Change the `linker_private_weak_def_auto' linkage to `linkonce_odr_auto_hide' to
[oota-llvm.git] / lib / CodeGen / AsmPrinter / AsmPrinter.cpp
1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "asm-printer"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #include "DwarfDebug.h"
17 #include "DwarfException.h"
18 #include "llvm/DebugInfo.h"
19 #include "llvm/Module.h"
20 #include "llvm/CodeGen/GCMetadataPrinter.h"
21 #include "llvm/CodeGen/MachineConstantPool.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/CodeGen/MachineLoopInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCSection.h"
33 #include "llvm/MC/MCStreamer.h"
34 #include "llvm/MC/MCSymbol.h"
35 #include "llvm/Target/Mangler.h"
36 #include "llvm/Target/TargetData.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetLowering.h"
39 #include "llvm/Target/TargetLoweringObjectFile.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include "llvm/Target/TargetRegisterInfo.h"
42 #include "llvm/Assembly/Writer.h"
43 #include "llvm/ADT/SmallString.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/Format.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/Timer.h"
49 using namespace llvm;
50
51 static const char *DWARFGroupName = "DWARF Emission";
52 static const char *DbgTimerName = "DWARF Debug Writer";
53 static const char *EHTimerName = "DWARF Exception Writer";
54
55 STATISTIC(EmittedInsts, "Number of machine instrs printed");
56
57 char AsmPrinter::ID = 0;
58
59 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
60 static gcp_map_type &getGCMap(void *&P) {
61   if (P == 0)
62     P = new gcp_map_type();
63   return *(gcp_map_type*)P;
64 }
65
66
67 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
68 /// value in log2 form.  This rounds up to the preferred alignment if possible
69 /// and legal.
70 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
71                                    unsigned InBits = 0) {
72   unsigned NumBits = 0;
73   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
74     NumBits = TD.getPreferredAlignmentLog(GVar);
75
76   // If InBits is specified, round it to it.
77   if (InBits > NumBits)
78     NumBits = InBits;
79
80   // If the GV has a specified alignment, take it into account.
81   if (GV->getAlignment() == 0)
82     return NumBits;
83
84   unsigned GVAlign = Log2_32(GV->getAlignment());
85
86   // If the GVAlign is larger than NumBits, or if we are required to obey
87   // NumBits because the GV has an assigned section, obey it.
88   if (GVAlign > NumBits || GV->hasSection())
89     NumBits = GVAlign;
90   return NumBits;
91 }
92
93
94
95
96 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
97   : MachineFunctionPass(ID),
98     TM(tm), MAI(tm.getMCAsmInfo()),
99     OutContext(Streamer.getContext()),
100     OutStreamer(Streamer),
101     LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
102   DD = 0; DE = 0; MMI = 0; LI = 0;
103   CurrentFnSym = CurrentFnSymForSize = 0;
104   GCMetadataPrinters = 0;
105   VerboseAsm = Streamer.isVerboseAsm();
106 }
107
108 AsmPrinter::~AsmPrinter() {
109   assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
110
111   if (GCMetadataPrinters != 0) {
112     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
113
114     for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
115       delete I->second;
116     delete &GCMap;
117     GCMetadataPrinters = 0;
118   }
119
120   delete &OutStreamer;
121 }
122
123 /// getFunctionNumber - Return a unique ID for the current function.
124 ///
125 unsigned AsmPrinter::getFunctionNumber() const {
126   return MF->getFunctionNumber();
127 }
128
129 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
130   return TM.getTargetLowering()->getObjFileLowering();
131 }
132
133
134 /// getTargetData - Return information about data layout.
135 const TargetData &AsmPrinter::getTargetData() const {
136   return *TM.getTargetData();
137 }
138
139 /// getCurrentSection() - Return the current section we are emitting to.
140 const MCSection *AsmPrinter::getCurrentSection() const {
141   return OutStreamer.getCurrentSection();
142 }
143
144
145
146 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
147   AU.setPreservesAll();
148   MachineFunctionPass::getAnalysisUsage(AU);
149   AU.addRequired<MachineModuleInfo>();
150   AU.addRequired<GCModuleInfo>();
151   if (isVerbose())
152     AU.addRequired<MachineLoopInfo>();
153 }
154
155 bool AsmPrinter::doInitialization(Module &M) {
156   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
157   MMI->AnalyzeModule(M);
158
159   // Initialize TargetLoweringObjectFile.
160   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
161     .Initialize(OutContext, TM);
162
163   Mang = new Mangler(OutContext, *TM.getTargetData());
164
165   // Allow the target to emit any magic that it wants at the start of the file.
166   EmitStartOfAsmFile(M);
167
168   // Very minimal debug info. It is ignored if we emit actual debug info. If we
169   // don't, this at least helps the user find where a global came from.
170   if (MAI->hasSingleParameterDotFile()) {
171     // .file "foo.c"
172     OutStreamer.EmitFileDirective(M.getModuleIdentifier());
173   }
174
175   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
176   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
177   for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
178     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
179       MP->beginAssembly(*this);
180
181   // Emit module-level inline asm if it exists.
182   if (!M.getModuleInlineAsm().empty()) {
183     OutStreamer.AddComment("Start of file scope inline assembly");
184     OutStreamer.AddBlankLine();
185     EmitInlineAsm(M.getModuleInlineAsm()+"\n");
186     OutStreamer.AddComment("End of file scope inline assembly");
187     OutStreamer.AddBlankLine();
188   }
189
190   if (MAI->doesSupportDebugInformation())
191     DD = new DwarfDebug(this, &M);
192
193   switch (MAI->getExceptionHandlingType()) {
194   case ExceptionHandling::None:
195     return false;
196   case ExceptionHandling::SjLj:
197   case ExceptionHandling::DwarfCFI:
198     DE = new DwarfCFIException(this);
199     return false;
200   case ExceptionHandling::ARM:
201     DE = new ARMException(this);
202     return false;
203   case ExceptionHandling::Win64:
204     DE = new Win64Exception(this);
205     return false;
206   }
207
208   llvm_unreachable("Unknown exception type.");
209 }
210
211 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
212   switch ((GlobalValue::LinkageTypes)Linkage) {
213   case GlobalValue::CommonLinkage:
214   case GlobalValue::LinkOnceAnyLinkage:
215   case GlobalValue::LinkOnceODRLinkage:
216   case GlobalValue::LinkOnceODRAutoHideLinkage:
217   case GlobalValue::WeakAnyLinkage:
218   case GlobalValue::WeakODRLinkage:
219   case GlobalValue::LinkerPrivateWeakLinkage:
220     if (MAI->getWeakDefDirective() != 0) {
221       // .globl _foo
222       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
223
224       if ((GlobalValue::LinkageTypes)Linkage !=
225           GlobalValue::LinkOnceODRAutoHideLinkage)
226         // .weak_definition _foo
227         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
228       else
229         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
230     } else if (MAI->getLinkOnceDirective() != 0) {
231       // .globl _foo
232       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
233       //NOTE: linkonce is handled by the section the symbol was assigned to.
234     } else {
235       // .weak _foo
236       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
237     }
238     break;
239   case GlobalValue::DLLExportLinkage:
240   case GlobalValue::AppendingLinkage:
241     // FIXME: appending linkage variables should go into a section of
242     // their name or something.  For now, just emit them as external.
243   case GlobalValue::ExternalLinkage:
244     // If external or appending, declare as a global symbol.
245     // .globl _foo
246     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
247     break;
248   case GlobalValue::PrivateLinkage:
249   case GlobalValue::InternalLinkage:
250   case GlobalValue::LinkerPrivateLinkage:
251     break;
252   default:
253     llvm_unreachable("Unknown linkage type!");
254   }
255 }
256
257
258 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
259 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
260   if (GV->hasInitializer()) {
261     // Check to see if this is a special global used by LLVM, if so, emit it.
262     if (EmitSpecialLLVMGlobal(GV))
263       return;
264
265     if (isVerbose()) {
266       WriteAsOperand(OutStreamer.GetCommentOS(), GV,
267                      /*PrintType=*/false, GV->getParent());
268       OutStreamer.GetCommentOS() << '\n';
269     }
270   }
271
272   MCSymbol *GVSym = Mang->getSymbol(GV);
273   EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
274
275   if (!GV->hasInitializer())   // External globals require no extra code.
