Add an MF argument to TRI::getPointerRegClass() and TII::getRegClass().
[oota-llvm.git] / lib / CodeGen / CriticalAntiDepBreaker.cpp
1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CriticalAntiDepBreaker class, which
11 // implements register anti-dependence breaking along a blocks
12 // critical path during post-RA scheduler.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "post-RA-sched"
17 #include "CriticalAntiDepBreaker.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/Target/TargetMachine.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26
27 using namespace llvm;
28
29 CriticalAntiDepBreaker::
30 CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
31   AntiDepBreaker(), MF(MFi),
32   MRI(MF.getRegInfo()),
33   TII(MF.getTarget().getInstrInfo()),
34   TRI(MF.getTarget().getRegisterInfo()),
35   RegClassInfo(RCI),
36   Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
37   KillIndices(TRI->getNumRegs(), 0),
38   DefIndices(TRI->getNumRegs(), 0),
39   KeepRegs(TRI->getNumRegs(), false) {}
40
41 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
42 }
43
44 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
45   const unsigned BBSize = BB->size();
46   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
47     // Clear out the register class data.
48     Classes[i] = static_cast<const TargetRegisterClass *>(0);
49
50     // Initialize the indices to indicate that no registers are live.
51     KillIndices[i] = ~0u;
52     DefIndices[i] = BBSize;
53   }
54
55   // Clear "do not change" set.
56   KeepRegs.reset();
57
58   bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
59
60   // Determine the live-out physregs for this block.
61   if (IsReturnBlock) {
62     // In a return block, examine the function live-out regs.
63     for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
64          E = MRI.liveout_end(); I != E; ++I) {
65       unsigned Reg = *I;
66       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
67       KillIndices[Reg] = BBSize;
68       DefIndices[Reg] = ~0u;
69
70       // Repeat, for all aliases.
71       for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
72         unsigned AliasReg = *Alias;
73         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
74         KillIndices[AliasReg] = BBSize;
75         DefIndices[AliasReg] = ~0u;
76       }
77     }
78   }
79
80   // In a non-return block, examine the live-in regs of all successors.
81   // Note a return block can have successors if the return instruction is
82   // predicated.
83   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
84          SE = BB->succ_end(); SI != SE; ++SI)
85     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
86            E = (*SI)->livein_end(); I != E; ++I) {
87       unsigned Reg = *I;
88       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
89       KillIndices[Reg] = BBSize;
90       DefIndices[Reg] = ~0u;
91
92       // Repeat, for all aliases.
93       for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
94         unsigned AliasReg = *Alias;
95         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
96         KillIndices[AliasReg] = BBSize;
97         DefIndices[AliasReg] = ~0u;
98       }
99     }
100
101   // Mark live-out callee-saved registers. In a return block this is
102   // all callee-saved registers. In non-return this is any
103   // callee-saved register that is not saved in the prolog.
104   const MachineFrameInfo *MFI = MF.getFrameInfo();
105   BitVector Pristine = MFI->getPristineRegs(BB);
106   for (const uint16_t *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
107     unsigned Reg = *I;
108     if (!IsReturnBlock && !Pristine.test(Reg)) continue;
109     Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
110     KillIndices[Reg] = BBSize;
111     DefIndices[Reg] = ~0u;
112
113     // Repeat, for all aliases.
114     for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
115       unsigned AliasReg = *Alias;
116       Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
117       KillIndices[AliasReg] = BBSize;
118       DefIndices[AliasReg] = ~0u;
119     }
120   }
121 }
122
123 void CriticalAntiDepBreaker::FinishBlock() {
124   RegRefs.clear();
125   KeepRegs.reset();
126 }
127
128 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
129                                      unsigned InsertPosIndex) {
130   if (MI->isDebugValue())
131     return;
132   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
133
134   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
135     if (KillIndices[Reg] != ~0u) {
136       // If Reg is currently live, then mark that it can't be renamed as
137       // we don't know the extent of its live-range anymore (now that it
138       // has been scheduled).
139       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
140       KillIndices[Reg] = Count;
141     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
142       // Any register which was defined within the previous scheduling region
143       // may have been rescheduled and its lifetime may overlap with registers
144       // in ways not reflected in our current liveness state. For each such
145       // register, adjust the liveness state to be conservatively correct.
146       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
147
148       // Move the def index to the end of the previous region, to reflect
149       // that the def could theoretically have been scheduled at the end.
150       DefIndices[Reg] = InsertPosIndex;
151     }
152   }
153
154   PrescanInstruction(MI);
155   ScanInstruction(MI, Count);
156 }
157
158 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
159 /// critical path.
