1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/IndexedMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/SparseSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/RegAllocRegistry.h"
30 #include "llvm/CodeGen/RegisterClassInfo.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
41 STATISTIC(NumStores, "Number of stores added");
42 STATISTIC(NumLoads , "Number of loads added");
43 STATISTIC(NumCopies, "Number of copies coalesced");
45 static RegisterRegAlloc
46 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
49 class RAFast : public MachineFunctionPass {
52 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
53 isBulkSpilling(false) {}
55 const TargetMachine *TM;
57 MachineRegisterInfo *MRI;
58 const TargetRegisterInfo *TRI;
59 const TargetInstrInfo *TII;
60 RegisterClassInfo RegClassInfo;
62 // Basic block currently being allocated.
63 MachineBasicBlock *MBB;
65 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
66 // values are spilled.
67 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
69 // Everything we know about a live virtual register.
71 MachineInstr *LastUse; // Last instr to use reg.
72 unsigned VirtReg; // Virtual register number.
73 unsigned PhysReg; // Currently held here.
74 unsigned short LastOpNum; // OpNum on LastUse.
75 bool Dirty; // Register needs spill.
77 explicit LiveReg(unsigned v)
78 : LastUse(0), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false) {}
80 unsigned getSparseSetIndex() const {
81 return TargetRegisterInfo::virtReg2Index(VirtReg);
85 typedef SparseSet<LiveReg> LiveRegMap;
87 // LiveVirtRegs - This map contains entries for each virtual register
88 // that is currently available in a physical register.
89 LiveRegMap LiveVirtRegs;
91 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;
93 // RegState - Track the state of a physical register.
95 // A disabled register is not available for allocation, but an alias may
96 // be in use. A register can only be moved out of the disabled state if
97 // all aliases are disabled.
100 // A free register is not currently in use and can be allocated
101 // immediately without checking aliases.
104 // A reserved register has been assigned explicitly (e.g., setting up a
105 // call parameter), and it remains reserved until it is used.
108 // A register state may also be a virtual register number, indication that
109 // the physical register is currently allocated to a virtual register. In
110 // that case, LiveVirtRegs contains the inverse mapping.
113 // PhysRegState - One of the RegState enums, or a virtreg.
114 std::vector<unsigned> PhysRegState;
116 // Set of register units.
117 typedef SparseSet<unsigned> UsedInInstrSet;
119 // Set of register units that are used in the current instruction, and so
120 // cannot be allocated.
121 UsedInInstrSet UsedInInstr;
123 // Mark a physreg as used in this instruction.
124 void markRegUsedInInstr(unsigned PhysReg) {
125 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
126 UsedInInstr.insert(*Units);
129 // Check if a physreg or any of its aliases are used in this instruction.
130 bool isRegUsedInInstr(unsigned PhysReg) const {
131 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
132 if (UsedInInstr.count(*Units))
137 // SkippedInstrs - Descriptors of instructions whose clobber list was
138 // ignored because all registers were spilled. It is still necessary to
139 // mark all the clobbered registers as used by the function.
140 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
142 // isBulkSpilling - This flag is set when LiveRegMap will be cleared
143 // completely after spilling all live registers. LiveRegMap entries should
147 enum LLVM_ENUM_INT_TYPE(unsigned) {
150 spillImpossible = ~0u
153 virtual const char *getPassName() const {
154 return "Fast Register Allocator";
157 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
158 AU.setPreservesCFG();
159 MachineFunctionPass::getAnalysisUsage(AU);
163 bool runOnMachineFunction(MachineFunction &Fn);
164 void AllocateBasicBlock();
165 void handleThroughOperands(MachineInstr *MI,
166 SmallVectorImpl<unsigned> &VirtDead);
167 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
168 bool isLastUseOfLocalReg(MachineOperand&);
170 void addKillFlag(const LiveReg&);
171 void killVirtReg(LiveRegMap::iterator);
172 void killVirtReg(unsigned VirtReg);
173 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
174 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
176 void usePhysReg(MachineOperand&);
177 void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
178 unsigned calcSpillCost(unsigned PhysReg) const;
179 void assignVirtToPhysReg(LiveReg&, unsigned PhysReg);
180 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
181 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
183 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
184 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
186 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg);
187 LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator,
189 LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
190 unsigned VirtReg, unsigned Hint);
191 LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
192 unsigned VirtReg, unsigned Hint);
193 void spillAll(MachineBasicBlock::iterator MI);
194 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
199 /// getStackSpaceFor - This allocates space for the specified virtual register
200 /// to be held on the stack.