276     return;
277
278   if (MAI->hasDotTypeDotSizeDirective())
279     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
280
281   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
282
283   const TargetData *TD = TM.getTargetData();
284   uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
285
286   // If the alignment is specified, we *must* obey it.  Overaligning a global
287   // with a specified alignment is a prompt way to break globals emitted to
288   // sections and expected to be contiguous (e.g. ObjC metadata).
289   unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
290
291   // Handle common and BSS local symbols (.lcomm).
292   if (GVKind.isCommon() || GVKind.isBSSLocal()) {
293     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
294     unsigned Align = 1 << AlignLog;
295
296     // Handle common symbols.
297     if (GVKind.isCommon()) {
298       if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
299         Align = 0;
300
301       // .comm _foo, 42, 4
302       OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
303       return;
304     }
305
306     // Handle local BSS symbols.
307     if (MAI->hasMachoZeroFillDirective()) {
308       const MCSection *TheSection =
309         getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
310       // .zerofill __DATA, __bss, _foo, 400, 5
311       OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
312       return;
313     }
314
315     if (MAI->getLCOMMDirectiveType() != LCOMM::None &&
316         (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) {
317       // .lcomm _foo, 42
318       OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
319       return;
320     }
321
322     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
323       Align = 0;
324
325     // .local _foo
326     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
327     // .comm _foo, 42, 4
328     OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
329     return;
330   }
331
332   const MCSection *TheSection =
333     getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
334
335   // Handle the zerofill directive on darwin, which is a special form of BSS
336   // emission.
337   if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
338     if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
339
340     // .globl _foo
341     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
342     // .zerofill __DATA, __common, _foo, 400, 5
343     OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
344     return;
345   }
346
347   // Handle thread local data for mach-o which requires us to output an
348   // additional structure of data and mangle the original symbol so that we
349   // can reference it later.
350   //
351   // TODO: This should become an "emit thread local global" method on TLOF.
352   // All of this macho specific stuff should be sunk down into TLOFMachO and
353   // stuff like "TLSExtraDataSection" should no longer be part of the parent
354   // TLOF class.  This will also make it more obvious that stuff like
355   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
356   // specific code.
357   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
358     // Emit the .tbss symbol
359     MCSymbol *MangSym =
360       OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
361
362     if (GVKind.isThreadBSS())
363       OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
364     else if (GVKind.isThreadData()) {
365       OutStreamer.SwitchSection(TheSection);
366
367       EmitAlignment(AlignLog, GV);
368       OutStreamer.EmitLabel(MangSym);
369
370       EmitGlobalConstant(GV->getInitializer());
371     }
372
373     OutStreamer.AddBlankLine();
374
375     // Emit the variable struct for the runtime.
376     const MCSection *TLVSect
377       = getObjFileLowering().getTLSExtraDataSection();
378
379     OutStreamer.SwitchSection(TLVSect);
380     // Emit the linkage here.
381     EmitLinkage(GV->getLinkage(), GVSym);
382     OutStreamer.EmitLabel(GVSym);
383
384     // Three pointers in size:
385     //   - __tlv_bootstrap - used to make sure support exists
386     //   - spare pointer, used when mapped by the runtime
387     //   - pointer to mangled symbol above with initializer
388     unsigned PtrSize = TD->getPointerSizeInBits()/8;
389     OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
390                           PtrSize, 0);
391     OutStreamer.EmitIntValue(0, PtrSize, 0);
392     OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
393
394     OutStreamer.AddBlankLine();
395     return;
396   }
397
398   OutStreamer.SwitchSection(TheSection);
399
400   EmitLinkage(GV->getLinkage(), GVSym);
401   EmitAlignment(AlignLog, GV);
402
403   OutStreamer.EmitLabel(GVSym);
404
405   EmitGlobalConstant(GV->getInitializer());
406
407   if (MAI->hasDotTypeDotSizeDirective())
408     // .size foo, 42
409     OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
410
411   OutStreamer.AddBlankLine();
412 }
413
414 /// EmitFunctionHeader - This method emits the header for the current
415 /// function.
416 void AsmPrinter::EmitFunctionHeader() {
417   // Print out constants referenced by the function
418   EmitConstantPool();
419
420   // Print the 'header' of function.
421   const Function *F = MF->getFunction();
422
423   OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
424   EmitVisibility(CurrentFnSym, F->getVisibility());
425
426   EmitLinkage(F->getLinkage(), CurrentFnSym);
427   EmitAlignment(MF->getAlignment(), F);
428
429   if (MAI->hasDotTypeDotSizeDirective())
430     OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
431
432   if (isVerbose()) {
433     WriteAsOperand(OutStreamer.GetCommentOS(), F,
434                    /*PrintType=*/false, F->getParent());
435     OutStreamer.GetCommentOS() << '\n';
436   }
437
438   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
439   // do their wild and crazy things as required.
440   EmitFunctionEntryLabel();
441
442   // If the function had address-taken blocks that got deleted, then we have
443   // references to the dangling symbols.  Emit them at the start of the function
444   // so that we don't get references to undefined symbols.
445   std::vector<MCSymbol*> DeadBlockSyms;
446   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
447   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
448     OutStreamer.AddComment("Address taken block that was later removed");
449     OutStreamer.EmitLabel(DeadBlockSyms[i]);
450   }
451
452   // Add some workaround for linkonce linkage on Cygwin\MinGW.
453   if (MAI->getLinkOnceDirective() != 0 &&
454       (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
455     // FIXME: What is this?
456     MCSymbol *FakeStub =
457       OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
458                                    CurrentFnSym->getName());
459     OutStreamer.EmitLabel(FakeStub);
460   }
461
462   // Emit pre-function debug and/or EH information.
463   if (DE) {
464     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
465     DE->BeginFunction(MF);
466   }
467   if (DD) {
468     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
469     DD->beginFunction(MF);
470   }
471 }
472
473 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
474 /// function.  This can be overridden by targets as required to do custom stuff.
475 void AsmPrinter::EmitFunctionEntryLabel() {
476   // The function label could have already been emitted if two symbols end up
477   // conflicting due to asm renaming.  Detect this and emit an error.
478   if (CurrentFnSym->isUndefined())
479     return OutStreamer.EmitLabel(CurrentFnSym);
480
481   report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
482                      "' label emitted multiple times to assembly file");
483 }
484
485
486 /// EmitComments - Pretty-print comments for instructions.
487 static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
488   const MachineFunction *MF = MI.getParent()->getParent();
489   const TargetMachine &TM = MF->getTarget();
490
491   // Check for spills and reloads
492   int FI;
493
494   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
495
496   // We assume a single instruction only has a spill or reload, not
497   // both.
498   const MachineMemOperand *MMO;
499   if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
500     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
501       MMO = *MI.memoperands_begin();
502       CommentOS << MMO->getSize() << "-byte Reload\n";
503     }
504   } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
505     if (FrameInfo->isSpillSlotObjectIndex(FI))
506       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
507   } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
508     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
509       MMO = *MI.memoperands_begin();
510       CommentOS << MMO->getSize() << "-byte Spill\n";
511     }
512   } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
513     if (FrameInfo->isSpillSlotObjectIndex(FI))
514       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
515   }
516
517   // Check for spill-induced copies
518   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
519     CommentOS << " Reload Reuse\n";
520 }
521
522 /// EmitImplicitDef - This method emits the specified machine instruction
523 /// that is an implicit def.
524 static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
525   unsigned RegNo = MI->getOperand(0).getReg();
526   AP.OutStreamer.AddComment(Twine("implicit-def: ") +
527                             AP.TM.getRegisterInfo()->getName(RegNo));
528   AP.OutStreamer.AddBlankLine();
529 }
530
531 static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) {
532   std::string Str = "kill:";
533   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
534     const MachineOperand &Op = MI->getOperand(i);
535     assert(Op.isReg() && "KILL instruction must have only register operands");
536     Str += ' ';
537     Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
538     Str += (Op.isDef() ? "<def>" : "<kill>");
539   }
540   AP.OutStreamer.AddComment(Str);
541   AP.OutStreamer.AddBlankLine();
542 }
543
544 /// EmitDebugValueComment - This method handles the target-independent form
545 /// of DBG_VALUE, returning true if it was able to do so.  A false return
546 /// means the target will need to handle MI in EmitInstruction.
547 static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
548   // This code handles only the 3-operand target-independent form.
