1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs loop invariant code motion on machine instructions. We
11 // attempt to remove as much code from the body of a loop as possible.
13 // This pass does not attempt to throttle itself to limit register pressure.
14 // The register allocation phases are expected to perform rematerialization
15 // to recover when register pressure is high.
17 // This pass is not intended to be a replacement or a complete alternative
18 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19 // constructs that are not exposed before lowering and instruction selection.
21 //===----------------------------------------------------------------------===//
23 #define DEBUG_TYPE "machine-licm"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/MC/MCInstrItineraries.h"
32 #include "llvm/Target/TargetLowering.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/SmallSet.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
46 AvoidSpeculation("avoid-speculation",
47 cl::desc("MachineLICM should avoid speculation"),
48 cl::init(true), cl::Hidden);
51 "Number of machine instructions hoisted out of loops");
53 "Number of instructions hoisted in low reg pressure situation");
54 STATISTIC(NumHighLatency,
55 "Number of high latency instructions hoisted");
57 "Number of hoisted machine instructions CSEed");
58 STATISTIC(NumPostRAHoisted,
59 "Number of machine instructions hoisted out of loops post regalloc");
62 class MachineLICM : public MachineFunctionPass {
65 const TargetMachine *TM;
66 const TargetInstrInfo *TII;
67 const TargetLowering *TLI;
68 const TargetRegisterInfo *TRI;
69 const MachineFrameInfo *MFI;
70 MachineRegisterInfo *MRI;
71 const InstrItineraryData *InstrItins;
73 // Various analyses that we use...
74 AliasAnalysis *AA; // Alias analysis info.
75 MachineLoopInfo *MLI; // Current MachineLoopInfo
76 MachineDominatorTree *DT; // Machine dominator tree for the cur loop
78 // State that is updated as we process loops
79 bool Changed; // True if a loop is changed.
80 bool FirstInLoop; // True if it's the first LICM in the loop.
81 MachineLoop *CurLoop; // The current loop we are working on.
82 MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
84 BitVector AllocatableSet;
86 // Track 'estimated' register pressure.
87 SmallSet<unsigned, 32> RegSeen;
88 SmallVector<unsigned, 8> RegPressure;
90 // Register pressure "limit" per register class. If the pressure
91 // is higher than the limit, then it's considered high.
92 SmallVector<unsigned, 8> RegLimit;
94 // Register pressure on path leading from loop preheader to current BB.
95 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
97 // For each opcode, keep a list of potential CSE instructions.
98 DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
106 // If a MBB does not dominate loop exiting blocks then it may not safe
107 // to hoist loads from this block.
108 // Tri-state: 0 - false, 1 - true, 2 - unknown
109 unsigned SpeculationState;
112 static char ID; // Pass identification, replacement for typeid
114 MachineFunctionPass(ID), PreRegAlloc(true) {
115 initializeMachineLICMPass(*PassRegistry::getPassRegistry());
118 explicit MachineLICM(bool PreRA) :
119 MachineFunctionPass(ID), PreRegAlloc(PreRA) {
120 initializeMachineLICMPass(*PassRegistry::getPassRegistry());
123 virtual bool runOnMachineFunction(MachineFunction &MF);
125 const char *getPassName() const { return "Machine Instruction LICM"; }
127 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
128 AU.addRequired<MachineLoopInfo>();
129 AU.addRequired<MachineDominatorTree>();
130 AU.addRequired<AliasAnalysis>();
131 AU.addPreserved<MachineLoopInfo>();
132 AU.addPreserved<MachineDominatorTree>();
133 MachineFunctionPass::getAnalysisUsage(AU);
136 virtual void releaseMemory() {
141 for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
142 CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
148 /// CandidateInfo - Keep track of information about hoisting candidates.
149 struct CandidateInfo {
153 CandidateInfo(MachineInstr *mi, unsigned def, int fi)
154 : MI(mi), Def(def), FI(fi) {}
157 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
158 /// invariants out to the preheader.
159 void HoistRegionPostRA();
161 /// HoistPostRA - When an instruction is found to only use loop invariant
162 /// operands that is safe to hoist, this instruction is called to do the
164 void HoistPostRA(MachineInstr *MI, unsigned Def);
166 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
167 /// gather register def and frame object update information.
168 void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
169 SmallSet<int, 32> &StoredFIs,
170 SmallVector<CandidateInfo, 32> &Candidates);
172 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
174 void AddToLiveIns(unsigned Reg);
176 /// IsLICMCandidate - Returns true if the instruction may be a suitable
177 /// candidate for LICM. e.g. If the instruction is a call, then it's
178 /// obviously not safe to hoist it.
179 bool IsLICMCandidate(MachineInstr &I);
181 /// IsLoopInvariantInst - Returns true if the instruction is loop
182 /// invariant. I.e., all virtual register operands are defined outside of
183 /// the loop, physical registers aren't accessed (explicitly or implicitly),
184 /// and the instruction is hoistable.