160 static const SDep *CriticalPathStep(const SUnit *SU) {
161   const SDep *Next = 0;
162   unsigned NextDepth = 0;
163   // Find the predecessor edge with the greatest depth.
164   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
165        P != PE; ++P) {
166     const SUnit *PredSU = P->getSUnit();
167     unsigned PredLatency = P->getLatency();
168     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
169     // In the case of a latency tie, prefer an anti-dependency edge over
170     // other types of edges.
171     if (NextDepth < PredTotalLatency ||
172         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
173       NextDepth = PredTotalLatency;
174       Next = &*P;
175     }
176   }
177   return Next;
178 }
179
180 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
181   // It's not safe to change register allocation for source operands of
182   // that have special allocation requirements. Also assume all registers
183   // used in a call must not be changed (ABI).
184   // FIXME: The issue with predicated instruction is more complex. We are being
185   // conservative here because the kill markers cannot be trusted after
186   // if-conversion:
187   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
188   // ...
189   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
190   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
191   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
192   //
193   // The first R6 kill is not really a kill since it's killed by a predicated
194   // instruction which may not be executed. The second R6 def may or may not
195   // re-define R6 so it's not safe to change it since the last R6 use cannot be
196   // changed.
197   bool Special = MI->isCall() ||
198     MI->hasExtraSrcRegAllocReq() ||
199     TII->isPredicated(MI);
200
201   // Scan the register operands for this instruction and update
202   // Classes and RegRefs.
203   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
204     MachineOperand &MO = MI->getOperand(i);
205     if (!MO.isReg()) continue;
206     unsigned Reg = MO.getReg();
207     if (Reg == 0) continue;
208     const TargetRegisterClass *NewRC = 0;
209
210     if (i < MI->getDesc().getNumOperands())
211       NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
212
213     // For now, only allow the register to be changed if its register
214     // class is consistent across all uses.
215     if (!Classes[Reg] && NewRC)
216       Classes[Reg] = NewRC;
217     else if (!NewRC || Classes[Reg] != NewRC)
218       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
219
220     // Now check for aliases.
221     for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
222       // If an alias of the reg is used during the live range, give up.
223       // Note that this allows us to skip checking if AntiDepReg
224       // overlaps with any of the aliases, among other things.
225       unsigned AliasReg = *Alias;
226       if (Classes[AliasReg]) {
227         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
228         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
229       }
230     }
231
232     // If we're still willing to consider this register, note the reference.
233     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
234       RegRefs.insert(std::make_pair(Reg, &MO));
235
236     if (MO.isUse() && Special) {
237       if (!KeepRegs.test(Reg)) {
238         KeepRegs.set(Reg);
239         for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
240              *Subreg; ++Subreg)
241           KeepRegs.set(*Subreg);
242       }
243     }
244   }
245 }
246
247 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
248                                              unsigned Count) {
249   // Update liveness.
250   // Proceding upwards, registers that are defed but not used in this
251   // instruction are now dead.
252
253   if (!TII->isPredicated(MI)) {
254     // Predicated defs are modeled as read + write, i.e. similar to two
255     // address updates.
256     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
257       MachineOperand &MO = MI->getOperand(i);
258
259       if (MO.isRegMask())
260         for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
261           if (MO.clobbersPhysReg(i)) {
262             DefIndices[i] = Count;
263             KillIndices[i] = ~0u;
264             KeepRegs.reset(i);
265             Classes[i] = 0;
266             RegRefs.erase(i);
267           }
268
269       if (!MO.isReg()) continue;
270       unsigned Reg = MO.getReg();
271       if (Reg == 0) continue;
272       if (!MO.isDef()) continue;
273       // Ignore two-addr defs.
274       if (MI->isRegTiedToUseOperand(i)) continue;
275
276       DefIndices[Reg] = Count;
277       KillIndices[Reg] = ~0u;
278       assert(((KillIndices[Reg] == ~0u) !=
279               (DefIndices[Reg] == ~0u)) &&
280              "Kill and Def maps aren't consistent for Reg!");
281       KeepRegs.reset(Reg);
282       Classes[Reg] = 0;
283       RegRefs.erase(Reg);
284       // Repeat, for all subregs.
285       for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
286            *Subreg; ++Subreg) {
287         unsigned SubregReg = *Subreg;
288         DefIndices[SubregReg] = Count;
289         KillIndices[SubregReg] = ~0u;
290         KeepRegs.reset(SubregReg);
291         Classes[SubregReg] = 0;
292         RegRefs.erase(SubregReg);
293       }
294       // Conservatively mark super-registers as unusable.