549   if (MI->getNumOperands() != 3)
550     return false;
551
552   SmallString<128> Str;
553   raw_svector_ostream OS(Str);
554   OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
555
556   // cast away const; DIetc do not take const operands for some reason.
557   DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
558   if (V.getContext().isSubprogram())
559     OS << DISubprogram(V.getContext()).getDisplayName() << ":";
560   OS << V.getName() << " <- ";
561
562   // Register or immediate value. Register 0 means undef.
563   if (MI->getOperand(0).isFPImm()) {
564     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
565     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
566       OS << (double)APF.convertToFloat();
567     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
568       OS << APF.convertToDouble();
569     } else {
570       // There is no good way to print long double.  Convert a copy to
571       // double.  Ah well, it's only a comment.
572       bool ignored;
573       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
574                   &ignored);
575       OS << "(long double) " << APF.convertToDouble();
576     }
577   } else if (MI->getOperand(0).isImm()) {
578     OS << MI->getOperand(0).getImm();
579   } else if (MI->getOperand(0).isCImm()) {
580     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
581   } else {
582     assert(MI->getOperand(0).isReg() && "Unknown operand type");
583     if (MI->getOperand(0).getReg() == 0) {
584       // Suppress offset, it is not meaningful here.
585       OS << "undef";
586       // NOTE: Want this comment at start of line, don't emit with AddComment.
587       AP.OutStreamer.EmitRawText(OS.str());
588       return true;
589     }
590     OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
591   }
592
593   OS << '+' << MI->getOperand(1).getImm();
594   // NOTE: Want this comment at start of line, don't emit with AddComment.
595   AP.OutStreamer.EmitRawText(OS.str());
596   return true;
597 }
598
599 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
600   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
601       MF->getFunction()->needsUnwindTableEntry())
602     return CFI_M_EH;
603
604   if (MMI->hasDebugInfo())
605     return CFI_M_Debug;
606
607   return CFI_M_None;
608 }
609
610 bool AsmPrinter::needsSEHMoves() {
611   return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
612     MF->getFunction()->needsUnwindTableEntry();
613 }
614
615 bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
616   return MAI->doesDwarfUseRelocationsAcrossSections();
617 }
618
619 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
620   MCSymbol *Label = MI.getOperand(0).getMCSymbol();
621
622   if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
623     return;
624
625   if (needsCFIMoves() == CFI_M_None)
626     return;
627
628   if (MMI->getCompactUnwindEncoding() != 0)
629     OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
630
631   MachineModuleInfo &MMI = MF->getMMI();
632   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
633   bool FoundOne = false;
634   (void)FoundOne;
635   for (std::vector<MachineMove>::iterator I = Moves.begin(),
636          E = Moves.end(); I != E; ++I) {
637     if (I->getLabel() == Label) {
638       EmitCFIFrameMove(*I);
639       FoundOne = true;
640     }
641   }
642   assert(FoundOne);
643 }
644
645 /// EmitFunctionBody - This method emits the body and trailer for a
646 /// function.
647 void AsmPrinter::EmitFunctionBody() {
648   // Emit target-specific gunk before the function body.
649   EmitFunctionBodyStart();
650
651   bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
652
653   // Print out code for the function.
654   bool HasAnyRealCode = false;
655   const MachineInstr *LastMI = 0;
656   for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
657        I != E; ++I) {
658     // Print a label for the basic block.
659     EmitBasicBlockStart(I);
660     for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
661          II != IE; ++II) {
662       LastMI = II;
663
664       // Print the assembly for the instruction.
665       if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
666           !II->isDebugValue()) {
667         HasAnyRealCode = true;
668         ++EmittedInsts;
669       }
670
671       if (ShouldPrintDebugScopes) {
672         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
673         DD->beginInstruction(II);
674       }
675
676       if (isVerbose())
677         EmitComments(*II, OutStreamer.GetCommentOS());
678
679       switch (II->getOpcode()) {
680       case TargetOpcode::PROLOG_LABEL:
681         emitPrologLabel(*II);
682         break;
683
684       case TargetOpcode::EH_LABEL:
685       case TargetOpcode::GC_LABEL:
686         OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
687         break;
688       case TargetOpcode::INLINEASM:
689         EmitInlineAsm(II);
690         break;
691       case TargetOpcode::DBG_VALUE:
692         if (isVerbose()) {
693           if (!EmitDebugValueComment(II, *this))
694             EmitInstruction(II);
695         }
696         break;
697       case TargetOpcode::IMPLICIT_DEF:
698         if (isVerbose()) EmitImplicitDef(II, *this);
699         break;
700       case TargetOpcode::KILL:
701         if (isVerbose()) EmitKill(II, *this);
702         break;
703       default:
704         if (!TM.hasMCUseLoc())
705           MCLineEntry::Make(&OutStreamer, getCurrentSection());
706
707         EmitInstruction(II);
708         break;
709       }
710
711       if (ShouldPrintDebugScopes) {
712         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
713         DD->endInstruction(II);
714       }
715     }
716   }
717
718   // If the last instruction was a prolog label, then we have a situation where
719   // we emitted a prolog but no function body. This results in the ending prolog
720   // label equaling the end of function label and an invalid "row" in the
721   // FDE. We need to emit a noop in this situation so that the FDE's rows are
722   // valid.
723   bool RequiresNoop = LastMI && LastMI->isPrologLabel();
724
725   // If the function is empty and the object file uses .subsections_via_symbols,
726   // then we need to emit *something* to the function body to prevent the
727   // labels from collapsing together.  Just emit a noop.
728   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
729     MCInst Noop;
730     TM.getInstrInfo()->getNoopForMachoTarget(Noop);
731     if (Noop.getOpcode()) {
732       OutStreamer.AddComment("avoids zero-length function");
733       OutStreamer.EmitInstruction(Noop);
734     } else  // Target not mc-ized yet.
735       OutStreamer.EmitRawText(StringRef("\tnop\n"));
736   }
737
738   const Function *F = MF->getFunction();
739   for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
740     const BasicBlock *BB = i;
741     if (!BB->hasAddressTaken())
742       continue;
743     MCSymbol *Sym = GetBlockAddressSymbol(BB);
744     if (Sym->isDefined())
745       continue;
746     OutStreamer.AddComment("Address of block that was removed by CodeGen");
747     OutStreamer.EmitLabel(Sym);
748   }
749
750   // Emit target-specific gunk after the function body.
751   EmitFunctionBodyEnd();
752
753   // If the target wants a .size directive for the size of the function, emit
754   // it.
755   if (MAI->hasDotTypeDotSizeDirective()) {
756     // Create a symbol for the end of function, so we can get the size as
757     // difference between the function label and the temp label.
758     MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
759     OutStreamer.EmitLabel(FnEndLabel);
760
761     const MCExpr *SizeExp =
762       MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
763                               MCSymbolRefExpr::Create(CurrentFnSymForSize,
764                                                       OutContext),
765                               OutContext);
766     OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
767   }
768
769   // Emit post-function debug information.
770   if (DD) {
771     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
772     DD->endFunction(MF);
773   }
774   if (DE) {
775     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
776     DE->EndFunction();
777   }
778   MMI->EndFunction();
779
780   // Print out jump tables referenced by the function.
781   EmitJumpTableInfo();
782
783   OutStreamer.AddBlankLine();
784 }
785
786 /// getDebugValueLocation - Get location information encoded by DBG_VALUE
787 /// operands.
788 MachineLocation AsmPrinter::
789 getDebugValueLocation(const MachineInstr *MI) const {
790   // Target specific DBG_VALUE instructions are handled by each target.
791   return MachineLocation();
792 }
793
794 /// EmitDwarfRegOp - Emit dwarf register operation.
795 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
796   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
797   int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
798
799   for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
800        ++SR) {
801     Reg = TRI->getDwarfRegNum(*SR, false);
802     // FIXME: Get the bit range this register uses of the superregister
803     // so that we can produce a DW_OP_bit_piece
804   }
805
806   // FIXME: Handle cases like a super register being encoded as
807   // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
808
809   // FIXME: We have no reasonable way of handling errors in here. The
810   // caller might be in the middle of an dwarf expression. We should
811   // probably assert that Reg >= 0 once debug info generation is more mature.