186 bool IsLoopInvariantInst(MachineInstr &I);
188 /// HasAnyPHIUse - Return true if the specified register is used by any
190 bool HasAnyPHIUse(unsigned Reg) const;
192 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
193 /// and an use in the current loop, return true if the target considered
195 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
198 bool IsCheapInstruction(MachineInstr &MI) const;
200 /// CanCauseHighRegPressure - Visit BBs from header to current BB,
201 /// check if hoisting an instruction of the given cost matrix can cause high
202 /// register pressure.
203 bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost);
205 /// UpdateBackTraceRegPressure - Traverse the back trace from header to
206 /// the current block and update their register pressures to reflect the
207 /// effect of hoisting MI from the current block to the preheader.
208 void UpdateBackTraceRegPressure(const MachineInstr *MI);
210 /// IsProfitableToHoist - Return true if it is potentially profitable to
211 /// hoist the given loop invariant.
212 bool IsProfitableToHoist(MachineInstr &MI);
214 /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
215 /// If not then a load from this mbb may not be safe to hoist.
216 bool IsGuaranteedToExecute(MachineBasicBlock *BB);
218 void EnterScope(MachineBasicBlock *MBB);
220 void ExitScope(MachineBasicBlock *MBB);
222 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given
223 /// dominator tree node if its a leaf or all of its children are done. Walk
224 /// up the dominator tree to destroy ancestors which are now done.
225 void ExitScopeIfDone(MachineDomTreeNode *Node,
226 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
227 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
229 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
230 /// blocks dominated by the specified header block, and that are in the
231 /// current loop) in depth first order w.r.t the DominatorTree. This allows
232 /// us to visit definitions before uses, allowing us to hoist a loop body in
233 /// one pass without iteration.
235 void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode);
236 void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
238 /// getRegisterClassIDAndCost - For a given MI, register, and the operand
239 /// index, return the ID and cost of its representative register class by
241 void getRegisterClassIDAndCost(const MachineInstr *MI,
242 unsigned Reg, unsigned OpIdx,
243 unsigned &RCId, unsigned &RCCost) const;
245 /// InitRegPressure - Find all virtual register references that are liveout
246 /// of the preheader to initialize the starting "register pressure". Note
247 /// this does not count live through (livein but not used) registers.
248 void InitRegPressure(MachineBasicBlock *BB);
250 /// UpdateRegPressure - Update estimate of register pressure after the
251 /// specified instruction.
252 void UpdateRegPressure(const MachineInstr *MI);
254 /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
255 /// the load itself could be hoisted. Return the unfolded and hoistable
256 /// load, or null if the load couldn't be unfolded or if it wouldn't
258 MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
260 /// LookForDuplicate - Find an instruction amount PrevMIs that is a
261 /// duplicate of MI. Return this instruction if it's found.
262 const MachineInstr *LookForDuplicate(const MachineInstr *MI,
263 std::vector<const MachineInstr*> &PrevMIs);
265 /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
266 /// the preheader that compute the same value. If it's found, do a RAU on
267 /// with the definition of the existing instruction rather than hoisting
268 /// the instruction to the preheader.
269 bool EliminateCSE(MachineInstr *MI,
270 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
272 /// MayCSE - Return true if the given instruction will be CSE'd if it's
273 /// hoisted out of the loop.
274 bool MayCSE(MachineInstr *MI);
276 /// Hoist - When an instruction is found to only use loop invariant operands
277 /// that is safe to hoist, this instruction is called to do the dirty work.
278 /// It returns true if the instruction is hoisted.
279 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
281 /// InitCSEMap - Initialize the CSE map with instructions that are in the
282 /// current loop preheader that may become duplicates of instructions that
283 /// are hoisted out of the loop.
284 void InitCSEMap(MachineBasicBlock *BB);
286 /// getCurPreheader - Get the preheader for the current loop, splitting
287 /// a critical edge if needed.
288 MachineBasicBlock *getCurPreheader();
290 } // end anonymous namespace
292 char MachineLICM::ID = 0;
293 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
294 "Machine Loop Invariant Code Motion", false, false)
295 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
296 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
297 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
298 INITIALIZE_PASS_END(MachineLICM, "machinelicm",
299 "Machine Loop Invariant Code Motion", false, false)
301 FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
302 return new MachineLICM(PreRegAlloc);
305 /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
306 /// loop that has a unique predecessor.
307 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
308 // Check whether this loop even has a unique predecessor.
309 if (!CurLoop->getLoopPredecessor())
311 // Ok, now check to see if any of its outer loops do.
312 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
313 if (L->getLoopPredecessor())
315 // None of them did, so this is the outermost with a unique predecessor.
319 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
321 DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
323 DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
324 DEBUG(dbgs() << MF.getFunction()->getName() << " ********\n");
326 Changed = FirstInLoop = false;
327 TM = &MF.getTarget();
328 TII = TM->getInstrInfo();
329 TLI = TM->getTargetLowering();
330 TRI = TM->getRegisterInfo();
331 MFI = MF.getFrameInfo();
332 MRI = &MF.getRegInfo();
333 InstrItins = TM->getInstrItineraryData();
334 AllocatableSet = TRI->getAllocatableSet(MF);
337 // Estimate register pressure during pre-regalloc pass.