295       for (const uint16_t *Super = TRI->getSuperRegisters(Reg);
296            *Super; ++Super) {
297         unsigned SuperReg = *Super;
298         Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
299       }
300     }
301   }
302   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
303     MachineOperand &MO = MI->getOperand(i);
304     if (!MO.isReg()) continue;
305     unsigned Reg = MO.getReg();
306     if (Reg == 0) continue;
307     if (!MO.isUse()) continue;
308
309     const TargetRegisterClass *NewRC = 0;
310     if (i < MI->getDesc().getNumOperands())
311       NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
312
313     // For now, only allow the register to be changed if its register
314     // class is consistent across all uses.
315     if (!Classes[Reg] && NewRC)
316       Classes[Reg] = NewRC;
317     else if (!NewRC || Classes[Reg] != NewRC)
318       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
319
320     RegRefs.insert(std::make_pair(Reg, &MO));
321
322     // It wasn't previously live but now it is, this is a kill.
323     if (KillIndices[Reg] == ~0u) {
324       KillIndices[Reg] = Count;
325       DefIndices[Reg] = ~0u;
326           assert(((KillIndices[Reg] == ~0u) !=
327                   (DefIndices[Reg] == ~0u)) &&
328                "Kill and Def maps aren't consistent for Reg!");
329     }
330     // Repeat, for all aliases.
331     for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
332       unsigned AliasReg = *Alias;
333       if (KillIndices[AliasReg] == ~0u) {
334         KillIndices[AliasReg] = Count;
335         DefIndices[AliasReg] = ~0u;
336       }
337     }
338   }
339 }
340
341 // Check all machine operands that reference the antidependent register and must
342 // be replaced by NewReg. Return true if any of their parent instructions may
343 // clobber the new register.
344 //
345 // Note: AntiDepReg may be referenced by a two-address instruction such that
346 // it's use operand is tied to a def operand. We guard against the case in which
347 // the two-address instruction also defines NewReg, as may happen with
348 // pre/postincrement loads. In this case, both the use and def operands are in
349 // RegRefs because the def is inserted by PrescanInstruction and not erased
350 // during ScanInstruction. So checking for an instructions with definitions of
351 // both NewReg and AntiDepReg covers it.
352 bool
353 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
354                                                 RegRefIter RegRefEnd,
355                                                 unsigned NewReg)
356 {
357   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
358     MachineOperand *RefOper = I->second;
359
360     // Don't allow the instruction defining AntiDepReg to earlyclobber its
361     // operands, in case they may be assigned to NewReg. In this case antidep
362     // breaking must fail, but it's too rare to bother optimizing.
363     if (RefOper->isDef() && RefOper->isEarlyClobber())
364       return true;
365
366     // Handle cases in which this instructions defines NewReg.
367     MachineInstr *MI = RefOper->getParent();
368     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
369       const MachineOperand &CheckOper = MI->getOperand(i);
370
371       if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
372         return true;
373
374       if (!CheckOper.isReg() || !CheckOper.isDef() ||
375           CheckOper.getReg() != NewReg)
376         continue;
377
378       // Don't allow the instruction to define NewReg and AntiDepReg.
379       // When AntiDepReg is renamed it will be an illegal op.
380       if (RefOper->isDef())
381         return true;
382
383       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
384       // NewReg
385       if (CheckOper.isEarlyClobber())
386         return true;
387
388       // Don't allow inline asm to define NewReg at all. Who know what it's
389       // doing with it.
390       if (MI->isInlineAsm())
391         return true;
392     }
393   }
394   return false;
395 }
396
397 unsigned
398 CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin,
399                                                  RegRefIter RegRefEnd,
400                                                  unsigned AntiDepReg,
401                                                  unsigned LastNewReg,
402                                                  const TargetRegisterClass *RC)
403 {
404   ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
405   for (unsigned i = 0; i != Order.size(); ++i) {
406     unsigned NewReg = Order[i];
407     // Don't replace a register with itself.
408     if (NewReg == AntiDepReg) continue;
409     // Don't replace a register with one that was recently used to repair
410     // an anti-dependence with this AntiDepReg, because that would
411     // re-introduce that anti-dependence.
412     if (NewReg == LastNewReg) continue;
413     // If any instructions that define AntiDepReg also define the NewReg, it's
414     // not suitable.  For example, Instruction with multiple definitions can
415     // result in this condition.
