Sort live intervals by increasing start point.
[oota-llvm.git] / lib / CodeGen / RegAllocLinearScan.cpp
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
11 //
12 //===----------------------------------------------------------------------===//
13 #define DEBUG_TYPE "regalloc"
14 #include "llvm/Function.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/SSARegMap.h"
22 #include "llvm/Target/MRegisterInfo.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Target/TargetRegInfo.h"
26 #include "llvm/Support/CFG.h"
27 #include "Support/Debug.h"
28 #include "Support/DepthFirstIterator.h"
29 #include "Support/Statistic.h"
30 #include "Support/STLExtras.h"
31 #include <iostream>
32
33 using namespace llvm;
34
35 namespace {
36     Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled");
37
38     class RA : public MachineFunctionPass {
39     public:
40         typedef std::vector<const LiveIntervals::Interval*> IntervalPtrs;
41
42     private:
43         MachineFunction* mf_;
44         const TargetMachine* tm_;
45         const MRegisterInfo* mri_;
46         MachineBasicBlock* currentMbb_;
47         MachineBasicBlock::iterator currentInstr_;
48         typedef LiveIntervals::Intervals Intervals;
49         const Intervals* li_;
50         IntervalPtrs active_, inactive_;
51
52         typedef std::vector<unsigned> Regs;
53         Regs tempUseOperands_;
54         Regs tempDefOperands_;
55
56         Regs reserved_;
57
58         typedef LiveIntervals::MachineBasicBlockPtrs MachineBasicBlockPtrs;
59         MachineBasicBlockPtrs mbbs_;
60
61         typedef std::vector<unsigned> Phys2VirtMap;
62         Phys2VirtMap p2vMap_;
63
64         typedef std::map<unsigned, unsigned> Virt2PhysMap;
65         Virt2PhysMap v2pMap_;
66
67         typedef std::map<unsigned, int> Virt2StackSlotMap;
68         Virt2StackSlotMap v2ssMap_;
69
70         int instrAdded_;
71
72     public:
73         virtual const char* getPassName() const {
74             return "Linear Scan Register Allocator";
75         }
76
77         virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78             AU.addRequired<LiveVariables>();
79             AU.addRequired<LiveIntervals>();
80             MachineFunctionPass::getAnalysisUsage(AU);
81         }
82
83     private:
84         /// runOnMachineFunction - register allocate the whole function
85         bool runOnMachineFunction(MachineFunction&);
86
87         /// processActiveIntervals - expire old intervals and move
88         /// non-overlapping ones to the incative list
89         void processActiveIntervals(Intervals::const_iterator cur);
90
91         /// processInactiveIntervals - expire old intervals and move
92         /// overlapping ones to the active list
93         void processInactiveIntervals(Intervals::const_iterator cur);
94
95         /// assignStackSlotAtInterval - choose and spill
96         /// interval. Currently we spill the interval with the last
97         /// end point in the active and inactive lists and the current
98         /// interval
99         void assignStackSlotAtInterval(Intervals::const_iterator cur);
100
101         ///
102         /// register handling helpers
103         ///
104
105         /// reservePhysReg - reserves a physical register and spills
106         /// any value assigned to it if any
107         void reservePhysReg(unsigned reg);
108
109         /// clearReservedPhysReg - marks pysical register as free for
110         /// use
111         void clearReservedPhysReg(unsigned reg);
112
113         /// physRegAvailable - returns true if the specifed physical
114         /// register is available
115         bool physRegAvailable(unsigned physReg);
116
117         /// getFreePhysReg - return a free physical register for this
118         /// virtual register if we have one, otherwise return 0
119         unsigned getFreePhysReg(unsigned virtReg);
120
121
122         /// tempPhysRegAvailable - returns true if the specifed
123         /// temporary physical register is available
124         bool tempPhysRegAvailable(unsigned physReg);
125
126         /// getFreeTempPhysReg - return a free temprorary physical
127         /// register for this register class if we have one (should
