When a variable is killed and redifined in a basic block only one
[oota-llvm.git] / lib / CodeGen / RegAllocLinearScan.cpp
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
11 //
12 //===----------------------------------------------------------------------===//
13 #define DEBUG_TYPE "regalloc"
14 #include "llvm/Function.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/SSARegMap.h"
22 #include "llvm/Target/MRegisterInfo.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Target/TargetRegInfo.h"
26 #include "llvm/Support/CFG.h"
27 #include "Support/Debug.h"
28 #include "Support/DepthFirstIterator.h"
29 #include "Support/Statistic.h"
30 #include "Support/STLExtras.h"
31 #include <iostream>
32
33 using namespace llvm;
34
35 namespace {
36     Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled");
37
38     class RA : public MachineFunctionPass {
39     public:
40         typedef std::vector<const LiveIntervals::Interval*> IntervalPtrs;
41
42     private:
43         MachineFunction* mf_;
44         const TargetMachine* tm_;
45         const MRegisterInfo* mri_;
46         MachineBasicBlock* currentMbb_;
47         MachineBasicBlock::iterator currentInstr_;
48         typedef LiveIntervals::Intervals Intervals;
49         const Intervals* li_;
50         IntervalPtrs active_, inactive_;
51
52         typedef std::vector<unsigned> Regs;
53         Regs tempUseOperands_;
54         Regs tempDefOperands_;
55
56         Regs reserved_;
57
58         typedef LiveIntervals::MachineBasicBlockPtrs MachineBasicBlockPtrs;
59         MachineBasicBlockPtrs mbbs_;
60
61         typedef std::vector<unsigned> Phys2VirtMap;
62         Phys2VirtMap p2vMap_;
63
64         typedef std::map<unsigned, unsigned> Virt2PhysMap;
65         Virt2PhysMap v2pMap_;
66
67         typedef std::map<unsigned, int> Virt2StackSlotMap;
68         Virt2StackSlotMap v2ssMap_;
69
70         int instrAdded_;
71
72     public:
73         virtual const char* getPassName() const {
74             return "Linear Scan Register Allocator";
75         }
76
77         virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78             AU.addRequired<LiveVariables>();
79             AU.addRequired<LiveIntervals>();
80             MachineFunctionPass::getAnalysisUsage(AU);
81         }
82
83     private:
84         /// runOnMachineFunction - register allocate the whole function
85         bool runOnMachineFunction(MachineFunction&);
86
87         /// processActiveIntervals - expire old intervals and move
88         /// non-overlapping ones to the incative list
89         void processActiveIntervals(Intervals::const_iterator cur);
90
91         /// processInactiveIntervals - expire old intervals and move
92         /// overlapping ones to the active list
93         void processInactiveIntervals(Intervals::const_iterator cur);
94
95         /// assignStackSlotAtInterval - choose and spill
96         /// interval. Currently we spill the interval with the last
97         /// end point in the active and inactive lists and the current
98         /// interval
99         void assignStackSlotAtInterval(Intervals::const_iterator cur);
100
101         ///
102         /// register handling helpers
103         ///
104
105         /// reservePhysReg - reserves a physical register and spills
106         /// any value assigned to it if any
107         void reservePhysReg(unsigned reg);
108
109         /// clearReservedPhysReg - marks pysical register as free for
110         /// use
111         void clearReservedPhysReg(unsigned reg);
112
113         /// physRegAvailable - returns true if the specifed physical
114         /// register is available
115         bool physRegAvailable(unsigned physReg);
116
117         /// getFreePhysReg - return a free physical register for this
118         /// virtual register if we have one, otherwise return 0
119         unsigned getFreePhysReg(unsigned virtReg);
120
121
122         /// tempPhysRegAvailable - returns true if the specifed
123         /// temporary physical register is available
124         bool tempPhysRegAvailable(unsigned physReg);
125
126         /// getFreeTempPhysReg - return a free temprorary physical
127         /// register for this register class if we have one (should
