DIBuilder: simplify array generation to produce true zero-length arrays
[oota-llvm.git] / lib / CodeGen / RegAllocFast.cpp
1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/IndexedMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/SparseSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/RegAllocRegistry.h"
30 #include "llvm/CodeGen/RegisterClassInfo.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <algorithm>
39 using namespace llvm;
40
41 STATISTIC(NumStores, "Number of stores added");
42 STATISTIC(NumLoads , "Number of loads added");
43 STATISTIC(NumCopies, "Number of copies coalesced");
44
45 static RegisterRegAlloc
46   fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
47
48 namespace {
49   class RAFast : public MachineFunctionPass {
50   public:
51     static char ID;
52     RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
53                isBulkSpilling(false) {}
54   private:
55     const TargetMachine *TM;
56     MachineFunction *MF;
57     MachineRegisterInfo *MRI;
58     const TargetRegisterInfo *TRI;
59     const TargetInstrInfo *TII;
60     RegisterClassInfo RegClassInfo;
61
62     // Basic block currently being allocated.
63     MachineBasicBlock *MBB;
64
65     // StackSlotForVirtReg - Maps virtual regs to the frame index where these
66     // values are spilled.
67     IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
68
69     // Everything we know about a live virtual register.
70     struct LiveReg {
71       MachineInstr *LastUse;    // Last instr to use reg.
72       unsigned VirtReg;         // Virtual register number.
73       unsigned PhysReg;         // Currently held here.
74       unsigned short LastOpNum; // OpNum on LastUse.
75       bool Dirty;               // Register needs spill.
76
77       explicit LiveReg(unsigned v)
78         : LastUse(0), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false) {}
79
80       unsigned getSparseSetIndex() const {
81         return TargetRegisterInfo::virtReg2Index(VirtReg);
82       }
83     };
84
85     typedef SparseSet<LiveReg> LiveRegMap;
86
87     // LiveVirtRegs - This map contains entries for each virtual register
88     // that is currently available in a physical register.
89     LiveRegMap LiveVirtRegs;
90
91     DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;
92
93     // RegState - Track the state of a physical register.
94     enum RegState {
95       // A disabled register is not available for allocation, but an alias may
96       // be in use. A register can only be moved out of the disabled state if
97       // all aliases are disabled.
98       regDisabled,
99
100       // A free register is not currently in use and can be allocated
101       // immediately without checking aliases.
102       regFree,
103
104       // A reserved register has been assigned explicitly (e.g., setting up a
105       // call parameter), and it remains reserved until it is used.
106       regReserved
107
108       // A register state may also be a virtual register number, indication that
109       // the physical register is currently allocated to a virtual register. In
110       // that case, LiveVirtRegs contains the inverse mapping.
111     };
112
113     // PhysRegState - One of the RegState enums, or a virtreg.
114     std::vector<unsigned> PhysRegState;
115
116     // Set of register units.
117     typedef SparseSet<unsigned> UsedInInstrSet;
118
119     // Set of register units that are used in the current instruction, and so
120     // cannot be allocated.
121     UsedInInstrSet UsedInInstr;
122
123     // Mark a physreg as used in this instruction.
124     void markRegUsedInInstr(unsigned PhysReg) {
125       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
126         UsedInInstr.insert(*Units);
127     }
128
129     // Check if a physreg or any of its aliases are used in this instruction.
130     bool isRegUsedInInstr(unsigned PhysReg) const {
131       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
132         if (UsedInInstr.count(*Units))
133           return true;
134       return false;
135     }
136
137     // SkippedInstrs - Descriptors of instructions whose clobber list was
138     // ignored because all registers were spilled. It is still necessary to
139     // mark all the clobbered registers as used by the function.
140     SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
141
142     // isBulkSpilling - This flag is set when LiveRegMap will be cleared
143     // completely after spilling all live registers. LiveRegMap entries should
144     // not be erased.