128         /// never return 0)
129         unsigned getFreeTempPhysReg(const TargetRegisterClass* rc);
130
131         /// getFreeTempPhysReg - return a free temprorary physical
132         /// register for this virtual register if we have one (should
133         /// never return 0)
134         unsigned getFreeTempPhysReg(unsigned virtReg) {
135             const TargetRegisterClass* rc =
136                 mf_->getSSARegMap()->getRegClass(virtReg);
137             return getFreeTempPhysReg(rc);
138         }
139
140         /// assignVirt2PhysReg - assigns the free physical register to
141         /// the virtual register passed as arguments
142         void assignVirt2PhysReg(unsigned virtReg, unsigned physReg);
143
144         /// clearVirtReg - free the physical register associated with this
145         /// virtual register and disassociate virtual->physical and
146         /// physical->virtual mappings
147         void clearVirtReg(unsigned virtReg);
148
149         /// assignVirt2StackSlot - assigns this virtual register to a
150         /// stack slot
151         void assignVirt2StackSlot(unsigned virtReg);
152
153         /// getStackSlot - returns the offset of the specified
154         /// register on the stack
155         int getStackSlot(unsigned virtReg);
156
157         /// spillVirtReg - spills the virtual register
158         void spillVirtReg(unsigned virtReg);
159
160         /// loadPhysReg - loads to the physical register the value of
161         /// the virtual register specifed. Virtual register must have
162         /// an assigned stack slot
163         void loadVirt2PhysReg(unsigned virtReg, unsigned physReg);
164
165         void printVirt2PhysMap() const {
166             std::cerr << "allocated registers:\n";
167             for (Virt2PhysMap::const_iterator
168                      i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) {
169                 std::cerr << '[' << i->first << ','
170                           << mri_->getName(i->second) << "]\n";
171             }
172             std::cerr << '\n';
173         }
174         void printIntervals(const char* const str,
175                             RA::IntervalPtrs::const_iterator i,
176                             RA::IntervalPtrs::const_iterator e) const {
177             if (str) std::cerr << str << " intervals:\n";
178             for (; i != e; ++i) {
179                 std::cerr << "\t\t" << **i << " -> ";
180                 if ((*i)->reg < MRegisterInfo::FirstVirtualRegister) {
181                     std::cerr << mri_->getName((*i)->reg);
182                 }
183                 else {
184                     std::cerr << mri_->getName(v2pMap_.find((*i)->reg)->second);
185                 }
186                 std::cerr << '\n';
187             }
188         }
189     };
190 }
191
192 bool RA::runOnMachineFunction(MachineFunction &fn) {
193     mf_ = &fn;
194     tm_ = &fn.getTarget();
195     mri_ = tm_->getRegisterInfo();
196     li_ = &getAnalysis<LiveIntervals>().getIntervals();
197     active_.clear();
198     inactive_.clear();
199     mbbs_ = getAnalysis<LiveIntervals>().getOrderedMachineBasicBlockPtrs();
200     p2vMap_.resize(MRegisterInfo::FirstVirtualRegister-1);
201     p2vMap_.clear();
202     v2pMap_.clear();
203     v2ssMap_.clear();
204
205     DEBUG(
206         for (MachineBasicBlockPtrs::iterator
207                  mbbi = mbbs_.begin(), mbbe = mbbs_.end();
208              mbbi != mbbe; ++mbbi) {
209             MachineBasicBlock* mbb = *mbbi;
210             std::cerr << mbb->getBasicBlock()->getName() << '\n';
211             for (MachineBasicBlock::iterator
212                      ii = mbb->begin(), ie = mbb->end();
213                  ii != ie; ++ii) {
214                 MachineInstr* instr = *ii;
215                      
216                 std::cerr << "\t";
217                 instr->print(std::cerr, *tm_);
218             }
219         }
220         );
221
222     // FIXME: this will work only for the X86 backend. I need to
223     // device an algorthm to select the minimal (considering register
224     // aliasing) number of temp registers to reserve so that we have 2
225     // registers for each register class available.