128         /// never return 0)
129         unsigned getFreeTempPhysReg(const TargetRegisterClass* rc);
130
131         /// getFreeTempPhysReg - return a free temprorary physical
132         /// register for this virtual register if we have one (should
133         /// never return 0)
134         unsigned getFreeTempPhysReg(unsigned virtReg) {
135             const TargetRegisterClass* rc =
136                 mf_->getSSARegMap()->getRegClass(virtReg);
137             return getFreeTempPhysReg(rc);
138         }
139
140         /// assignVirt2PhysReg - assigns the free physical register to
141         /// the virtual register passed as arguments
142         void assignVirt2PhysReg(unsigned virtReg, unsigned physReg);
143
144         /// clearVirtReg - free the physical register associated with this
145         /// virtual register and disassociate virtual->physical and
146         /// physical->virtual mappings
147         void clearVirtReg(unsigned virtReg);
148
149         /// assignVirt2StackSlot - assigns this virtual register to a
150         /// stack slot
151         void assignVirt2StackSlot(unsigned virtReg);
152
153         /// getStackSlot - returns the offset of the specified
154         /// register on the stack
155         int getStackSlot(unsigned virtReg);
156
157         /// spillVirtReg - spills the virtual register
158         void spillVirtReg(unsigned virtReg);
159
160         /// loadPhysReg - loads to the physical register the value of
161         /// the virtual register specifed. Virtual register must have
162         /// an assigned stack slot
163         void loadVirt2PhysReg(unsigned virtReg, unsigned physReg);
164
165         void printVirt2PhysMap() const {
166             std::cerr << "allocated registers:\n";
167             for (Virt2PhysMap::const_iterator
168                      i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) {
169                 std::cerr << '[' << i->first << ','
170                           << mri_->getName(i->second) << "]\n";
171             }
172             std::cerr << '\n';
173         }
174         void printIntervals(const char* const str,
175                             RA::IntervalPtrs::const_iterator i,
176                             RA::IntervalPtrs::const_iterator e) const {
177             if (str) std::cerr << str << " intervals:\n";
178             for (; i != e; ++i) {
179                 std::cerr << "\t\t" << **i << " -> ";
180                 if ((*i)->reg < MRegisterInfo::FirstVirtualRegister) {
181                     std::cerr << mri_->getName((*i)->reg);
182                 }
183                 else {
184                     std::cerr << mri_->getName(v2pMap_.find((*i)->reg)->second);
185                 }
186                 std::cerr << '\n';
187             }
188         }
189     };
190 }
191
192 bool RA::runOnMachineFunction(MachineFunction &fn) {
193     mf_ = &fn;
194     tm_ = &fn.getTarget();
195     mri_ = tm_->getRegisterInfo();
196     li_ = &getAnalysis<LiveIntervals>().getIntervals();
197     active_.clear();
198     inactive_.clear();
199     mbbs_ = getAnalysis<LiveIntervals>().getOrderedMachineBasicBlockPtrs();
200     p2vMap_.resize(MRegisterInfo::FirstVirtualRegister-1);
201     p2vMap_.clear();
202     v2pMap_.clear();
203     v2ssMap_.clear();
204
205     DEBUG(
206         unsigned i = 0;
207         for (MachineBasicBlockPtrs::iterator
208                  mbbi = mbbs_.begin(), mbbe = mbbs_.end();
209              mbbi != mbbe; ++mbbi) {
210             MachineBasicBlock* mbb = *mbbi;
211             std::cerr << mbb->getBasicBlock()->getName() << '\n';
212             for (MachineBasicBlock::iterator
213                      ii = mbb->begin(), ie = mbb->end();
214                  ii != ie; ++ii) {
215                 MachineInstr* instr = *ii;
216
217                 std::cerr << i++ << "\t";
218                 instr->print(std::cerr, *tm_);
219             }
220         }
221         );
222
223     // FIXME: this will work only for the X86 backend. I need to
224     // device an algorthm to select the minimal (considering register
225     // aliasing) number of temp registers to reserve so that we have 2
226     // registers for each register class available.