145     bool isBulkSpilling;
146
147     enum LLVM_ENUM_INT_TYPE(unsigned) {
148       spillClean = 1,
149       spillDirty = 100,
150       spillImpossible = ~0u
151     };
152   public:
153     virtual const char *getPassName() const {
154       return "Fast Register Allocator";
155     }
156
157     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
158       AU.setPreservesCFG();
159       MachineFunctionPass::getAnalysisUsage(AU);
160     }
161
162   private:
163     bool runOnMachineFunction(MachineFunction &Fn);
164     void AllocateBasicBlock();
165     void handleThroughOperands(MachineInstr *MI,
166                                SmallVectorImpl<unsigned> &VirtDead);
167     int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
168     bool isLastUseOfLocalReg(MachineOperand&);
169
170     void addKillFlag(const LiveReg&);
171     void killVirtReg(LiveRegMap::iterator);
172     void killVirtReg(unsigned VirtReg);
173     void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
174     void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
175
176     void usePhysReg(MachineOperand&);
177     void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
178     unsigned calcSpillCost(unsigned PhysReg) const;
179     void assignVirtToPhysReg(LiveReg&, unsigned PhysReg);
180     LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
181       return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
182     }
183     LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
184       return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
185     }
186     LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg);
187     LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator,
188                                       unsigned Hint);
189     LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
190                                        unsigned VirtReg, unsigned Hint);
191     LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
192                                        unsigned VirtReg, unsigned Hint);
193     void spillAll(MachineBasicBlock::iterator MI);
194     bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
195   };
196   char RAFast::ID = 0;
197 }
198
199 /// getStackSpaceFor - This allocates space for the specified virtual register
200 /// to be held on the stack.
201 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
202   // Find the location Reg would belong...
203   int SS = StackSlotForVirtReg[VirtReg];
204   if (SS != -1)
205     return SS;          // Already has space allocated?
206
207   // Allocate a new stack object for this spill location...
208   int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
209                                                             RC->getAlignment());
210
211   // Assign the slot.
212   StackSlotForVirtReg[VirtReg] = FrameIdx;
213   return FrameIdx;
214 }
215
216 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
217 /// its virtual register, and it is guaranteed to be a block-local register.
218 ///
219 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
220   // If the register has ever been spilled or reloaded, we conservatively assume
221   // it is a global register used in multiple blocks.
222   if (StackSlotForVirtReg[MO.getReg()] != -1)
223     return false;
224
225   // Check that the use/def chain has exactly one operand - MO.
226   MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
227   if (&I.getOperand() != &MO)
228     return false;
229   return ++I == MRI->reg_nodbg_end();
230 }
231
232 /// addKillFlag - Set kill flags on last use of a virtual register.
233 void RAFast::addKillFlag(const LiveReg &LR) {
234   if (!LR.LastUse) return;
235   MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
236   if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
237     if (MO.getReg() == LR.PhysReg)
238       MO.setIsKill();
239     else
240       LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
241   }
242 }
243
244 /// killVirtReg - Mark virtreg as no longer available.
245 void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
246   addKillFlag(*LRI);
247   assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg &&
248          "Broken RegState mapping");
249   PhysRegState[LRI->PhysReg] = regFree;
250   // Erase from LiveVirtRegs unless we're spilling in bulk.
251   if (!isBulkSpilling)
252     LiveVirtRegs.erase(LRI);
253 }
254
255 /// killVirtReg - Mark virtreg as no longer available.
256 void RAFast::killVirtReg(unsigned VirtReg) {
257   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
258          "killVirtReg needs a virtual register");
259   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
260   if (LRI != LiveVirtRegs.end())
261     killVirtReg(LRI);
262 }
263
264 /// spillVirtReg - This method spills the value specified by VirtReg into the
265 /// corresponding stack slot if needed.
266 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
267   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
268          "Spilling a physical register is illegal!");
269   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
270   assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
271   spillVirtReg(MI, LRI);
272 }
273
274 /// spillVirtReg - Do the actual work of spilling.
275 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
276                           LiveRegMap::iterator LRI) {
277   LiveReg &LR = *LRI;
278   assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping");
279
280   if (LR.Dirty) {
281     // If this physreg is used by the instruction, we want to kill it on the
282     // instruction, not on the spill.
283     bool SpillKill = LR.LastUse != MI;
284     LR.Dirty = false;
285     DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI)
286                  << " in " << PrintReg(LR.PhysReg, TRI));
287     const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg);
288     int FI = getStackSpaceFor(LRI->VirtReg, RC);
289     DEBUG(dbgs() << " to stack slot #" << FI << "\n");
290     TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
291     ++NumStores;   // Update statistics
292
293     // If this register is used by DBG_VALUE then insert new DBG_VALUE to
294     // identify spilled location as the place to find corresponding variable's
295     // value.
296     SmallVectorImpl<MachineInstr *> &LRIDbgValues =
297       LiveDbgValueMap[LRI->VirtReg];
298     for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
299       MachineInstr *DBG = LRIDbgValues[li];
300       const MDNode *MDPtr = DBG->getOperand(2).getMetadata();
301       bool IsIndirect = DBG->isIndirectDebugValue();
302       uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0;
303       DebugLoc DL;
304       if (MI == MBB->end()) {
305         // If MI is at basic block end then use last instruction's location.
