Identify predicate and optional-def operands when printing machine
[oota-llvm.git] / lib / CodeGen / MachineInstr.cpp
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/InlineAsm.h"
18 #include "llvm/Type.h"
19 #include "llvm/Value.h"
20 #include "llvm/Assembly/Writer.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineMemOperand.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/PseudoSourceValue.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetInstrDesc.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/DebugInfo.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/LeakDetector.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/ADT/FoldingSet.h"
37 #include "llvm/Metadata.h"
38 using namespace llvm;
39
40 //===----------------------------------------------------------------------===//
41 // MachineOperand Implementation
42 //===----------------------------------------------------------------------===//
43
44 /// AddRegOperandToRegInfo - Add this register operand to the specified
45 /// MachineRegisterInfo.  If it is null, then the next/prev fields should be
46 /// explicitly nulled out.
47 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
48   assert(isReg() && "Can only add reg operand to use lists");
49   
50   // If the reginfo pointer is null, just explicitly null out or next/prev
51   // pointers, to ensure they are not garbage.
52   if (RegInfo == 0) {
53     Contents.Reg.Prev = 0;
54     Contents.Reg.Next = 0;
55     return;
56   }
57   
58   // Otherwise, add this operand to the head of the registers use/def list.
59   MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
60   
61   // For SSA values, we prefer to keep the definition at the start of the list.
62   // we do this by skipping over the definition if it is at the head of the
63   // list.
64   if (*Head && (*Head)->isDef())
65     Head = &(*Head)->Contents.Reg.Next;
66   
67   Contents.Reg.Next = *Head;
68   if (Contents.Reg.Next) {
69     assert(getReg() == Contents.Reg.Next->getReg() &&
70            "Different regs on the same list!");
71     Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
72   }
73   
74   Contents.Reg.Prev = Head;
75   *Head = this;
76 }
77
78 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
79 /// MachineRegisterInfo it is linked with.
80 void MachineOperand::RemoveRegOperandFromRegInfo() {
81   assert(isOnRegUseList() && "Reg operand is not on a use list");
82   // Unlink this from the doubly linked list of operands.
83   MachineOperand *NextOp = Contents.Reg.Next;
84   *Contents.Reg.Prev = NextOp; 
85   if (NextOp) {
86     assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
87     NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
88   }
89   Contents.Reg.Prev = 0;
90   Contents.Reg.Next = 0;
91 }
92
93 void MachineOperand::setReg(unsigned Reg) {
94   if (getReg() == Reg) return; // No change.
95   
96   // Otherwise, we have to change the register.  If this operand is embedded
97   // into a machine function, we need to update the old and new register's
98   // use/def lists.
99   if (MachineInstr *MI = getParent())
100     if (MachineBasicBlock *MBB = MI->getParent())
101       if (MachineFunction *MF = MBB->getParent()) {
102         RemoveRegOperandFromRegInfo();
103         Contents.Reg.RegNo = Reg;
104         AddRegOperandToRegInfo(&MF->getRegInfo());
105         return;
106       }
107         
108   // Otherwise, just change the register, no problem.  :)
109   Contents.Reg.RegNo = Reg;
110 }
111
112 /// ChangeToImmediate - Replace this operand with a new immediate operand of
113 /// the specified value.  If an operand is known to be an immediate already,
114 /// the setImm method should be used.
115 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
116   // If this operand is currently a register operand, and if this is in a
117   // function, deregister the operand from the register's use/def list.
118   if (isReg() && getParent() && getParent()->getParent() &&
119       getParent()->getParent()->getParent())
120     RemoveRegOperandFromRegInfo();
121   
122   OpKind = MO_Immediate;
123   Contents.ImmVal = ImmVal;
124 }
125
126 /// ChangeToRegister - Replace this operand with a new register operand of
127 /// the specified value.  If an operand is known to be an register already,
128 /// the setReg method should be used.
129 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
130                                       bool isKill, bool isDead, bool isUndef) {
131   // If this operand is already a register operand, use setReg to update the 
132   // register's use/def lists.
133   if (isReg()) {
134     assert(!isEarlyClobber());
135     setReg(Reg);
136   } else {
137     // Otherwise, change this to a register and set the reg#.
138     OpKind = MO_Register;
139     Contents.Reg.RegNo = Reg;
140
141     // If this operand is embedded in a function, add the operand to the
142     // register's use/def list.
143     if (MachineInstr *MI = getParent())
144       if (MachineBasicBlock *MBB = MI->getParent())
145         if (MachineFunction *MF = MBB->getParent())
146           AddRegOperandToRegInfo(&MF->getRegInfo());
147   }
148
149   IsDef = isDef;
150   IsImp = isImp;
151   IsKill = isKill;
152   IsDead = isDead;
153   IsUndef = isUndef;
154   IsEarlyClobber = false;
155   SubReg = 0;
156 }
157
158 /// isIdenticalTo - Return true if this operand is identical to the specified
159 /// operand.
160 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
161   if (getType() != Other.getType() ||
162       getTargetFlags() != Other.getTargetFlags())
163     return false;
164   
165   switch (getType()) {
166   default: llvm_unreachable("Unrecognized operand type");
167   case MachineOperand::MO_Register:
168     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
169            getSubReg() == Other.getSubReg();
170   case MachineOperand::MO_Immediate:
171     return getImm() == Other.getImm();
172   case MachineOperand::MO_FPImmediate:
173     return getFPImm() == Other.getFPImm();
174   case MachineOperand::MO_MachineBasicBlock:
175     return getMBB() == Other.getMBB();
176   case MachineOperand::MO_FrameIndex:
177     return getIndex() == Other.getIndex();
178   case MachineOperand::MO_ConstantPoolIndex:
179     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
180   case MachineOperand::MO_JumpTableIndex:
181     return getIndex() == Other.getIndex();
182   case MachineOperand::MO_GlobalAddress:
183     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
184   case MachineOperand::MO_ExternalSymbol:
185     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
186            getOffset() == Other.getOffset();
187   case MachineOperand::MO_BlockAddress:
188     return getBlockAddress() == Other.getBlockAddress();
189   }
190 }
191
192 /// print - Print the specified machine operand.