416     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
417     // If NewReg is dead and NewReg's most recent def is not before
418     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
419     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
420            && "Kill and Def maps aren't consistent for AntiDepReg!");
421     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
422            && "Kill and Def maps aren't consistent for NewReg!");
423     if (KillIndices[NewReg] != ~0u ||
424         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
425         KillIndices[AntiDepReg] > DefIndices[NewReg])
426       continue;
427     return NewReg;
428   }
429
430   // No registers are free and available!
431   return 0;
432 }
433
434 unsigned CriticalAntiDepBreaker::
435 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
436                       MachineBasicBlock::iterator Begin,
437                       MachineBasicBlock::iterator End,
438                       unsigned InsertPosIndex,
439                       DbgValueVector &DbgValues) {
440   // The code below assumes that there is at least one instruction,
441   // so just duck out immediately if the block is empty.
442   if (SUnits.empty()) return 0;
443
444   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
445   // This is used for updating debug information.
446   //
447   // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
448   DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
449
450   // Find the node at the bottom of the critical path.
451   const SUnit *Max = 0;
452   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
453     const SUnit *SU = &SUnits[i];
454     MISUnitMap[SU->getInstr()] = SU;
455     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
456       Max = SU;
457   }
458
459 #ifndef NDEBUG
460   {
461     DEBUG(dbgs() << "Critical path has total latency "
462           << (Max->getDepth() + Max->Latency) << "\n");
463     DEBUG(dbgs() << "Available regs:");
464     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
465       if (KillIndices[Reg] == ~0u)
466         DEBUG(dbgs() << " " << TRI->getName(Reg));
467     }
468     DEBUG(dbgs() << '\n');
469   }
470 #endif
471
472   // Track progress along the critical path through the SUnit graph as we walk
473   // the instructions.
474   const SUnit *CriticalPathSU = Max;
475   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
476
477   // Consider this pattern:
478   //   A = ...
479   //   ... = A
480   //   A = ...
481   //   ... = A
482   //   A = ...
483   //   ... = A
484   //   A = ...
485   //   ... = A
486   // There are three anti-dependencies here, and without special care,
487   // we'd break all of them using the same register:
488   //   A = ...
489   //   ... = A
490   //   B = ...
491   //   ... = B
492   //   B = ...
493   //   ... = B
494   //   B = ...
495   //   ... = B
496   // because at each anti-dependence, B is the first register that
497   // isn't A which is free.  This re-introduces anti-dependencies
498   // at all but one of the original anti-dependencies that we were
499   // trying to break.  To avoid this, keep track of the most recent
500   // register that each register was replaced with, avoid
501   // using it to repair an anti-dependence on the same register.
502   // This lets us produce this:
503   //   A = ...
504   //   ... = A
505   //   B = ...
506   //   ... = B
507   //   C = ...
508   //   ... = C
509   //   B = ...
510   //   ... = B
511   // This still has an anti-dependence on B, but at least it isn't on the
512   // original critical path.
513   //
514   // TODO: If we tracked more than one register here, we could potentially
515   // fix that remaining critical edge too. This is a little more involved,
516   // because unlike the most recent register, less recent registers should
517   // still be considered, though only if no other registers are available.
518   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
519
520   // Attempt to break anti-dependence edges on the critical path. Walk the
521   // instructions from the bottom up, tracking information about liveness
522   // as we go to help determine which registers are available.
523   unsigned Broken = 0;
524   unsigned Count = InsertPosIndex - 1;
525   for (MachineBasicBlock::iterator I = End, E = Begin;
526        I != E; --Count) {
527     MachineInstr *MI = --I;
528     if (MI->isDebugValue())
529       continue;
530
531     // Check if this instruction has a dependence on the critical path that
532     // is an anti-dependence that we may be able to break. If it is, set
533     // AntiDepReg to the non-zero register associated with the anti-dependence.
534     //
535     // We limit our attention to the critical path as a heuristic to avoid
536     // breaking anti-dependence edges that aren't going to significantly
537     // impact the overall schedule. There are a limited number of registers
538     // and we want to save them for the important edges.
539     //
540     // TODO: Instructions with multiple defs could have multiple
541     // anti-dependencies. The current code here only knows how to break one
542     // edge per instruction. Note that we'd have to be able to break all of
543     // the anti-dependencies in an instruction in order to be effective.
544     unsigned AntiDepReg = 0;
545     if (MI == CriticalPathMI) {
546       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
547         const SUnit *NextSU = Edge->getSUnit();
548
549         // Only consider anti-dependence edges.
550         if (Edge->getKind() == SDep::Anti) {
551           AntiDepReg = Edge->getReg();
552           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
553           if (!RegClassInfo.isAllocatable(AntiDepReg))
554             // Don't break anti-dependencies on non-allocatable registers.