306         MachineBasicBlock::iterator EI = MI;
307         DL = (--EI)->getDebugLoc();
308       } else
309         DL = MI->getDebugLoc();
310       MachineBasicBlock *MBB = DBG->getParent();
311       MachineInstr *NewDV =
312           BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE))
313               .addFrameIndex(FI).addImm(Offset).addMetadata(MDPtr);
314       (void)NewDV;
315       DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
316     }
317     // Now this register is spilled there is should not be any DBG_VALUE
318     // pointing to this register because they are all pointing to spilled value
319     // now.
320     LRIDbgValues.clear();
321     if (SpillKill)
322       LR.LastUse = 0; // Don't kill register again
323   }
324   killVirtReg(LRI);
325 }
326
327 /// spillAll - Spill all dirty virtregs without killing them.
328 void RAFast::spillAll(MachineBasicBlock::iterator MI) {
329   if (LiveVirtRegs.empty()) return;
330   isBulkSpilling = true;
331   // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
332   // of spilling here is deterministic, if arbitrary.
333   for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
334        i != e; ++i)
335     spillVirtReg(MI, i);
336   LiveVirtRegs.clear();
337   isBulkSpilling = false;
338 }
339
340 /// usePhysReg - Handle the direct use of a physical register.
341 /// Check that the register is not used by a virtreg.
342 /// Kill the physreg, marking it free.
343 /// This may add implicit kills to MO->getParent() and invalidate MO.
344 void RAFast::usePhysReg(MachineOperand &MO) {
345   unsigned PhysReg = MO.getReg();
346   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
347          "Bad usePhysReg operand");
348   markRegUsedInInstr(PhysReg);
349   switch (PhysRegState[PhysReg]) {
350   case regDisabled:
351     break;
352   case regReserved:
353     PhysRegState[PhysReg] = regFree;
354     // Fall through
355   case regFree:
356     MO.setIsKill();
357     return;
358   default:
359     // The physreg was allocated to a virtual register. That means the value we
360     // wanted has been clobbered.
361     llvm_unreachable("Instruction uses an allocated register");
362   }
363
364   // Maybe a superregister is reserved?
365   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
366     unsigned Alias = *AI;
367     switch (PhysRegState[Alias]) {
368     case regDisabled:
369       break;
370     case regReserved:
371       assert(TRI->isSuperRegister(PhysReg, Alias) &&
372              "Instruction is not using a subregister of a reserved register");
373       // Leave the superregister in the working set.
374       PhysRegState[Alias] = regFree;
375       MO.getParent()->addRegisterKilled(Alias, TRI, true);
376       return;
377     case regFree:
378       if (TRI->isSuperRegister(PhysReg, Alias)) {
379         // Leave the superregister in the working set.
380         MO.getParent()->addRegisterKilled(Alias, TRI, true);
381         return;
382       }
383       // Some other alias was in the working set - clear it.
384       PhysRegState[Alias] = regDisabled;
385       break;
386     default:
387       llvm_unreachable("Instruction uses an alias of an allocated register");
388     }
389   }
390
391   // All aliases are disabled, bring register into working set.
392   PhysRegState[PhysReg] = regFree;
393   MO.setIsKill();
394 }
395
396 /// definePhysReg - Mark PhysReg as reserved or free after spilling any
397 /// virtregs. This is very similar to defineVirtReg except the physreg is
398 /// reserved instead of allocated.
399 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
400                            RegState NewState) {
401   markRegUsedInInstr(PhysReg);
402   switch (unsigned VirtReg = PhysRegState[PhysReg]) {
403   case regDisabled:
404     break;
405   default:
406     spillVirtReg(MI, VirtReg);
407     // Fall through.
408   case regFree:
409   case regReserved:
410     PhysRegState[PhysReg] = NewState;
411     return;
412   }
413
414   // This is a disabled register, disable all aliases.
415   PhysRegState[PhysReg] = NewState;
416   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
417     unsigned Alias = *AI;
418     switch (unsigned VirtReg = PhysRegState[Alias]) {
419     case regDisabled:
420       break;
421     default:
422       spillVirtReg(MI, VirtReg);
423       // Fall through.
424     case regFree:
425     case regReserved:
426       PhysRegState[Alias] = regDisabled;
427       if (TRI->isSuperRegister(PhysReg, Alias))
428         return;
429       break;
430     }
431   }
432 }
433
434
435 // calcSpillCost - Return the cost of spilling clearing out PhysReg and
436 // aliases so it is free for allocation.