226
227     // reserve R32: EDI, EBX,
228     //         R16:  DI,  BX,
229     //         R8:   DH,  BH,
230     //         RFP: FP5, FP6
231     reserved_.push_back(19); /* EDI */
232     reserved_.push_back(17); /* EBX */
233     reserved_.push_back(12); /*  DI */
234     reserved_.push_back( 7); /*  BX */
235     reserved_.push_back(11); /*  DH */
236     reserved_.push_back( 4); /*  BH */
237     reserved_.push_back(28); /* FP5 */
238     reserved_.push_back(29); /* FP6 */
239
240     // liner scan algorithm
241     for (Intervals::const_iterator
242              i = li_->begin(), e = li_->end(); i != e; ++i) {
243         DEBUG(std::cerr << "processing current interval: " << *i << '\n');
244
245         DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
246         DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end()));
247
248         processActiveIntervals(i);
249         // processInactiveIntervals(i);
250
251         // if this register is preallocated, look for an interval that
252         // overlaps with it and assign it to a memory location
253         if (i->reg < MRegisterInfo::FirstVirtualRegister) {
254             for (IntervalPtrs::iterator
255                      ai = active_.begin(), ae = active_.end(); ai != ae; ++ai) {
256                 unsigned virtReg = (*ai)->reg;
257                 Virt2PhysMap::const_iterator it = v2pMap_.find(virtReg);
258                 if (it != v2pMap_.end() && it->second == i->reg) {
259                     active_.erase(ai);
260                     clearVirtReg(virtReg);
261                     break;
262                 }
263             }
264             reservePhysReg(i->reg);
265             active_.push_back(&*i);
266         }
267         // otherwise we are allocating a virtual register. try to find
268         // a free physical register or spill an interval in order to
269         // assign it one (we could spill the current though).
270         else {
271             unsigned physReg = getFreePhysReg(i->reg);
272             if (!physReg) {
273                 assignStackSlotAtInterval(i);
274             }
275             else {
276                 assignVirt2PhysReg(i->reg, physReg);
277                 active_.push_back(&*i);
278             }
279         }
280     }
281     DEBUG(std::cerr << "finished register allocation\n");
282     DEBUG(printVirt2PhysMap());
283
284     DEBUG(std::cerr << "Rewrite machine code:\n");
285     for (MachineBasicBlockPtrs::iterator
286              mbbi = mbbs_.begin(), mbbe = mbbs_.end(); mbbi != mbbe; ++mbbi) {
287         instrAdded_ = 0;
288         currentMbb_ = *mbbi;
289
290         for (currentInstr_ = currentMbb_->begin();
291              currentInstr_ != currentMbb_->end(); ++currentInstr_) {
292
293             DEBUG(std::cerr << "\tinstruction: ";
294                   (*currentInstr_)->print(std::cerr, *tm_););
295
296             // use our current mapping and actually replace and
297             // virtual register with its allocated physical registers
298             DEBUG(std::cerr << "\t\treplacing virtual registers with mapped "
299                   "physical registers:\n");
300             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
301                  i != e; ++i) {
302                 MachineOperand& op = (*currentInstr_)->getOperand(i);
303                 if (op.isVirtualRegister()) {
304                     unsigned virtReg = op.getAllocatedRegNum();
305                     unsigned physReg = v2pMap_[virtReg];
306                     // if this virtual registers lives on the stack,
307                     // load it to a temporary physical register
308                     if (physReg) {
309                         DEBUG(std::cerr << "\t\t\t%reg" << virtReg
310                               << " -> " << mri_->getName(physReg) << '\n');
311                         (*currentInstr_)->SetMachineOperandReg(i, physReg);
312                     }
313                 }
314             }
315
316             DEBUG(std::cerr << "\t\tloading temporarily used operands to "
317                   "registers:\n");
318             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
319                  i != e; ++i) {
320                 MachineOperand& op = (*currentInstr_)->getOperand(i);
321                 if (op.isVirtualRegister() && op.opIsUse()) {
322                     unsigned virtReg = op.getAllocatedRegNum();
323                     unsigned physReg = v2pMap_[virtReg];
324                     if (!physReg) {
325                         physReg = getFreeTempPhysReg(virtReg);
326                     }
327                     loadVirt2PhysReg(virtReg, physReg);
328                     tempUseOperands_.push_back(virtReg);
329                     (*currentInstr_)->SetMachineOperandReg(i, physReg);
330                 }
331             }
332
333             DEBUG(std::cerr << "\t\tclearing temporarily used operands:\n");