812
813   if (int Offset =  MLoc.getOffset()) {
814     if (Reg < 32) {
815       OutStreamer.AddComment(
816         dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
817       EmitInt8(dwarf::DW_OP_breg0 + Reg);
818     } else {
819       OutStreamer.AddComment("DW_OP_bregx");
820       EmitInt8(dwarf::DW_OP_bregx);
821       OutStreamer.AddComment(Twine(Reg));
822       EmitULEB128(Reg);
823     }
824     EmitSLEB128(Offset);
825   } else {
826     if (Reg < 32) {
827       OutStreamer.AddComment(
828         dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
829       EmitInt8(dwarf::DW_OP_reg0 + Reg);
830     } else {
831       OutStreamer.AddComment("DW_OP_regx");
832       EmitInt8(dwarf::DW_OP_regx);
833       OutStreamer.AddComment(Twine(Reg));
834       EmitULEB128(Reg);
835     }
836   }
837
838   // FIXME: Produce a DW_OP_bit_piece if we used a superregister
839 }
840
841 bool AsmPrinter::doFinalization(Module &M) {
842   // Emit global variables.
843   for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
844        I != E; ++I)
845     EmitGlobalVariable(I);
846
847   // Emit visibility info for declarations
848   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
849     const Function &F = *I;
850     if (!F.isDeclaration())
851       continue;
852     GlobalValue::VisibilityTypes V = F.getVisibility();
853     if (V == GlobalValue::DefaultVisibility)
854       continue;
855
856     MCSymbol *Name = Mang->getSymbol(&F);
857     EmitVisibility(Name, V, false);
858   }
859
860   // Emit module flags.
861   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
862   M.getModuleFlagsMetadata(ModuleFlags);
863   if (!ModuleFlags.empty())
864     getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
865
866   // Finalize debug and EH information.
867   if (DE) {
868     {
869       NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
870       DE->EndModule();
871     }
872     delete DE; DE = 0;
873   }
874   if (DD) {
875     {
876       NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
877       DD->endModule();
878     }
879     delete DD; DD = 0;
880   }
881
882   // If the target wants to know about weak references, print them all.
883   if (MAI->getWeakRefDirective()) {
884     // FIXME: This is not lazy, it would be nice to only print weak references
885     // to stuff that is actually used.  Note that doing so would require targets
886     // to notice uses in operands (due to constant exprs etc).  This should
887     // happen with the MC stuff eventually.
888
889     // Print out module-level global variables here.
890     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
891          I != E; ++I) {
892       if (!I->hasExternalWeakLinkage()) continue;
893       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
894     }
895
896     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
897       if (!I->hasExternalWeakLinkage()) continue;
898       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
899     }
900   }
901
902   if (MAI->hasSetDirective()) {
903     OutStreamer.AddBlankLine();
904     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
905          I != E; ++I) {
906       MCSymbol *Name = Mang->getSymbol(I);
907
908       const GlobalValue *GV = I->getAliasedGlobal();
909       MCSymbol *Target = Mang->getSymbol(GV);
910
911       if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
912         OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
913       else if (I->hasWeakLinkage())
914         OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
915       else
916         assert(I->hasLocalLinkage() && "Invalid alias linkage");
917
918       EmitVisibility(Name, I->getVisibility());
919
920       // Emit the directives as assignments aka .set:
921       OutStreamer.EmitAssignment(Name,
922                                  MCSymbolRefExpr::Create(Target, OutContext));
923     }
924   }
925
926   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
927   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
928   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
929     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
930       MP->finishAssembly(*this);
931
932   // If we don't have any trampolines, then we don't require stack memory
933   // to be executable. Some targets have a directive to declare this.
934   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
935   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
936     if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
937       OutStreamer.SwitchSection(S);
938
939   // Allow the target to emit any magic that it wants at the end of the file,
940   // after everything else has gone out.
941   EmitEndOfAsmFile(M);
942
943   delete Mang; Mang = 0;
944   MMI = 0;
945
946   OutStreamer.Finish();
947   return false;
948 }
949
950 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
951   this->MF = &MF;
952   // Get the function symbol.
953   CurrentFnSym = Mang->getSymbol(MF.getFunction());
954   CurrentFnSymForSize = CurrentFnSym;
955
956   if (isVerbose())
957     LI = &getAnalysis<MachineLoopInfo>();
958 }
959
960 namespace {
961   // SectionCPs - Keep track the alignment, constpool entries per Section.
962   struct SectionCPs {
963     const MCSection *S;
964     unsigned Alignment;
965     SmallVector<unsigned, 4> CPEs;
966     SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
967   };
968 }
969
970 /// EmitConstantPool - Print to the current output stream assembly
971 /// representations of the constants in the constant pool MCP. This is
972 /// used to print out constants which have been "spilled to memory" by
973 /// the code generator.
974 ///
975 void AsmPrinter::EmitConstantPool() {
976   const MachineConstantPool *MCP = MF->getConstantPool();
977   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
978   if (CP.empty()) return;
979
980   // Calculate sections for constant pool entries. We collect entries to go into
981   // the same section together to reduce amount of section switch statements.
982   SmallVector<SectionCPs, 4> CPSections;
983   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
984     const MachineConstantPoolEntry &CPE = CP[i];
985     unsigned Align = CPE.getAlignment();
986
987     SectionKind Kind;
988     switch (CPE.getRelocationInfo()) {
989     default: llvm_unreachable("Unknown section kind");
990     case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
991     case 1:
992       Kind = SectionKind::getReadOnlyWithRelLocal();
993       break;
994     case 0:
995     switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
996     case 4:  Kind = SectionKind::getMergeableConst4(); break;
997     case 8:  Kind = SectionKind::getMergeableConst8(); break;
998     case 16: Kind = SectionKind::getMergeableConst16();break;
999     default: Kind = SectionKind::getMergeableConst(); break;
1000     }
1001     }
1002
1003     const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1004
1005     // The number of sections are small, just do a linear search from the
1006     // last section to the first.
1007     bool Found = false;
1008     unsigned SecIdx = CPSections.size();
1009     while (SecIdx != 0) {
1010       if (CPSections[--SecIdx].S == S) {
1011         Found = true;
1012         break;
1013       }
1014     }
1015     if (!Found) {
1016       SecIdx = CPSections.size();
1017       CPSections.push_back(SectionCPs(S, Align));
1018     }
1019
1020     if (Align > CPSections[SecIdx].Alignment)
1021       CPSections[SecIdx].Alignment = Align;
1022     CPSections[SecIdx].CPEs.push_back(i);
1023   }
1024
1025   // Now print stuff into the calculated sections.
1026   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1027     OutStreamer.SwitchSection(CPSections[i].S);
1028     EmitAlignment(Log2_32(CPSections[i].Alignment));
1029
1030     unsigned Offset = 0;
1031     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1032       unsigned CPI = CPSections[i].CPEs[j];
1033       MachineConstantPoolEntry CPE = CP[CPI];
1034
1035       // Emit inter-object padding for alignment.
1036       unsigned AlignMask = CPE.getAlignment() - 1;
1037       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1038       OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1039
1040       Type *Ty = CPE.getType();
1041       Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
1042       OutStreamer.EmitLabel(GetCPISymbol(CPI));
1043
1044       if (CPE.isMachineConstantPoolEntry())
1045         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1046       else
1047         EmitGlobalConstant(CPE.Val.ConstVal);
1048     }
1049   }
1050 }
1051
1052 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1053 /// by the current function to the current output stream.
1054 ///
1055 void AsmPrinter::EmitJumpTableInfo() {
1056   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1057   if (MJTI == 0) return;
1058   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1059   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1060   if (JT.empty()) return;
1061
1062   // Pick the directive to use to print the jump table entries, and switch to
1063   // the appropriate section.
1064   const Function *F = MF->getFunction();
1065   bool JTInDiffSection = false;
1066   if (// In PIC mode, we need to emit the jump table to the same section as the
1067       // function body itself, otherwise the label differences won't make sense.
1068       // FIXME: Need a better predicate for this: what about custom entries?
1069       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1070       // We should also do if the section name is NULL or function is declared
1071       // in discardable section
1072       // FIXME: this isn't the right predicate, should be based on the MCSection
1073       // for the function.
1074       F->isWeakForLinker()) {
1075     OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1076   } else {
1077     // Otherwise, drop it in the readonly section.
1078     const MCSection *ReadOnlySection =
1079       getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1080     OutStreamer.SwitchSection(ReadOnlySection);
1081     JTInDiffSection = true;
1082   }
1083
1084   EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
1085
1086   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1087     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1088
1089     // If this jump table was deleted, ignore it.
