Fixed register allocator splitting a live range on a spilling variable.
[oota-llvm.git] / lib / CodeGen / LiveRangeEdit.cpp
1 //===--- LiveRangeEdit.cpp - Basic tools for editing a register live range --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LiveRangeEdit class represents changes done to a virtual register when it
11 // is spilled or split.
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "regalloc"
15 #include "LiveRangeEdit.h"
16 #include "VirtRegMap.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/CalcSpillWeights.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25
26 using namespace llvm;
27
28 STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
29 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
30 STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
31
32 LiveInterval &LiveRangeEdit::createFrom(unsigned OldReg,
33                                         LiveIntervals &LIS,
34                                         VirtRegMap &VRM) {
35   MachineRegisterInfo &MRI = VRM.getRegInfo();
36   unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
37   VRM.grow();
38   VRM.setIsSplitFromReg(VReg, VRM.getOriginal(OldReg));
39   LiveInterval &LI = LIS.getOrCreateInterval(VReg);
40   newRegs_.push_back(&LI);
41   return LI;
42 }
43
44 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
45                                           const MachineInstr *DefMI,
46                                           const TargetInstrInfo &tii,
47                                           AliasAnalysis *aa) {
48   assert(DefMI && "Missing instruction");
49   scannedRemattable_ = true;
50   if (!tii.isTriviallyReMaterializable(DefMI, aa))
51     return false;
52   remattable_.insert(VNI);
53   return true;
54 }
55
56 void LiveRangeEdit::scanRemattable(LiveIntervals &lis,
57                                    const TargetInstrInfo &tii,
58                                    AliasAnalysis *aa) {
59   for (LiveInterval::vni_iterator I = parent_.vni_begin(),
60        E = parent_.vni_end(); I != E; ++I) {
61     VNInfo *VNI = *I;
62     if (VNI->isUnused())
63       continue;
64     MachineInstr *DefMI = lis.getInstructionFromIndex(VNI->def);
65     if (!DefMI)
66       continue;
67     checkRematerializable(VNI, DefMI, tii, aa);
68   }
69   scannedRemattable_ = true;
70 }
71
72 bool LiveRangeEdit::anyRematerializable(LiveIntervals &lis,
73                                         const TargetInstrInfo &tii,
74                                         AliasAnalysis *aa) {
75   if (!scannedRemattable_)
76     scanRemattable(lis, tii, aa);
77   return !remattable_.empty();
78 }
79
80 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
81 /// OrigIdx are also available with the same value at UseIdx.
82 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
83                                        SlotIndex OrigIdx,
84                                        SlotIndex UseIdx,
85                                        LiveIntervals &lis) {
86   OrigIdx = OrigIdx.getRegSlot(true);
87   UseIdx = UseIdx.getRegSlot(true);
88   for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
89     const MachineOperand &MO = OrigMI->getOperand(i);
90     if (!MO.isReg() || !MO.getReg() || MO.isDef())
91       continue;
92     // Reserved registers are OK.
93     if (MO.isUndef() || !lis.hasInterval(MO.getReg()))
94       continue;
95     // We cannot depend on virtual registers in uselessRegs_.
96     if (uselessRegs_)
97       for (unsigned ui = 0, ue = uselessRegs_->size(); ui != ue; ++ui)
98         if ((*uselessRegs_)[ui]->reg == MO.getReg())
99           return false;
100
101     LiveInterval &li = lis.getInterval(MO.getReg());
102     const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
103     if (!OVNI)
104       continue;
105     if (OVNI != li.getVNInfoAt(UseIdx))
106       return false;
107   }
108   return true;
109 }
110
111 bool LiveRangeEdit::canRematerializeAt(Remat &RM,
112                                        SlotIndex UseIdx,
113                                        bool cheapAsAMove,
114                                        LiveIntervals &lis) {
115   assert(scannedRemattable_ && "Call anyRematerializable first");
116
117   // Use scanRemattable info.
118   if (!remattable_.count(RM.ParentVNI))
119     return false;
120
121   // No defining instruction provided.