334             for (unsigned i = 0, e = tempUseOperands_.size(); i != e; ++i) {
335                 clearVirtReg(tempUseOperands_[i]);
336             }
337             tempUseOperands_.clear();
338
339             DEBUG(std::cerr << "\t\tassigning temporarily defined operands to "
340                   "registers:\n");
341             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
342                  i != e; ++i) {
343                 MachineOperand& op = (*currentInstr_)->getOperand(i);
344                 if (op.isVirtualRegister() && !op.opIsUse()) {
345                     unsigned virtReg = op.getAllocatedRegNum();
346                     unsigned physReg = v2pMap_[virtReg];
347                     if (!physReg) {
348                         physReg = getFreeTempPhysReg(virtReg);
349                     }
350                     if (op.opIsDefAndUse()) {
351                         loadVirt2PhysReg(virtReg, physReg);
352                     }
353                     else {
354                         assignVirt2PhysReg(virtReg, physReg);
355                     }
356                     tempDefOperands_.push_back(virtReg);
357                     (*currentInstr_)->SetMachineOperandReg(i, physReg);
358                 }
359             }
360
361
362             // if the instruction is a two address instruction and the
363             // source operands are not identical we need to insert
364             // extra instructions.
365
366             unsigned opcode = (*currentInstr_)->getOpcode();
367             if (tm_->getInstrInfo().isTwoAddrInstr(opcode) &&
368                 (*currentInstr_)->getOperand(0).getAllocatedRegNum() !=
369                 (*currentInstr_)->getOperand(1).getAllocatedRegNum()) {
370                 assert((*currentInstr_)->getOperand(1).isRegister() &&
371                        (*currentInstr_)->getOperand(1).getAllocatedRegNum() &&
372                        (*currentInstr_)->getOperand(1).opIsUse() &&
373                        "Two address instruction invalid");
374
375                 unsigned regA =
376                     (*currentInstr_)->getOperand(0).getAllocatedRegNum();
377                 unsigned regB =
378                     (*currentInstr_)->getOperand(1).getAllocatedRegNum();
379                 unsigned regC =
380                     ((*currentInstr_)->getNumOperands() > 2 &&
381                      (*currentInstr_)->getOperand(2).isRegister()) ?
382                     (*currentInstr_)->getOperand(2).getAllocatedRegNum() :
383                     0;
384
385                 const TargetRegisterClass* rc = mri_->getRegClass(regA);
386
387                 // special case: "a = b op a". If b is a temporary
388                 // reserved register rewrite as: "b = b op a; a = b"
389                 // otherwise use a temporary reserved register t and
390                 // rewrite as: "t = b; t = t op a; a = t"
391                 if (regC && regA == regC) {
392                     // b is a temp reserved register
393                     if (find(reserved_.begin(), reserved_.end(),
394                              regB) != reserved_.end()) {
395                         (*currentInstr_)->SetMachineOperandReg(0, regB);
396                         ++currentInstr_;
397                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
398                                                           currentInstr_,
399                                                           regA,
400                                                           regB,
401                                                           rc);
402                         --currentInstr_;
403                     }
404                     // b is just a normal register
405                     else {
406                         unsigned tempReg = getFreeTempPhysReg(rc);
407                         assert (tempReg &&
408                                 "no free temp reserved physical register?");
409                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
410                                                           currentInstr_,
411                                                           tempReg,
412                                                           regB,
413                                                           rc);
414                         (*currentInstr_)->SetMachineOperandReg(0, tempReg);
415                         (*currentInstr_)->SetMachineOperandReg(1, tempReg);
416                         ++currentInstr_;
417                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
418                                                           currentInstr_,
419                                                           regA,
420                                                           tempReg,
421                                                           rc);
422                         --currentInstr_;