193 ///
194 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
195   // If the instruction is embedded into a basic block, we can find the
196   // target info for the instruction.
197   if (!TM)
198     if (const MachineInstr *MI = getParent())
199       if (const MachineBasicBlock *MBB = MI->getParent())
200         if (const MachineFunction *MF = MBB->getParent())
201           TM = &MF->getTarget();
202
203   switch (getType()) {
204   case MachineOperand::MO_Register:
205     if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) {
206       OS << "%reg" << getReg();
207     } else {
208       if (TM)
209         OS << "%" << TM->getRegisterInfo()->get(getReg()).Name;
210       else
211         OS << "%physreg" << getReg();
212     }
213
214     if (getSubReg() != 0)
215       OS << ':' << getSubReg();
216
217     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
218         isEarlyClobber()) {
219       OS << '<';
220       bool NeedComma = false;
221       if (isDef()) {
222         if (NeedComma) OS << ',';
223         if (isEarlyClobber())
224           OS << "earlyclobber,";
225         if (isImplicit())
226           OS << "imp-";
227         OS << "def";
228         NeedComma = true;
229       } else if (isImplicit()) {
230           OS << "imp-use";
231           NeedComma = true;
232       }
233
234       if (isKill() || isDead() || isUndef()) {
235         if (NeedComma) OS << ',';
236         if (isKill())  OS << "kill";
237         if (isDead())  OS << "dead";
238         if (isUndef()) {
239           if (isKill() || isDead())
240             OS << ',';
241           OS << "undef";
242         }
243       }
244       OS << '>';
245     }
246     break;
247   case MachineOperand::MO_Immediate:
248     OS << getImm();
249     break;
250   case MachineOperand::MO_FPImmediate:
251     if (getFPImm()->getType()->isFloatTy())
252       OS << getFPImm()->getValueAPF().convertToFloat();
253     else
254       OS << getFPImm()->getValueAPF().convertToDouble();
255     break;
256   case MachineOperand::MO_MachineBasicBlock:
257     OS << "<BB#" << getMBB()->getNumber() << ">";
258     break;
259   case MachineOperand::MO_FrameIndex:
260     OS << "<fi#" << getIndex() << '>';
261     break;
262   case MachineOperand::MO_ConstantPoolIndex:
263     OS << "<cp#" << getIndex();
264     if (getOffset()) OS << "+" << getOffset();
265     OS << '>';
266     break;
267   case MachineOperand::MO_JumpTableIndex:
268     OS << "<jt#" << getIndex() << '>';
269     break;
270   case MachineOperand::MO_GlobalAddress:
271     OS << "<ga:";
272     WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
273     if (getOffset()) OS << "+" << getOffset();
274     OS << '>';
275     break;
276   case MachineOperand::MO_ExternalSymbol:
277     OS << "<es:" << getSymbolName();
278     if (getOffset()) OS << "+" << getOffset();
279     OS << '>';
280     break;
281   case MachineOperand::MO_BlockAddress:
282     OS << '<';
283     WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
284     OS << '>';
285     break;
286   case MachineOperand::MO_Metadata:
287     OS << '<';
288     WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
289     OS << '>';
290     break;
291   default:
292     llvm_unreachable("Unrecognized operand type");
293   }
294   
295   if (unsigned TF = getTargetFlags())
296     OS << "[TF=" << TF << ']';
297 }
298
299 //===----------------------------------------------------------------------===//
300 // MachineMemOperand Implementation
301 //===----------------------------------------------------------------------===//
302
303 MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f,
304                                      int64_t o, uint64_t s, unsigned int a)
305   : Offset(o), Size(s), V(v),
306     Flags((f & 7) | ((Log2_32(a) + 1) << 3)) {
307   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
308   assert((isLoad() || isStore()) && "Not a load/store!");
309 }
310
311 /// Profile - Gather unique data for the object.
312 ///
313 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
314   ID.AddInteger(Offset);
315   ID.AddInteger(Size);
316   ID.AddPointer(V);
317   ID.AddInteger(Flags);
318 }
319
320 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
321   // The Value and Offset may differ due to CSE. But the flags and size
322   // should be the same.
323   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
324   assert(MMO->getSize() == getSize() && "Size mismatch!");
325
326   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
327     // Update the alignment value.
328     Flags = (Flags & 7) | ((Log2_32(MMO->getBaseAlignment()) + 1) << 3);
329     // Also update the base and offset, because the new alignment may
330     // not be applicable with the old ones.
331     V = MMO->getValue();
332     Offset = MMO->getOffset();
333   }
334 }
335
336 /// getAlignment - Return the minimum known alignment in bytes of the
337 /// actual memory reference.
338 uint64_t MachineMemOperand::getAlignment() const {
339   return MinAlign(getBaseAlignment(), getOffset());
340 }
341
342 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
343   assert((MMO.isLoad() || MMO.isStore()) &&
344          "SV has to be a load, store or both.");
345   
346   if (MMO.isVolatile())
347     OS << "Volatile ";
348
349   if (MMO.isLoad())
350     OS << "LD";
351   if (MMO.isStore())
352     OS << "ST";
353   OS << MMO.getSize();
354   
355   // Print the address information.