227
228     // reserve R32: EDI, EBX,
229     //         R16:  DI,  BX,
230     //         R8:   DH,  BH,
231     //         RFP: FP5, FP6
232     reserved_.push_back(19); /* EDI */
233     reserved_.push_back(17); /* EBX */
234     reserved_.push_back(12); /*  DI */
235     reserved_.push_back( 7); /*  BX */
236     reserved_.push_back(11); /*  DH */
237     reserved_.push_back( 4); /*  BH */
238     reserved_.push_back(28); /* FP5 */
239     reserved_.push_back(29); /* FP6 */
240
241     // liner scan algorithm
242     for (Intervals::const_iterator
243              i = li_->begin(), e = li_->end(); i != e; ++i) {
244         DEBUG(std::cerr << "processing current interval: " << *i << '\n');
245
246         DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
247         DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end()));
248         processActiveIntervals(i);
249         // processInactiveIntervals(i);
250
251         // if this register is preallocated, look for an interval that
252         // overlaps with it and assign it to a memory location
253         if (i->reg < MRegisterInfo::FirstVirtualRegister) {
254             reservePhysReg(i->reg);
255             active_.push_back(&*i);
256         }
257         // otherwise we are allocating a virtual register. try to find
258         // a free physical register or spill an interval in order to
259         // assign it one (we could spill the current though).
260         else {
261             unsigned physReg = getFreePhysReg(i->reg);
262             if (!physReg) {
263                 assignStackSlotAtInterval(i);
264             }
265             else {
266                 assignVirt2PhysReg(i->reg, physReg);
267                 active_.push_back(&*i);
268             }
269         }
270     }
271     // expire any remaining active intervals
272     for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
273         unsigned reg = (*i)->reg;
274         DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
275         if (reg < MRegisterInfo::FirstVirtualRegister) {
276             clearReservedPhysReg(reg);
277         }
278         else {
279             p2vMap_[v2pMap_[reg]] = 0;
280         }
281         // remove interval from active
282     }
283
284     DEBUG(std::cerr << "finished register allocation\n");
285     DEBUG(printVirt2PhysMap());
286
287     DEBUG(std::cerr << "Rewrite machine code:\n");
288     for (MachineBasicBlockPtrs::iterator
289              mbbi = mbbs_.begin(), mbbe = mbbs_.end(); mbbi != mbbe; ++mbbi) {
290         instrAdded_ = 0;
291         currentMbb_ = *mbbi;
292
293         for (currentInstr_ = currentMbb_->begin();
294              currentInstr_ != currentMbb_->end(); ++currentInstr_) {
295
296             DEBUG(std::cerr << "\tinstruction: ";
297                   (*currentInstr_)->print(std::cerr, *tm_););
298
299             // use our current mapping and actually replace and
300             // virtual register with its allocated physical registers
301             DEBUG(std::cerr << "\t\treplacing virtual registers with mapped "
302                   "physical registers:\n");
303             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
304                  i != e; ++i) {
305                 MachineOperand& op = (*currentInstr_)->getOperand(i);
306                 if (op.isVirtualRegister()) {
307                     unsigned virtReg = op.getAllocatedRegNum();
308                     unsigned physReg = v2pMap_[virtReg];
309                     // if this virtual registers lives on the stack,
310                     // load it to a temporary physical register
311                     if (physReg) {
312                         DEBUG(std::cerr << "\t\t\t%reg" << virtReg
313                               << " -> " << mri_->getName(physReg) << '\n');
314                         (*currentInstr_)->SetMachineOperandReg(i, physReg);
315                     }
316                 }
317             }
318
319             DEBUG(std::cerr << "\t\tloading temporarily used operands to "
320                   "registers:\n");
321             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
322                  i != e; ++i) {
323                 MachineOperand& op = (*currentInstr_)->getOperand(i);
324                 if (op.isVirtualRegister() && op.isUse()) {
325                     unsigned virtReg = op.getAllocatedRegNum();
326                     unsigned physReg = v2pMap_[virtReg];
327                     if (!physReg) {
328                         physReg = getFreeTempPhysReg(virtReg);
329                     }
330                     loadVirt2PhysReg(virtReg, physReg);
331                     tempUseOperands_.push_back(virtReg);
332                     (*currentInstr_)->SetMachineOperandReg(i, physReg);
333                 }
334             }
335
336             DEBUG(std::cerr << "\t\tclearing temporarily used operands:\n");
337             for (unsigned i = 0, e = tempUseOperands_.size(); i != e; ++i) {
338                 clearVirtReg(tempUseOperands_[i]);
339             }
340             tempUseOperands_.clear();
341
342             DEBUG(std::cerr << "\t\tassigning temporarily defined operands to "
343                   "registers:\n");
344             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
345                  i != e; ++i) {
346                 MachineOperand& op = (*currentInstr_)->getOperand(i);
347                 if (op.isVirtualRegister() && op.isDef()) {
348                     unsigned virtReg = op.getAllocatedRegNum();
349                     unsigned physReg = v2pMap_[virtReg];
350                     if (!physReg) {
351                         physReg = getFreeTempPhysReg(virtReg);
352                     }
353                     if (op.isUse()) { // def and use
354                         loadVirt2PhysReg(virtReg, physReg);
355                     }
356                     else {
357                         assignVirt2PhysReg(virtReg, physReg);
358                     }
359                     tempDefOperands_.push_back(virtReg);
360                     (*currentInstr_)->SetMachineOperandReg(i, physReg);
361                 }
362             }
363
364
365             // if the instruction is a two address instruction and the
366             // source operands are not identical we need to insert
367             // extra instructions.