201 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
202 // Find the location Reg would belong...
203 int SS = StackSlotForVirtReg[VirtReg];
205 return SS; // Already has space allocated?
207 // Allocate a new stack object for this spill location...
208 int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
212 StackSlotForVirtReg[VirtReg] = FrameIdx;
216 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
217 /// its virtual register, and it is guaranteed to be a block-local register.
219 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
220 // If the register has ever been spilled or reloaded, we conservatively assume
221 // it is a global register used in multiple blocks.
222 if (StackSlotForVirtReg[MO.getReg()] != -1)
225 // Check that the use/def chain has exactly one operand - MO.
226 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
227 if (&I.getOperand() != &MO)
229 return ++I == MRI->reg_nodbg_end();
232 /// addKillFlag - Set kill flags on last use of a virtual register.
233 void RAFast::addKillFlag(const LiveReg &LR) {
234 if (!LR.LastUse) return;
235 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
236 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
237 if (MO.getReg() == LR.PhysReg)
240 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
244 /// killVirtReg - Mark virtreg as no longer available.
245 void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
247 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg &&
248 "Broken RegState mapping");
249 PhysRegState[LRI->PhysReg] = regFree;
250 // Erase from LiveVirtRegs unless we're spilling in bulk.
252 LiveVirtRegs.erase(LRI);
255 /// killVirtReg - Mark virtreg as no longer available.
256 void RAFast::killVirtReg(unsigned VirtReg) {
257 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
258 "killVirtReg needs a virtual register");
259 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
260 if (LRI != LiveVirtRegs.end())
264 /// spillVirtReg - This method spills the value specified by VirtReg into the
265 /// corresponding stack slot if needed.
266 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
267 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
268 "Spilling a physical register is illegal!");
269 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
270 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
271 spillVirtReg(MI, LRI);
274 /// spillVirtReg - Do the actual work of spilling.
275 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
276 LiveRegMap::iterator LRI) {
278 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping");
281 // If this physreg is used by the instruction, we want to kill it on the
282 // instruction, not on the spill.
283 bool SpillKill = LR.LastUse != MI;
285 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI)
286 << " in " << PrintReg(LR.PhysReg, TRI));
287 const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg);
288 int FI = getStackSpaceFor(LRI->VirtReg, RC);
289 DEBUG(dbgs() << " to stack slot #" << FI << "\n");
290 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
291 ++NumStores; // Update statistics
293 // If this register is used by DBG_VALUE then insert new DBG_VALUE to
294 // identify spilled location as the place to find corresponding variable's
296 SmallVectorImpl<MachineInstr *> &LRIDbgValues =
297 LiveDbgValueMap[LRI->VirtReg];
298 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
299 MachineInstr *DBG = LRIDbgValues[li];
300 const MDNode *MDPtr = DBG->getOperand(2).getMetadata();
301 bool IsIndirect = DBG->isIndirectDebugValue();
302 uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0;
304 if (MI == MBB->end()) {
305 // If MI is at basic block end then use last instruction's location.
306 MachineBasicBlock::iterator EI = MI;
307 DL = (--EI)->getDebugLoc();
309 DL = MI->getDebugLoc();
310 MachineBasicBlock *MBB = DBG->getParent();
311 MachineInstr *NewDV =
312 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE))
313 .addFrameIndex(FI).addImm(Offset).addMetadata(MDPtr);
315 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
317 // Now this register is spilled there is should not be any DBG_VALUE
318 // pointing to this register because they are all pointing to spilled value
320 LRIDbgValues.clear();
322 LR.LastUse = 0; // Don't kill register again
327 /// spillAll - Spill all dirty virtregs without killing them.
328 void RAFast::spillAll(MachineBasicBlock::iterator MI) {
329 if (LiveVirtRegs.empty()) return;
330 isBulkSpilling = true;
331 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
332 // of spilling here is deterministic, if arbitrary.
