentInstr_)->getOperand(i);
334                 if (op.isVirtualRegister() && !op.opIsUse()) {
335                     unsigned virtReg = op.getAllocatedRegNum();
336                     unsigned physReg = v2pMap_[virtReg];
337                     if (!physReg) {
338                         physReg = getFreeTempPhysReg(virtReg);
339                     }
340                     if (op.opIsDefAndUse()) {
341                         loadVirt2PhysReg(virtReg, physReg);
342                     }
343                     else {
344                         assignVirt2PhysReg(virtReg, physReg);
345                     }
346                     tempDefOperands_.push_back(virtReg);
347                     (*currentInstr_)->SetMachineOperandReg(i, physReg);
348                 }
349             }
350
351
352             // if the instruction is a two address instruction and the
353             // source operands are not identical we need to insert
354             // extra instructions.
355
356             unsigned opcode = (*currentInstr_)->getOpcode();
357             if (tm_->getInstrInfo().isTwoAddrInstr(opcode) &&
358                 (*currentInstr_)->getOperand(0).getAllocatedRegNum() !=
359                 (*currentInstr_)->getOperand(1).getAllocatedRegNum()) {
360                 assert((*currentInstr_)->getOperand(1).isRegister() &&
361                        (*currentInstr_)->getOperand(1).getAllocatedRegNum() &&
362                        (*currentInstr_)->getOperand(1).opIsUse() &&
363                        "Two address instruction invalid");
364
365                 unsigned regA =
366                     (*currentInstr_)->getOperand(0).getAllocatedRegNum();
367                 unsigned regB =
368                     (*currentInstr_)->getOperand(1).getAllocatedRegNum();
369                 unsigned regC =
370                     ((*currentInstr_)->getNumOperands() > 2 &&
371                      (*currentInstr_)->getOperand(2).isRegister()) ?
372                     (*currentInstr_)->getOperand(2).getAllocatedRegNum() :
373                     0;
374
375                 const TargetRegisterClass* rc = mri_->getRegClass(regA);
376
377                 // special case: "a = b op a". If b is a temporary
378                 // reserved register rewrite as: "b = b op a; a = b"
379                 // otherwise use a temporary reserved register t and
380                 // rewrite as: "t = b; t = t op a; a = t"
381                 if (regC && regA == regC) {
382                     // b is a temp reserved register
383                     if (find(reserved_.begin(), reserved_.end(),
384                              regB) != reserved_.end()) {
385                         (*currentInstr_)->SetMachineOperandReg(0, regB);
386                         ++currentInstr_;
387                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
388                                                           currentInstr_,
389                                                           regA,
390                                                           regB,
391                                                           rc);
392                         --currentInstr_;
393                     }
394                     // b is just a normal register
395                     else {
396                         unsigned tempReg = getFreeTempPhysReg(rc);
397                         assert (tempReg &&
398                                 "no free temp reserved physical register?");
399                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
400                                                           currentInstr_,
401                                                           tempReg,
402                                                           regB,
403                                                           rc);
404                         (*currentInstr_)->SetMachineOperandReg(0, tempReg);
405                         (*currentInstr_)->SetMachineOperandReg(1, tempReg);
406                         ++currentInstr_;
407                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
408                                                           currentInstr_,
409                                                           regA,
410                                                           tempReg,
411                                                           rc);
412                         --currentInstr_;
413                     }
414                 }
415                 // "a = b op c" gets rewritten to "a = b; a = a op c"
416                 else {
417                     instrAdded_ += mri_->copyRegToReg(*currentMbb_,
418                                                       currentInstr_,
