1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LiveRange and LiveInterval classes. Given some
11 // numbering of each the machine instructions an interval [i, j) is said to be a
12 // live range for register v if there is no instruction with number j' >= j
13 // such that v is live at j' and there is no instruction with number i' < i such
14 // that v is live at i'. In this implementation ranges can have holes,
15 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each
16 // individual segment is represented as an instance of LiveRange::Segment,
17 // and the whole range is represented as an instance of LiveRange.
19 //===----------------------------------------------------------------------===//
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "RegisterCoalescer.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Target/TargetRegisterInfo.h"
34 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
35 // This algorithm is basically std::upper_bound.
36 // Unfortunately, std::upper_bound cannot be used with mixed types until we
37 // adopt C++0x. Many libraries can do it, but not all.
38 if (empty() || Pos >= endIndex())
43 size_t Mid = Len >> 1;
47 I += Mid + 1, Len -= Mid + 1;
52 VNInfo *LiveRange::createDeadDef(SlotIndex Def,
53 VNInfo::Allocator &VNInfoAllocator) {
54 assert(!Def.isDead() && "Cannot define a value at the dead slot");
55 iterator I = find(Def);
57 VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
58 segments.push_back(Segment(Def, Def.getDeadSlot(), VNI));
61 if (SlotIndex::isSameInstr(Def, I->start)) {
62 assert(I->valno->def == I->start && "Inconsistent existing value def");
64 // It is possible to have both normal and early-clobber defs of the same
65 // register on an instruction. It doesn't make a lot of sense, but it is
66 // possible to specify in inline assembly.
68 // Just convert everything to early-clobber.
69 Def = std::min(Def, I->start);
71 I->start = I->valno->def = Def;
74 assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def");
75 VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
76 segments.insert(I, Segment(Def, Def.getDeadSlot(), VNI));
80 // overlaps - Return true if the intersection of the two live ranges is
83 // An example for overlaps():
87 // 8: C = A + B ;; last use of A
89 // The live ranges should look like:
95 // A->overlaps(C) should return false since we want to be able to join
98 bool LiveRange::overlapsFrom(const LiveRange& other,
99 const_iterator StartPos) const {
100 assert(!empty() && "empty range");
101 const_iterator i = begin();
102 const_iterator ie = end();
103 const_iterator j = StartPos;
104 const_iterator je = other.end();
106 assert((StartPos->start <= i->start || StartPos == other.begin()) &&
107 StartPos != other.end() && "Bogus start position hint!");
109 if (i->start < j->start) {
110 i = std::upper_bound(i, ie, j->start);
111 if (i != begin()) --i;
112 } else if (j->start < i->start) {
114 if (StartPos != other.end() && StartPos->start <= i->start) {
115 assert(StartPos < other.end() && i < end());
116 j = std::upper_bound(j, je, i->start);
117 if (j != other.begin()) --j;
123 if (j == je) return false;
126 if (i->start > j->start) {
131 if (i->end > j->start)
139 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
140 const SlotIndexes &Indexes) const {
141 assert(!empty() && "empty range");
145 // Use binary searches to find initial positions.
146 const_iterator I = find(Other.beginIndex());
147 const_iterator IE = end();
150 const_iterator J = Other.find(I->start);
151 const_iterator JE = Other.end();
156 // J has just been advanced to satisfy:
157 assert(J->end >= I->start);
158 // Check for an overlap.
159 if (J->start < I->end) {
160 // I and J are overlapping. Find the later start.
161 SlotIndex Def = std::max(I->start, J->start);
162 // Allow the overlap if Def is a coalescable copy.
164 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
167 // Advance the iterator that ends first to check for more overlaps.
168 if (J->end > I->end) {
172 // Advance J until J->end >= I->start.
176 while (J->end < I->start);
180 /// overlaps - Return true if the live range overlaps an interval specified
182 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
183 assert(Start < End && "Invalid range");
184 const_iterator I = std::lower_bound(begin(), end(), End);
185 return I != begin() && (--I)->end > Start;
189 /// ValNo is dead, remove it. If it is the largest value number, just nuke it
190 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
191 /// it can be nuked later.