333 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
336 LiveVirtRegs.clear();
337 isBulkSpilling = false;
340 /// usePhysReg - Handle the direct use of a physical register.
341 /// Check that the register is not used by a virtreg.
342 /// Kill the physreg, marking it free.
343 /// This may add implicit kills to MO->getParent() and invalidate MO.
344 void RAFast::usePhysReg(MachineOperand &MO) {
345 unsigned PhysReg = MO.getReg();
346 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
347 "Bad usePhysReg operand");
348 markRegUsedInInstr(PhysReg);
349 switch (PhysRegState[PhysReg]) {
353 PhysRegState[PhysReg] = regFree;
359 // The physreg was allocated to a virtual register. That means the value we
360 // wanted has been clobbered.
361 llvm_unreachable("Instruction uses an allocated register");
364 // Maybe a superregister is reserved?
365 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
366 unsigned Alias = *AI;
367 switch (PhysRegState[Alias]) {
371 assert(TRI->isSuperRegister(PhysReg, Alias) &&
372 "Instruction is not using a subregister of a reserved register");
373 // Leave the superregister in the working set.
374 PhysRegState[Alias] = regFree;
375 MO.getParent()->addRegisterKilled(Alias, TRI, true);
378 if (TRI->isSuperRegister(PhysReg, Alias)) {
379 // Leave the superregister in the working set.
380 MO.getParent()->addRegisterKilled(Alias, TRI, true);
383 // Some other alias was in the working set - clear it.
384 PhysRegState[Alias] = regDisabled;
387 llvm_unreachable("Instruction uses an alias of an allocated register");
391 // All aliases are disabled, bring register into working set.
392 PhysRegState[PhysReg] = regFree;
396 /// definePhysReg - Mark PhysReg as reserved or free after spilling any
397 /// virtregs. This is very similar to defineVirtReg except the physreg is
398 /// reserved instead of allocated.
399 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
401 markRegUsedInInstr(PhysReg);
402 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
406 spillVirtReg(MI, VirtReg);
410 PhysRegState[PhysReg] = NewState;
414 // This is a disabled register, disable all aliases.
415 PhysRegState[PhysReg] = NewState;
416 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
417 unsigned Alias = *AI;
418 switch (unsigned VirtReg = PhysRegState[Alias]) {
422 spillVirtReg(MI, VirtReg);
426 PhysRegState[Alias] = regDisabled;
427 if (TRI->isSuperRegister(PhysReg, Alias))
435 // calcSpillCost - Return the cost of spilling clearing out PhysReg and
436 // aliases so it is free for allocation.
437 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it
438 // can be allocated directly.
439 // Returns spillImpossible when PhysReg or an alias can't be spilled.
440 unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
441 if (isRegUsedInInstr(PhysReg)) {
442 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
443 return spillImpossible;
445 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
451 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
452 << PrintReg(PhysReg, TRI) << " is reserved already.\n");
453 return spillImpossible;
455 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
456 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
457 return I->Dirty ? spillDirty : spillClean;
461 // This is a disabled register, add up cost of aliases.
462 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
464 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
465 unsigned Alias = *AI;
466 switch (unsigned VirtReg = PhysRegState[Alias]) {
473 return spillImpossible;
475 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
476 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
477 Cost += I->Dirty ? spillDirty : spillClean;
486 /// assignVirtToPhysReg - This method updates local state so that we know
487 /// that PhysReg is the proper container for VirtReg now. The physical
488 /// register must not be used for anything else when this is called.
490 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) {
491 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to "
492 << PrintReg(PhysReg, TRI) << "\n");
493 PhysRegState[PhysReg] = LR.VirtReg;
494 assert(!LR.PhysReg && "Already assigned a physreg");
495 LR.PhysReg = PhysReg;
498 RAFast::LiveRegMap::iterator
499 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
500 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
501 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared");
502 assignVirtToPhysReg(*LRI, PhysReg);
506 /// allocVirtReg - Allocate a physical register for VirtReg.
507 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
508 LiveRegMap::iterator LRI,
510 const unsigned VirtReg = LRI->VirtReg;
512 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
513 "Can only allocate virtual registers");
515 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
517 // Ignore invalid hints.
518 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
519 !RC->contains(Hint) || !MRI->isAllocatable(Hint)))
522 // Take hint when possible.