122   SlotIndex DefIdx;
123   if (RM.OrigMI)
124     DefIdx = lis.getInstructionIndex(RM.OrigMI);
125   else {
126     DefIdx = RM.ParentVNI->def;
127     RM.OrigMI = lis.getInstructionFromIndex(DefIdx);
128     assert(RM.OrigMI && "No defining instruction for remattable value");
129   }
130
131   // If only cheap remats were requested, bail out early.
132   if (cheapAsAMove && !RM.OrigMI->isAsCheapAsAMove())
133     return false;
134
135   // Verify that all used registers are available with the same values.
136   if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx, lis))
137     return false;
138
139   return true;
140 }
141
142 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
143                                          MachineBasicBlock::iterator MI,
144                                          unsigned DestReg,
145                                          const Remat &RM,
146                                          LiveIntervals &lis,
147                                          const TargetInstrInfo &tii,
148                                          const TargetRegisterInfo &tri,
149                                          bool Late) {
150   assert(RM.OrigMI && "Invalid remat");
151   tii.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri);
152   rematted_.insert(RM.ParentVNI);
153   return lis.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late)
154            .getRegSlot();
155 }
156
157 void LiveRangeEdit::eraseVirtReg(unsigned Reg, LiveIntervals &LIS) {
158   if (delegate_ && delegate_->LRE_CanEraseVirtReg(Reg))
159     LIS.removeInterval(Reg);
160 }
161
162 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
163                                SmallVectorImpl<MachineInstr*> &Dead,
164                                MachineRegisterInfo &MRI,
165                                LiveIntervals &LIS,
166                                const TargetInstrInfo &TII) {
167   MachineInstr *DefMI = 0, *UseMI = 0;
168
169   // Check that there is a single def and a single use.
170   for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(LI->reg),
171        E = MRI.reg_nodbg_end(); I != E; ++I) {
172     MachineOperand &MO = I.getOperand();
173     MachineInstr *MI = MO.getParent();
174     if (MO.isDef()) {
175       if (DefMI && DefMI != MI)
176         return false;
177       if (!MI->canFoldAsLoad())
178         return false;
179       DefMI = MI;
180     } else if (!MO.isUndef()) {
181       if (UseMI && UseMI != MI)
182         return false;
183       // FIXME: Targets don't know how to fold subreg uses.
184       if (MO.getSubReg())
185         return false;
186       UseMI = MI;
187     }
188   }
189   if (!DefMI || !UseMI)
190     return false;
191
192   DEBUG(dbgs() << "Try to fold single def: " << *DefMI
193                << "       into single use: " << *UseMI);
194
195   SmallVector<unsigned, 8> Ops;
196   if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
197     return false;
198
199   MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI);
200   if (!FoldMI)
201     return false;
202   DEBUG(dbgs() << "                folded: " << *FoldMI);
203   LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI);
204   UseMI->eraseFromParent();
205   DefMI->addRegisterDead(LI->reg, 0);
206   Dead.push_back(DefMI);
207   ++NumDCEFoldedLoads;
208   return true;
209 }
210
211 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
212                                       LiveIntervals &LIS, VirtRegMap &VRM,
213                                       const TargetInstrInfo &TII,
214                                       ArrayRef<unsigned> RegsBeingSpilled) {
215   SetVector<LiveInterval*,
216             SmallVector<LiveInterval*, 8>,
217             SmallPtrSet<LiveInterval*, 8> > ToShrink;
218   MachineRegisterInfo &MRI = VRM.getRegInfo();
219
220   for (;;) {
221     // Erase all dead defs.
222     while (!Dead.empty()) {
223       MachineInstr *MI = Dead.pop_back_val();
224       assert(MI->allDefsAreDead() && "Def isn't really dead");
225       SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
226
227       // Never delete inline asm.
228       if (MI->isInlineAsm()) {
229         DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
230         continue;
231       }
232
233       // Use the same criteria as DeadMachineInstructionElim.