356   OS << "[";
357   if (!MMO.getValue())
358     OS << "<unknown>";
359   else
360     WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
361
362   // If the alignment of the memory reference itself differs from the alignment
363   // of the base pointer, print the base alignment explicitly, next to the base
364   // pointer.
365   if (MMO.getBaseAlignment() != MMO.getAlignment())
366     OS << "(align=" << MMO.getBaseAlignment() << ")";
367
368   if (MMO.getOffset() != 0)
369     OS << "+" << MMO.getOffset();
370   OS << "]";
371
372   // Print the alignment of the reference.
373   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
374       MMO.getBaseAlignment() != MMO.getSize())
375     OS << "(align=" << MMO.getAlignment() << ")";
376
377   return OS;
378 }
379
380 //===----------------------------------------------------------------------===//
381 // MachineInstr Implementation
382 //===----------------------------------------------------------------------===//
383
384 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
385 /// TID NULL and no operands.
386 MachineInstr::MachineInstr()
387   : TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
388     Parent(0), debugLoc(DebugLoc::getUnknownLoc()) {
389   // Make sure that we get added to a machine basicblock
390   LeakDetector::addGarbageObject(this);
391 }
392
393 void MachineInstr::addImplicitDefUseOperands() {
394   if (TID->ImplicitDefs)
395     for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
396       addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
397   if (TID->ImplicitUses)
398     for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
399       addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
400 }
401
402 /// MachineInstr ctor - This constructor create a MachineInstr and add the
403 /// implicit operands. It reserves space for number of operands specified by
404 /// TargetInstrDesc or the numOperands if it is not zero. (for
405 /// instructions with variable number of operands).
406 MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
407   : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
408     MemRefs(0), MemRefsEnd(0), Parent(0),
409     debugLoc(DebugLoc::getUnknownLoc()) {
410   if (!NoImp && TID->getImplicitDefs())
411     for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
412       NumImplicitOps++;
413   if (!NoImp && TID->getImplicitUses())
414     for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
415       NumImplicitOps++;
416   Operands.reserve(NumImplicitOps + TID->getNumOperands());
417   if (!NoImp)
418     addImplicitDefUseOperands();
419   // Make sure that we get added to a machine basicblock
420   LeakDetector::addGarbageObject(this);
421 }
422
423 /// MachineInstr ctor - As above, but with a DebugLoc.
424 MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
425                            bool NoImp)
426   : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
427     Parent(0), debugLoc(dl) {
428   if (!NoImp && TID->getImplicitDefs())
429     for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
430       NumImplicitOps++;
431   if (!NoImp && TID->getImplicitUses())
432     for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
433       NumImplicitOps++;
434   Operands.reserve(NumImplicitOps + TID->getNumOperands());
435   if (!NoImp)
436     addImplicitDefUseOperands();
437   // Make sure that we get added to a machine basicblock
438   LeakDetector::addGarbageObject(this);
439 }
440
441 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
442 /// that the MachineInstr is created and added to the end of the specified 
443 /// basic block.
444 ///
445 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
446   : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
447     MemRefs(0), MemRefsEnd(0), Parent(0), 
448     debugLoc(DebugLoc::getUnknownLoc()) {
449   assert(MBB && "Cannot use inserting ctor with null basic block!");
450   if (TID->ImplicitDefs)
451     for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
452       NumImplicitOps++;
453   if (TID->ImplicitUses)
454     for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
455       NumImplicitOps++;
456   Operands.reserve(NumImplicitOps + TID->getNumOperands());
457   addImplicitDefUseOperands();
458   // Make sure that we get added to a machine basicblock
459   LeakDetector::addGarbageObject(this);
460   MBB->push_back(this);  // Add instruction to end of basic block!
461 }
462
463 /// MachineInstr ctor - As above, but with a DebugLoc.
464 ///
465 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
466                            const TargetInstrDesc &tid)
467   : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
468     Parent(0), debugLoc(dl) {
469   assert(MBB && "Cannot use inserting ctor with null basic block!");
470   if (TID->ImplicitDefs)
471     for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
472       NumImplicitOps++;
473   if (TID->ImplicitUses)
474     for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
475       NumImplicitOps++;
476   Operands.reserve(NumImplicitOps + TID->getNumOperands());
477   addImplicitDefUseOperands();
478   // Make sure that we get added to a machine basicblock
479   LeakDetector::addGarbageObject(this);
480   MBB->push_back(this);  // Add instruction to end of basic block!
481 }
482
483 /// MachineInstr ctor - Copies MachineInstr arg exactly
484 ///
485 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
486   : TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0),
487     MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
488     Parent(0), debugLoc(MI.getDebugLoc()) {
489   Operands.reserve(MI.getNumOperands());
490
491   // Add operands
492   for (unsigned i = 0; i != MI.getNumOperands(); ++i)
493     addOperand(MI.getOperand(i));
494   NumImplicitOps = MI.NumImplicitOps;
495
496   // Set parent to null.
497   Parent = 0;
498
499   LeakDetector::addGarbageObject(this);
500 }
501
502 MachineInstr::~MachineInstr() {
503   LeakDetector::removeGarbageObject(this);
504 #ifndef NDEBUG
505   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
506     assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
507     assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
508            "Reg operand def/use list corrupted");
509   }
510 #endif
511 }
512
513 /// getRegInfo - If this instruction is embedded into a MachineFunction,
514 /// return the MachineRegisterInfo object for the current function, otherwise
515 /// return null.