437 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it
438 // can be allocated directly.
439 // Returns spillImpossible when PhysReg or an alias can't be spilled.
440 unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
441   if (isRegUsedInInstr(PhysReg)) {
442     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
443     return spillImpossible;
444   }
445   switch (unsigned VirtReg = PhysRegState[PhysReg]) {
446   case regDisabled:
447     break;
448   case regFree:
449     return 0;
450   case regReserved:
451     DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
452                  << PrintReg(PhysReg, TRI) << " is reserved already.\n");
453     return spillImpossible;
454   default: {
455     LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
456     assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
457     return I->Dirty ? spillDirty : spillClean;
458   }
459   }
460
461   // This is a disabled register, add up cost of aliases.
462   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
463   unsigned Cost = 0;
464   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
465     unsigned Alias = *AI;
466     switch (unsigned VirtReg = PhysRegState[Alias]) {
467     case regDisabled:
468       break;
469     case regFree:
470       ++Cost;
471       break;
472     case regReserved:
473       return spillImpossible;
474     default: {
475       LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
476       assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
477       Cost += I->Dirty ? spillDirty : spillClean;
478       break;
479     }
480     }
481   }
482   return Cost;
483 }
484
485
486 /// assignVirtToPhysReg - This method updates local state so that we know
487 /// that PhysReg is the proper container for VirtReg now.  The physical
488 /// register must not be used for anything else when this is called.
489 ///
490 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) {
491   DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to "
492                << PrintReg(PhysReg, TRI) << "\n");
493   PhysRegState[PhysReg] = LR.VirtReg;
494   assert(!LR.PhysReg && "Already assigned a physreg");
495   LR.PhysReg = PhysReg;
496 }
497
498 RAFast::LiveRegMap::iterator
499 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
500   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
501   assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared");
502   assignVirtToPhysReg(*LRI, PhysReg);
503   return LRI;
504 }
505
506 /// allocVirtReg - Allocate a physical register for VirtReg.
507 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
508                                                   LiveRegMap::iterator LRI,
509                                                   unsigned Hint) {
510   const unsigned VirtReg = LRI->VirtReg;
511
512   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
513          "Can only allocate virtual registers");
514
515   const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
516
517   // Ignore invalid hints.
518   if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
519                !RC->contains(Hint) || !MRI->isAllocatable(Hint)))
520     Hint = 0;
521
522   // Take hint when possible.
523   if (Hint) {
524     // Ignore the hint if we would have to spill a dirty register.
525     unsigned Cost = calcSpillCost(Hint);
526     if (Cost < spillDirty) {
527       if (Cost)
528         definePhysReg(MI, Hint, regFree);
529       // definePhysReg may kill virtual registers and modify LiveVirtRegs.
530       // That invalidates LRI, so run a new lookup for VirtReg.
531       return assignVirtToPhysReg(VirtReg, Hint);
532     }
533   }
534
535   ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC);
536
537   // First try to find a completely free register.
538   for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
539     unsigned PhysReg = *I;
540     if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) {
541       assignVirtToPhysReg(*LRI, PhysReg);
542       return LRI;
543     }
544   }
545
546   DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
547                << RC->getName() << "\n");
548
549   unsigned BestReg = 0, BestCost = spillImpossible;
550   for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
551     unsigned Cost = calcSpillCost(*I);
552     DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
553     DEBUG(dbgs() << "\tCost: " << Cost << "\n");
554     DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
555     // Cost is 0 when all aliases are already disabled.
556     if (Cost == 0) {
557       assignVirtToPhysReg(*LRI, *I);
558       return LRI;
559     }
560     if (Cost < BestCost)
561       BestReg = *I, BestCost = Cost;
562   }
563
564   if (BestReg) {
565     definePhysReg(MI, BestReg, regFree);
566     // definePhysReg may kill virtual registers and modify LiveVirtRegs.
567     // That invalidates LRI, so run a new lookup for VirtReg.
568     return assignVirtToPhysReg(VirtReg, BestReg);
569   }
570
571   // Nothing we can do. Report an error and keep going with a bad allocation.
572   if (MI->isInlineAsm())
573     MI->emitError("inline assembly requires more registers than available");
574   else
575     MI->emitError("ran out of registers during register allocation");
576   definePhysReg(MI, *AO.begin(), regFree);
577   return assignVirtToPhysReg(VirtReg, *AO.begin());
578 }
579
580 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
581 RAFast::LiveRegMap::iterator
582 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
583                       unsigned VirtReg, unsigned Hint) {
584   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
585          "Not a virtual register");
586   LiveRegMap::iterator LRI;
587   bool New;
588   tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
589   if (New) {
590     // If there is no hint, peek at the only use of this register.