1090     if (JTBBs.empty()) continue;
1091
1092     // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1093     // .set directive for each unique entry.  This reduces the number of
1094     // relocations the assembler will generate for the jump table.
1095     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1096         MAI->hasSetDirective()) {
1097       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1098       const TargetLowering *TLI = TM.getTargetLowering();
1099       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1100       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1101         const MachineBasicBlock *MBB = JTBBs[ii];
1102         if (!EmittedSets.insert(MBB)) continue;
1103
1104         // .set LJTSet, LBB32-base
1105         const MCExpr *LHS =
1106           MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1107         OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1108                                 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1109       }
1110     }
1111
1112     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1113     // before each jump table.  The first label is never referenced, but tells
1114     // the assembler and linker the extents of the jump table object.  The
1115     // second label is actually referenced by the code.
1116     if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1117       // FIXME: This doesn't have to have any specific name, just any randomly
1118       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1119       OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1120
1121     OutStreamer.EmitLabel(GetJTISymbol(JTI));
1122
1123     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1124       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1125   }
1126 }
1127
1128 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1129 /// current stream.
1130 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1131                                     const MachineBasicBlock *MBB,
1132                                     unsigned UID) const {
1133   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1134   const MCExpr *Value = 0;
1135   switch (MJTI->getEntryKind()) {
1136   case MachineJumpTableInfo::EK_Inline:
1137     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1138   case MachineJumpTableInfo::EK_Custom32:
1139     Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1140                                                               OutContext);
1141     break;
1142   case MachineJumpTableInfo::EK_BlockAddress:
1143     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1144     //     .word LBB123
1145     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1146     break;
1147   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1148     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1149     // with a relocation as gp-relative, e.g.:
1150     //     .gprel32 LBB123
1151     MCSymbol *MBBSym = MBB->getSymbol();
1152     OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1153     return;
1154   }
1155
1156   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1157     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1158     // with a relocation as gp-relative, e.g.:
1159     //     .gpdword LBB123
1160     MCSymbol *MBBSym = MBB->getSymbol();
1161     OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1162     return;
1163   }
1164
1165   case MachineJumpTableInfo::EK_LabelDifference32: {
1166     // EK_LabelDifference32 - Each entry is the address of the block minus
1167     // the address of the jump table.  This is used for PIC jump tables where
1168     // gprel32 is not supported.  e.g.:
1169     //      .word LBB123 - LJTI1_2
1170     // If the .set directive is supported, this is emitted as:
1171     //      .set L4_5_set_123, LBB123 - LJTI1_2
1172     //      .word L4_5_set_123
1173
1174     // If we have emitted set directives for the jump table entries, print
1175     // them rather than the entries themselves.  If we're emitting PIC, then
1176     // emit the table entries as differences between two text section labels.
1177     if (MAI->hasSetDirective()) {
1178       // If we used .set, reference the .set's symbol.
1179       Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1180                                       OutContext);
1181       break;
1182     }
1183     // Otherwise, use the difference as the jump table entry.
1184     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1185     const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1186     Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1187     break;
1188   }
1189   }
1190
1191   assert(Value && "Unknown entry kind!");
1192
1193   unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
1194   OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1195 }
1196
1197
1198 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1199 /// special global used by LLVM.  If so, emit it and return true, otherwise
1200 /// do nothing and return false.
1201 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1202   if (GV->getName() == "llvm.used") {
1203     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1204       EmitLLVMUsedList(GV->getInitializer());
1205     return true;
1206   }
1207
1208   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1209   if (GV->getSection() == "llvm.metadata" ||
1210       GV->hasAvailableExternallyLinkage())
1211     return true;
1212
1213   if (!GV->hasAppendingLinkage()) return false;
1214
1215   assert(GV->hasInitializer() && "Not a special LLVM global!");
1216
1217   if (GV->getName() == "llvm.global_ctors") {
1218     EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1219
1220     if (TM.getRelocationModel() == Reloc::Static &&
1221         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1222       StringRef Sym(".constructors_used");
1223       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1224                                       MCSA_Reference);
1225     }
1226     return true;
1227   }
1228
1229   if (GV->getName() == "llvm.global_dtors") {
1230     EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1231
1232     if (TM.getRelocationModel() == Reloc::Static &&
1233         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1234       StringRef Sym(".destructors_used");
1235       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1236                                       MCSA_Reference);
1237     }
1238     return true;
1239   }
1240
1241   return false;
1242 }
1243
1244 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1245 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1246 /// is true, as being used with this directive.
1247 void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1248   // Should be an array of 'i8*'.
1249   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1250   if (InitList == 0) return;
1251
1252   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1253     const GlobalValue *GV =
1254       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1255     if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1256       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1257   }
1258 }
1259
1260 typedef std::pair<unsigned, Constant*> Structor;
1261
1262 static bool priority_order(const Structor& lhs, const Structor& rhs) {
1263   return lhs.first < rhs.first;
1264 }
1265
1266 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1267 /// priority.
1268 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1269   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1270   // init priority.
1271   if (!isa<ConstantArray>(List)) return;
1272
1273   // Sanity check the structors list.
1274   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1275   if (!InitList) return; // Not an array!
1276   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1277   if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1278   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1279       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1280
1281   // Gather the structors in a form that's convenient for sorting by priority.
1282   SmallVector<Structor, 8> Structors;
1283   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1284     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1285     if (!CS) continue; // Malformed.
1286     if (CS->getOperand(1)->isNullValue())
1287       break;  // Found a null terminator, skip the rest.
1288     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1289     if (!Priority) continue; // Malformed.
1290     Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1291                                        CS->getOperand(1)));
1292   }
1293
1294   // Emit the function pointers in the target-specific order
1295   const TargetData *TD = TM.getTargetData();
1296   unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1297   std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1298   for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1299     const MCSection *OutputSection =
1300       (isCtor ?
1301        getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1302        getObjFileLowering().getStaticDtorSection(Structors[i].first));
1303     OutStreamer.SwitchSection(OutputSection);
1304     if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1305       EmitAlignment(Align);
1306     EmitXXStructor(Structors[i].second);
1307   }
1308 }
1309
1310 //===--------------------------------------------------------------------===//
1311 // Emission and print routines
1312 //
1313
1314 /// EmitInt8 - Emit a byte directive and value.
1315 ///
1316 void AsmPrinter::EmitInt8(int Value) const {
1317   OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1318 }
1319
1320 /// EmitInt16 - Emit a short directive and value.
1321 ///
1322 void AsmPrinter::EmitInt16(int Value) const {
1323   OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1324 }
1325
1326 /// EmitInt32 - Emit a long directive and value.
1327 ///
1328 void AsmPrinter::EmitInt32(int Value) const {
1329   OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1330 }
1331
1332 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1333 /// in bytes of the directive is specified by Size and Hi/Lo specify the
1334 /// labels.  This implicitly uses .set if it is available.
1335 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1336                                      unsigned Size) const {
1337   // Get the Hi-Lo expression.
1338   const MCExpr *Diff =
1339     MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1340                             MCSymbolRefExpr::Create(Lo, OutContext),
1341                             OutContext);
1342
1343   if (!MAI->hasSetDirective()) {
1344     OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1345     return;
1346   }
1347
1348   // Otherwise, emit with .set (aka assignment).
1349   MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1350   OutStreamer.EmitAssignment(SetLabel, Diff);
1351   OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1352 }
1353
1354 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1355 /// where the size in bytes of the directive is specified by Size and Hi/Lo
1356 /// specify the labels.  This implicitly uses .set if it is available.
1357 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1358                                            const MCSymbol *Lo, unsigned Size)
1359   const {
1360
1361   // Emit Hi+Offset - Lo
1362   // Get the Hi+Offset expression.
1363   const MCExpr *Plus =
1364     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1365                             MCConstantExpr::Create(Offset, OutContext),
1366                             OutContext);
1367
1368   // Get the Hi+Offset-Lo expression.
1369   const MCExpr *Diff =
1370     MCBinaryExpr::CreateSub(Plus,
1371                             MCSymbolRefExpr::Create(Lo, OutContext),
1372                             OutContext);
1373
1374   if (!MAI->hasSetDirective())
1375     OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1376   else {
1377     // Otherwise, emit with .set (aka assignment).