524 // Ignore the hint if we would have to spill a dirty register.
525 unsigned Cost = calcSpillCost(Hint);
526 if (Cost < spillDirty) {
528 definePhysReg(MI, Hint, regFree);
529 // definePhysReg may kill virtual registers and modify LiveVirtRegs.
530 // That invalidates LRI, so run a new lookup for VirtReg.
531 return assignVirtToPhysReg(VirtReg, Hint);
535 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC);
537 // First try to find a completely free register.
538 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
539 unsigned PhysReg = *I;
540 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) {
541 assignVirtToPhysReg(*LRI, PhysReg);
546 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
547 << RC->getName() << "\n");
549 unsigned BestReg = 0, BestCost = spillImpossible;
550 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
551 unsigned Cost = calcSpillCost(*I);
552 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
553 DEBUG(dbgs() << "\tCost: " << Cost << "\n");
554 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
555 // Cost is 0 when all aliases are already disabled.
557 assignVirtToPhysReg(*LRI, *I);
561 BestReg = *I, BestCost = Cost;
565 definePhysReg(MI, BestReg, regFree);
566 // definePhysReg may kill virtual registers and modify LiveVirtRegs.
567 // That invalidates LRI, so run a new lookup for VirtReg.
568 return assignVirtToPhysReg(VirtReg, BestReg);
571 // Nothing we can do. Report an error and keep going with a bad allocation.
572 if (MI->isInlineAsm())
573 MI->emitError("inline assembly requires more registers than available");
575 MI->emitError("ran out of registers during register allocation");
576 definePhysReg(MI, *AO.begin(), regFree);
577 return assignVirtToPhysReg(VirtReg, *AO.begin());
580 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
581 RAFast::LiveRegMap::iterator
582 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
583 unsigned VirtReg, unsigned Hint) {
584 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
585 "Not a virtual register");
586 LiveRegMap::iterator LRI;
588 tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
590 // If there is no hint, peek at the only use of this register.
591 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
592 MRI->hasOneNonDBGUse(VirtReg)) {
593 const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg);
594 // It's a copy, use the destination register as a hint.
595 if (UseMI.isCopyLike())
596 Hint = UseMI.getOperand(0).getReg();
598 LRI = allocVirtReg(MI, LRI, Hint);
599 } else if (LRI->LastUse) {
600 // Redefining a live register - kill at the last use, unless it is this
601 // instruction defining VirtReg multiple times.
602 if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
605 assert(LRI->PhysReg && "Register not assigned");
607 LRI->LastOpNum = OpNum;
609 markRegUsedInInstr(LRI->PhysReg);
613 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
614 RAFast::LiveRegMap::iterator
615 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
616 unsigned VirtReg, unsigned Hint) {
617 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
618 "Not a virtual register");
619 LiveRegMap::iterator LRI;
621 tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
622 MachineOperand &MO = MI->getOperand(OpNum);
624 LRI = allocVirtReg(MI, LRI, Hint);
625 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
626 int FrameIndex = getStackSpaceFor(VirtReg, RC);
627 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
628 << PrintReg(LRI->PhysReg, TRI) << "\n");
629 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI);
631 } else if (LRI->Dirty) {
632 if (isLastUseOfLocalReg(MO)) {
633 DEBUG(dbgs() << "Killing last use: " << MO << "\n");
638 } else if (MO.isKill()) {
639 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
641 } else if (MO.isDead()) {
642 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
645 } else if (MO.isKill()) {
646 // We must remove kill flags from uses of reloaded registers because the
647 // register would be killed immediately, and there might be a second use:
648 // %foo = OR %x<kill>, %x
649 // This would cause a second reload of %x into a different register.
650 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
652 } else if (MO.isDead()) {
653 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
656 assert(LRI->PhysReg && "Register not assigned");
658 LRI->LastOpNum = OpNum;
659 markRegUsedInInstr(LRI->PhysReg);
663 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
664 // subregs. This may invalidate any operand pointers.
665 // Return true if the operand kills its register.
666 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
667 MachineOperand &MO = MI->getOperand(OpNum);
668 bool Dead = MO.isDead();
669 if (!MO.getSubReg()) {
671 return MO.isKill() || Dead;
674 // Handle subregister index.