516 MachineRegisterInfo *MachineInstr::getRegInfo() {
517   if (MachineBasicBlock *MBB = getParent())
518     return &MBB->getParent()->getRegInfo();
519   return 0;
520 }
521
522 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
523 /// this instruction from their respective use lists.  This requires that the
524 /// operands already be on their use lists.
525 void MachineInstr::RemoveRegOperandsFromUseLists() {
526   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
527     if (Operands[i].isReg())
528       Operands[i].RemoveRegOperandFromRegInfo();
529   }
530 }
531
532 /// AddRegOperandsToUseLists - Add all of the register operands in
533 /// this instruction from their respective use lists.  This requires that the
534 /// operands not be on their use lists yet.
535 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
536   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
537     if (Operands[i].isReg())
538       Operands[i].AddRegOperandToRegInfo(&RegInfo);
539   }
540 }
541
542
543 /// addOperand - Add the specified operand to the instruction.  If it is an
544 /// implicit operand, it is added to the end of the operand list.  If it is
545 /// an explicit operand it is added at the end of the explicit operand list
546 /// (before the first implicit operand). 
547 void MachineInstr::addOperand(const MachineOperand &Op) {
548   bool isImpReg = Op.isReg() && Op.isImplicit();
549   assert((isImpReg || !OperandsComplete()) &&
550          "Trying to add an operand to a machine instr that is already done!");
551
552   MachineRegisterInfo *RegInfo = getRegInfo();
553
554   // If we are adding the operand to the end of the list, our job is simpler.
555   // This is true most of the time, so this is a reasonable optimization.
556   if (isImpReg || NumImplicitOps == 0) {
557     // We can only do this optimization if we know that the operand list won't
558     // reallocate.
559     if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
560       Operands.push_back(Op);
561     
562       // Set the parent of the operand.
563       Operands.back().ParentMI = this;
564   
565       // If the operand is a register, update the operand's use list.
566       if (Op.isReg()) {
567         Operands.back().AddRegOperandToRegInfo(RegInfo);
568         // If the register operand is flagged as early, mark the operand as such
569         unsigned OpNo = Operands.size() - 1;
570         if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
571           Operands[OpNo].setIsEarlyClobber(true);
572       }
573       return;
574     }
575   }
576   
577   // Otherwise, we have to insert a real operand before any implicit ones.
578   unsigned OpNo = Operands.size()-NumImplicitOps;
579
580   // If this instruction isn't embedded into a function, then we don't need to
581   // update any operand lists.
582   if (RegInfo == 0) {
583     // Simple insertion, no reginfo update needed for other register operands.
584     Operands.insert(Operands.begin()+OpNo, Op);
585     Operands[OpNo].ParentMI = this;
586
587     // Do explicitly set the reginfo for this operand though, to ensure the
588     // next/prev fields are properly nulled out.
589     if (Operands[OpNo].isReg()) {
590       Operands[OpNo].AddRegOperandToRegInfo(0);
591       // If the register operand is flagged as early, mark the operand as such
592       if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
593         Operands[OpNo].setIsEarlyClobber(true);
594     }
595
596   } else if (Operands.size()+1 <= Operands.capacity()) {
597     // Otherwise, we have to remove register operands from their register use
598     // list, add the operand, then add the register operands back to their use
599     // list.  This also must handle the case when the operand list reallocates
600     // to somewhere else.
601   
602     // If insertion of this operand won't cause reallocation of the operand
603     // list, just remove the implicit operands, add the operand, then re-add all
604     // the rest of the operands.
605     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
606       assert(Operands[i].isReg() && "Should only be an implicit reg!");
607       Operands[i].RemoveRegOperandFromRegInfo();
608     }
609     
610     // Add the operand.  If it is a register, add it to the reg list.
611     Operands.insert(Operands.begin()+OpNo, Op);
612     Operands[OpNo].ParentMI = this;
613
614     if (Operands[OpNo].isReg()) {
615       Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
616       // If the register operand is flagged as early, mark the operand as such
617       if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
618         Operands[OpNo].setIsEarlyClobber(true);
619     }
620     
621     // Re-add all the implicit ops.
622     for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
623       assert(Operands[i].isReg() && "Should only be an implicit reg!");
624       Operands[i].AddRegOperandToRegInfo(RegInfo);
625     }
626   } else {
627     // Otherwise, we will be reallocating the operand list.  Remove all reg
628     // operands from their list, then readd them after the operand list is
629     // reallocated.
630     RemoveRegOperandsFromUseLists();
631     
632     Operands.insert(Operands.begin()+OpNo, Op);
633     Operands[OpNo].ParentMI = this;
634   
635     // Re-add all the operands.
636     AddRegOperandsToUseLists(*RegInfo);
637
638       // If the register operand is flagged as early, mark the operand as such
639     if (Operands[OpNo].isReg()
640         && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
641       Operands[OpNo].setIsEarlyClobber(true);
642   }
643 }
644
645 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
646 /// fewer operand than it started with.
647 ///
648 void MachineInstr::RemoveOperand(unsigned OpNo) {
649   assert(OpNo < Operands.size() && "Invalid operand number");
650   
651   // Special case removing the last one.
652   if (OpNo == Operands.size()-1) {
653     // If needed, remove from the reg def/use list.
654     if (Operands.back().isReg() && Operands.back().isOnRegUseList())
655       Operands.back().RemoveRegOperandFromRegInfo();
656     
657     Operands.pop_back();
658     return;
659   }
660
661   // Otherwise, we are removing an interior operand.  If we have reginfo to
662   // update, remove all operands that will be shifted down from their reg lists,
663   // move everything down, then re-add them.