1378     MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1379     OutStreamer.EmitAssignment(SetLabel, Diff);
1380     OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1381   }
1382 }
1383
1384 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1385 /// where the size in bytes of the directive is specified by Size and Label
1386 /// specifies the label.  This implicitly uses .set if it is available.
1387 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1388                                       unsigned Size)
1389   const {
1390
1391   // Emit Label+Offset (or just Label if Offset is zero)
1392   const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1393   if (Offset)
1394     Expr = MCBinaryExpr::CreateAdd(Expr,
1395                                    MCConstantExpr::Create(Offset, OutContext),
1396                                    OutContext);
1397
1398   OutStreamer.EmitValue(Expr, Size, 0/*AddrSpace*/);
1399 }
1400
1401
1402 //===----------------------------------------------------------------------===//
1403
1404 // EmitAlignment - Emit an alignment directive to the specified power of
1405 // two boundary.  For example, if you pass in 3 here, you will get an 8
1406 // byte alignment.  If a global value is specified, and if that global has
1407 // an explicit alignment requested, it will override the alignment request
1408 // if required for correctness.
1409 //
1410 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1411   if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
1412
1413   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1414
1415   if (getCurrentSection()->getKind().isText())
1416     OutStreamer.EmitCodeAlignment(1 << NumBits);
1417   else
1418     OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1419 }
1420
1421 //===----------------------------------------------------------------------===//
1422 // Constant emission.
1423 //===----------------------------------------------------------------------===//
1424
1425 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
1426 ///
1427 static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) {
1428   MCContext &Ctx = AP.OutContext;
1429
1430   if (CV->isNullValue() || isa<UndefValue>(CV))
1431     return MCConstantExpr::Create(0, Ctx);
1432
1433   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1434     return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1435
1436   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1437     return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1438
1439   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1440     return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1441
1442   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1443   if (CE == 0) {
1444     llvm_unreachable("Unknown constant value to lower!");
1445   }
1446
1447   switch (CE->getOpcode()) {
1448   default:
1449     // If the code isn't optimized, there may be outstanding folding
1450     // opportunities. Attempt to fold the expression using TargetData as a
1451     // last resort before giving up.
1452     if (Constant *C =
1453           ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
1454       if (C != CE)
1455         return LowerConstant(C, AP);
1456
1457     // Otherwise report the problem to the user.
1458     {
1459       std::string S;
1460       raw_string_ostream OS(S);
1461       OS << "Unsupported expression in static initializer: ";
1462       WriteAsOperand(OS, CE, /*PrintType=*/false,
1463                      !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1464       report_fatal_error(OS.str());
1465     }
1466   case Instruction::GetElementPtr: {
1467     const TargetData &TD = *AP.TM.getTargetData();
1468     // Generate a symbolic expression for the byte address
1469     const Constant *PtrVal = CE->getOperand(0);
1470     SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1471     int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
1472
1473     const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
1474     if (Offset == 0)
1475       return Base;
1476
1477     // Truncate/sext the offset to the pointer size.
1478     if (TD.getPointerSizeInBits() != 64) {
1479       int SExtAmount = 64-TD.getPointerSizeInBits();
1480       Offset = (Offset << SExtAmount) >> SExtAmount;
1481     }
1482
1483     return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1484                                    Ctx);
1485   }
1486
1487   case Instruction::Trunc:
1488     // We emit the value and depend on the assembler to truncate the generated
1489     // expression properly.  This is important for differences between
1490     // blockaddress labels.  Since the two labels are in the same function, it
1491     // is reasonable to treat their delta as a 32-bit value.
1492     // FALL THROUGH.
1493   case Instruction::BitCast:
1494     return LowerConstant(CE->getOperand(0), AP);
1495
1496   case Instruction::IntToPtr: {
1497     const TargetData &TD = *AP.TM.getTargetData();
1498     // Handle casts to pointers by changing them into casts to the appropriate
1499     // integer type.  This promotes constant folding and simplifies this code.
1500     Constant *Op = CE->getOperand(0);
1501     Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1502                                       false/*ZExt*/);
1503     return LowerConstant(Op, AP);
1504   }
1505
1506   case Instruction::PtrToInt: {
1507     const TargetData &TD = *AP.TM.getTargetData();
1508     // Support only foldable casts to/from pointers that can be eliminated by
1509     // changing the pointer to the appropriately sized integer type.
1510     Constant *Op = CE->getOperand(0);
1511     Type *Ty = CE->getType();
1512
1513     const MCExpr *OpExpr = LowerConstant(Op, AP);
1514
1515     // We can emit the pointer value into this slot if the slot is an
1516     // integer slot equal to the size of the pointer.
1517     if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1518       return OpExpr;
1519
1520     // Otherwise the pointer is smaller than the resultant integer, mask off
1521     // the high bits so we are sure to get a proper truncation if the input is
1522     // a constant expr.
1523     unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1524     const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1525     return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1526   }
1527
1528   // The MC library also has a right-shift operator, but it isn't consistently
1529   // signed or unsigned between different targets.
1530   case Instruction::Add:
1531   case Instruction::Sub:
1532   case Instruction::Mul:
1533   case Instruction::SDiv:
1534   case Instruction::SRem:
1535   case Instruction::Shl:
1536   case Instruction::And:
1537   case Instruction::Or:
1538   case Instruction::Xor: {
1539     const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
1540     const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
1541     switch (CE->getOpcode()) {
1542     default: llvm_unreachable("Unknown binary operator constant cast expr");
1543     case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1544     case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1545     case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1546     case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1547     case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1548     case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1549     case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1550     case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1551     case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1552     }
1553   }
1554   }
1555 }
1556
1557 static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1558                                    AsmPrinter &AP);
1559
1560 /// isRepeatedByteSequence - Determine whether the given value is
1561 /// composed of a repeated sequence of identical bytes and return the
1562 /// byte value.  If it is not a repeated sequence, return -1.
1563 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1564   StringRef Data = V->getRawDataValues();
1565   assert(!Data.empty() && "Empty aggregates should be CAZ node");
1566   char C = Data[0];
1567   for (unsigned i = 1, e = Data.size(); i != e; ++i)
1568     if (Data[i] != C) return -1;
1569   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1570 }
1571
1572
1573 /// isRepeatedByteSequence - Determine whether the given value is
1574 /// composed of a repeated sequence of identical bytes and return the
1575 /// byte value.  If it is not a repeated sequence, return -1.
1576 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1577
1578   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1579     if (CI->getBitWidth() > 64) return -1;
1580
1581     uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
1582     uint64_t Value = CI->getZExtValue();
1583
1584     // Make sure the constant is at least 8 bits long and has a power
1585     // of 2 bit width.  This guarantees the constant bit width is
1586     // always a multiple of 8 bits, avoiding issues with padding out
1587     // to Size and other such corner cases.
1588     if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1589
1590     uint8_t Byte = static_cast<uint8_t>(Value);
1591
1592     for (unsigned i = 1; i < Size; ++i) {
1593       Value >>= 8;
1594       if (static_cast<uint8_t>(Value) != Byte) return -1;
1595     }
1596     return Byte;
1597   }
1598   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1599     // Make sure all array elements are sequences of the same repeated
1600     // byte.
1601     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1602     int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1603     if (Byte == -1) return -1;
1604
1605     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1606       int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1607       if (ThisByte == -1) return -1;
1608       if (Byte != ThisByte) return -1;
1609     }
1610     return Byte;
1611   }
1612   
1613   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1614     return isRepeatedByteSequence(CDS);
1615
1616   return -1;
1617 }
1618
1619 static void EmitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1620                                              unsigned AddrSpace,AsmPrinter &AP){
1621   
1622   // See if we can aggregate this into a .fill, if so, emit it as such.
1623   int Value = isRepeatedByteSequence(CDS, AP.TM);
1624   if (Value != -1) {
1625     uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
1626     // Don't emit a 1-byte object as a .fill.
1627     if (Bytes > 1)
1628       return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1629   }
1630   
1631   // If this can be emitted with .ascii/.asciz, emit it as such.
1632   if (CDS->isString())
1633     return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1634
1635   // Otherwise, emit the values in successive locations.
1636   unsigned ElementByteSize = CDS->getElementByteSize();
1637   if (isa<IntegerType>(CDS->getElementType())) {
1638     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1639       if (AP.isVerbose())
1640         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1641                                                 CDS->getElementAsInteger(i));
1642       AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1643                                   ElementByteSize, AddrSpace);
1644     }
1645   } else if (ElementByteSize == 4) {
1646     // FP Constants are printed as integer constants to avoid losing
1647     // precision.