368
369             unsigned opcode = (*currentInstr_)->getOpcode();
370             if (tm_->getInstrInfo().isTwoAddrInstr(opcode) &&
371                 (*currentInstr_)->getOperand(0).getAllocatedRegNum() !=
372                 (*currentInstr_)->getOperand(1).getAllocatedRegNum()) {
373                 assert((*currentInstr_)->getOperand(1).isRegister() &&
374                        (*currentInstr_)->getOperand(1).getAllocatedRegNum() &&
375                        (*currentInstr_)->getOperand(1).isUse() &&
376                        "Two address instruction invalid");
377
378                 unsigned regA =
379                     (*currentInstr_)->getOperand(0).getAllocatedRegNum();
380                 unsigned regB =
381                     (*currentInstr_)->getOperand(1).getAllocatedRegNum();
382                 unsigned regC =
383                     ((*currentInstr_)->getNumOperands() > 2 &&
384                      (*currentInstr_)->getOperand(2).isRegister()) ?
385                     (*currentInstr_)->getOperand(2).getAllocatedRegNum() :
386                     0;
387
388                 const TargetRegisterClass* rc = mri_->getRegClass(regA);
389
390                 // special case: "a = b op a". If b is a temporary
391                 // reserved register rewrite as: "b = b op a; a = b"
392                 // otherwise use a temporary reserved register t and
393                 // rewrite as: "t = b; t = t op a; a = t"
394                 if (regC && regA == regC) {
395                     // b is a temp reserved register
396                     if (find(reserved_.begin(), reserved_.end(),
397                              regB) != reserved_.end()) {
398                         (*currentInstr_)->SetMachineOperandReg(0, regB);
399                         ++currentInstr_;
400                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
401                                                           currentInstr_,
402                                                           regA,
403                                                           regB,
404                                                           rc);
405                         --currentInstr_;
406                     }
407                     // b is just a normal register
408                     else {
409                         unsigned tempReg = getFreeTempPhysReg(rc);
410                         assert (tempReg &&
411                                 "no free temp reserved physical register?");
412                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
413                                                           currentInstr_,
414                                                           tempReg,
415                                                           regB,
416                                                           rc);
417                         (*currentInstr_)->SetMachineOperandReg(0, tempReg);
418                         (*currentInstr_)->SetMachineOperandReg(1, tempReg);
419                         ++currentInstr_;
420                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
421                                                           currentInstr_,
422                                                           regA,
423                                                           tempReg,
424                                                           rc);
425                         --currentInstr_;
426                     }
427                 }
428                 // "a = b op c" gets rewritten to "a = b; a = a op c"
429                 else {
430                     instrAdded_ += mri_->copyRegToReg(*currentMbb_,
431                                                       currentInstr_,
432                                                       regA,
433                                                       regB,
434                                                       rc);
435                     (*currentInstr_)->SetMachineOperandReg(1, regA);
436                 }
437             }
438
439             DEBUG(std::cerr << "\t\tspilling temporarily defined operands "
440                   "of this instruction:\n");
441             ++currentInstr_; // we want to insert after this instruction
442             for (unsigned i = 0, e = tempDefOperands_.size(); i != e; ++i) {
443                 spillVirtReg(tempDefOperands_[i]);
444             }
445             --currentInstr_; // restore currentInstr_ iterator
446             tempDefOperands_.clear();
447         }
448
449         for (unsigned i = 0, e = p2vMap_.size(); i != e; ++i) {