338 unsigned NumRC = TRI->getNumRegClasses();
339 RegPressure.resize(NumRC);
340 std::fill(RegPressure.begin(), RegPressure.end(), 0);
341 RegLimit.resize(NumRC);
342 for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
343 E = TRI->regclass_end(); I != E; ++I)
344 RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF);
347 // Get our Loop information...
348 MLI = &getAnalysis<MachineLoopInfo>();
349 DT = &getAnalysis<MachineDominatorTree>();
350 AA = &getAnalysis<AliasAnalysis>();
352 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
353 while (!Worklist.empty()) {
354 CurLoop = Worklist.pop_back_val();
357 // If this is done before regalloc, only visit outer-most preheader-sporting
359 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
360 Worklist.append(CurLoop->begin(), CurLoop->end());
367 // CSEMap is initialized for loop header when the first instruction is
369 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
379 /// InstructionStoresToFI - Return true if instruction stores to the
381 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
382 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
383 oe = MI->memoperands_end(); o != oe; ++o) {
384 if (!(*o)->isStore() || !(*o)->getValue())
386 if (const FixedStackPseudoSourceValue *Value =
387 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
388 if (Value->getFrameIndex() == FI)
395 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
396 /// gather register def and frame object update information.
397 void MachineLICM::ProcessMI(MachineInstr *MI,
398 unsigned *PhysRegDefs,
399 SmallSet<int, 32> &StoredFIs,
400 SmallVector<CandidateInfo, 32> &Candidates) {
401 bool RuledOut = false;
402 bool HasNonInvariantUse = false;
404 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
405 const MachineOperand &MO = MI->getOperand(i);
407 // Remember if the instruction stores to the frame index.
408 int FI = MO.getIndex();
409 if (!StoredFIs.count(FI) &&
410 MFI->isSpillSlotObjectIndex(FI) &&
411 InstructionStoresToFI(MI, FI))
412 StoredFIs.insert(FI);
413 HasNonInvariantUse = true;
419 unsigned Reg = MO.getReg();
422 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
423 "Not expecting virtual register!");
426 if (Reg && PhysRegDefs[Reg])
427 // If it's using a non-loop-invariant register, then it's obviously not
429 HasNonInvariantUse = true;
433 if (MO.isImplicit()) {
435 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
438 // Non-dead implicit def? This cannot be hoisted.
440 // No need to check if a dead implicit def is also defined by
441 // another instruction.
445 // FIXME: For now, avoid instructions with multiple defs, unless
446 // it's a dead implicit def.
452 // If we have already seen another instruction that defines the same
453 // register, then this is not safe.
454 if (++PhysRegDefs[Reg] > 1)
455 // MI defined register is seen defined by another instruction in
456 // the loop, it cannot be a LICM candidate.
458 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
459 if (++PhysRegDefs[*AS] > 1)
463 // Only consider reloads for now and remats which do not have register
464 // operands. FIXME: Consider unfold load folding instructions.
465 if (Def && !RuledOut) {
467 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
468 (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
469 Candidates.push_back(CandidateInfo(MI, Def, FI));
473 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
474 /// invariants out to the preheader.
475 void MachineLICM::HoistRegionPostRA() {
476 unsigned NumRegs = TRI->getNumRegs();
477 unsigned *PhysRegDefs = new unsigned[NumRegs];
478 std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
480 SmallVector<CandidateInfo, 32> Candidates;
481 SmallSet<int, 32> StoredFIs;
483 // Walk the entire region, count number of defs for each register, and
484 // collect potential LICM candidates.
485 const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
486 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
487 MachineBasicBlock *BB = Blocks[i];
489 // If the header of the loop containing this basic block is a landing pad,
490 // then don't try to hoist instructions out of this loop.
491 const MachineLoop *ML = MLI->getLoopFor(BB);
492 if (ML && ML->getHeader()->isLandingPad()) continue;
494 // Conservatively treat live-in's as an external def.
495 // FIXME: That means a reload that're reused in successor block(s) will not
497 for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
498 E = BB->livein_end(); I != E; ++I) {
501 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
505 SpeculationState = SpeculateUnknown;
506 for (MachineBasicBlock::iterator
507 MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
508 MachineInstr *MI = &*MII;
509 ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
513 // Now evaluate whether the potential candidates qualify.
514 // 1. Check if the candidate defined register is defined by another
515 // instruction in the loop.
516 // 2. If the candidate is a load from stack slot (always true for now),
517 // check if the slot is stored anywhere in the loop.
518 for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
519 if (Candidates[i].FI != INT_MIN &&
520 StoredFIs.count(Candidates[i].FI))
523 if (PhysRegDefs[Candidates[i].Def] == 1) {
525 MachineInstr *MI = Candidates[i].MI;
526 for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
527 const MachineOperand &MO = MI->getOperand(j);
528 if (!MO.isReg() || MO.isDef() || !MO.getReg())
530 if (PhysRegDefs[MO.getReg()]) {
531 // If it's using a non-loop-invariant register, then it's obviously
532 // not safe to hoist.