192 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
193 if (ValNo->id == getNumValNums()-1) {
196 } while (!valnos.empty() && valnos.back()->isUnused());
202 /// RenumberValues - Renumber all values in order of appearance and delete the
203 /// remaining unused values.
204 void LiveRange::RenumberValues() {
205 SmallPtrSet<VNInfo*, 8> Seen;
207 for (const_iterator I = begin(), E = end(); I != E; ++I) {
208 VNInfo *VNI = I->valno;
209 if (!Seen.insert(VNI))
211 assert(!VNI->isUnused() && "Unused valno used by live segment");
212 VNI->id = (unsigned)valnos.size();
213 valnos.push_back(VNI);
217 /// This method is used when we want to extend the segment specified by I to end
218 /// at the specified endpoint. To do this, we should merge and eliminate all
219 /// segments that this will overlap with. The iterator is not invalidated.
220 void LiveRange::extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
221 assert(I != end() && "Not a valid segment!");
222 VNInfo *ValNo = I->valno;
224 // Search for the first segment that we can't merge with.
225 iterator MergeTo = llvm::next(I);
226 for (; MergeTo != end() && NewEnd >= MergeTo->end; ++MergeTo) {
227 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
230 // If NewEnd was in the middle of a segment, make sure to get its endpoint.
231 I->end = std::max(NewEnd, prior(MergeTo)->end);
233 // If the newly formed segment now touches the segment after it and if they
234 // have the same value number, merge the two segments into one segment.
235 if (MergeTo != end() && MergeTo->start <= I->end &&
236 MergeTo->valno == ValNo) {
237 I->end = MergeTo->end;
241 // Erase any dead segments.
242 segments.erase(llvm::next(I), MergeTo);
246 /// This method is used when we want to extend the segment specified by I to
247 /// start at the specified endpoint. To do this, we should merge and eliminate
248 /// all segments that this will overlap with.
250 LiveRange::extendSegmentStartTo(iterator I, SlotIndex NewStart) {
251 assert(I != end() && "Not a valid segment!");
252 VNInfo *ValNo = I->valno;
254 // Search for the first segment that we can't merge with.
255 iterator MergeTo = I;
257 if (MergeTo == begin()) {
259 segments.erase(MergeTo, I);
262 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
264 } while (NewStart <= MergeTo->start);
266 // If we start in the middle of another segment, just delete a range and
267 // extend that segment.
268 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
269 MergeTo->end = I->end;
271 // Otherwise, extend the segment right after.
273 MergeTo->start = NewStart;
274 MergeTo->end = I->end;
277 segments.erase(llvm::next(MergeTo), llvm::next(I));
281 LiveRange::iterator LiveRange::addSegmentFrom(Segment S, iterator From) {
282 SlotIndex Start = S.start, End = S.end;
283 iterator it = std::upper_bound(From, end(), Start);
285 // If the inserted segment starts in the middle or right at the end of
286 // another segment, just extend that segment to contain the segment of S.
288 iterator B = prior(it);
289 if (S.valno == B->valno) {
290 if (B->start <= Start && B->end >= Start) {
291 extendSegmentEndTo(B, End);
295 // Check to make sure that we are not overlapping two live segments with
296 // different valno's.
297 assert(B->end <= Start &&
298 "Cannot overlap two segments with differing ValID's"
299 " (did you def the same reg twice in a MachineInstr?)");
303 // Otherwise, if this segment ends in the middle of, or right next to, another
304 // segment, merge it into that segment.
306 if (S.valno == it->valno) {
307 if (it->start <= End) {
308 it = extendSegmentStartTo(it, Start);
310 // If S is a complete superset of a segment, we may need to grow its
313 extendSegmentEndTo(it, End);
317 // Check to make sure that we are not overlapping two live segments with
318 // different valno's.
319 assert(it->start >= End &&
320 "Cannot overlap two segments with differing ValID's");
324 // Otherwise, this is just a new segment that doesn't interact with anything.
326 return segments.insert(it, S);
329 /// extendInBlock - If this range is live before Kill in the basic
330 /// block that starts at StartIdx, extend it to be live up to Kill and return
331 /// the value. If there is no live range before Kill, return NULL.