591     if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
592         MRI->hasOneNonDBGUse(VirtReg)) {
593       const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg);
594       // It's a copy, use the destination register as a hint.
595       if (UseMI.isCopyLike())
596         Hint = UseMI.getOperand(0).getReg();
597     }
598     LRI = allocVirtReg(MI, LRI, Hint);
599   } else if (LRI->LastUse) {
600     // Redefining a live register - kill at the last use, unless it is this
601     // instruction defining VirtReg multiple times.
602     if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
603       addKillFlag(*LRI);
604   }
605   assert(LRI->PhysReg && "Register not assigned");
606   LRI->LastUse = MI;
607   LRI->LastOpNum = OpNum;
608   LRI->Dirty = true;
609   markRegUsedInInstr(LRI->PhysReg);
610   return LRI;
611 }
612
613 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
614 RAFast::LiveRegMap::iterator
615 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
616                       unsigned VirtReg, unsigned Hint) {
617   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
618          "Not a virtual register");
619   LiveRegMap::iterator LRI;
620   bool New;
621   tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
622   MachineOperand &MO = MI->getOperand(OpNum);
623   if (New) {
624     LRI = allocVirtReg(MI, LRI, Hint);
625     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
626     int FrameIndex = getStackSpaceFor(VirtReg, RC);
627     DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
628                  << PrintReg(LRI->PhysReg, TRI) << "\n");
629     TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI);
630     ++NumLoads;
631   } else if (LRI->Dirty) {
632     if (isLastUseOfLocalReg(MO)) {
633       DEBUG(dbgs() << "Killing last use: " << MO << "\n");
634       if (MO.isUse())
635         MO.setIsKill();
636       else
637         MO.setIsDead();
638     } else if (MO.isKill()) {
639       DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
640       MO.setIsKill(false);
641     } else if (MO.isDead()) {
642       DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
643       MO.setIsDead(false);
644     }
645   } else if (MO.isKill()) {
646     // We must remove kill flags from uses of reloaded registers because the
647     // register would be killed immediately, and there might be a second use:
648     //   %foo = OR %x<kill>, %x
649     // This would cause a second reload of %x into a different register.
650     DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
651     MO.setIsKill(false);
652   } else if (MO.isDead()) {
653     DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
654     MO.setIsDead(false);
655   }
656   assert(LRI->PhysReg && "Register not assigned");
657   LRI->LastUse = MI;
658   LRI->LastOpNum = OpNum;
659   markRegUsedInInstr(LRI->PhysReg);
660   return LRI;
661 }
662
663 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
664 // subregs. This may invalidate any operand pointers.
665 // Return true if the operand kills its register.
666 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
667   MachineOperand &MO = MI->getOperand(OpNum);
668   bool Dead = MO.isDead();
669   if (!MO.getSubReg()) {
670     MO.setReg(PhysReg);
671     return MO.isKill() || Dead;
672   }
673
674   // Handle subregister index.
675   MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
676   MO.setSubReg(0);
677
678   // A kill flag implies killing the full register. Add corresponding super
679   // register kill.
680   if (MO.isKill()) {
681     MI->addRegisterKilled(PhysReg, TRI, true);
682     return true;
683   }
684
685   // A <def,read-undef> of a sub-register requires an implicit def of the full
686   // register.
687   if (MO.isDef() && MO.isUndef())
688     MI->addRegisterDefined(PhysReg, TRI);
689
690   return Dead;
691 }
692
693 // Handle special instruction operand like early clobbers and tied ops when
694 // there are additional physreg defines.
695 void RAFast::handleThroughOperands(MachineInstr *MI,
696                                    SmallVectorImpl<unsigned> &VirtDead) {
697   DEBUG(dbgs() << "Scanning for through registers:");
698   SmallSet<unsigned, 8> ThroughRegs;
699   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
700     MachineOperand &MO = MI->getOperand(i);
701     if (!MO.isReg()) continue;
702     unsigned Reg = MO.getReg();
703     if (!TargetRegisterInfo::isVirtualRegister(Reg))
704       continue;
705     if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
706         (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
707       if (ThroughRegs.insert(Reg))
708         DEBUG(dbgs() << ' ' << PrintReg(Reg));
709     }
710   }
711
712   // If any physreg defines collide with preallocated through registers,
713   // we must spill and reallocate.