555             AntiDepReg = 0;
556           else if (KeepRegs.test(AntiDepReg))
557             // Don't break anti-dependencies if an use down below requires
558             // this exact register.
559             AntiDepReg = 0;
560           else {
561             // If the SUnit has other dependencies on the SUnit that it
562             // anti-depends on, don't bother breaking the anti-dependency
563             // since those edges would prevent such units from being
564             // scheduled past each other regardless.
565             //
566             // Also, if there are dependencies on other SUnits with the
567             // same register as the anti-dependency, don't attempt to
568             // break it.
569             for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
570                  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
571               if (P->getSUnit() == NextSU ?
572                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
573                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
574                 AntiDepReg = 0;
575                 break;
576               }
577           }
578         }
579         CriticalPathSU = NextSU;
580         CriticalPathMI = CriticalPathSU->getInstr();
581       } else {
582         // We've reached the end of the critical path.
583         CriticalPathSU = 0;
584         CriticalPathMI = 0;
585       }
586     }
587
588     PrescanInstruction(MI);
589
590     // If MI's defs have a special allocation requirement, don't allow
591     // any def registers to be changed. Also assume all registers
592     // defined in a call must not be changed (ABI).
593     if (MI->isCall() || MI->hasExtraDefRegAllocReq() ||
594         TII->isPredicated(MI))
595       // If this instruction's defs have special allocation requirement, don't
596       // break this anti-dependency.
597       AntiDepReg = 0;
598     else if (AntiDepReg) {
599       // If this instruction has a use of AntiDepReg, breaking it
600       // is invalid.
601       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
602         MachineOperand &MO = MI->getOperand(i);
603         if (!MO.isReg()) continue;
604         unsigned Reg = MO.getReg();
605         if (Reg == 0) continue;
606         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
607           AntiDepReg = 0;
608           break;
609         }
610       }
611     }
612
613     // Determine AntiDepReg's register class, if it is live and is
614     // consistently used within a single class.
615     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
616     assert((AntiDepReg == 0 || RC != NULL) &&
617            "Register should be live if it's causing an anti-dependence!");
618     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
619       AntiDepReg = 0;
620
621     // Look for a suitable register to use to break the anti-depenence.
622     //
623     // TODO: Instead of picking the first free register, consider which might
624     // be the best.
625     if (AntiDepReg != 0) {
626       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
627                 std::multimap<unsigned, MachineOperand *>::iterator>
628         Range = RegRefs.equal_range(AntiDepReg);
629       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
630                                                      AntiDepReg,
631                                                      LastNewReg[AntiDepReg],
632                                                      RC)) {
633         DEBUG(dbgs() << "Breaking anti-dependence edge on "
634               << TRI->getName(AntiDepReg)
635               << " with " << RegRefs.count(AntiDepReg) << " references"
636               << " using " << TRI->getName(NewReg) << "!\n");
637
638         // Update the references to the old register to refer to the new
639         // register.
640         for (std::multimap<unsigned, MachineOperand *>::iterator
641              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
642           Q->second->setReg(NewReg);
643           // If the SU for the instruction being updated has debug information
644           // related to the anti-dependency register, make sure to update that
645           // as well.
646           const SUnit *SU = MISUnitMap[Q->second->getParent()];
647           if (!SU) continue;
648           for (DbgValueVector::iterator DVI = DbgValues.begin(),
649                  DVE = DbgValues.end(); DVI != DVE; ++DVI)
650             if (DVI->second == Q->second->getParent())
651               UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
652         }
653
654         // We just went back in time and modified history; the
655         // liveness information for the anti-dependence reg is now
656         // inconsistent. Set the state as if it were dead.
657         Classes[NewReg] = Classes[AntiDepReg];
658         DefIndices[NewReg] = DefIndices[AntiDepReg];
659         KillIndices[NewReg] = KillIndices[AntiDepReg];
660         assert(((KillIndices[NewReg] == ~0u) !=
661                 (DefIndices[NewReg] == ~0u)) &&
662              "Kill and Def maps aren't consistent for NewReg!");
663
664         Classes[AntiDepReg] = 0;
665         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
666         KillIndices[AntiDepReg] = ~0u;
667         assert(((KillIndices[AntiDepReg] == ~0u) !=
668                 (DefIndices[AntiDepReg] == ~0u)) &&
669              "Kill and Def maps aren't consistent for AntiDepReg!");
670
671         RegRefs.erase(AntiDepReg);
672         LastNewReg[AntiDepReg] = NewReg;
673         ++Broken;
674       }
675     }
676
677     ScanInstruction(MI, Count);
678   }
679
680   return Broken;
681 }