419                                                       regA,
420                                                       regB,
421                                                       rc);
422                     (*currentInstr_)->SetMachineOperandReg(1, regA);
423                 }
424             }
425
426             DEBUG(std::cerr << "\t\tspilling temporarily defined operands "
427                   "of this instruction:\n");
428             ++currentInstr_; // we want to insert after this instruction
429             for (unsigned i = 0, e = tempDefOperands_.size(); i != e; ++i) {
430                 spillVirtReg(tempDefOperands_[i]);
431             }
432             --currentInstr_; // restore currentInstr_ iterator
433             tempDefOperands_.clear();
434         }
435
436         for (unsigned i = 0, e = p2vMap_.size(); i != e; ++i) {
437             assert(p2vMap_[i] != i &&
438                    "reserved physical registers at end of basic block?");
439         }
440     }
441
442     return true;
443 }
444
445 void RA::processActiveIntervals(Intervals::const_iterator cur)
446 {
447     DEBUG(std::cerr << "\tprocessing active intervals:\n");
448     for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) {
449         unsigned reg = (*i)->reg;
450         // remove expired intervals. we expire earlier because this if
451         // an interval expires this is going to be the last use. in
452         // this case we can reuse the register for a def in the same
453         // instruction
454         if ((*i)->expired(cur->start() + 1)) {
455             DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
456             if (reg < MRegisterInfo::FirstVirtualRegister) {
457                 clearReservedPhysReg(reg);
458             }
459             else {
460                 p2vMap_[v2pMap_[reg]] = 0;
461             }
462             // remove interval from active
463             i = active_.erase(i);
464         }
465         // move not active intervals to inactive list
466 //         else if (!(*i)->overlaps(curIndex)) {
467 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
468 //             unmarkReg(virtReg);
469 //             // add interval to inactive
470 //             inactive_.push_back(*i);
471 //             // remove interval from active
472 //             i = active_.erase(i);
473 //         }
474         else {
475             ++i;
476         }
477     }
478 }
479
480 void RA::processInactiveIntervals(Intervals::const_iterator cur)
481 {
482 //     DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
483 //     for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
484 //         unsigned virtReg = (*i)->reg;
485 //         // remove expired intervals
486 //         if ((*i)->expired(curIndex)) {
487 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
488 //             freePhysReg(virtReg);
489 //             // remove from inactive
490 //             i = inactive_.erase(i);
491 //         }
492 //         // move re-activated intervals in active list
493 //         else if ((*i)->overlaps(curIndex)) {
494 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
495 //             markReg(virtReg);
496 //             // add to active
497 //             active_.push_back(*i);
498 //             // remove from inactive
499 //             i = inactive_.erase(i);
500 //         }
501 //         else {
502 //             ++i;
503 //         }
504 //     }
505 }
506
507 void RA::assignStackSlotAtInterval(Intervals::const_iterator cur)
508 {
509     DEBUG(std::cerr << "\t\tassigning stack slot at interval "
510           << *cur << ":\n");
511     assert(!active_.empty() &&
512            "active set cannot be empty when choosing a register to spill");
513     const TargetRegisterClass* rcCur =
514         mf_->getSSARegMap()->getRegClass(cur->reg);
515
516     // find the interval for a virtual register that ends last in
517     // active and belongs to the same register class as the current
518     // interval
519     IntervalPtrs::iterator lastEndActive = active_.begin();
520     for (IntervalPtrs::iterator e = active_.end();
521          lastEndActive != e; ++lastEndActive) {
522         if ((*lastEndActive)->reg >= MRegisterInfo::FirstVirtualRegister) {
523             const TargetRegisterClass* rc =
524                 mri_->getRegClass(v2pMap_[(*lastEndActive)->reg]);
525             if (rcCur == rc) {
526                 break;
527             }
528         }
529     }
530     for (IntervalPtrs::iterator i = lastEndActive, e = active_.end();
531          i != e; ++i) {
532         if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
533             const TargetRegisterClass* rc =
534                 mri_->getRegClass(v2pMap_[(*i)->reg]);