423                     }
424                 }
425                 // "a = b op c" gets rewritten to "a = b; a = a op c"
426                 else {
427                     instrAdded_ += mri_->copyRegToReg(*currentMbb_,
428                                                       currentInstr_,
429                                                       regA,
430                                                       regB,
431                                                       rc);
432                     (*currentInstr_)->SetMachineOperandReg(1, regA);
433                 }
434             }
435
436             DEBUG(std::cerr << "\t\tspilling temporarily defined operands "
437                   "of this instruction:\n");
438             ++currentInstr_; // we want to insert after this instruction
439             for (unsigned i = 0, e = tempDefOperands_.size(); i != e; ++i) {
440                 spillVirtReg(tempDefOperands_[i]);
441             }
442             --currentInstr_; // restore currentInstr_ iterator
443             tempDefOperands_.clear();
444         }
445
446         for (unsigned i = 0, e = p2vMap_.size(); i != e; ++i) {
447             assert(p2vMap_[i] != i &&
448                    "reserved physical registers at end of basic block?");
449         }
450     }
451
452     return true;
453 }
454
455 void RA::processActiveIntervals(Intervals::const_iterator cur)
456 {
457     DEBUG(std::cerr << "\tprocessing active intervals:\n");
458     for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) {
459         unsigned reg = (*i)->reg;
460         // remove expired intervals. we expire earlier because this if
461         // an interval expires this is going to be the last use. in
462         // this case we can reuse the register for a def in the same
463         // instruction
464         if ((*i)->expired(cur->start() + 1)) {
465             DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
466             if (reg < MRegisterInfo::FirstVirtualRegister) {
467                 clearReservedPhysReg(reg);
468             }
469             else {
470                 p2vMap_[v2pMap_[reg]] = 0;
471             }
472             // remove interval from active
473             i = active_.erase(i);
474         }
475         // move not active intervals to inactive list
476 //         else if (!(*i)->overlaps(curIndex)) {
477 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
478 //             unmarkReg(virtReg);
479 //             // add interval to inactive
480 //             inactive_.push_back(*i);
481 //             // remove interval from active
482 //             i = active_.erase(i);
483 //         }
484         else {
485             ++i;
486         }
487     }
488 }
489
490 void RA::processInactiveIntervals(Intervals::const_iterator cur)
491 {
492 //     DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
493 //     for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
494 //         unsigned virtReg = (*i)->reg;
495 //         // remove expired intervals
496 //         if ((*i)->expired(curIndex)) {
497 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
498 //             freePhysReg(virtReg);
499 //             // remove from inactive
500 //             i = inactive_.erase(i);
501 //         }
502 //         // move re-activated intervals in active list
503 //         else if ((*i)->overlaps(curIndex)) {
504 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
505 //             markReg(virtReg);
506 //             // add to active
507 //             active_.push_back(*i);
508 //             // remove from inactive
509 //             i = inactive_.erase(i);
510 //         }
511 //         else {
512 //             ++i;
513 //         }
514 //     }
515 }
516
517 void RA::assignStackSlotAtInterval(Intervals::const_iterator cur)
518 {
519     DEBUG(std::cerr << "\t\tassigning stack slot at interval "
520           << *cur << ":\n");
521     assert(!active_.empty() &&
522            "active set cannot be empty when choosing a register to spill");
523     const TargetRegisterClass* rcCur =
524         mf_->getSSARegMap()->getRegClass(cur->reg);
525
526     // find the interval for a virtual register that ends last in
527     // active and belongs to the same register class as the current
528     // interval
529     IntervalPtrs::iterator lastEndActive = active_.begin();
530     for (IntervalPtrs::iterator e = active_.end();
531          lastEndActive != e; ++lastEndActive) {
532         if ((*lastEndActive)->reg >= MRegisterInfo::FirstVirtualRegister) {
533             const TargetRegisterClass* rc =
534                 mri_->getRegClass(v2pMap_[(*lastEndActive)->reg]);
535             if (rcCur == rc) {
536                 break;
537             }
538         }
539     }
540     for (IntervalPtrs::iterator i = lastEndActive, e = active_.end();
541          i != e; ++i) {