1648     assert(CDS->getElementType()->isFloatTy());
1649     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1650       union {
1651         float F;
1652         uint32_t I;
1653       };
1654       
1655       F = CDS->getElementAsFloat(i);
1656       if (AP.isVerbose())
1657         AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1658       AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1659     }
1660   } else {
1661     assert(CDS->getElementType()->isDoubleTy());
1662     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1663       union {
1664         double F;
1665         uint64_t I;
1666       };
1667       
1668       F = CDS->getElementAsDouble(i);
1669       if (AP.isVerbose())
1670         AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1671       AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1672     }
1673   }
1674
1675   const TargetData &TD = *AP.TM.getTargetData();
1676   unsigned Size = TD.getTypeAllocSize(CDS->getType());
1677   unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1678                         CDS->getNumElements();
1679   if (unsigned Padding = Size - EmittedSize)
1680     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1681
1682 }
1683
1684 static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1685                                     AsmPrinter &AP) {
1686   // See if we can aggregate some values.  Make sure it can be
1687   // represented as a series of bytes of the constant value.
1688   int Value = isRepeatedByteSequence(CA, AP.TM);
1689
1690   if (Value != -1) {
1691     uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
1692     AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1693   }
1694   else {
1695     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1696       EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1697   }
1698 }
1699
1700 static void EmitGlobalConstantVector(const ConstantVector *CV,
1701                                      unsigned AddrSpace, AsmPrinter &AP) {
1702   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1703     EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1704
1705   const TargetData &TD = *AP.TM.getTargetData();
1706   unsigned Size = TD.getTypeAllocSize(CV->getType());
1707   unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1708                          CV->getType()->getNumElements();
1709   if (unsigned Padding = Size - EmittedSize)
1710     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1711 }
1712
1713 static void EmitGlobalConstantStruct(const ConstantStruct *CS,
1714                                      unsigned AddrSpace, AsmPrinter &AP) {
1715   // Print the fields in successive locations. Pad to align if needed!
1716   const TargetData *TD = AP.TM.getTargetData();
1717   unsigned Size = TD->getTypeAllocSize(CS->getType());
1718   const StructLayout *Layout = TD->getStructLayout(CS->getType());
1719   uint64_t SizeSoFar = 0;
1720   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1721     const Constant *Field = CS->getOperand(i);
1722
1723     // Check if padding is needed and insert one or more 0s.
1724     uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1725     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1726                         - Layout->getElementOffset(i)) - FieldSize;
1727     SizeSoFar += FieldSize + PadSize;
1728
1729     // Now print the actual field value.
1730     EmitGlobalConstantImpl(Field, AddrSpace, AP);
1731
1732     // Insert padding - this may include padding to increase the size of the
1733     // current field up to the ABI size (if the struct is not packed) as well
1734     // as padding to ensure that the next field starts at the right offset.
1735     AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1736   }
1737   assert(SizeSoFar == Layout->getSizeInBytes() &&
1738          "Layout of constant struct may be incorrect!");
1739 }
1740
1741 static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1742                                  AsmPrinter &AP) {
1743   if (CFP->getType()->isHalfTy()) {
1744     if (AP.isVerbose()) {
1745       SmallString<10> Str;
1746       CFP->getValueAPF().toString(Str);
1747       AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
1748     }
1749     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1750     AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
1751     return;
1752   }
1753
1754   if (CFP->getType()->isFloatTy()) {
1755     if (AP.isVerbose()) {
1756       float Val = CFP->getValueAPF().convertToFloat();
1757       uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1758       AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'
1759                                     << " (" << format("0x%x", IntVal) << ")\n";
1760     }
1761     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1762     AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1763     return;
1764   }
1765
1766   // FP Constants are printed as integer constants to avoid losing
1767   // precision.
1768   if (CFP->getType()->isDoubleTy()) {
1769     if (AP.isVerbose()) {
1770       double Val = CFP->getValueAPF().convertToDouble();
1771       uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1772       AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'
1773                                     << " (" << format("0x%lx", IntVal) << ")\n";
1774     }
1775
1776     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1777     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1778     return;
1779   }
1780
1781   if (CFP->getType()->isX86_FP80Ty()) {
1782     // all long double variants are printed as hex
1783     // API needed to prevent premature destruction
1784     APInt API = CFP->getValueAPF().bitcastToAPInt();
1785     const uint64_t *p = API.getRawData();
1786     if (AP.isVerbose()) {
1787       // Convert to double so we can print the approximate val as a comment.
1788       APFloat DoubleVal = CFP->getValueAPF();
1789       bool ignored;
1790       DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1791                         &ignored);
1792       AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1793         << DoubleVal.convertToDouble() << '\n';
1794     }
1795
1796     if (AP.TM.getTargetData()->isBigEndian()) {
1797       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1798       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1799     } else {
1800       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1801       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1802     }
1803
1804     // Emit the tail padding for the long double.
1805     const TargetData &TD = *AP.TM.getTargetData();
1806     AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1807                              TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1808     return;
1809   }
1810
1811   assert(CFP->getType()->isPPC_FP128Ty() &&
1812          "Floating point constant type not handled");
1813   // All long double variants are printed as hex
1814   // API needed to prevent premature destruction.
1815   APInt API = CFP->getValueAPF().bitcastToAPInt();
1816   const uint64_t *p = API.getRawData();
1817   if (AP.TM.getTargetData()->isBigEndian()) {
1818     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1819     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1820   } else {
1821     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1822     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1823   }
1824 }
1825
1826 static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
1827                                        unsigned AddrSpace, AsmPrinter &AP) {
1828   const TargetData *TD = AP.TM.getTargetData();
1829   unsigned BitWidth = CI->getBitWidth();
1830   assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1831
1832   // We don't expect assemblers to support integer data directives
1833   // for more than 64 bits, so we emit the data in at most 64-bit
1834   // quantities at a time.
1835   const uint64_t *RawData = CI->getValue().getRawData();
1836   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1837     uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1838     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1839   }
1840 }
1841
1842 static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1843                                    AsmPrinter &AP) {
1844   const TargetData *TD = AP.TM.getTargetData();
1845   uint64_t Size = TD->getTypeAllocSize(CV->getType());
1846   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1847     return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1848
1849   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1850     switch (Size) {
1851     case 1:
1852     case 2:
1853     case 4:
1854     case 8:
1855       if (AP.isVerbose())
1856         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1857                                                 CI->getZExtValue());
1858       AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1859       return;
1860     default:
1861       EmitGlobalConstantLargeInt(CI, AddrSpace, AP);
1862       return;
1863     }
1864   }
1865
1866   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1867     return EmitGlobalConstantFP(CFP, AddrSpace, AP);
1868
1869   if (isa<ConstantPointerNull>(CV)) {
1870     AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1871     return;
1872   }
1873
1874   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1875     return EmitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1876   
1877   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1878     return EmitGlobalConstantArray(CVA, AddrSpace, AP);
1879
1880   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1881     return EmitGlobalConstantStruct(CVS, AddrSpace, AP);
1882
1883   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1884     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1885     // vectors).
1886     if (CE->getOpcode() == Instruction::BitCast)
1887       return EmitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1888
1889     if (Size > 8) {
1890       // If the constant expression's size is greater than 64-bits, then we have
1891       // to emit the value in chunks. Try to constant fold the value and emit it
1892       // that way.
1893       Constant *New = ConstantFoldConstantExpression(CE, TD);
1894       if (New && New != CE)
1895         return EmitGlobalConstantImpl(New, AddrSpace, AP);
1896     }
1897   }
1898   
1899   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1900     return EmitGlobalConstantVector(V, AddrSpace, AP);
1901     
1902   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1903   // thread the streamer with EmitValue.
1904   AP.OutStreamer.EmitValue(LowerConstant(CV, AP), Size, AddrSpace);
1905 }
1906
1907 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1908 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1909   uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
1910   if (Size)
1911     EmitGlobalConstantImpl(CV, AddrSpace, *this);
1912   else if (MAI->hasSubsectionsViaSymbols()) {
1913     // If the global has zero size, emit a single byte so that two labels don't
1914     // look like they are at the same location.
1915     OutStreamer.EmitIntValue(0, 1, AddrSpace);
1916   }
1917 }
1918
1919 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1920   // Target doesn't support this yet!