450             assert(p2vMap_[i] != i &&
451                    "reserved physical registers at end of basic block?");
452         }
453     }
454
455     return true;
456 }
457
458 void RA::processActiveIntervals(Intervals::const_iterator cur)
459 {
460     DEBUG(std::cerr << "\tprocessing active intervals:\n");
461     for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) {
462         unsigned reg = (*i)->reg;
463         // remove expired intervals. we expire earlier because this if
464         // an interval expires this is going to be the last use. in
465         // this case we can reuse the register for a def in the same
466         // instruction
467         if ((*i)->expired(cur->start() + 1)) {
468             DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
469             if (reg < MRegisterInfo::FirstVirtualRegister) {
470                 clearReservedPhysReg(reg);
471             }
472             else {
473                 p2vMap_[v2pMap_[reg]] = 0;
474             }
475             // remove interval from active
476             i = active_.erase(i);
477         }
478         // move not active intervals to inactive list
479 //         else if (!(*i)->overlaps(curIndex)) {
480 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
481 //             unmarkReg(virtReg);
482 //             // add interval to inactive
483 //             inactive_.push_back(*i);
484 //             // remove interval from active
485 //             i = active_.erase(i);
486 //         }
487         else {
488             ++i;
489         }
490     }
491 }
492
493 void RA::processInactiveIntervals(Intervals::const_iterator cur)
494 {
495 //     DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
496 //     for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
497 //         unsigned virtReg = (*i)->reg;
498 //         // remove expired intervals
499 //         if ((*i)->expired(curIndex)) {
500 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
501 //             freePhysReg(virtReg);
502 //             // remove from inactive
503 //             i = inactive_.erase(i);
504 //         }
505 //         // move re-activated intervals in active list
506 //         else if ((*i)->overlaps(curIndex)) {
507 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
508 //             markReg(virtReg);
509 //             // add to active
510 //             active_.push_back(*i);
511 //             // remove from inactive
512 //             i = inactive_.erase(i);
513 //         }
514 //         else {
515 //             ++i;
516 //         }
517 //     }
518 }
519
520 void RA::assignStackSlotAtInterval(Intervals::const_iterator cur)
521 {
522     DEBUG(std::cerr << "\t\tassigning stack slot at interval "
523           << *cur << ":\n");
524     assert(!active_.empty() &&
525            "active set cannot be empty when choosing a register to spill");
526     const TargetRegisterClass* rcCur =
527         mf_->getSSARegMap()->getRegClass(cur->reg);
528
529     // find the interval for a virtual register that ends last in
530     // active and belongs to the same register class as the current
531     // interval
532     IntervalPtrs::iterator lastEndActive = active_.begin();
533     for (IntervalPtrs::iterator e = active_.end();
534          lastEndActive != e; ++lastEndActive) {
535         if ((*lastEndActive)->reg >= MRegisterInfo::FirstVirtualRegister) {
536             const TargetRegisterClass* rc =
537                 mri_->getRegClass(v2pMap_[(*lastEndActive)->reg]);
538             if (rcCur == rc) {
539                 break;
540             }
541         }
542     }
543     for (IntervalPtrs::iterator i = lastEndActive, e = active_.end();
544          i != e; ++i) {
545         if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
546             const TargetRegisterClass* rc =
547                 mri_->getRegClass(v2pMap_[(*i)->reg]);
548             if (rcCur == rc &&
549                 (*lastEndActive)->end() < (*i)->end()) {
550                 lastEndActive = i;
551             }
552         }
553     }
554
555     // find the interval for a virtual register that ends last in
556     // inactive and belongs to the same register class as the current
557     // interval
558     IntervalPtrs::iterator lastEndInactive = inactive_.begin();
559     for (IntervalPtrs::iterator e = inactive_.end();
560          lastEndInactive != e; ++lastEndInactive) {
561         if ((*lastEndInactive)->reg >= MRegisterInfo::FirstVirtualRegister) {
562             const TargetRegisterClass* rc =
563                 mri_->getRegClass(v2pMap_[(*lastEndInactive)->reg]);
564             if (rcCur == rc) {
