1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines several CodeGen-specific LLVM IR analysis utilities.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/SelectionDAG.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Target/TargetLowering.h"
28 #include "llvm/Target/TargetSubtargetInfo.h"
29 #include "llvm/Transforms/Utils/GlobalStatus.h"
33 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
34 /// of insertvalue or extractvalue indices that identify a member, return
35 /// the linearized index of the start of the member.
37 unsigned llvm::ComputeLinearIndex(Type *Ty,
38 const unsigned *Indices,
39 const unsigned *IndicesEnd,
41 // Base case: We're done.
42 if (Indices && Indices == IndicesEnd)
45 // Given a struct type, recursively traverse the elements.
46 if (StructType *STy = dyn_cast<StructType>(Ty)) {
47 for (StructType::element_iterator EB = STy->element_begin(),
49 EE = STy->element_end();
51 if (Indices && *Indices == unsigned(EI - EB))
52 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
53 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
57 // Given an array type, recursively traverse the elements.
58 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
59 Type *EltTy = ATy->getElementType();
60 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
61 if (Indices && *Indices == i)
62 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
63 CurIndex = ComputeLinearIndex(EltTy, nullptr, nullptr, CurIndex);
67 // We haven't found the type we're looking for, so keep searching.
71 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
72 /// EVTs that represent all the individual underlying
73 /// non-aggregate types that comprise it.
75 /// If Offsets is non-null, it points to a vector to be filled in
76 /// with the in-memory offsets of each of the individual values.
78 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
79 SmallVectorImpl<EVT> &ValueVTs,
80 SmallVectorImpl<uint64_t> *Offsets,
81 uint64_t StartingOffset) {
82 // Given a struct type, recursively traverse the elements.
83 if (StructType *STy = dyn_cast<StructType>(Ty)) {
84 const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy);
85 for (StructType::element_iterator EB = STy->element_begin(),
87 EE = STy->element_end();
89 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
90 StartingOffset + SL->getElementOffset(EI - EB));
93 // Given an array type, recursively traverse the elements.
94 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
95 Type *EltTy = ATy->getElementType();
96 uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy);
97 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
98 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
99 StartingOffset + i * EltSize);
102 // Interpret void as zero return values.
105 // Base case: we can get an EVT for this LLVM IR type.
106 ValueVTs.push_back(TLI.getValueType(Ty));
108 Offsets->push_back(StartingOffset);
111 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
112 GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
113 V = V->stripPointerCasts();
114 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
116 if (GV && GV->getName() == "llvm.eh.catch.all.value") {
117 assert(GV->hasInitializer() &&
118 "The EH catch-all value must have an initializer");
119 Value *Init = GV->getInitializer();
120 GV = dyn_cast<GlobalVariable>(Init);
121 if (!GV) V = cast<ConstantPointerNull>(Init);
124 assert((GV || isa<ConstantPointerNull>(V)) &&
125 "TypeInfo must be a global variable or NULL");
129 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
130 /// processed uses a memory 'm' constraint.
132 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
133 const TargetLowering &TLI) {
134 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
135 InlineAsm::ConstraintInfo &CI = CInfos[i];
136 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
137 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
138 if (CType == TargetLowering::C_Memory)
142 // Indirect operand accesses access memory.
150 /// getFCmpCondCode - Return the ISD condition code corresponding to
151 /// the given LLVM IR floating-point condition code. This includes
152 /// consideration of global floating-point math flags.
154 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
156 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
157 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ;
158 case FCmpInst::FCMP_OGT: return ISD::SETOGT;
159 case FCmpInst::FCMP_OGE: return ISD::SETOGE;
160 case FCmpInst::FCMP_OLT: return ISD::SETOLT;
161 case FCmpInst::FCMP_OLE: return ISD::SETOLE;
162 case FCmpInst::FCMP_ONE: return ISD::SETONE;
163 case FCmpInst::FCMP_ORD: return ISD::SETO;
164 case FCmpInst::FCMP_UNO: return ISD::SETUO;
165 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ;
166 case FCmpInst::FCMP_UGT: return ISD::SETUGT;
167 case FCmpInst::FCMP_UGE: return ISD::SETUGE;
168 case FCmpInst::FCMP_ULT: return ISD::SETULT;
169 case FCmpInst::FCMP_ULE: return ISD::SETULE;
170 case FCmpInst::FCMP_UNE: return ISD::SETUNE;
171 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE;
172 default: llvm_unreachable("Invalid FCmp predicate opcode!");
176 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
178 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
179 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
180 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
181 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
182 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
183 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
188 /// getICmpCondCode - Return the ISD condition code corresponding to
189 /// the given LLVM IR integer condition code.
191 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
193 case ICmpInst::ICMP_EQ: return ISD::SETEQ;
194 case ICmpInst::ICMP_NE: return ISD::SETNE;
195 case ICmpInst::ICMP_SLE: return ISD::SETLE;
196 case ICmpInst::ICMP_ULE: return ISD::SETULE;
197 case ICmpInst::ICMP_SGE: return ISD::SETGE;
198 case ICmpInst::ICMP_UGE: return ISD::SETUGE;
199 case ICmpInst::ICMP_SLT: return ISD::SETLT;
200 case ICmpInst::ICMP_ULT: return ISD::SETULT;
201 case ICmpInst::ICMP_SGT: return ISD::SETGT;
202 case ICmpInst::ICMP_UGT: return ISD::SETUGT;
204 llvm_unreachable("Invalid ICmp predicate opcode!");
208 static bool isNoopBitcast(Type *T1, Type *T2,
209 const TargetLoweringBase& TLI) {
210 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
211 (isa<VectorType>(T1) && isa<VectorType>(T2) &&
212 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
215 /// Look through operations that will be free to find the earliest source of
218 /// @param ValLoc If V has aggegate type, we will be interested in a particular
219 /// scalar component. This records its address; the reverse of this list gives a
220 /// sequence of indices appropriate for an extractvalue to locate the important
221 /// value. This value is updated during the function and on exit will indicate
222 /// similar information for the Value returned.