1921   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1922 }
1923
1924 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1925   if (Offset > 0)
1926     OS << '+' << Offset;
1927   else if (Offset < 0)
1928     OS << Offset;
1929 }
1930
1931 //===----------------------------------------------------------------------===//
1932 // Symbol Lowering Routines.
1933 //===----------------------------------------------------------------------===//
1934
1935 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1936 /// temporary label with the specified stem and unique ID.
1937 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1938   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1939                                       Name + Twine(ID));
1940 }
1941
1942 /// GetTempSymbol - Return an assembler temporary label with the specified
1943 /// stem.
1944 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1945   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1946                                       Name);
1947 }
1948
1949
1950 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1951   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1952 }
1953
1954 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1955   return MMI->getAddrLabelSymbol(BB);
1956 }
1957
1958 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
1959 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1960   return OutContext.GetOrCreateSymbol
1961     (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1962      + "_" + Twine(CPID));
1963 }
1964
1965 /// GetJTISymbol - Return the symbol for the specified jump table entry.
1966 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1967   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1968 }
1969
1970 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
1971 /// FIXME: privatize to AsmPrinter.
1972 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1973   return OutContext.GetOrCreateSymbol
1974   (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1975    Twine(UID) + "_set_" + Twine(MBBID));
1976 }
1977
1978 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1979 /// global value name as its base, with the specified suffix, and where the
1980 /// symbol is forced to have private linkage if ForcePrivate is true.
1981 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1982                                                    StringRef Suffix,
1983                                                    bool ForcePrivate) const {
1984   SmallString<60> NameStr;
1985   Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1986   NameStr.append(Suffix.begin(), Suffix.end());
1987   return OutContext.GetOrCreateSymbol(NameStr.str());
1988 }
1989
1990 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1991 /// ExternalSymbol.
1992 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1993   SmallString<60> NameStr;
1994   Mang->getNameWithPrefix(NameStr, Sym);
1995   return OutContext.GetOrCreateSymbol(NameStr.str());
1996 }
1997
1998
1999
2000 /// PrintParentLoopComment - Print comments about parent loops of this one.
2001 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2002                                    unsigned FunctionNumber) {
2003   if (Loop == 0) return;
2004   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2005   OS.indent(Loop->getLoopDepth()*2)
2006     << "Parent Loop BB" << FunctionNumber << "_"
2007     << Loop->getHeader()->getNumber()
2008     << " Depth=" << Loop->getLoopDepth() << '\n';
2009 }
2010
2011
2012 /// PrintChildLoopComment - Print comments about child loops within
2013 /// the loop for this basic block, with nesting.
2014 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2015                                   unsigned FunctionNumber) {
2016   // Add child loop information
2017   for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2018     OS.indent((*CL)->getLoopDepth()*2)
2019       << "Child Loop BB" << FunctionNumber << "_"
2020       << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2021       << '\n';
2022     PrintChildLoopComment(OS, *CL, FunctionNumber);
2023   }
2024 }
2025
2026 /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2027 static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2028                                        const MachineLoopInfo *LI,
2029                                        const AsmPrinter &AP) {
2030   // Add loop depth information
2031   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2032   if (Loop == 0) return;
2033
2034   MachineBasicBlock *Header = Loop->getHeader();
2035   assert(Header && "No header for loop");
2036
2037   // If this block is not a loop header, just print out what is the loop header
2038   // and return.
2039   if (Header != &MBB) {
2040     AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2041                               Twine(AP.getFunctionNumber())+"_" +
2042                               Twine(Loop->getHeader()->getNumber())+
2043                               " Depth="+Twine(Loop->getLoopDepth()));
2044     return;
2045   }
2046
2047   // Otherwise, it is a loop header.  Print out information about child and
2048   // parent loops.
2049   raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2050
2051   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2052
2053   OS << "=>";
2054   OS.indent(Loop->getLoopDepth()*2-2);
2055
2056   OS << "This ";
2057   if (Loop->empty())
2058     OS << "Inner ";
2059   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2060
2061   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2062 }
2063
2064
2065 /// EmitBasicBlockStart - This method prints the label for the specified
2066 /// MachineBasicBlock, an alignment (if present) and a comment describing
2067 /// it if appropriate.
2068 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2069   // Emit an alignment directive for this block, if needed.
2070   if (unsigned Align = MBB->getAlignment())
2071     EmitAlignment(Align);
2072
2073   // If the block has its address taken, emit any labels that were used to
2074   // reference the block.  It is possible that there is more than one label
2075   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2076   // the references were generated.
2077   if (MBB->hasAddressTaken()) {
2078     const BasicBlock *BB = MBB->getBasicBlock();
2079     if (isVerbose())
2080       OutStreamer.AddComment("Block address taken");
2081
2082     std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2083
2084     for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2085       OutStreamer.EmitLabel(Syms[i]);
2086   }
2087
2088   // Print some verbose block comments.
2089   if (isVerbose()) {
2090     if (const BasicBlock *BB = MBB->getBasicBlock())
2091       if (BB->hasName())
2092         OutStreamer.AddComment("%" + BB->getName());
2093     EmitBasicBlockLoopComments(*MBB, LI, *this);
2094   }
2095
2096   // Print the main label for the block.
2097   if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2098     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2099       // NOTE: Want this comment at start of line, don't emit with AddComment.
2100       OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2101                               Twine(MBB->getNumber()) + ":");
2102     }
2103   } else {
2104     OutStreamer.EmitLabel(MBB->getSymbol());
2105   }
2106 }
2107
2108 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2109                                 bool IsDefinition) const {
2110   MCSymbolAttr Attr = MCSA_Invalid;
2111
2112   switch (Visibility) {
2113   default: break;
2114   case GlobalValue::HiddenVisibility:
2115     if (IsDefinition)
2116       Attr = MAI->getHiddenVisibilityAttr();
2117     else
2118       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2119     break;
2120   case GlobalValue::ProtectedVisibility:
2121     Attr = MAI->getProtectedVisibilityAttr();
2122     break;
2123   }
2124
2125   if (Attr != MCSA_Invalid)
2126     OutStreamer.EmitSymbolAttribute(Sym, Attr);
2127 }
2128
2129 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2130 /// exactly one predecessor and the control transfer mechanism between
2131 /// the predecessor and this block is a fall-through.
2132 bool AsmPrinter::
2133 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2134   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2135   // then nothing falls through to it.
2136   if (MBB->isLandingPad() || MBB->pred_empty())
2137     return false;
2138
2139   // If there isn't exactly one predecessor, it can't be a fall through.
2140   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2141   ++PI2;
2142   if (PI2 != MBB->pred_end())
2143     return false;
2144
2145   // The predecessor has to be immediately before this block.
2146   MachineBasicBlock *Pred = *PI;
2147
2148   if (!Pred->isLayoutSuccessor(MBB))
2149     return false;
2150
2151   // If the block is completely empty, then it definitely does fall through.
2152   if (Pred->empty())
2153     return true;
2154
2155   // Check the terminators in the previous blocks
2156   for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2157          IE = Pred->end(); II != IE; ++II) {
2158     MachineInstr &MI = *II;
2159
2160     // If it is not a simple branch, we are in a table somewhere.
2161     if (!MI.isBranch() || MI.isIndirectBranch())
2162       return false;
2163
2164     // If we are the operands of one of the branches, this is not
2165     // a fall through.
2166     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2167            OE = MI.operands_end(); OI != OE; ++OI) {
2168       const MachineOperand& OP = *OI;
2169       if (OP.isJTI())
2170         return false;
2171       if (OP.isMBB() && OP.getMBB() == MBB)
2172         return false;
2173     }
2174   }
2175
2176   return true;
2177 }
2178
2179
2180
2181 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2182   if (!S->usesMetadata())
2183     return 0;
2184
2185   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2186   gcp_map_type::iterator GCPI = GCMap.find(S);
2187   if (GCPI != GCMap.end())
2188     return GCPI->second;
2189
2190   const char *Name = S->getName().c_str();
2191
2192   for (GCMetadataPrinterRegistry::iterator
2193          I = GCMetadataPrinterRegistry::begin(),
2194          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2195     if (strcmp(Name, I->getName()) == 0) {
2196       GCMetadataPrinter *GMP = I->instantiate();
2197       GMP->S = S;
2198       GCMap.insert(std::make_pair(S, GMP));
2199       return GMP;
2200     }
2201
2202   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2203 }