234       bool SawStore = false;
235       if (!MI->isSafeToMove(&TII, 0, SawStore)) {
236         DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
237         continue;
238       }
239
240       DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
241
242       // Check for live intervals that may shrink
243       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
244              MOE = MI->operands_end(); MOI != MOE; ++MOI) {
245         if (!MOI->isReg())
246           continue;
247         unsigned Reg = MOI->getReg();
248         if (!TargetRegisterInfo::isVirtualRegister(Reg))
249           continue;
250         LiveInterval &LI = LIS.getInterval(Reg);
251
252         // Shrink read registers, unless it is likely to be expensive and
253         // unlikely to change anything. We typically don't want to shrink the
254         // PIC base register that has lots of uses everywhere.
255         // Always shrink COPY uses that probably come from live range splitting.
256         if (MI->readsVirtualRegister(Reg) &&
257             (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
258              LI.killedAt(Idx)))
259           ToShrink.insert(&LI);
260
261         // Remove defined value.
262         if (MOI->isDef()) {
263           if (VNInfo *VNI = LI.getVNInfoAt(Idx)) {
264             if (delegate_)
265               delegate_->LRE_WillShrinkVirtReg(LI.reg);
266             LI.removeValNo(VNI);
267             if (LI.empty()) {
268               ToShrink.remove(&LI);
269               eraseVirtReg(Reg, LIS);
270             }
271           }
272         }
273       }
274
275       if (delegate_)
276         delegate_->LRE_WillEraseInstruction(MI);
277       LIS.RemoveMachineInstrFromMaps(MI);
278       MI->eraseFromParent();
279       ++NumDCEDeleted;
280     }
281
282     if (ToShrink.empty())
283       break;
284
285     // Shrink just one live interval. Then delete new dead defs.
286     LiveInterval *LI = ToShrink.back();
287     ToShrink.pop_back();
288     if (foldAsLoad(LI, Dead, MRI, LIS, TII))
289       continue;
290     if (delegate_)
291       delegate_->LRE_WillShrinkVirtReg(LI->reg);
292     if (!LIS.shrinkToUses(LI, &Dead))
293       continue;
294     
295     // Don't create new intervals for a register being spilled.
296     // The new intervals would have to be spilled anyway so its not worth it.
297     // Also they currently aren't spilled so creating them and not spilling
298     // them results in incorrect code.
299     bool BeingSpilled = false;
300     for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
301       if (LI->reg == RegsBeingSpilled[i]) {
302         BeingSpilled = true;
303         break;
304       }
305     }
306     
307     if (BeingSpilled) continue;
308     
309
310     // LI may have been separated, create new intervals.
311     LI->RenumberValues(LIS);
312     ConnectedVNInfoEqClasses ConEQ(LIS);
313     unsigned NumComp = ConEQ.Classify(LI);
314     if (NumComp <= 1)
315       continue;
316     ++NumFracRanges;
317     bool IsOriginal = VRM.getOriginal(LI->reg) == LI->reg;
318     DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
319     SmallVector<LiveInterval*, 8> Dups(1, LI);
320     for (unsigned i = 1; i != NumComp; ++i) {
321       Dups.push_back(&createFrom(LI->reg, LIS, VRM));
322       // If LI is an original interval that hasn't been split yet, make the new
323       // intervals their own originals instead of referring to LI. The original
324       // interval must contain all the split products, and LI doesn't.
325       if (IsOriginal)
326         VRM.setIsSplitFromReg(Dups.back()->reg, 0);
327       if (delegate_)
328         delegate_->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg);
329     }
330     ConEQ.Distribute(&Dups[0], MRI);
331   }
332 }
333
334 void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
335                                              LiveIntervals &LIS,
336                                              const MachineLoopInfo &Loops) {
337   VirtRegAuxInfo VRAI(MF, LIS, Loops);
338   MachineRegisterInfo &MRI = MF.getRegInfo();
339   for (iterator I = begin(), E = end(); I != E; ++I) {
340     LiveInterval &LI = **I;
341     if (MRI.recomputeRegClass(LI.reg, MF.getTarget()))
342       DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
343                    << MRI.getRegClass(LI.reg)->getName() << '\n');
344     VRAI.CalculateWeightAndHint(LI);
345   }
346 }