714   DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
715   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
716     MachineOperand &MO = MI->getOperand(i);
717     if (!MO.isReg() || !MO.isDef()) continue;
718     unsigned Reg = MO.getReg();
719     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
720     markRegUsedInInstr(Reg);
721     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
722       if (ThroughRegs.count(PhysRegState[*AI]))
723         definePhysReg(MI, *AI, regFree);
724     }
725   }
726
727   SmallVector<unsigned, 8> PartialDefs;
728   DEBUG(dbgs() << "Allocating tied uses.\n");
729   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
730     MachineOperand &MO = MI->getOperand(i);
731     if (!MO.isReg()) continue;
732     unsigned Reg = MO.getReg();
733     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
734     if (MO.isUse()) {
735       unsigned DefIdx = 0;
736       if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
737       DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
738         << DefIdx << ".\n");
739       LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
740       unsigned PhysReg = LRI->PhysReg;
741       setPhysReg(MI, i, PhysReg);
742       // Note: we don't update the def operand yet. That would cause the normal
743       // def-scan to attempt spilling.
744     } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
745       DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
746       // Reload the register, but don't assign to the operand just yet.
747       // That would confuse the later phys-def processing pass.
748       LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
749       PartialDefs.push_back(LRI->PhysReg);
750     }
751   }
752
753   DEBUG(dbgs() << "Allocating early clobbers.\n");
754   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
755     MachineOperand &MO = MI->getOperand(i);
756     if (!MO.isReg()) continue;
757     unsigned Reg = MO.getReg();
758     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
759     if (!MO.isEarlyClobber())
760       continue;
761     // Note: defineVirtReg may invalidate MO.
762     LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
763     unsigned PhysReg = LRI->PhysReg;
764     if (setPhysReg(MI, i, PhysReg))
765       VirtDead.push_back(Reg);
766   }
767
768   // Restore UsedInInstr to a state usable for allocating normal virtual uses.
769   UsedInInstr.clear();
770   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
771     MachineOperand &MO = MI->getOperand(i);
772     if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
773     unsigned Reg = MO.getReg();
774     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
775     DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
776                  << " as used in instr\n");
777     markRegUsedInInstr(Reg);
778   }
779
780   // Also mark PartialDefs as used to avoid reallocation.
781   for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
782     markRegUsedInInstr(PartialDefs[i]);
783 }
784
785 void RAFast::AllocateBasicBlock() {
786   DEBUG(dbgs() << "\nAllocating " << *MBB);
787
788   PhysRegState.assign(TRI->getNumRegs(), regDisabled);
789   assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
790
791   MachineBasicBlock::iterator MII = MBB->begin();
792
793   // Add live-in registers as live.
794   for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
795          E = MBB->livein_end(); I != E; ++I)
796     if (MRI->isAllocatable(*I))
797       definePhysReg(MII, *I, regReserved);
798
799   SmallVector<unsigned, 8> VirtDead;
800   SmallVector<MachineInstr*, 32> Coalesced;
801
802   // Otherwise, sequentially allocate each instruction in the MBB.
803   while (MII != MBB->end()) {
804     MachineInstr *MI = MII++;
805     const MCInstrDesc &MCID = MI->getDesc();
806     DEBUG({
807         dbgs() << "\n>> " << *MI << "Regs:";
808         for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
809           if (PhysRegState[Reg] == regDisabled) continue;
810           dbgs() << " " << TRI->getName(Reg);
811           switch(PhysRegState[Reg]) {
812           case regFree:
813             break;
814           case regReserved:
815             dbgs() << "*";
816             break;
817           default: {
818             dbgs() << '=' << PrintReg(PhysRegState[Reg]);
819             LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]);
820             assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
821             if (I->Dirty)
822               dbgs() << "*";
823             assert(I->PhysReg == Reg && "Bad inverse map");
824             break;
825           }
826           }
827         }
828         dbgs() << '\n';
829         // Check that LiveVirtRegs is the inverse.
830         for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
831              e = LiveVirtRegs.end(); i != e; ++i) {
832            assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
833                   "Bad map key");
834            assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
835                   "Bad map value");
836            assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
837         }
838       });
839
840     // Debug values are not allowed to change codegen in any way.
841     if (MI->isDebugValue()) {
842       bool ScanDbgValue = true;
843       while (ScanDbgValue) {
844         ScanDbgValue = false;
845         for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
846           MachineOperand &MO = MI->getOperand(i);
847           if (!MO.isReg()) continue;
848           unsigned Reg = MO.getReg();
849           if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
850           LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
851           if (LRI != LiveVirtRegs.end())
852             setPhysReg(MI, i, LRI->PhysReg);
853           else {
854             int SS = StackSlotForVirtReg[Reg];
855             if (SS == -1) {
856               // We can't allocate a physreg for a DebugValue, sorry!