538 HoistPostRA(MI, Candidates[i].Def);
542 delete[] PhysRegDefs;
545 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
546 /// loop, and make sure it is not killed by any instructions in the loop.
547 void MachineLICM::AddToLiveIns(unsigned Reg) {
548 const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
549 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
550 MachineBasicBlock *BB = Blocks[i];
551 if (!BB->isLiveIn(Reg))
553 for (MachineBasicBlock::iterator
554 MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
555 MachineInstr *MI = &*MII;
556 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
557 MachineOperand &MO = MI->getOperand(i);
558 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
559 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
566 /// HoistPostRA - When an instruction is found to only use loop invariant
567 /// operands that is safe to hoist, this instruction is called to do the
569 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
570 MachineBasicBlock *Preheader = getCurPreheader();
571 if (!Preheader) return;
573 // Now move the instructions to the predecessor, inserting it before any
574 // terminator instructions.
576 dbgs() << "Hoisting " << *MI;
577 if (Preheader->getBasicBlock())
578 dbgs() << " to MachineBasicBlock "
579 << Preheader->getName();
580 if (MI->getParent()->getBasicBlock())
581 dbgs() << " from MachineBasicBlock "
582 << MI->getParent()->getName();
586 // Splice the instruction to the preheader.
587 MachineBasicBlock *MBB = MI->getParent();
588 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
590 // Add register to livein list to all the BBs in the current loop since a
591 // loop invariant must be kept live throughout the whole loop. This is
592 // important to ensure later passes do not scavenge the def register.
599 // IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
600 // If not then a load from this mbb may not be safe to hoist.
601 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
602 if (SpeculationState != SpeculateUnknown)
603 return SpeculationState == SpeculateFalse;
605 if (BB != CurLoop->getHeader()) {
606 // Check loop exiting blocks.
607 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
608 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
609 for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i)
610 if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) {
611 SpeculationState = SpeculateTrue;
616 SpeculationState = SpeculateFalse;
620 void MachineLICM::EnterScope(MachineBasicBlock *MBB) {
621 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
623 // Remember livein register pressure.
624 BackTrace.push_back(RegPressure);
627 void MachineLICM::ExitScope(MachineBasicBlock *MBB) {
628 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
629 BackTrace.pop_back();
632 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
633 /// dominator tree node if its a leaf or all of its children are done. Walk
634 /// up the dominator tree to destroy ancestors which are now done.
635 void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node,
636 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
637 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
638 if (OpenChildren[Node])
642 ExitScope(Node->getBlock());
644 // Now traverse upwards to pop ancestors whose offsprings are all done.
645 while (MachineDomTreeNode *Parent = ParentMap[Node]) {
646 unsigned Left = --OpenChildren[Parent];
649 ExitScope(Parent->getBlock());
654 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
655 /// blocks dominated by the specified header block, and that are in the
656 /// current loop) in depth first order w.r.t the DominatorTree. This allows
657 /// us to visit definitions before uses, allowing us to hoist a loop body in
658 /// one pass without iteration.
660 void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
661 SmallVector<MachineDomTreeNode*, 32> Scopes;
662 SmallVector<MachineDomTreeNode*, 8> WorkList;
663 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
664 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
666 // Perform a DFS walk to determine the order of visit.
667 WorkList.push_back(HeaderN);
669 MachineDomTreeNode *Node = WorkList.pop_back_val();
670 assert(Node != 0 && "Null dominator tree node?");
671 MachineBasicBlock *BB = Node->getBlock();
673 // If the header of the loop containing this basic block is a landing pad,
674 // then don't try to hoist instructions out of this loop.
675 const MachineLoop *ML = MLI->getLoopFor(BB);
676 if (ML && ML->getHeader()->isLandingPad())
679 // If this subregion is not in the top level loop at all, exit.
680 if (!CurLoop->contains(BB))
683 Scopes.push_back(Node);
684 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
685 unsigned NumChildren = Children.size();
687 // Don't hoist things out of a large switch statement. This often causes
688 // code to be hoisted that wasn't going to be executed, and increases
689 // register pressure in a situation where it's likely to matter.
690 if (BB->succ_size() >= 25)
693 OpenChildren[Node] = NumChildren;
694 // Add children in reverse order as then the next popped worklist node is
695 // the first child of this node. This means we ultimately traverse the
696 // DOM tree in exactly the same order as if we'd recursed.
697 for (int i = (int)NumChildren-1; i >= 0; --i) {
698 MachineDomTreeNode *Child = Children[i];
699 ParentMap[Child] = Node;
700 WorkList.push_back(Child);
702 } while (!WorkList.empty());
704 if (Scopes.size() != 0) {
705 MachineBasicBlock *Preheader = getCurPreheader();
709 // Compute registers which are livein into the loop headers.