664   MachineRegisterInfo *RegInfo = getRegInfo();
665   if (RegInfo) {
666     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
667       if (Operands[i].isReg())
668         Operands[i].RemoveRegOperandFromRegInfo();
669     }
670   }
671   
672   Operands.erase(Operands.begin()+OpNo);
673
674   if (RegInfo) {
675     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
676       if (Operands[i].isReg())
677         Operands[i].AddRegOperandToRegInfo(RegInfo);
678     }
679   }
680 }
681
682 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
683 /// This function should be used only occasionally. The setMemRefs function
684 /// is the primary method for setting up a MachineInstr's MemRefs list.
685 void MachineInstr::addMemOperand(MachineFunction &MF,
686                                  MachineMemOperand *MO) {
687   mmo_iterator OldMemRefs = MemRefs;
688   mmo_iterator OldMemRefsEnd = MemRefsEnd;
689
690   size_t NewNum = (MemRefsEnd - MemRefs) + 1;
691   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
692   mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
693
694   std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
695   NewMemRefs[NewNum - 1] = MO;
696
697   MemRefs = NewMemRefs;
698   MemRefsEnd = NewMemRefsEnd;
699 }
700
701 /// removeFromParent - This method unlinks 'this' from the containing basic
702 /// block, and returns it, but does not delete it.
703 MachineInstr *MachineInstr::removeFromParent() {
704   assert(getParent() && "Not embedded in a basic block!");
705   getParent()->remove(this);
706   return this;
707 }
708
709
710 /// eraseFromParent - This method unlinks 'this' from the containing basic
711 /// block, and deletes it.
712 void MachineInstr::eraseFromParent() {
713   assert(getParent() && "Not embedded in a basic block!");
714   getParent()->erase(this);
715 }
716
717
718 /// OperandComplete - Return true if it's illegal to add a new operand
719 ///
720 bool MachineInstr::OperandsComplete() const {
721   unsigned short NumOperands = TID->getNumOperands();
722   if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
723     return true;  // Broken: we have all the operands of this instruction!
724   return false;
725 }
726
727 /// getNumExplicitOperands - Returns the number of non-implicit operands.
728 ///
729 unsigned MachineInstr::getNumExplicitOperands() const {
730   unsigned NumOperands = TID->getNumOperands();
731   if (!TID->isVariadic())
732     return NumOperands;
733
734   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
735     const MachineOperand &MO = getOperand(i);
736     if (!MO.isReg() || !MO.isImplicit())
737       NumOperands++;
738   }
739   return NumOperands;
740 }
741
742
743 /// isLabel - Returns true if the MachineInstr represents a label.
744 ///
745 bool MachineInstr::isLabel() const {
746   return getOpcode() == TargetInstrInfo::DBG_LABEL ||
747          getOpcode() == TargetInstrInfo::EH_LABEL ||
748          getOpcode() == TargetInstrInfo::GC_LABEL;
749 }
750
751 /// isDebugLabel - Returns true if the MachineInstr represents a debug label.
752 ///
753 bool MachineInstr::isDebugLabel() const {
754   return getOpcode() == TargetInstrInfo::DBG_LABEL;
755 }
756
757 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
758 /// the specific register or -1 if it is not found. It further tightens
759 /// the search criteria to a use that kills the register if isKill is true.
760 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
761                                           const TargetRegisterInfo *TRI) const {
762   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
763     const MachineOperand &MO = getOperand(i);
764     if (!MO.isReg() || !MO.isUse())
765       continue;
766     unsigned MOReg = MO.getReg();
767     if (!MOReg)
768       continue;
769     if (MOReg == Reg ||
770         (TRI &&
771          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
772          TargetRegisterInfo::isPhysicalRegister(Reg) &&
773          TRI->isSubRegister(MOReg, Reg)))
774       if (!isKill || MO.isKill())
775         return i;
776   }
777   return -1;
778 }
779   
780 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
781 /// the specified register or -1 if it is not found. If isDead is true, defs
782 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
783 /// also checks if there is a def of a super-register.
784 int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead,
785                                           const TargetRegisterInfo *TRI) const {
786   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
787     const MachineOperand &MO = getOperand(i);
788     if (!MO.isReg() || !MO.isDef())
789       continue;
790     unsigned MOReg = MO.getReg();
791     if (MOReg == Reg ||
792         (TRI &&
793          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
794          TargetRegisterInfo::isPhysicalRegister(Reg) &&
795          TRI->isSubRegister(MOReg, Reg)))
796       if (!isDead || MO.isDead())
797         return i;
798   }
799   return -1;
800 }
801
802 /// findFirstPredOperandIdx() - Find the index of the first operand in the
803 /// operand list that is used to represent the predicate. It returns -1 if
804 /// none is found.
805 int MachineInstr::findFirstPredOperandIdx() const {
806   const TargetInstrDesc &TID = getDesc();
807   if (TID.isPredicable()) {
808     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
809       if (TID.OpInfo[i].isPredicate())
810         return i;
811   }
812
813   return -1;
814 }
815   
816 /// isRegTiedToUseOperand - Given the index of a register def operand,
817 /// check if the register def is tied to a source operand, due to either
818 /// two-address elimination or inline assembly constraints. Returns the
819 /// first tied use operand index by reference is UseOpIdx is not null.
820 bool MachineInstr::
821 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
822   if (getOpcode() == TargetInstrInfo::INLINEASM) {
823     assert(DefOpIdx >= 2);
824     const MachineOperand &MO = getOperand(DefOpIdx);
825     if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
826       return false;
827     // Determine the actual operand index that corresponds to this index.