675 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
678 // A kill flag implies killing the full register. Add corresponding super
681 MI->addRegisterKilled(PhysReg, TRI, true);
685 // A <def,read-undef> of a sub-register requires an implicit def of the full
687 if (MO.isDef() && MO.isUndef())
688 MI->addRegisterDefined(PhysReg, TRI);
693 // Handle special instruction operand like early clobbers and tied ops when
694 // there are additional physreg defines.
695 void RAFast::handleThroughOperands(MachineInstr *MI,
696 SmallVectorImpl<unsigned> &VirtDead) {
697 DEBUG(dbgs() << "Scanning for through registers:");
698 SmallSet<unsigned, 8> ThroughRegs;
699 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
700 MachineOperand &MO = MI->getOperand(i);
701 if (!MO.isReg()) continue;
702 unsigned Reg = MO.getReg();
703 if (!TargetRegisterInfo::isVirtualRegister(Reg))
705 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
706 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
707 if (ThroughRegs.insert(Reg))
708 DEBUG(dbgs() << ' ' << PrintReg(Reg));
712 // If any physreg defines collide with preallocated through registers,
713 // we must spill and reallocate.
714 DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
715 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
716 MachineOperand &MO = MI->getOperand(i);
717 if (!MO.isReg() || !MO.isDef()) continue;
718 unsigned Reg = MO.getReg();
719 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
720 markRegUsedInInstr(Reg);
721 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
722 if (ThroughRegs.count(PhysRegState[*AI]))
723 definePhysReg(MI, *AI, regFree);
727 SmallVector<unsigned, 8> PartialDefs;
728 DEBUG(dbgs() << "Allocating tied uses.\n");
729 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
730 MachineOperand &MO = MI->getOperand(i);
731 if (!MO.isReg()) continue;
732 unsigned Reg = MO.getReg();
733 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
736 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
737 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
739 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
740 unsigned PhysReg = LRI->PhysReg;
741 setPhysReg(MI, i, PhysReg);
742 // Note: we don't update the def operand yet. That would cause the normal
743 // def-scan to attempt spilling.
744 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
745 DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
746 // Reload the register, but don't assign to the operand just yet.
747 // That would confuse the later phys-def processing pass.
748 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
749 PartialDefs.push_back(LRI->PhysReg);
753 DEBUG(dbgs() << "Allocating early clobbers.\n");
754 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
755 MachineOperand &MO = MI->getOperand(i);
756 if (!MO.isReg()) continue;
757 unsigned Reg = MO.getReg();
758 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
759 if (!MO.isEarlyClobber())
761 // Note: defineVirtReg may invalidate MO.
762 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
763 unsigned PhysReg = LRI->PhysReg;
764 if (setPhysReg(MI, i, PhysReg))
765 VirtDead.push_back(Reg);
768 // Restore UsedInInstr to a state usable for allocating normal virtual uses.
770 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
771 MachineOperand &MO = MI->getOperand(i);
772 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
773 unsigned Reg = MO.getReg();
774 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
775 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
776 << " as used in instr\n");
777 markRegUsedInInstr(Reg);
780 // Also mark PartialDefs as used to avoid reallocation.
781 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
782 markRegUsedInInstr(PartialDefs[i]);
785 void RAFast::AllocateBasicBlock() {
786 DEBUG(dbgs() << "\nAllocating " << *MBB);
788 PhysRegState.assign(TRI->getNumRegs(), regDisabled);
789 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
791 MachineBasicBlock::iterator MII = MBB->begin();
793 // Add live-in registers as live.
794 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
795 E = MBB->livein_end(); I != E; ++I)
796 if (MRI->isAllocatable(*I))
797 definePhysReg(MII, *I, regReserved);
799 SmallVector<unsigned, 8> VirtDead;
800 SmallVector<MachineInstr*, 32> Coalesced;
802 // Otherwise, sequentially allocate each instruction in the MBB.