712 InitRegPressure(Preheader);
716 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
717 MachineDomTreeNode *Node = Scopes[i];
718 MachineBasicBlock *MBB = Node->getBlock();
720 MachineBasicBlock *Preheader = getCurPreheader();
727 SpeculationState = SpeculateUnknown;
728 for (MachineBasicBlock::iterator
729 MII = MBB->begin(), E = MBB->end(); MII != E; ) {
730 MachineBasicBlock::iterator NextMII = MII; ++NextMII;
731 MachineInstr *MI = &*MII;
732 if (!Hoist(MI, Preheader))
733 UpdateRegPressure(MI);
737 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
738 ExitScopeIfDone(Node, OpenChildren, ParentMap);
742 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
743 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
746 /// getRegisterClassIDAndCost - For a given MI, register, and the operand
747 /// index, return the ID and cost of its representative register class.
749 MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI,
750 unsigned Reg, unsigned OpIdx,
751 unsigned &RCId, unsigned &RCCost) const {
752 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
753 EVT VT = *RC->vt_begin();
754 if (VT == MVT::Untyped) {
758 RCId = TLI->getRepRegClassFor(VT)->getID();
759 RCCost = TLI->getRepRegClassCostFor(VT);
763 /// InitRegPressure - Find all virtual register references that are liveout of
764 /// the preheader to initialize the starting "register pressure". Note this
765 /// does not count live through (livein but not used) registers.
766 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
767 std::fill(RegPressure.begin(), RegPressure.end(), 0);
769 // If the preheader has only a single predecessor and it ends with a
770 // fallthrough or an unconditional branch, then scan its predecessor for live
771 // defs as well. This happens whenever the preheader is created by splitting
772 // the critical edge from the loop predecessor to the loop header.
773 if (BB->pred_size() == 1) {
774 MachineBasicBlock *TBB = 0, *FBB = 0;
775 SmallVector<MachineOperand, 4> Cond;
776 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
777 InitRegPressure(*BB->pred_begin());
780 for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
782 MachineInstr *MI = &*MII;
783 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
784 const MachineOperand &MO = MI->getOperand(i);
785 if (!MO.isReg() || MO.isImplicit())
787 unsigned Reg = MO.getReg();
788 if (!TargetRegisterInfo::isVirtualRegister(Reg))
791 bool isNew = RegSeen.insert(Reg);
792 unsigned RCId, RCCost;
793 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
795 RegPressure[RCId] += RCCost;
797 bool isKill = isOperandKill(MO, MRI);
798 if (isNew && !isKill)
799 // Haven't seen this, it must be a livein.
800 RegPressure[RCId] += RCCost;
801 else if (!isNew && isKill)
802 RegPressure[RCId] -= RCCost;
808 /// UpdateRegPressure - Update estimate of register pressure after the
809 /// specified instruction.
810 void MachineLICM::UpdateRegPressure(const MachineInstr *MI) {
811 if (MI->isImplicitDef())
814 SmallVector<unsigned, 4> Defs;
815 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
816 const MachineOperand &MO = MI->getOperand(i);
817 if (!MO.isReg() || MO.isImplicit())
819 unsigned Reg = MO.getReg();
820 if (!TargetRegisterInfo::isVirtualRegister(Reg))
823 bool isNew = RegSeen.insert(Reg);
826 else if (!isNew && isOperandKill(MO, MRI)) {
827 unsigned RCId, RCCost;
828 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
829 if (RCCost > RegPressure[RCId])
830 RegPressure[RCId] = 0;
832 RegPressure[RCId] -= RCCost;
837 while (!Defs.empty()) {
838 unsigned Reg = Defs.pop_back_val();
839 unsigned RCId, RCCost;
840 getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost);
841 RegPressure[RCId] += RCCost;
846 /// isLoadFromGOTOrConstantPool - Return true if this machine instruction
847 /// loads from global offset table or constant pool.
848 static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) {
849 assert (MI.mayLoad() && "Expected MI that loads!");
850 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
851 E = MI.memoperands_end(); I != E; ++I) {
852 if (const Value *V = (*I)->getValue()) {
853 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
854 if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool())
861 /// IsLICMCandidate - Returns true if the instruction may be a suitable
862 /// candidate for LICM. e.g. If the instruction is a call, then it's obviously
863 /// not safe to hoist it.
864 bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
865 // Check if it's safe to move the instruction.
866 bool DontMoveAcrossStore = true;
867 if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
870 // If it is load then check if it is guaranteed to execute by making sure that
871 // it dominates all exiting blocks. If it doesn't, then there is a path out of
872 // the loop which does not execute this load, so we can't hoist it. Loads
873 // from constant memory are not safe to speculate all the time, for example
874 // indexed load from a jump table.
875 // Stores and side effects are already checked by isSafeToMove.
876 if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) &&
877 !IsGuaranteedToExecute(I.getParent()))
883 /// IsLoopInvariantInst - Returns true if the instruction is loop
884 /// invariant. I.e., all virtual register operands are defined outside of the
885 /// loop, physical registers aren't accessed explicitly, and there are no side
886 /// effects that aren't captured by the operands or other flags.