565                 break;
566             }
567         }
568     }
569     for (IntervalPtrs::iterator i = lastEndInactive, e = inactive_.end();
570          i != e; ++i) {
571         if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
572             const TargetRegisterClass* rc =
573                 mri_->getRegClass(v2pMap_[(*i)->reg]);
574             if (rcCur == rc &&
575                 (*lastEndInactive)->end() < (*i)->end()) {
576                 lastEndInactive = i;
577             }
578         }
579     }
580
581     unsigned lastEndActiveInactive = 0;
582     if (lastEndActive != active_.end() &&
583         lastEndActiveInactive < (*lastEndActive)->end()) {
584         lastEndActiveInactive = (*lastEndActive)->end();
585     }
586     if (lastEndInactive != inactive_.end() &&
587         lastEndActiveInactive < (*lastEndInactive)->end()) {
588         lastEndActiveInactive = (*lastEndInactive)->end();
589     }
590
591     if (lastEndActiveInactive > cur->end()) {
592         if (lastEndInactive == inactive_.end() ||
593             (*lastEndActive)->end() > (*lastEndInactive)->end()) {
594             assignVirt2StackSlot((*lastEndActive)->reg);
595             active_.erase(lastEndActive);
596         }
597         else {
598             assignVirt2StackSlot((*lastEndInactive)->reg);
599             inactive_.erase(lastEndInactive);
600         }
601         unsigned physReg = getFreePhysReg(cur->reg);
602         assert(physReg && "no free physical register after spill?");
603         assignVirt2PhysReg(cur->reg, physReg);
604         active_.push_back(&*cur);
605     }
606     else {
607         assignVirt2StackSlot(cur->reg);
608     }
609 }
610
611 void RA::reservePhysReg(unsigned physReg)
612 {
613     DEBUG(std::cerr << "\t\t\treserving physical register: "
614           << mri_->getName(physReg) << '\n');
615     // if this register holds a value spill it
616     unsigned virtReg = p2vMap_[physReg];
617     if (virtReg != 0) {
618         assert(virtReg != physReg && "reserving an already reserved phus reg?");
619         // remove interval from active
620         for (IntervalPtrs::iterator i = active_.begin(), e = active_.end();
621              i != e; ++i) {
622             if ((*i)->reg == virtReg) {
623                 active_.erase(i);
624                 break;
625             }
626         }
627         assignVirt2StackSlot(virtReg);
628     }
629     p2vMap_[physReg] = physReg; // this denotes a reserved physical register
630
631     // if it also aliases any other registers with values spill them too
632     for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
633         unsigned virtReg = p2vMap_[*as];
634         if (virtReg != 0 && virtReg != *as) {
635             // remove interval from active
636             for (IntervalPtrs::iterator i = active_.begin(), e = active_.end();
637                  i != e; ++i) {
638                 if ((*i)->reg == virtReg) {
639                     active_.erase(i);
640                     break;
641                 }
642             }
643             assignVirt2StackSlot(virtReg);
644         }
645     }
646 }
647
648 void RA::clearReservedPhysReg(unsigned physReg)
649 {
650     DEBUG(std::cerr << "\t\t\tclearing reserved physical register: "
651           << mri_->getName(physReg) << '\n');
652     assert(p2vMap_[physReg] == physReg &&
653            "attempt to clear a non reserved physical register");
654     p2vMap_[physReg] = 0;
655 }
656
657 bool RA::physRegAvailable(unsigned physReg)
658 {
659     if (p2vMap_[physReg]) {
660         return false;
661     }
662
663     // if it aliases other registers it is still not free
664     for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
665         if (p2vMap_[*as]) {
666             return false;
667         }
668     }
669
670     // if it is one of the reserved registers it is still not free
671     if (find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()) {
672         return false;
673     }
674
675     return true;
676 }
677
678 unsigned RA::getFreePhysReg(unsigned virtReg)
679 {
680     DEBUG(std::cerr << "\t\tgetting free physical register: ");
681     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
682     TargetRegisterClass::iterator reg = rc->allocation_order_begin(*mf_);
683     TargetRegisterClass::iterator regEnd = rc->allocation_order_end(*mf_);
684
685     for (; reg != regEnd; ++reg) {
686         if (physRegAvailable(*reg)) {
687             assert(*reg != 0 && "Cannot use register!");
688             DEBUG(std::cerr << mri_->getName(*reg) << '\n');
689             return *reg; // Found an unused register!