332 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
335 iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot());
339 if (I->end <= StartIdx)
342 extendSegmentEndTo(I, Kill);
346 /// Remove the specified segment from this range. Note that the segment must
347 /// be in a single Segment in its entirety.
348 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
349 bool RemoveDeadValNo) {
350 // Find the Segment containing this span.
351 iterator I = find(Start);
352 assert(I != end() && "Segment is not in range!");
353 assert(I->containsInterval(Start, End)
354 && "Segment is not entirely in range!");
356 // If the span we are removing is at the start of the Segment, adjust it.
357 VNInfo *ValNo = I->valno;
358 if (I->start == Start) {
360 if (RemoveDeadValNo) {
361 // Check if val# is dead.
363 for (const_iterator II = begin(), EE = end(); II != EE; ++II)
364 if (II != I && II->valno == ValNo) {
369 // Now that ValNo is dead, remove it.
370 markValNoForDeletion(ValNo);
374 segments.erase(I); // Removed the whole Segment.
380 // Otherwise if the span we are removing is at the end of the Segment,
381 // adjust the other way.
387 // Otherwise, we are splitting the Segment into two pieces.
388 SlotIndex OldEnd = I->end;
389 I->end = Start; // Trim the old segment.
391 // Insert the new one.
392 segments.insert(llvm::next(I), Segment(End, OldEnd, ValNo));
395 /// removeValNo - Remove all the segments defined by the specified value#.
396 /// Also remove the value# from value# list.
397 void LiveRange::removeValNo(VNInfo *ValNo) {
400 iterator E = begin();
403 if (I->valno == ValNo)
406 // Now that ValNo is dead, remove it.
407 markValNoForDeletion(ValNo);
410 void LiveRange::join(LiveRange &Other,
411 const int *LHSValNoAssignments,
412 const int *RHSValNoAssignments,
413 SmallVectorImpl<VNInfo *> &NewVNInfo) {
416 // Determine if any of our values are mapped. This is uncommon, so we want
417 // to avoid the range scan if not.
418 bool MustMapCurValNos = false;
419 unsigned NumVals = getNumValNums();
420 unsigned NumNewVals = NewVNInfo.size();
421 for (unsigned i = 0; i != NumVals; ++i) {
422 unsigned LHSValID = LHSValNoAssignments[i];
424 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
425 MustMapCurValNos = true;
430 // If we have to apply a mapping to our base range assignment, rewrite it now.
431 if (MustMapCurValNos && !empty()) {
432 // Map the first live range.
434 iterator OutIt = begin();
435 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
436 for (iterator I = llvm::next(OutIt), E = end(); I != E; ++I) {
437 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
438 assert(nextValNo != 0 && "Huh?");
440 // If this live range has the same value # as its immediate predecessor,
441 // and if they are neighbors, remove one Segment. This happens when we
442 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
443 if (OutIt->valno == nextValNo && OutIt->end == I->start) {
446 // Didn't merge. Move OutIt to the next segment,
448 OutIt->valno = nextValNo;
450 OutIt->start = I->start;
455 // If we merge some segments, chop off the end.
457 segments.erase(OutIt, end());
460 // Rewrite Other values before changing the VNInfo ids.
461 // This can leave Other in an invalid state because we're not coalescing
462 // touching segments that now have identical values. That's OK since Other is
463 // not supposed to be valid after calling join();
464 for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
465 I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]];
467 // Update val# info. Renumber them and make sure they all belong to this
468 // LiveRange now. Also remove dead val#'s.
469 unsigned NumValNos = 0;
470 for (unsigned i = 0; i < NumNewVals; ++i) {
471 VNInfo *VNI = NewVNInfo[i];
473 if (NumValNos >= NumVals)
474 valnos.push_back(VNI);
476 valnos[NumValNos] = VNI;
477 VNI->id = NumValNos++; // Renumber val#.
480 if (NumNewVals < NumVals)
481 valnos.resize(NumNewVals); // shrinkify
483 // Okay, now insert the RHS live segments into the LHS.