888 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
889 if (!IsLICMCandidate(I))
892 // The instruction is loop invariant if all of its operands are.
893 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
894 const MachineOperand &MO = I.getOperand(i);
899 unsigned Reg = MO.getReg();
900 if (Reg == 0) continue;
902 // Don't hoist an instruction that uses or defines a physical register.
903 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
905 // If the physreg has no defs anywhere, it's just an ambient register
906 // and we can freely move its uses. Alternatively, if it's allocatable,
907 // it could get allocated to something with a def during allocation.
908 if (!MRI->def_empty(Reg))
910 if (AllocatableSet.test(Reg))
912 // Check for a def among the register's aliases too.
913 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
914 unsigned AliasReg = *Alias;
915 if (!MRI->def_empty(AliasReg))
917 if (AllocatableSet.test(AliasReg))
920 // Otherwise it's safe to move.
922 } else if (!MO.isDead()) {
923 // A def that isn't dead. We can't move it.
925 } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
926 // If the reg is live into the loop, we can't hoist an instruction
927 // which would clobber it.
935 assert(MRI->getVRegDef(Reg) &&
936 "Machine instr not mapped for this vreg?!");
938 // If the loop contains the definition of an operand, then the instruction
939 // isn't loop invariant.
940 if (CurLoop->contains(MRI->getVRegDef(Reg)))
944 // If we got this far, the instruction is loop invariant!
949 /// HasAnyPHIUse - Return true if the specified register is used by any
951 bool MachineLICM::HasAnyPHIUse(unsigned Reg) const {
952 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
953 UE = MRI->use_end(); UI != UE; ++UI) {
954 MachineInstr *UseMI = &*UI;
957 // Look pass copies as well.
958 if (UseMI->isCopy()) {
959 unsigned Def = UseMI->getOperand(0).getReg();
960 if (TargetRegisterInfo::isVirtualRegister(Def) &&
968 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
969 /// and an use in the current loop, return true if the target considered
971 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
972 unsigned DefIdx, unsigned Reg) const {
973 if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg))
976 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
977 E = MRI->use_nodbg_end(); I != E; ++I) {
978 MachineInstr *UseMI = &*I;
979 if (UseMI->isCopyLike())
981 if (!CurLoop->contains(UseMI->getParent()))
983 for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
984 const MachineOperand &MO = UseMI->getOperand(i);
985 if (!MO.isReg() || !MO.isUse())
987 unsigned MOReg = MO.getReg();
991 if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i))
995 // Only look at the first in loop use.
1002 /// IsCheapInstruction - Return true if the instruction is marked "cheap" or
1003 /// the operand latency between its def and a use is one or less.
1004 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
1005 if (MI.isAsCheapAsAMove() || MI.isCopyLike())
1007 if (!InstrItins || InstrItins->isEmpty())
1010 bool isCheap = false;
1011 unsigned NumDefs = MI.getDesc().getNumDefs();
1012 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1013 MachineOperand &DefMO = MI.getOperand(i);
1014 if (!DefMO.isReg() || !DefMO.isDef())
1017 unsigned Reg = DefMO.getReg();
1018 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1021 if (!TII->hasLowDefLatency(InstrItins, &MI, i))
1029 /// CanCauseHighRegPressure - Visit BBs from header to current BB, check
1030 /// if hoisting an instruction of the given cost matrix can cause high
1031 /// register pressure.
1032 bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost) {
1033 for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
1035 if (CI->second <= 0)
1038 unsigned RCId = CI->first;
1039 for (unsigned i = BackTrace.size(); i != 0; --i) {
1040 SmallVector<unsigned, 8> &RP = BackTrace[i-1];
1041 if (RP[RCId] + CI->second >= RegLimit[RCId])
1049 /// UpdateBackTraceRegPressure - Traverse the back trace from header to the
1050 /// current block and update their register pressures to reflect the effect
1051 /// of hoisting MI from the current block to the preheader.
1052 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1053 if (MI->isImplicitDef())
1056 // First compute the 'cost' of the instruction, i.e. its contribution
1057 // to register pressure.
1058 DenseMap<unsigned, int> Cost;
1059 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
1060 const MachineOperand &MO = MI->getOperand(i);
1061 if (!MO.isReg() || MO.isImplicit())
1063 unsigned Reg = MO.getReg();
1064 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1067 unsigned RCId, RCCost;
1068 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
1070 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1071 if (CI != Cost.end())
1072 CI->second += RCCost;
1074 Cost.insert(std::make_pair(RCId, RCCost));
1075 } else if (isOperandKill(MO, MRI)) {
1076 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1077 if (CI != Cost.end())
1078 CI->second -= RCCost;
1080 Cost.insert(std::make_pair(RCId, -RCCost));
1084 // Update register pressure of blocks from loop header to current block.