828     unsigned DefNo = 0;
829     unsigned DefPart = 0;
830     for (unsigned i = 1, e = getNumOperands(); i < e; ) {
831       const MachineOperand &FMO = getOperand(i);
832       // After the normal asm operands there may be additional imp-def regs.
833       if (!FMO.isImm())
834         return false;
835       // Skip over this def.
836       unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
837       unsigned PrevDef = i + 1;
838       i = PrevDef + NumOps;
839       if (i > DefOpIdx) {
840         DefPart = DefOpIdx - PrevDef;
841         break;
842       }
843       ++DefNo;
844     }
845     for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
846       const MachineOperand &FMO = getOperand(i);
847       if (!FMO.isImm())
848         continue;
849       if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
850         continue;
851       unsigned Idx;
852       if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
853           Idx == DefNo) {
854         if (UseOpIdx)
855           *UseOpIdx = (unsigned)i + 1 + DefPart;
856         return true;
857       }
858     }
859     return false;
860   }
861
862   assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
863   const TargetInstrDesc &TID = getDesc();
864   for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
865     const MachineOperand &MO = getOperand(i);
866     if (MO.isReg() && MO.isUse() &&
867         TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
868       if (UseOpIdx)
869         *UseOpIdx = (unsigned)i;
870       return true;
871     }
872   }
873   return false;
874 }
875
876 /// isRegTiedToDefOperand - Return true if the operand of the specified index
877 /// is a register use and it is tied to an def operand. It also returns the def
878 /// operand index by reference.
879 bool MachineInstr::
880 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
881   if (getOpcode() == TargetInstrInfo::INLINEASM) {
882     const MachineOperand &MO = getOperand(UseOpIdx);
883     if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
884       return false;
885
886     // Find the flag operand corresponding to UseOpIdx
887     unsigned FlagIdx, NumOps=0;
888     for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
889       const MachineOperand &UFMO = getOperand(FlagIdx);
890       // After the normal asm operands there may be additional imp-def regs.
891       if (!UFMO.isImm())
892         return false;
893       NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
894       assert(NumOps < getNumOperands() && "Invalid inline asm flag");
895       if (UseOpIdx < FlagIdx+NumOps+1)
896         break;
897     }
898     if (FlagIdx >= UseOpIdx)
899       return false;
900     const MachineOperand &UFMO = getOperand(FlagIdx);
901     unsigned DefNo;
902     if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
903       if (!DefOpIdx)
904         return true;
905
906       unsigned DefIdx = 1;
907       // Remember to adjust the index. First operand is asm string, then there
908       // is a flag for each.
909       while (DefNo) {
910         const MachineOperand &FMO = getOperand(DefIdx);
911         assert(FMO.isImm());
912         // Skip over this def.
913         DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
914         --DefNo;
915       }
916       *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
917       return true;
918     }
919     return false;
920   }
921
922   const TargetInstrDesc &TID = getDesc();
923   if (UseOpIdx >= TID.getNumOperands())
924     return false;
925   const MachineOperand &MO = getOperand(UseOpIdx);
926   if (!MO.isReg() || !MO.isUse())
927     return false;
928   int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
929   if (DefIdx == -1)
930     return false;
931   if (DefOpIdx)
932     *DefOpIdx = (unsigned)DefIdx;
933   return true;
934 }
935
936 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
937 ///
938 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
939   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
940     const MachineOperand &MO = MI->getOperand(i);
941     if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
942       continue;
943     for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
944       MachineOperand &MOp = getOperand(j);
945       if (!MOp.isIdenticalTo(MO))
946         continue;
947       if (MO.isKill())
948         MOp.setIsKill();
949       else
950         MOp.setIsDead();
951       break;
952     }
953   }
954 }
955
956 /// copyPredicates - Copies predicate operand(s) from MI.
957 void MachineInstr::copyPredicates(const MachineInstr *MI) {
958   const TargetInstrDesc &TID = MI->getDesc();
959   if (!TID.isPredicable())
960     return;
961   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
962     if (TID.OpInfo[i].isPredicate()) {
963       // Predicated operands must be last operands.
964       addOperand(MI->getOperand(i));
965     }
966   }
967 }
968
969 /// isSafeToMove - Return true if it is safe to move this instruction. If
970 /// SawStore is set to true, it means that there is a store (or call) between
971 /// the instruction's location and its intended destination.
972 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
973                                 bool &SawStore,
974                                 AliasAnalysis *AA) const {
975   // Ignore stuff that we obviously can't move.
976   if (TID->mayStore() || TID->isCall()) {
977     SawStore = true;
978     return false;
979   }
980   if (TID->isTerminator() || TID->hasUnmodeledSideEffects())
981     return false;
982
983   // See if this instruction does a load.  If so, we have to guarantee that the
984   // loaded value doesn't change between the load and the its intended
985   // destination. The check for isInvariantLoad gives the targe the chance to
986   // classify the load as always returning a constant, e.g. a constant pool
987   // load.
988   if (TID->mayLoad() && !isInvariantLoad(AA))
989     // Otherwise, this is a real load.  If there is a store between the load and
990     // end of block, or if the load is volatile, we can't move it.
991     return !SawStore && !hasVolatileMemoryRef();
992
993   return true;
994 }
995
996 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
997 /// instruction which defined the specified register instead of copying it.
998 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
999                                  unsigned DstReg,
1000                                  AliasAnalysis *AA) const {
1001   bool SawStore = false;
1002   if (!TII->isTriviallyReMaterializable(this, AA) ||
1003       !isSafeToMove(TII, SawStore, AA))
1004     return false;
1005   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1006     const MachineOperand &MO = getOperand(i);
1007     if (!MO.isReg())
1008       continue;
1009     // FIXME: For now, do not remat any instruction with register operands.