803 while (MII != MBB->end()) {
804 MachineInstr *MI = MII++;
805 const MCInstrDesc &MCID = MI->getDesc();
807 dbgs() << "\n>> " << *MI << "Regs:";
808 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
809 if (PhysRegState[Reg] == regDisabled) continue;
810 dbgs() << " " << TRI->getName(Reg);
811 switch(PhysRegState[Reg]) {
818 dbgs() << '=' << PrintReg(PhysRegState[Reg]);
819 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]);
820 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
823 assert(I->PhysReg == Reg && "Bad inverse map");
829 // Check that LiveVirtRegs is the inverse.
830 for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
831 e = LiveVirtRegs.end(); i != e; ++i) {
832 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
834 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
836 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
840 // Debug values are not allowed to change codegen in any way.
841 if (MI->isDebugValue()) {
842 bool ScanDbgValue = true;
843 while (ScanDbgValue) {
844 ScanDbgValue = false;
845 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
846 MachineOperand &MO = MI->getOperand(i);
847 if (!MO.isReg()) continue;
848 unsigned Reg = MO.getReg();
849 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
850 LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
851 if (LRI != LiveVirtRegs.end())
852 setPhysReg(MI, i, LRI->PhysReg);
854 int SS = StackSlotForVirtReg[Reg];
856 // We can't allocate a physreg for a DebugValue, sorry!
857 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
861 // Modify DBG_VALUE now that the value is in a spill slot.
862 bool IsIndirect = MI->isIndirectDebugValue();
863 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
864 const MDNode *MDPtr =
865 MI->getOperand(MI->getNumOperands()-1).getMetadata();
866 DebugLoc DL = MI->getDebugLoc();
867 MachineBasicBlock *MBB = MI->getParent();
868 MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL,
869 TII->get(TargetOpcode::DBG_VALUE))
870 .addFrameIndex(SS).addImm(Offset).addMetadata(MDPtr);
871 DEBUG(dbgs() << "Modifying debug info due to spill:"
873 // Scan NewDV operands from the beginning.
879 LiveDbgValueMap[Reg].push_back(MI);
886 // If this is a copy, we may be able to coalesce.
887 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
889 CopyDst = MI->getOperand(0).getReg();
890 CopySrc = MI->getOperand(1).getReg();
891 CopyDstSub = MI->getOperand(0).getSubReg();
892 CopySrcSub = MI->getOperand(1).getSubReg();
895 // Track registers used by instruction.
899 // Mark physreg uses and early clobbers as used.
900 // Find the end of the virtreg operands
901 unsigned VirtOpEnd = 0;
902 bool hasTiedOps = false;
903 bool hasEarlyClobbers = false;
904 bool hasPartialRedefs = false;
905 bool hasPhysDefs = false;
906 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
907 MachineOperand &MO = MI->getOperand(i);
908 // Make sure MRI knows about registers clobbered by regmasks.
909 if (MO.isRegMask()) {
910 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
913 if (!MO.isReg()) continue;
914 unsigned Reg = MO.getReg();
916 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
919 hasTiedOps = hasTiedOps ||
920 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
922 if (MO.isEarlyClobber())
923 hasEarlyClobbers = true;
924 if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
925 hasPartialRedefs = true;
929 if (!MRI->isAllocatable(Reg)) continue;
932 } else if (MO.isEarlyClobber()) {
933 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
934 regFree : regReserved);
935 hasEarlyClobbers = true;
940 // The instruction may have virtual register operands that must be allocated
941 // the same register at use-time and def-time: early clobbers and tied
942 // operands. If there are also physical defs, these registers must avoid
943 // both physical defs and uses, making them more constrained than normal
945 // Similarly, if there are multiple defs and tied operands, we must make
946 // sure the same register is allocated to uses and defs.
947 // We didn't detect inline asm tied operands above, so just make this extra
948 // pass for all inline asm.
949 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
950 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
951 handleThroughOperands(MI, VirtDead);
952 // Don't attempt coalescing when we have funny stuff going on.
954 // Pretend we have early clobbers so the use operands get marked below.
955 // This is not necessary for the common case of a single tied use.
956 hasEarlyClobbers = true;
960 // Allocate virtreg uses.