1085 for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) {
1086 SmallVector<unsigned, 8> &RP = BackTrace[i];
1087 for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
1089 unsigned RCId = CI->first;
1090 RP[RCId] += CI->second;
1095 /// IsProfitableToHoist - Return true if it is potentially profitable to hoist
1096 /// the given loop invariant.
1097 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
1098 if (MI.isImplicitDef())
1101 // If the instruction is cheap, only hoist if it is re-materilizable. LICM
1102 // will increase register pressure. It's probably not worth it if the
1103 // instruction is cheap.
1104 // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
1105 // these tend to help performance in low register pressure situation. The
1106 // trade off is it may cause spill in high pressure situation. It will end up
1107 // adding a store in the loop preheader. But the reload is no more expensive.
1108 // The side benefit is these loads are frequently CSE'ed.
1109 if (IsCheapInstruction(MI)) {
1110 if (!TII->isTriviallyReMaterializable(&MI, AA))
1113 // Estimate register pressure to determine whether to LICM the instruction.
1114 // In low register pressure situation, we can be more aggressive about
1115 // hoisting. Also, favors hoisting long latency instructions even in
1116 // moderately high pressure situation.
1117 // FIXME: If there are long latency loop-invariant instructions inside the
1118 // loop at this point, why didn't the optimizer's LICM hoist them?
1119 DenseMap<unsigned, int> Cost;
1120 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1121 const MachineOperand &MO = MI.getOperand(i);
1122 if (!MO.isReg() || MO.isImplicit())
1124 unsigned Reg = MO.getReg();
1125 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1128 unsigned RCId, RCCost;
1129 getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost);
1131 if (HasHighOperandLatency(MI, i, Reg)) {
1136 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1137 if (CI != Cost.end())
1138 CI->second += RCCost;
1140 Cost.insert(std::make_pair(RCId, RCCost));
1141 } else if (isOperandKill(MO, MRI)) {
1142 // Is a virtual register use is a kill, hoisting it out of the loop
1143 // may actually reduce register pressure or be register pressure
1145 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1146 if (CI != Cost.end())
1147 CI->second -= RCCost;
1149 Cost.insert(std::make_pair(RCId, -RCCost));
1153 // Visit BBs from header to current BB, if hoisting this doesn't cause
1154 // high register pressure, then it's safe to proceed.
1155 if (!CanCauseHighRegPressure(Cost)) {
1160 // Do not "speculate" in high register pressure situation. If an
1161 // instruction is not guaranteed to be executed in the loop, it's best to be
1163 if (AvoidSpeculation &&
1164 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI)))
1167 // High register pressure situation, only hoist if the instruction is going to
1169 if (!TII->isTriviallyReMaterializable(&MI, AA) &&
1170 !MI.isInvariantLoad(AA))
1174 // If result(s) of this instruction is used by PHIs outside of the loop, then
1175 // don't hoist it if the instruction because it will introduce an extra copy.
1176 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1177 const MachineOperand &MO = MI.getOperand(i);
1178 if (!MO.isReg() || !MO.isDef())
1180 if (HasAnyPHIUse(MO.getReg()))
1187 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
1188 // Don't unfold simple loads.
1189 if (MI->canFoldAsLoad())
1192 // If not, we may be able to unfold a load and hoist that.
1193 // First test whether the instruction is loading from an amenable
1195 if (!MI->isInvariantLoad(AA))
1198 // Next determine the register class for a temporary register.
1199 unsigned LoadRegIndex;
1201 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1202 /*UnfoldLoad=*/true,
1203 /*UnfoldStore=*/false,
1205 if (NewOpc == 0) return 0;
1206 const MCInstrDesc &MID = TII->get(NewOpc);
1207 if (MID.getNumDefs() != 1) return 0;
1208 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI);
1209 // Ok, we're unfolding. Create a temporary register and do the unfold.
1210 unsigned Reg = MRI->createVirtualRegister(RC);
1212 MachineFunction &MF = *MI->getParent()->getParent();
1213 SmallVector<MachineInstr *, 2> NewMIs;
1215 TII->unfoldMemoryOperand(MF, MI, Reg,
1216 /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
1220 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1222 assert(NewMIs.size() == 2 &&
1223 "Unfolded a load into multiple instructions!");
1224 MachineBasicBlock *MBB = MI->getParent();
1225 MachineBasicBlock::iterator Pos = MI;
1226 MBB->insert(Pos, NewMIs[0]);
1227 MBB->insert(Pos, NewMIs[1]);
1228 // If unfolding produced a load that wasn't loop-invariant or profitable to
1229 // hoist, discard the new instructions and bail.
1230 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1231 NewMIs[0]->eraseFromParent();
1232 NewMIs[1]->eraseFromParent();
1236 // Update register pressure for the unfolded instruction.
1237 UpdateRegPressure(NewMIs[1]);
1239 // Otherwise we successfully unfolded a load that we can hoist.