1010     // Later on, we can loosen the restriction is the register operands have
1011     // not been modified between the def and use. Note, this is different from
1012     // MachineSink because the code is no longer in two-address form (at least
1013     // partially).
1014     if (MO.isUse())
1015       return false;
1016     else if (!MO.isDead() && MO.getReg() != DstReg)
1017       return false;
1018   }
1019   return true;
1020 }
1021
1022 /// hasVolatileMemoryRef - Return true if this instruction may have a
1023 /// volatile memory reference, or if the information describing the
1024 /// memory reference is not available. Return false if it is known to
1025 /// have no volatile memory references.
1026 bool MachineInstr::hasVolatileMemoryRef() const {
1027   // An instruction known never to access memory won't have a volatile access.
1028   if (!TID->mayStore() &&
1029       !TID->mayLoad() &&
1030       !TID->isCall() &&
1031       !TID->hasUnmodeledSideEffects())
1032     return false;
1033
1034   // Otherwise, if the instruction has no memory reference information,
1035   // conservatively assume it wasn't preserved.
1036   if (memoperands_empty())
1037     return true;
1038   
1039   // Check the memory reference information for volatile references.
1040   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1041     if ((*I)->isVolatile())
1042       return true;
1043
1044   return false;
1045 }
1046
1047 /// isInvariantLoad - Return true if this instruction is loading from a
1048 /// location whose value is invariant across the function.  For example,
1049 /// loading a value from the constant pool or from from the argument area
1050 /// of a function if it does not change.  This should only return true of
1051 /// *all* loads the instruction does are invariant (if it does multiple loads).
1052 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1053   // If the instruction doesn't load at all, it isn't an invariant load.
1054   if (!TID->mayLoad())
1055     return false;
1056
1057   // If the instruction has lost its memoperands, conservatively assume that
1058   // it may not be an invariant load.
1059   if (memoperands_empty())
1060     return false;
1061
1062   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1063
1064   for (mmo_iterator I = memoperands_begin(),
1065        E = memoperands_end(); I != E; ++I) {
1066     if ((*I)->isVolatile()) return false;
1067     if ((*I)->isStore()) return false;
1068
1069     if (const Value *V = (*I)->getValue()) {
1070       // A load from a constant PseudoSourceValue is invariant.
1071       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1072         if (PSV->isConstant(MFI))
1073           continue;
1074       // If we have an AliasAnalysis, ask it whether the memory is constant.
1075       if (AA && AA->pointsToConstantMemory(V))
1076         continue;
1077     }
1078
1079     // Otherwise assume conservatively.
1080     return false;
1081   }
1082
1083   // Everything checks out.
1084   return true;
1085 }
1086
1087 /// isConstantValuePHI - If the specified instruction is a PHI that always
1088 /// merges together the same virtual register, return the register, otherwise
1089 /// return 0.
1090 unsigned MachineInstr::isConstantValuePHI() const {
1091   if (getOpcode() != TargetInstrInfo::PHI)
1092     return 0;
1093   assert(getNumOperands() >= 3 &&
1094          "It's illegal to have a PHI without source operands");
1095
1096   unsigned Reg = getOperand(1).getReg();
1097   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1098     if (getOperand(i).getReg() != Reg)
1099       return 0;
1100   return Reg;
1101 }
1102
1103 void MachineInstr::dump() const {
1104   dbgs() << "  " << *this;
1105 }
1106
1107 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1108   // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1109   const MachineFunction *MF = 0;
1110   if (const MachineBasicBlock *MBB = getParent()) {
1111     MF = MBB->getParent();
1112     if (!TM && MF)
1113       TM = &MF->getTarget();
1114   }
1115
1116   // Print explicitly defined operands on the left of an assignment syntax.
1117   unsigned StartOp = 0, e = getNumOperands();
1118   for (; StartOp < e && getOperand(StartOp).isReg() &&
1119          getOperand(StartOp).isDef() &&
1120          !getOperand(StartOp).isImplicit();
1121        ++StartOp) {
1122     if (StartOp != 0) OS << ", ";
1123     getOperand(StartOp).print(OS, TM);
1124   }
1125
1126   if (StartOp != 0)
1127     OS << " = ";
1128
1129   // Print the opcode name.
1130   OS << getDesc().getName();
1131
1132   // Print the rest of the operands.
1133   bool OmittedAnyCallClobbers = false;
1134   bool FirstOp = true;
1135   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1136     const MachineOperand &MO = getOperand(i);
1137
1138     // Omit call-clobbered registers which aren't used anywhere. This makes
1139     // call instructions much less noisy on targets where calls clobber lots
1140     // of registers. Don't rely on MO.isDead() because we may be called before
1141     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1142     if (MF && getDesc().isCall() &&
1143         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1144       unsigned Reg = MO.getReg();
1145       if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) {
1146         const MachineRegisterInfo &MRI = MF->getRegInfo();
1147         if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1148           bool HasAliasLive = false;
1149           for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1150                unsigned AliasReg = *Alias; ++Alias)
1151             if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1152               HasAliasLive = true;
1153               break;
1154             }
1155           if (!HasAliasLive) {
1156             OmittedAnyCallClobbers = true;
1157             continue;
1158           }
1159         }
1160       }
1161     }
1162
1163     if (FirstOp) FirstOp = false; else OS << ",";
1164     OS << " ";
1165     if (i < getDesc().NumOperands) {
1166       const TargetOperandInfo &TOI = getDesc().OpInfo[i];
1167       if (TOI.isPredicate())
1168         OS << "pred:";
1169       if (TOI.isOptionalDef())
1170         OS << "opt:";
1171     }
1172     MO.print(OS, TM);
1173   }
1174
1175   // Briefly indicate whether any call clobbers were omitted.