535             if (rcCur == rc &&
536                 (*lastEndActive)->end() < (*i)->end()) {
537                 lastEndActive = i;
538             }
539         }
540     }
541
542     // find the interval for a virtual register that ends last in
543     // inactive and belongs to the same register class as the current
544     // interval
545     IntervalPtrs::iterator lastEndInactive = inactive_.begin();
546     for (IntervalPtrs::iterator e = inactive_.end();
547          lastEndInactive != e; ++lastEndInactive) {
548         if ((*lastEndInactive)->reg >= MRegisterInfo::FirstVirtualRegister) {
549             const TargetRegisterClass* rc =
550                 mri_->getRegClass(v2pMap_[(*lastEndInactive)->reg]);
551             if (rcCur == rc) {
552                 break;
553             }
554         }
555     }
556     for (IntervalPtrs::iterator i = lastEndInactive, e = inactive_.end();
557          i != e; ++i) {
558         if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
559             const TargetRegisterClass* rc =
560                 mri_->getRegClass(v2pMap_[(*i)->reg]);
561             if (rcCur == rc &&
562                 (*lastEndInactive)->end() < (*i)->end()) {
563                 lastEndInactive = i;
564             }
565         }
566     }
567
568     unsigned lastEndActiveInactive = 0;
569     if (lastEndActive != active_.end() &&
570         lastEndActiveInactive < (*lastEndActive)->end()) {
571         lastEndActiveInactive = (*lastEndActive)->end();
572     }
573     if (lastEndInactive != inactive_.end() &&
574         lastEndActiveInactive < (*lastEndInactive)->end()) {
575         lastEndActiveInactive = (*lastEndInactive)->end();
576     }
577
578     if (lastEndActiveInactive > cur->end()) {
579         if (lastEndInactive == inactive_.end() ||
580             (*lastEndActive)->end() > (*lastEndInactive)->end()) {
581             assignVirt2StackSlot((*lastEndActive)->reg);
582             active_.erase(lastEndActive);
583         }
584         else {
585             assignVirt2StackSlot((*lastEndInactive)->reg);
586             inactive_.erase(lastEndInactive);
587         }
588         unsigned physReg = getFreePhysReg(cur->reg);
589         assert(physReg && "no free physical register after spill?");
590         assignVirt2PhysReg(cur->reg, physReg);
591         active_.push_back(&*cur);
592     }
593     else {
594         assignVirt2StackSlot(cur->reg);
595     }
596 }
597
598 void RA::reservePhysReg(unsigned physReg)
599 {
600     DEBUG(std::cerr << "\t\t\treserving physical register: "
601           << mri_->getName(physReg) << '\n');
602     // if this register holds a value spill it
603     unsigned virtReg = p2vMap_[physReg];
604     if (virtReg != 0) {
605         assert(virtReg != physReg && "reserving an already reserved phus reg?");
606         // remove interval from active
607         for (IntervalPtrs::iterator i = active_.begin(), e = active_.end();
608              i != e; ++i) {
609             if ((*i)->reg == virtReg) {
610                 active_.erase(i);
611                 break;
612             }
613         }
614         assignVirt2StackSlot(virtReg);
615     }
616     p2vMap_[physReg] = physReg; // this denotes a reserved physical register
617 }
618
619 void RA::clearReservedPhysReg(unsigned physReg)
620 {
621     DEBUG(std::cerr << "\t\t\tclearing reserved physical register: "
622           << mri_->getName(physReg) << '\n');
623     assert(p2vMap_[physReg] == physReg &&
624            "attempt to clear a non reserved physical register");
625     p2vMap_[physReg] = 0;
626 }
627
628 bool RA::physRegAvailable(unsigned physReg)
629 {
630     if (p2vMap_[physReg]) {
631         return false;
632     }
633
634     // if it aliases other registers it is still not free
635     for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
636         if (p2vMap_[*as]) {
637             return false;
638         }
639     }
640
641     // if it is one of the reserved registers it is still not free
642     if (find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()) {
643         return false;
644     }
645
646     return true;
647 }
648
649 unsigned RA::getFreePhysReg(unsigned virtReg)
650 {
651     DEBUG(std::cerr << "\t\tgetting free physical register: ");
652     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
653     TargetRegisterClass::iterator reg = rc->allocation_order_begin(*mf_);
654     TargetRegisterClass::iterator regEnd = rc->allocation_order_end(*mf_);
655
656     for (; reg != regEnd; ++reg) {
657         if (physRegAvailable(*reg)) {
658             assert(*reg != 0 && "Cannot use register!");
659             DEBUG(std::cerr << mri_->getName(*reg) << '\n');
660             return *reg; // Found an unused register!