542         if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
543             const TargetRegisterClass* rc =
544                 mri_->getRegClass(v2pMap_[(*i)->reg]);
545             if (rcCur == rc &&
546                 (*lastEndActive)->end() < (*i)->end()) {
547                 lastEndActive = i;
548             }
549         }
550     }
551
552     // find the interval for a virtual register that ends last in
553     // inactive and belongs to the same register class as the current
554     // interval
555     IntervalPtrs::iterator lastEndInactive = inactive_.begin();
556     for (IntervalPtrs::iterator e = inactive_.end();
557          lastEndInactive != e; ++lastEndInactive) {
558         if ((*lastEndInactive)->reg >= MRegisterInfo::FirstVirtualRegister) {
559             const TargetRegisterClass* rc =
560                 mri_->getRegClass(v2pMap_[(*lastEndInactive)->reg]);
561             if (rcCur == rc) {
562                 break;
563             }
564         }
565     }
566     for (IntervalPtrs::iterator i = lastEndInactive, e = inactive_.end();
567          i != e; ++i) {
568         if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
569             const TargetRegisterClass* rc =
570                 mri_->getRegClass(v2pMap_[(*i)->reg]);
571             if (rcCur == rc &&
572                 (*lastEndInactive)->end() < (*i)->end()) {
573                 lastEndInactive = i;
574             }
575         }
576     }
577
578     unsigned lastEndActiveInactive = 0;
579     if (lastEndActive != active_.end() &&
580         lastEndActiveInactive < (*lastEndActive)->end()) {
581         lastEndActiveInactive = (*lastEndActive)->end();
582     }
583     if (lastEndInactive != inactive_.end() &&
584         lastEndActiveInactive < (*lastEndInactive)->end()) {
585         lastEndActiveInactive = (*lastEndInactive)->end();
586     }
587
588     if (lastEndActiveInactive > cur->end()) {
589         if (lastEndInactive == inactive_.end() ||
590             (*lastEndActive)->end() > (*lastEndInactive)->end()) {
591             assignVirt2StackSlot((*lastEndActive)->reg);
592             active_.erase(lastEndActive);
593         }
594         else {
595             assignVirt2StackSlot((*lastEndInactive)->reg);
596             inactive_.erase(lastEndInactive);
597         }
598         unsigned physReg = getFreePhysReg(cur->reg);
599         assert(physReg && "no free physical register after spill?");
600         assignVirt2PhysReg(cur->reg, physReg);
601         active_.push_back(&*cur);
602     }
603     else {
604         assignVirt2StackSlot(cur->reg);
605     }
606 }
607
608 void RA::reservePhysReg(unsigned physReg)
609 {
610     DEBUG(std::cerr << "\t\t\treserving physical physical register: "
611           << mri_->getName(physReg) << '\n');
612     // if this register holds a value spill it
613     unsigned virtReg = p2vMap_[physReg];
614     if (virtReg != 0) {
615         assert(virtReg != physReg && "reserving an already reserved phus reg?");
616         // remove interval from active
617         for (IntervalPtrs::iterator i = active_.begin(), e = active_.end();
618              i != e; ++i) {
619             if ((*i)->reg == virtReg) {
620                 active_.erase(i);
621                 break;
622             }
623         }
624         spillVirtReg(virtReg);
625     }
626     p2vMap_[physReg] = physReg; // this denotes a reserved physical register
627 }
628
629 void RA::clearReservedPhysReg(unsigned physReg)
630 {
631     DEBUG(std::cerr << "\t\t\tclearing reserved physical physical register: "
632           << mri_->getName(physReg) << '\n');
633     assert(p2vMap_[physReg] == physReg &&
634            "attempt to clear a non reserved physical register");
635     p2vMap_[physReg] = 0;
636 }
637
638 bool RA::physRegAvailable(unsigned physReg)
639 {
640     if (p2vMap_[physReg]) {
641         return false;
642     }
643
644     // if it aliases other registers it is still not free
645     for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
646         if (p2vMap_[*as]) {
647             return false;
648         }
649     }
650
651     // if it is one of the reserved registers it is still not free
652     if (find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()) {
653         return false;
654     }
655
656     return true;
657 }
658
659 unsigned RA::getFreePhysReg(unsigned virtReg)
660 {
661     DEBUG(std::cerr << "\t\tgetting free physical register: ");
662     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
663     TargetRegisterClass::iterator reg = rc->allocation_order_begin(*mf_);
664     TargetRegisterClass::iterator regEnd = rc->allocation_order_end(*mf_);
665
666     for (; reg != regEnd; ++reg) {
667         if (physRegAvailable(*reg)) {
668             assert(*reg != 0 && "Cannot use register!");
669             DEBUG(std::cerr << mri_->getName(*reg) << '\n');
670             return *reg; // Found an unused register!