690         }
691     }
692
693     DEBUG(std::cerr << "no free register\n");
694     return 0;
695 }
696
697 bool RA::tempPhysRegAvailable(unsigned physReg)
698 {
699     assert(find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()
700            && "cannot call this method with a non reserved temp register");
701
702     if (p2vMap_[physReg]) {
703         return false;
704     }
705
706     // if it aliases other registers it is still not free
707     for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
708         if (p2vMap_[*as]) {
709             return false;
710         }
711     }
712
713     return true;
714 }
715
716 unsigned RA::getFreeTempPhysReg(const TargetRegisterClass* rc)
717 {
718     DEBUG(std::cerr << "\t\tgetting free temporary physical register: ");
719
720     for (Regs::const_iterator
721              reg = reserved_.begin(), regEnd = reserved_.end();
722          reg != regEnd; ++reg) {
723         if (rc == mri_->getRegClass(*reg) && tempPhysRegAvailable(*reg)) {
724             assert(*reg != 0 && "Cannot use register!");
725             DEBUG(std::cerr << mri_->getName(*reg) << '\n');
726             return *reg; // Found an unused register!
727         }
728     }
729     assert(0 && "no free temporary physical register?");
730     return 0;
731 }
732
733 void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg)
734 {
735     assert((physRegAvailable(physReg) ||
736             find(reserved_.begin(),
737                  reserved_.end(),
738                  physReg) != reserved_.end()) &&
739            "attempt to allocate to a not available physical register");
740     v2pMap_[virtReg] = physReg;
741     p2vMap_[physReg] = virtReg;
742 }
743
744 void RA::clearVirtReg(unsigned virtReg)
745 {
746     Virt2PhysMap::iterator it = v2pMap_.find(virtReg);
747     assert(it != v2pMap_.end() &&
748            "attempting to clear a not allocated virtual register");
749     unsigned physReg = it->second;
750     p2vMap_[physReg] = 0;
751     v2pMap_[virtReg] = 0; // this marks that this virtual register
752                           // lives on the stack
753     DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg)
754           << "\n");
755 }
756
757 void RA::assignVirt2StackSlot(unsigned virtReg)
758 {
759     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
760     int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);
761
762     bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second;
763     assert(inserted &&
764            "attempt to assign stack slot to already assigned register?");
765     // if the virtual register was previously assigned clear the mapping
766     // and free the virtual register
767     if (v2pMap_.find(virtReg) != v2pMap_.end()) {
768         clearVirtReg(virtReg);
769     }
770     else {
771         v2pMap_[virtReg] = 0; // this marks that this virtual register
772                               // lives on the stack
773     }
774 }
775
776 int RA::getStackSlot(unsigned virtReg)
777 {
778     // use lower_bound so that we can do a possibly O(1) insert later
779     // if necessary
780     Virt2StackSlotMap::iterator it = v2ssMap_.find(virtReg);
781     assert(it != v2ssMap_.end() &&
782            "attempt to get stack slot on register that does not live on the stack");
783     return it->second;
784 }
785
786 void RA::spillVirtReg(unsigned virtReg)
787 {
788     DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg);
789     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
790     int frameIndex = getStackSlot(virtReg);
791     DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n');
792     ++numSpilled;
793     instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_,
794                                              v2pMap_[virtReg], frameIndex, rc);
795     clearVirtReg(virtReg);
796 }
797
798 void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg)
799 {
800     DEBUG(std::cerr << "\t\t\tloading register: " << virtReg);
801     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
802     int frameIndex = getStackSlot(virtReg);
803     DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n');
804     instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_,
805                                               physReg, frameIndex, rc);
806     assignVirt2PhysReg(virtReg, physReg);
807 }
808
809 FunctionPass* llvm::createLinearScanRegisterAllocator() {
810     return new RA();
811 }