661         }
662     }
663
664     DEBUG(std::cerr << "no free register\n");
665     return 0;
666 }
667
668 bool RA::tempPhysRegAvailable(unsigned physReg)
669 {
670     assert(find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()
671            && "cannot call this method with a non reserved temp register");
672
673     if (p2vMap_[physReg]) {
674         return false;
675     }
676
677     // if it aliases other registers it is still not free
678     for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
679         if (p2vMap_[*as]) {
680             return false;
681         }
682     }
683
684     return true;
685 }
686
687 unsigned RA::getFreeTempPhysReg(const TargetRegisterClass* rc)
688 {
689     DEBUG(std::cerr << "\t\tgetting free temporary physical register: ");
690
691     for (Regs::const_iterator
692              reg = reserved_.begin(), regEnd = reserved_.end();
693          reg != regEnd; ++reg) {
694         if (rc == mri_->getRegClass(*reg) && tempPhysRegAvailable(*reg)) {
695             assert(*reg != 0 && "Cannot use register!");
696             DEBUG(std::cerr << mri_->getName(*reg) << '\n');
697             return *reg; // Found an unused register!
698         }
699     }
700     assert(0 && "no free temporary physical register?");
701     return 0;
702 }
703
704 void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg)
705 {
706     assert((physRegAvailable(physReg) ||
707             find(reserved_.begin(),
708                  reserved_.end(),
709                  physReg) != reserved_.end()) &&
710            "attempt to allocate to a not available physical register");
711     v2pMap_[virtReg] = physReg;
712     p2vMap_[physReg] = virtReg;
713 }
714
715 void RA::clearVirtReg(unsigned virtReg)
716 {
717     Virt2PhysMap::iterator it = v2pMap_.find(virtReg);
718     assert(it != v2pMap_.end() &&
719            "attempting to clear a not allocated virtual register");
720     unsigned physReg = it->second;
721     p2vMap_[physReg] = 0;
722     v2pMap_[virtReg] = 0; // this marks that this virtual register
723                           // lives on the stack
724     DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg)
725           << "\n");
726 }
727
728 void RA::assignVirt2StackSlot(unsigned virtReg)
729 {
730     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
731     int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);
732
733     bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second;
734     assert(inserted &&
735            "attempt to assign stack slot to already assigned register?");
736     // if the virtual register was previously assigned clear the mapping
737     // and free the virtual register
738     if (v2pMap_.find(virtReg) != v2pMap_.end()) {
739         clearVirtReg(virtReg);
740     }
741     else {
742         v2pMap_[virtReg] = 0; // this marks that this virtual register
743                               // lives on the stack
744     }
745 }
746
747 int RA::getStackSlot(unsigned virtReg)
748 {
749     // use lower_bound so that we can do a possibly O(1) insert later
750     // if necessary
751     Virt2StackSlotMap::iterator it = v2ssMap_.find(virtReg);
752     assert(it != v2ssMap_.end() &&
753            "attempt to get stack slot on register that does not live on the stack");
754     return it->second;
755 }
756
757 void RA::spillVirtReg(unsigned virtReg)
758 {
759     DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg);
760     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
761     int frameIndex = getStackSlot(virtReg);
762     DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n');
763     ++numSpilled;
764     instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_,
765                                              v2pMap_[virtReg], frameIndex, rc);
766     clearVirtReg(virtReg);
767 }
768
769 void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg)
770 {
771     DEBUG(std::cerr << "\t\t\tloading register: " << virtReg);
772     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
773     int frameIndex = getStackSlot(virtReg);
774     DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n');
775     instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_,
776                                               physReg, frameIndex, rc);
777     assignVirt2PhysReg(virtReg, physReg);
778 }
779
780 FunctionPass* llvm::createLinearScanRegisterAllocator() {
781     return new RA();
782 }