857               DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
858               MO.setReg(0);
859             }
860             else {
861               // Modify DBG_VALUE now that the value is in a spill slot.
862               bool IsIndirect = MI->isIndirectDebugValue();
863               uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
864               const MDNode *MDPtr =
865                 MI->getOperand(MI->getNumOperands()-1).getMetadata();
866               DebugLoc DL = MI->getDebugLoc();
867               MachineBasicBlock *MBB = MI->getParent();
868               MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL,
869                                             TII->get(TargetOpcode::DBG_VALUE))
870                   .addFrameIndex(SS).addImm(Offset).addMetadata(MDPtr);
871               DEBUG(dbgs() << "Modifying debug info due to spill:"
872                            << "\t" << *NewDV);
873               // Scan NewDV operands from the beginning.
874               MI = NewDV;
875               ScanDbgValue = true;
876               break;
877             }
878           }
879           LiveDbgValueMap[Reg].push_back(MI);
880         }
881       }
882       // Next instruction.
883       continue;
884     }
885
886     // If this is a copy, we may be able to coalesce.
887     unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
888     if (MI->isCopy()) {
889       CopyDst = MI->getOperand(0).getReg();
890       CopySrc = MI->getOperand(1).getReg();
891       CopyDstSub = MI->getOperand(0).getSubReg();
892       CopySrcSub = MI->getOperand(1).getSubReg();
893     }
894
895     // Track registers used by instruction.
896     UsedInInstr.clear();
897
898     // First scan.
899     // Mark physreg uses and early clobbers as used.
900     // Find the end of the virtreg operands
901     unsigned VirtOpEnd = 0;
902     bool hasTiedOps = false;
903     bool hasEarlyClobbers = false;
904     bool hasPartialRedefs = false;
905     bool hasPhysDefs = false;
906     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
907       MachineOperand &MO = MI->getOperand(i);
908       // Make sure MRI knows about registers clobbered by regmasks.
909       if (MO.isRegMask()) {
910         MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
911         continue;
912       }
913       if (!MO.isReg()) continue;
914       unsigned Reg = MO.getReg();
915       if (!Reg) continue;
916       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
917         VirtOpEnd = i+1;
918         if (MO.isUse()) {
919           hasTiedOps = hasTiedOps ||
920                               MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
921         } else {
922           if (MO.isEarlyClobber())
923             hasEarlyClobbers = true;
924           if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
925             hasPartialRedefs = true;
926         }
927         continue;
928       }
929       if (!MRI->isAllocatable(Reg)) continue;
930       if (MO.isUse()) {
931         usePhysReg(MO);
932       } else if (MO.isEarlyClobber()) {
933         definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
934                                regFree : regReserved);
935         hasEarlyClobbers = true;
936       } else
937         hasPhysDefs = true;
938     }
939
940     // The instruction may have virtual register operands that must be allocated
941     // the same register at use-time and def-time: early clobbers and tied
942     // operands. If there are also physical defs, these registers must avoid
943     // both physical defs and uses, making them more constrained than normal
944     // operands.
945     // Similarly, if there are multiple defs and tied operands, we must make
946     // sure the same register is allocated to uses and defs.
947     // We didn't detect inline asm tied operands above, so just make this extra
948     // pass for all inline asm.
949     if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
950         (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
951       handleThroughOperands(MI, VirtDead);
952       // Don't attempt coalescing when we have funny stuff going on.
953       CopyDst = 0;
954       // Pretend we have early clobbers so the use operands get marked below.
955       // This is not necessary for the common case of a single tied use.
956       hasEarlyClobbers = true;
957     }
958
959     // Second scan.
960     // Allocate virtreg uses.
961     for (unsigned i = 0; i != VirtOpEnd; ++i) {
962       MachineOperand &MO = MI->getOperand(i);
963       if (!MO.isReg()) continue;
964       unsigned Reg = MO.getReg();
965       if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
966       if (MO.isUse()) {
967         LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
968         unsigned PhysReg = LRI->PhysReg;
969         CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
970         if (setPhysReg(MI, i, PhysReg))
971           killVirtReg(LRI);
972       }
973     }
974
975     for (UsedInInstrSet::iterator
976          I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
977       MRI->setRegUnitUsed(*I);
978
979     // Track registers defined by instruction - early clobbers and tied uses at
980     // this point.