1240 MI->eraseFromParent();
1244 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
1245 for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
1246 const MachineInstr *MI = &*I;
1247 unsigned Opcode = MI->getOpcode();
1248 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1249 CI = CSEMap.find(Opcode);
1250 if (CI != CSEMap.end())
1251 CI->second.push_back(MI);
1253 std::vector<const MachineInstr*> CSEMIs;
1254 CSEMIs.push_back(MI);
1255 CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1261 MachineLICM::LookForDuplicate(const MachineInstr *MI,
1262 std::vector<const MachineInstr*> &PrevMIs) {
1263 for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
1264 const MachineInstr *PrevMI = PrevMIs[i];
1265 if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : 0)))
1271 bool MachineLICM::EliminateCSE(MachineInstr *MI,
1272 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
1273 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1274 // the undef property onto uses.
1275 if (CI == CSEMap.end() || MI->isImplicitDef())
1278 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1279 DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1281 // Replace virtual registers defined by MI by their counterparts defined
1283 SmallVector<unsigned, 2> Defs;
1284 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1285 const MachineOperand &MO = MI->getOperand(i);
1287 // Physical registers may not differ here.
1288 assert((!MO.isReg() || MO.getReg() == 0 ||
1289 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1290 MO.getReg() == Dup->getOperand(i).getReg()) &&
1291 "Instructions with different phys regs are not identical!");
1293 if (MO.isReg() && MO.isDef() &&
1294 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1298 SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1299 for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1300 unsigned Idx = Defs[i];
1301 unsigned Reg = MI->getOperand(Idx).getReg();
1302 unsigned DupReg = Dup->getOperand(Idx).getReg();
1303 OrigRCs.push_back(MRI->getRegClass(DupReg));
1305 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1306 // Restore old RCs if more than one defs.
1307 for (unsigned j = 0; j != i; ++j)
1308 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1313 for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1314 unsigned Idx = Defs[i];
1315 unsigned Reg = MI->getOperand(Idx).getReg();
1316 unsigned DupReg = Dup->getOperand(Idx).getReg();
1317 MRI->replaceRegWith(Reg, DupReg);
1318 MRI->clearKillFlags(DupReg);
1321 MI->eraseFromParent();
1328 /// MayCSE - Return true if the given instruction will be CSE'd if it's
1329 /// hoisted out of the loop.
1330 bool MachineLICM::MayCSE(MachineInstr *MI) {
1331 unsigned Opcode = MI->getOpcode();
1332 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1333 CI = CSEMap.find(Opcode);
1334 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1335 // the undef property onto uses.
1336 if (CI == CSEMap.end() || MI->isImplicitDef())
1339 return LookForDuplicate(MI, CI->second) != 0;
1342 /// Hoist - When an instruction is found to use only loop invariant operands
1343 /// that are safe to hoist, this instruction is called to do the dirty work.
1345 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1346 // First check whether we should hoist this instruction.
1347 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1348 // If not, try unfolding a hoistable load.
1349 MI = ExtractHoistableLoad(MI);
1350 if (!MI) return false;
1353 // Now move the instructions to the predecessor, inserting it before any
1354 // terminator instructions.
1356 dbgs() << "Hoisting " << *MI;
1357 if (Preheader->getBasicBlock())
1358 dbgs() << " to MachineBasicBlock "
1359 << Preheader->getName();
1360 if (MI->getParent()->getBasicBlock())
1361 dbgs() << " from MachineBasicBlock "
1362 << MI->getParent()->getName();
1366 // If this is the first instruction being hoisted to the preheader,
1367 // initialize the CSE map with potential common expressions.
1369 InitCSEMap(Preheader);
1370 FirstInLoop = false;
1373 // Look for opportunity to CSE the hoisted instruction.
1374 unsigned Opcode = MI->getOpcode();
1375 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1376 CI = CSEMap.find(Opcode);
1377 if (!EliminateCSE(MI, CI)) {
1378 // Otherwise, splice the instruction to the preheader.
1379 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1381 // Update register pressure for BBs from header to this block.
1382 UpdateBackTraceRegPressure(MI);
1384 // Clear the kill flags of any register this instruction defines,
1385 // since they may need to be live throughout the entire loop
1386 // rather than just live for part of it.
1387 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1388 MachineOperand &MO = MI->getOperand(i);
1389 if (MO.isReg() && MO.isDef() && !MO.isDead())
1390 MRI->clearKillFlags(MO.getReg());
1393 // Add to the CSE map.
1394 if (CI != CSEMap.end())
1395 CI->second.push_back(MI);
1397 std::vector<const MachineInstr*> CSEMIs;
1398 CSEMIs.push_back(MI);
1399 CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1409 MachineBasicBlock *MachineLICM::getCurPreheader() {
1410 // Determine the block to which to hoist instructions. If we can't find a
1411 // suitable loop predecessor, we can't do any hoisting.
1413 // If we've tried to get a preheader and failed, don't try again.
1414 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1417 if (!CurPreheader) {
1418 CurPreheader = CurLoop->getLoopPreheader();
1419 if (!CurPreheader) {
1420 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1422 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1426 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
1427 if (!CurPreheader) {
1428 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1433 return CurPreheader;