484 LiveRangeUpdater Updater(this);
485 for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
489 /// Merge all of the segments in RHS into this live range as the specified
490 /// value number. The segments in RHS are allowed to overlap with segments in
491 /// the current range, but only if the overlapping segments have the
492 /// specified value number.
493 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
495 LiveRangeUpdater Updater(this);
496 for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
497 Updater.add(I->start, I->end, LHSValNo);
500 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
501 /// in RHS into this live range as the specified value number.
502 /// The segments in RHS are allowed to overlap with segments in the
503 /// current range, it will replace the value numbers of the overlaped
504 /// segments with the specified value number.
505 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
506 const VNInfo *RHSValNo,
508 LiveRangeUpdater Updater(this);
509 for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
510 if (I->valno == RHSValNo)
511 Updater.add(I->start, I->end, LHSValNo);
514 /// MergeValueNumberInto - This method is called when two value nubmers
515 /// are found to be equivalent. This eliminates V1, replacing all
516 /// segments with the V1 value number with the V2 value number. This can
517 /// cause merging of V1/V2 values numbers and compaction of the value space.
518 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
519 assert(V1 != V2 && "Identical value#'s are always equivalent!");
521 // This code actually merges the (numerically) larger value number into the
522 // smaller value number, which is likely to allow us to compactify the value
523 // space. The only thing we have to be careful of is to preserve the
524 // instruction that defines the result value.
526 // Make sure V2 is smaller than V1.
527 if (V1->id < V2->id) {
532 // Merge V1 segments into V2.
533 for (iterator I = begin(); I != end(); ) {
535 if (S->valno != V1) continue; // Not a V1 Segment.
537 // Okay, we found a V1 live range. If it had a previous, touching, V2 live
541 if (Prev->valno == V2 && Prev->end == S->start) {
544 // Erase this live-range.
551 // Okay, now we have a V1 or V2 live range that is maximally merged forward.
552 // Ensure that it is a V2 live-range.
555 // If we can merge it into later V2 segments, do so now. We ignore any
556 // following V1 segments, as they will be merged in subsequent iterations
559 if (I->start == S->end && I->valno == V2) {
567 // Now that V1 is dead, remove it.
568 markValNoForDeletion(V1);
573 unsigned LiveInterval::getSize() const {
575 for (const_iterator I = begin(), E = end(); I != E; ++I)
576 Sum += I->start.distance(I->end);
580 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
581 return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
585 void LiveRange::Segment::dump() const {
586 dbgs() << *this << "\n";
590 void LiveRange::print(raw_ostream &OS) const {
594 for (const_iterator I = begin(), E = end(); I != E; ++I) {
596 assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
600 // Print value number info.
601 if (getNumValNums()) {
604 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
606 const VNInfo *vni = *i;
609 if (vni->isUnused()) {
620 void LiveInterval::print(raw_ostream &OS) const {
621 OS << PrintReg(reg) << ' ';
625 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
626 void LiveRange::dump() const {
627 dbgs() << *this << "\n";
630 void LiveInterval::dump() const {
631 dbgs() << *this << "\n";
636 void LiveRange::verify() const {
637 for (const_iterator I = begin(), E = end(); I != E; ++I) {
638 assert(I->start.isValid());
639 assert(I->end.isValid());
640 assert(I->start < I->end);
641 assert(I->valno != 0);
642 assert(I->valno->id < valnos.size());
643 assert(I->valno == valnos[I->valno->id]);
644 if (llvm::next(I) != E) {
645 assert(I->end <= llvm::next(I)->start);
646 if (I->end == llvm::next(I)->start)
647 assert(I->valno != llvm::next(I)->valno);
654 //===----------------------------------------------------------------------===//
655 // LiveRangeUpdater class
656 //===----------------------------------------------------------------------===//
658 // The LiveRangeUpdater class always maintains these invariants:
660 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
661 // This is the initial state, and the state created by flush().
662 // In this state, isDirty() returns false.
664 // Otherwise, segments are kept in three separate areas:
666 // 1. [begin; WriteI) at the front of LR.
667 // 2. [ReadI; end) at the back of LR.
670 // - LR.begin() <= WriteI <= ReadI <= LR.end().