1176   if (OmittedAnyCallClobbers) {
1177     if (!FirstOp) OS << ",";
1178     OS << " ...";
1179   }
1180
1181   bool HaveSemi = false;
1182   if (!memoperands_empty()) {
1183     if (!HaveSemi) OS << ";"; HaveSemi = true;
1184
1185     OS << " mem:";
1186     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1187          i != e; ++i) {
1188       OS << **i;
1189       if (next(i) != e)
1190         OS << " ";
1191     }
1192   }
1193
1194   if (!debugLoc.isUnknown() && MF) {
1195     if (!HaveSemi) OS << ";";
1196
1197     // TODO: print InlinedAtLoc information
1198
1199     DILocation DLT = MF->getDILocation(debugLoc);
1200     DIScope Scope = DLT.getScope();
1201     OS << " dbg:";
1202     // Omit the directory, since it's usually long and uninteresting.
1203     if (!Scope.isNull())
1204       OS << Scope.getFilename();
1205     else
1206       OS << "<unknown>";
1207     OS << ':' << DLT.getLineNumber();
1208     if (DLT.getColumnNumber() != 0)
1209       OS << ':' << DLT.getColumnNumber();
1210   }
1211
1212   OS << "\n";
1213 }
1214
1215 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1216                                      const TargetRegisterInfo *RegInfo,
1217                                      bool AddIfNotFound) {
1218   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1219   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1220   bool Found = false;
1221   SmallVector<unsigned,4> DeadOps;
1222   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1223     MachineOperand &MO = getOperand(i);
1224     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1225       continue;
1226     unsigned Reg = MO.getReg();
1227     if (!Reg)
1228       continue;
1229
1230     if (Reg == IncomingReg) {
1231       if (!Found) {
1232         if (MO.isKill())
1233           // The register is already marked kill.
1234           return true;
1235         if (isPhysReg && isRegTiedToDefOperand(i))
1236           // Two-address uses of physregs must not be marked kill.
1237           return true;
1238         MO.setIsKill();
1239         Found = true;
1240       }
1241     } else if (hasAliases && MO.isKill() &&
1242                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1243       // A super-register kill already exists.
1244       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1245         return true;
1246       if (RegInfo->isSubRegister(IncomingReg, Reg))
1247         DeadOps.push_back(i);
1248     }
1249   }
1250
1251   // Trim unneeded kill operands.
1252   while (!DeadOps.empty()) {
1253     unsigned OpIdx = DeadOps.back();
1254     if (getOperand(OpIdx).isImplicit())
1255       RemoveOperand(OpIdx);
1256     else
1257       getOperand(OpIdx).setIsKill(false);
1258     DeadOps.pop_back();
1259   }
1260
1261   // If not found, this means an alias of one of the operands is killed. Add a
1262   // new implicit operand if required.
1263   if (!Found && AddIfNotFound) {
1264     addOperand(MachineOperand::CreateReg(IncomingReg,
1265                                          false /*IsDef*/,
1266                                          true  /*IsImp*/,
1267                                          true  /*IsKill*/));
1268     return true;
1269   }
1270   return Found;
1271 }
1272
1273 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1274                                    const TargetRegisterInfo *RegInfo,
1275                                    bool AddIfNotFound) {
1276   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1277   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1278   bool Found = false;
1279   SmallVector<unsigned,4> DeadOps;
1280   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1281     MachineOperand &MO = getOperand(i);
1282     if (!MO.isReg() || !MO.isDef())
1283       continue;
1284     unsigned Reg = MO.getReg();
1285     if (!Reg)
1286       continue;
1287
1288     if (Reg == IncomingReg) {
1289       if (!Found) {
1290         if (MO.isDead())
1291           // The register is already marked dead.
1292           return true;
1293         MO.setIsDead();
1294         Found = true;
1295       }
1296     } else if (hasAliases && MO.isDead() &&
1297                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1298       // There exists a super-register that's marked dead.
1299       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1300         return true;
1301       if (RegInfo->getSubRegisters(IncomingReg) &&
1302           RegInfo->getSuperRegisters(Reg) &&
1303           RegInfo->isSubRegister(IncomingReg, Reg))
1304         DeadOps.push_back(i);
1305     }
1306   }
1307
1308   // Trim unneeded dead operands.
1309   while (!DeadOps.empty()) {
1310     unsigned OpIdx = DeadOps.back();
1311     if (getOperand(OpIdx).isImplicit())
1312       RemoveOperand(OpIdx);
1313     else
1314       getOperand(OpIdx).setIsDead(false);
1315     DeadOps.pop_back();
1316   }
1317
1318   // If not found, this means an alias of one of the operands is dead. Add a
1319   // new implicit operand if required.
1320   if (Found || !AddIfNotFound)
1321     return Found;
1322     
1323   addOperand(MachineOperand::CreateReg(IncomingReg,
1324                                        true  /*IsDef*/,
1325                                        true  /*IsImp*/,
1326                                        false /*IsKill*/,
1327                                        true  /*IsDead*/));
1328   return true;
1329 }
1330
1331 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1332                                       const TargetRegisterInfo *RegInfo) {
1333   MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1334   if (!MO || MO->getSubReg())
1335     addOperand(MachineOperand::CreateReg(IncomingReg,
1336                                          true  /*IsDef*/,
1337                                          true  /*IsImp*/));
1338 }