981     UsedInInstr.clear();
982     if (hasEarlyClobbers) {
983       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
984         MachineOperand &MO = MI->getOperand(i);
985         if (!MO.isReg()) continue;
986         unsigned Reg = MO.getReg();
987         if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
988         // Look for physreg defs and tied uses.
989         if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
990         markRegUsedInInstr(Reg);
991       }
992     }
993
994     unsigned DefOpEnd = MI->getNumOperands();
995     if (MI->isCall()) {
996       // Spill all virtregs before a call. This serves two purposes: 1. If an
997       // exception is thrown, the landing pad is going to expect to find
998       // registers in their spill slots, and 2. we don't have to wade through
999       // all the <imp-def> operands on the call instruction.
1000       DefOpEnd = VirtOpEnd;
1001       DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
1002       spillAll(MI);
1003
1004       // The imp-defs are skipped below, but we still need to mark those
1005       // registers as used by the function.
1006       SkippedInstrs.insert(&MCID);
1007     }
1008
1009     // Third scan.
1010     // Allocate defs and collect dead defs.
1011     for (unsigned i = 0; i != DefOpEnd; ++i) {
1012       MachineOperand &MO = MI->getOperand(i);
1013       if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1014         continue;
1015       unsigned Reg = MO.getReg();
1016
1017       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1018         if (!MRI->isAllocatable(Reg)) continue;
1019         definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
1020                                regFree : regReserved);
1021         continue;
1022       }
1023       LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
1024       unsigned PhysReg = LRI->PhysReg;
1025       if (setPhysReg(MI, i, PhysReg)) {
1026         VirtDead.push_back(Reg);
1027         CopyDst = 0; // cancel coalescing;
1028       } else
1029         CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
1030     }
1031
1032     // Kill dead defs after the scan to ensure that multiple defs of the same
1033     // register are allocated identically. We didn't need to do this for uses
1034     // because we are crerating our own kill flags, and they are always at the
1035     // last use.
1036     for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
1037       killVirtReg(VirtDead[i]);
1038     VirtDead.clear();
1039
1040     for (UsedInInstrSet::iterator
1041          I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
1042       MRI->setRegUnitUsed(*I);
1043
1044     if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
1045       DEBUG(dbgs() << "-- coalescing: " << *MI);
1046       Coalesced.push_back(MI);
1047     } else {
1048       DEBUG(dbgs() << "<< " << *MI);
1049     }
1050   }
1051
1052   // Spill all physical registers holding virtual registers now.
1053   DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1054   spillAll(MBB->getFirstTerminator());
1055
1056   // Erase all the coalesced copies. We are delaying it until now because
1057   // LiveVirtRegs might refer to the instrs.
1058   for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
1059     MBB->erase(Coalesced[i]);
1060   NumCopies += Coalesced.size();
1061
1062   DEBUG(MBB->dump());
1063 }
1064
1065 /// runOnMachineFunction - Register allocate the whole function
1066 ///
1067 bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
1068   DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1069                << "********** Function: " << Fn.getName() << '\n');
1070   MF = &Fn;
1071   MRI = &MF->getRegInfo();
1072   TM = &Fn.getTarget();
1073   TRI = TM->getRegisterInfo();
1074   TII = TM->getInstrInfo();
1075   MRI->freezeReservedRegs(Fn);
1076   RegClassInfo.runOnMachineFunction(Fn);
1077   UsedInInstr.clear();
1078   UsedInInstr.setUniverse(TRI->getNumRegUnits());
1079
1080   assert(!MRI->isSSA() && "regalloc requires leaving SSA");
1081
1082   // initialize the virtual->physical register map to have a 'null'
1083   // mapping for all virtual registers
1084   StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
1085   LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());
1086
1087   // Loop over all of the basic blocks, eliminating virtual register references
1088   for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
1089        MBBi != MBBe; ++MBBi) {
1090     MBB = &*MBBi;
1091     AllocateBasicBlock();
1092   }
1093
1094   // Add the clobber lists for all the instructions we skipped earlier.
1095   for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator
1096        I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
1097     if (const uint16_t *Defs = (*I)->getImplicitDefs())
1098       while (*Defs)
1099         MRI->setPhysRegUsed(*Defs++);
1100
1101   // All machine operands and other references to virtual registers have been
1102   // replaced. Remove the virtual registers.
1103   MRI->clearVirtRegs();
1104
1105   SkippedInstrs.clear();
1106   StackSlotForVirtReg.clear();
1107   LiveDbgValueMap.clear();
1108   return true;
1109 }
1110
1111 FunctionPass *llvm::createFastRegisterAllocator() {
1112   return new RAFast();
1113 }