671         }
672     }
673
674     DEBUG(std::cerr << "no free register\n");
675     return 0;
676 }
677
678 bool RA::tempPhysRegAvailable(unsigned physReg)
679 {
680     assert(find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()
681            && "cannot call this method with a non reserved temp register");
682
683     if (p2vMap_[physReg]) {
684         return false;
685     }
686
687     // if it aliases other registers it is still not free
688     for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
689         if (p2vMap_[*as]) {
690             return false;
691         }
692     }
693
694     return true;
695 }
696
697 unsigned RA::getFreeTempPhysReg(const TargetRegisterClass* rc)
698 {
699     DEBUG(std::cerr << "\t\tgetting free temporary physical register: ");
700
701     for (Regs::const_iterator
702              reg = reserved_.begin(), regEnd = reserved_.end();
703          reg != regEnd; ++reg) {
704         if (rc == mri_->getRegClass(*reg) && tempPhysRegAvailable(*reg)) {
705             assert(*reg != 0 && "Cannot use register!");
706             DEBUG(std::cerr << mri_->getName(*reg) << '\n');
707             return *reg; // Found an unused register!
708         }
709     }
710     assert(0 && "no free temporary physical register?");
711     return 0;
712 }
713
714 void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg)
715 {
716     assert((physRegAvailable(physReg) ||
717             find(reserved_.begin(),
718                  reserved_.end(),
719                  physReg) != reserved_.end()) &&
720            "attempt to allocate to a not available physical register");
721     v2pMap_[virtReg] = physReg;
722     p2vMap_[physReg] = virtReg;
723 }
724
725 void RA::clearVirtReg(unsigned virtReg)
726 {
727     Virt2PhysMap::iterator it = v2pMap_.find(virtReg);
728     assert(it != v2pMap_.end() &&
729            "attempting to clear a not allocated virtual register");
730     unsigned physReg = it->second;
731     p2vMap_[physReg] = 0;
732     v2pMap_[virtReg] = 0; // this marks that this virtual register
733                           // lives on the stack
734     DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg)
735           << "\n");
736 }
737
738 void RA::assignVirt2StackSlot(unsigned virtReg)
739 {
740     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
741     int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);
742
743     bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second;
744     assert(inserted &&
745            "attempt to assign stack slot to already assigned register?");
746     // if the virtual register was previously assigned clear the mapping
747     // and free the virtual register
748     if (v2pMap_.find(virtReg) != v2pMap_.end()) {
749         clearVirtReg(virtReg);
750     }
751     else {
752         v2pMap_[virtReg] = 0; // this marks that this virtual register
753                               // lives on the stack
754     }
755 }
756
757 int RA::getStackSlot(unsigned virtReg)
758 {
759     // use lower_bound so that we can do a possibly O(1) insert later
760     // if necessary
761     Virt2StackSlotMap::iterator it = v2ssMap_.find(virtReg);
762     assert(it != v2ssMap_.end() &&
763            "attempt to get stack slot on register that does not live on the stack");
764     return it->second;
765 }
766
767 void RA::spillVirtReg(unsigned virtReg)
768 {
769     DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg);
770     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
771     int frameIndex = getStackSlot(virtReg);
772     DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n');
773     ++numSpilled;
774     instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_,
775                                              v2pMap_[virtReg], frameIndex, rc);
776     clearVirtReg(virtReg);
777 }
778
779 void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg)
780 {
781     DEBUG(std::cerr << "\t\t\tloading register: " << virtReg);
782     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
783     int frameIndex = getStackSlot(virtReg);
784     DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n');
785     instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_,
786                                               physReg, frameIndex, rc);
787     assignVirt2PhysReg(virtReg, physReg);
788 }
789
790 FunctionPass* llvm::createLinearScanRegisterAllocator() {
791     return new RA();
792 }