961 for (unsigned i = 0; i != VirtOpEnd; ++i) {
962 MachineOperand &MO = MI->getOperand(i);
963 if (!MO.isReg()) continue;
964 unsigned Reg = MO.getReg();
965 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
967 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
968 unsigned PhysReg = LRI->PhysReg;
969 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
970 if (setPhysReg(MI, i, PhysReg))
975 for (UsedInInstrSet::iterator
976 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
977 MRI->setRegUnitUsed(*I);
979 // Track registers defined by instruction - early clobbers and tied uses at
982 if (hasEarlyClobbers) {
983 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
984 MachineOperand &MO = MI->getOperand(i);
985 if (!MO.isReg()) continue;
986 unsigned Reg = MO.getReg();
987 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
988 // Look for physreg defs and tied uses.
989 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
990 markRegUsedInInstr(Reg);
994 unsigned DefOpEnd = MI->getNumOperands();
996 // Spill all virtregs before a call. This serves two purposes: 1. If an
997 // exception is thrown, the landing pad is going to expect to find
998 // registers in their spill slots, and 2. we don't have to wade through
999 // all the <imp-def> operands on the call instruction.
1000 DefOpEnd = VirtOpEnd;
1001 DEBUG(dbgs() << " Spilling remaining registers before call.\n");
1004 // The imp-defs are skipped below, but we still need to mark those
1005 // registers as used by the function.
1006 SkippedInstrs.insert(&MCID);
1010 // Allocate defs and collect dead defs.
1011 for (unsigned i = 0; i != DefOpEnd; ++i) {
1012 MachineOperand &MO = MI->getOperand(i);
1013 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1015 unsigned Reg = MO.getReg();
1017 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1018 if (!MRI->isAllocatable(Reg)) continue;
1019 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
1020 regFree : regReserved);
1023 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
1024 unsigned PhysReg = LRI->PhysReg;
1025 if (setPhysReg(MI, i, PhysReg)) {
1026 VirtDead.push_back(Reg);
1027 CopyDst = 0; // cancel coalescing;
1029 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
1032 // Kill dead defs after the scan to ensure that multiple defs of the same
1033 // register are allocated identically. We didn't need to do this for uses
1034 // because we are crerating our own kill flags, and they are always at the
1036 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
1037 killVirtReg(VirtDead[i]);
1040 for (UsedInInstrSet::iterator
1041 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
1042 MRI->setRegUnitUsed(*I);
1044 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
1045 DEBUG(dbgs() << "-- coalescing: " << *MI);
1046 Coalesced.push_back(MI);
1048 DEBUG(dbgs() << "<< " << *MI);
1052 // Spill all physical registers holding virtual registers now.
1053 DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1054 spillAll(MBB->getFirstTerminator());
1056 // Erase all the coalesced copies. We are delaying it until now because
1057 // LiveVirtRegs might refer to the instrs.
1058 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
1059 MBB->erase(Coalesced[i]);
1060 NumCopies += Coalesced.size();
1065 /// runOnMachineFunction - Register allocate the whole function
1067 bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
1068 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1069 << "********** Function: " << Fn.getName() << '\n');
1071 MRI = &MF->getRegInfo();
1072 TM = &Fn.getTarget();
1073 TRI = TM->getRegisterInfo();
1074 TII = TM->getInstrInfo();
1075 MRI->freezeReservedRegs(Fn);
1076 RegClassInfo.runOnMachineFunction(Fn);
1077 UsedInInstr.clear();
1078 UsedInInstr.setUniverse(TRI->getNumRegUnits());
1080 assert(!MRI->isSSA() && "regalloc requires leaving SSA");
1082 // initialize the virtual->physical register map to have a 'null'
1083 // mapping for all virtual registers
1084 StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
1085 LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());
1087 // Loop over all of the basic blocks, eliminating virtual register references
1088 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
1089 MBBi != MBBe; ++MBBi) {
1091 AllocateBasicBlock();
1094 // Add the clobber lists for all the instructions we skipped earlier.
1095 for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator
1096 I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
1097 if (const uint16_t *Defs = (*I)->getImplicitDefs())
1099 MRI->setPhysRegUsed(*Defs++);
1101 // All machine operands and other references to virtual registers have been
1102 // replaced. Remove the virtual registers.
1103 MRI->clearVirtRegs();
1105 SkippedInstrs.clear();
1106 StackSlotForVirtReg.clear();
1107 LiveDbgValueMap.clear();
1111 FunctionPass *llvm::createFastRegisterAllocator() {
1112 return new RAFast();