671 // - Segments in all three areas are fully ordered and coalesced.
672 // - Segments in area 1 precede and can't coalesce with segments in area 2.
673 // - Segments in Spills precede and can't coalesce with segments in area 2.
674 // - No coalescing is possible between segments in Spills and segments in area
675 // 1, and there are no overlapping segments.
677 // The segments in Spills are not ordered with respect to the segments in area
678 // 1. They need to be merged.
680 // When they exist, Spills.back().start <= LastStart,
681 // and WriteI[-1].start <= LastStart.
683 void LiveRangeUpdater::print(raw_ostream &OS) const {
686 OS << "Clean updater: " << *LR << '\n';
688 OS << "Null updater.\n";
691 assert(LR && "Can't have null LR in dirty updater.");
692 OS << " updater with gap = " << (ReadI - WriteI)
693 << ", last start = " << LastStart
695 for (LiveRange::const_iterator I = LR->begin(); I != WriteI; ++I)
698 for (unsigned I = 0, E = Spills.size(); I != E; ++I)
699 OS << ' ' << Spills[I];
701 for (LiveRange::const_iterator I = ReadI, E = LR->end(); I != E; ++I)
706 void LiveRangeUpdater::dump() const
711 // Determine if A and B should be coalesced.
712 static inline bool coalescable(const LiveRange::Segment &A,
713 const LiveRange::Segment &B) {
714 assert(A.start <= B.start && "Unordered live segments.");
715 if (A.end == B.start)
716 return A.valno == B.valno;
719 assert(A.valno == B.valno && "Cannot overlap different values");
723 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
724 assert(LR && "Cannot add to a null destination");
726 // Flush the state if Start moves backwards.
727 if (!LastStart.isValid() || LastStart > Seg.start) {
730 // This brings us to an uninitialized state. Reinitialize.
731 assert(Spills.empty() && "Leftover spilled segments");
732 WriteI = ReadI = LR->begin();
735 // Remember start for next time.
736 LastStart = Seg.start;
738 // Advance ReadI until it ends after Seg.start.
739 LiveRange::iterator E = LR->end();
740 if (ReadI != E && ReadI->end <= Seg.start) {
741 // First try to close the gap between WriteI and ReadI with spills.
744 // Then advance ReadI.
746 ReadI = WriteI = LR->find(Seg.start);
748 while (ReadI != E && ReadI->end <= Seg.start)
749 *WriteI++ = *ReadI++;
752 assert(ReadI == E || ReadI->end > Seg.start);
754 // Check if the ReadI segment begins early.
755 if (ReadI != E && ReadI->start <= Seg.start) {
756 assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
757 // Bail if Seg is completely contained in ReadI.
758 if (ReadI->end >= Seg.end)
760 // Coalesce into Seg.
761 Seg.start = ReadI->start;
765 // Coalesce as much as possible from ReadI into Seg.
766 while (ReadI != E && coalescable(Seg, *ReadI)) {
767 Seg.end = std::max(Seg.end, ReadI->end);
771 // Try coalescing Spills.back() into Seg.
772 if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
773 Seg.start = Spills.back().start;
774 Seg.end = std::max(Spills.back().end, Seg.end);
778 // Try coalescing Seg into WriteI[-1].
779 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
780 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
784 // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
785 if (WriteI != ReadI) {
790 // Finally, append to LR or Spills.
792 LR->segments.push_back(Seg);
793 WriteI = ReadI = LR->end();
795 Spills.push_back(Seg);
798 // Merge as many spilled segments as possible into the gap between WriteI
799 // and ReadI. Advance WriteI to reflect the inserted instructions.
800 void LiveRangeUpdater::mergeSpills() {
801 // Perform a backwards merge of Spills and [SpillI;WriteI).
802 size_t GapSize = ReadI - WriteI;
803 size_t NumMoved = std::min(Spills.size(), GapSize);
804 LiveRange::iterator Src = WriteI;
805 LiveRange::iterator Dst = Src + NumMoved;
806 LiveRange::iterator SpillSrc = Spills.end();
807 LiveRange::iterator B = LR->begin();
809 // This is the new WriteI position after merging spills.
812 // Now merge Src and Spills backwards.
814 if (Src != B && Src[-1].start > SpillSrc[-1].start)
817 *--Dst = *--SpillSrc;
819 assert(NumMoved == size_t(Spills.end() - SpillSrc));
820 Spills.erase(SpillSrc, Spills.end());
823 void LiveRangeUpdater::flush() {
826 // Clear the dirty state.
827 LastStart = SlotIndex();
829 assert(LR && "Cannot add to a null destination");
832 if (Spills.empty()) {
833 LR->segments.erase(WriteI, ReadI);
838 // Resize the WriteI - ReadI gap to match Spills.
839 size_t GapSize = ReadI - WriteI;
840 if (GapSize < Spills.size()) {
841 // The gap is too small. Make some room.
842 size_t WritePos = WriteI - LR->begin();
843 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
844 // This also invalidated ReadI, but it is recomputed below.
845 WriteI = LR->begin() + WritePos;
847 // Shrink the gap if necessary.
848 LR->segments.erase(WriteI + Spills.size(), ReadI);
850 ReadI = WriteI + Spills.size();
855 unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
856 // Create initial equivalence classes.
858 EqClass.grow(LI->getNumValNums());
860 const VNInfo *used = 0, *unused = 0;
862 // Determine connections.
863 for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
865 const VNInfo *VNI = *I;
866 // Group all unused values into one class.
867 if (VNI->isUnused()) {
869 EqClass.join(unused->id, VNI->id);
874 if (VNI->isPHIDef()) {
875 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
876 assert(MBB && "Phi-def has no defining MBB");
877 // Connect to values live out of predecessors.
878 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
879 PE = MBB->pred_end(); PI != PE; ++PI)
880 if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
881 EqClass.join(VNI->id, PVNI->id);
883 // Normal value defined by an instruction. Check for two-addr redef.
884 // FIXME: This could be coincidental. Should we really check for a tied
885 // operand constraint?
886 // Note that VNI->def may be a use slot for an early clobber def.
887 if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
888 EqClass.join(VNI->id, UVNI->id);
892 // Lump all the unused values in with the last used value.
894 EqClass.join(used->id, unused->id);
897 return EqClass.getNumClasses();
900 void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
901 MachineRegisterInfo &MRI) {
902 assert(LIV[0] && "LIV[0] must be set");
903 LiveInterval &LI = *LIV[0];
905 // Rewrite instructions.
906 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
907 RE = MRI.reg_end(); RI != RE;) {
908 MachineOperand &MO = RI.getOperand();
909 MachineInstr *MI = MO.getParent();
911 // DBG_VALUE instructions don't have slot indexes, so get the index of the
912 // instruction before them.
913 // Normally, DBG_VALUE instructions are removed before this function is
914 // called, but it is not a requirement.
916 if (MI->isDebugValue())
917 Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
919 Idx = LIS.getInstructionIndex(MI);
920 LiveQueryResult LRQ = LI.Query(Idx);
921 const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
922 // In the case of an <undef> use that isn't tied to any def, VNI will be
923 // NULL. If the use is tied to a def, VNI will be the defined value.
926 MO.setReg(LIV[getEqClass(VNI)]->reg);
929 // Move runs to new intervals.
930 LiveInterval::iterator J = LI.begin(), E = LI.end();
931 while (J != E && EqClass[J->valno->id] == 0)
933 for (LiveInterval::iterator I = J; I != E; ++I) {
934 if (unsigned eq = EqClass[I->valno->id]) {
935 assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
936 "New intervals should be empty");
937 LIV[eq]->segments.push_back(*I);
941 LI.segments.erase(J, E);
943 // Transfer VNInfos to their new owners and renumber them.
944 unsigned j = 0, e = LI.getNumValNums();
945 while (j != e && EqClass[j] == 0)
947 for (unsigned i = j; i != e; ++i) {
948 VNInfo *VNI = LI.getValNumInfo(i);
949 if (unsigned eq = EqClass[i]) {
950 VNI->id = LIV[eq]->getNumValNums();
951 LIV[eq]->valnos.push_back(VNI);
954 LI.valnos[j++] = VNI;