224 /// @param DataBits If this function looks through truncate instructions, this
225 /// will record the smallest size attained.
226 static const Value *getNoopInput(const Value *V,
227 SmallVectorImpl<unsigned> &ValLoc,
229 const TargetLoweringBase &TLI) {
231 // Try to look through V1; if V1 is not an instruction, it can't be looked
233 const Instruction *I = dyn_cast<Instruction>(V);
234 if (!I || I->getNumOperands() == 0) return V;
235 const Value *NoopInput = nullptr;
237 Value *Op = I->getOperand(0);
238 if (isa<BitCastInst>(I)) {
239 // Look through truly no-op bitcasts.
240 if (isNoopBitcast(Op->getType(), I->getType(), TLI))
242 } else if (isa<GetElementPtrInst>(I)) {
243 // Look through getelementptr
244 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
246 } else if (isa<IntToPtrInst>(I)) {
247 // Look through inttoptr.
248 // Make sure this isn't a truncating or extending cast. We could
249 // support this eventually, but don't bother for now.
250 if (!isa<VectorType>(I->getType()) &&
251 TLI.getPointerTy().getSizeInBits() ==
252 cast<IntegerType>(Op->getType())->getBitWidth())
254 } else if (isa<PtrToIntInst>(I)) {
255 // Look through ptrtoint.
256 // Make sure this isn't a truncating or extending cast. We could
257 // support this eventually, but don't bother for now.
258 if (!isa<VectorType>(I->getType()) &&
259 TLI.getPointerTy().getSizeInBits() ==
260 cast<IntegerType>(I->getType())->getBitWidth())
262 } else if (isa<TruncInst>(I) &&
263 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
264 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
266 } else if (isa<CallInst>(I)) {
267 // Look through call (skipping callee)
268 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
270 unsigned attrInd = i - I->op_begin() + 1;
271 if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
272 isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
277 } else if (isa<InvokeInst>(I)) {
278 // Look through invoke (skipping BB, BB, Callee)
279 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
281 unsigned attrInd = i - I->op_begin() + 1;
282 if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
283 isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
288 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
289 // Value may come from either the aggregate or the scalar
290 ArrayRef<unsigned> InsertLoc = IVI->getIndices();
291 if (std::equal(InsertLoc.rbegin(), InsertLoc.rend(),
293 // The type being inserted is a nested sub-type of the aggregate; we
294 // have to remove those initial indices to get the location we're
295 // interested in for the operand.
296 ValLoc.resize(ValLoc.size() - InsertLoc.size());
297 NoopInput = IVI->getInsertedValueOperand();
299 // The struct we're inserting into has the value we're interested in, no
300 // change of address.
303 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
304 // The part we're interested in will inevitably be some sub-section of the
305 // previous aggregate. Combine the two paths to obtain the true address of
307 ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
308 std::copy(ExtractLoc.rbegin(), ExtractLoc.rend(),
309 std::back_inserter(ValLoc));
312 // Terminate if we couldn't find anything to look through.
320 /// Return true if this scalar return value only has bits discarded on its path
321 /// from the "tail call" to the "ret". This includes the obvious noop
322 /// instructions handled by getNoopInput above as well as free truncations (or
323 /// extensions prior to the call).
324 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
325 SmallVectorImpl<unsigned> &RetIndices,
326 SmallVectorImpl<unsigned> &CallIndices,
327 bool AllowDifferingSizes,
328 const TargetLoweringBase &TLI) {
330 // Trace the sub-value needed by the return value as far back up the graph as
331 // possible, in the hope that it will intersect with the value produced by the
332 // call. In the simple case with no "returned" attribute, the hope is actually
333 // that we end up back at the tail call instruction itself.
334 unsigned BitsRequired = UINT_MAX;
335 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI);
337 // If this slot in the value returned is undef, it doesn't matter what the
338 // call puts there, it'll be fine.
339 if (isa<UndefValue>(RetVal))
342 // Now do a similar search up through the graph to find where the value
343 // actually returned by the "tail call" comes from. In the simple case without
344 // a "returned" attribute, the search will be blocked immediately and the loop
346 unsigned BitsProvided = UINT_MAX;
347 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI);
349 // There's no hope if we can't actually trace them to (the same part of!) the
351 if (CallVal != RetVal || CallIndices != RetIndices)
354 // However, intervening truncates may have made the call non-tail. Make sure
355 // all the bits that are needed by the "ret" have been provided by the "tail
356 // call". FIXME: with sufficiently cunning bit-tracking, we could look through
358 if (BitsProvided < BitsRequired ||
359 (!AllowDifferingSizes && BitsProvided != BitsRequired))
365 /// For an aggregate type, determine whether a given index is within bounds or
367 static bool indexReallyValid(CompositeType *T, unsigned Idx) {
368 if (ArrayType *AT = dyn_cast<ArrayType>(T))
369 return Idx < AT->getNumElements();
371 return Idx < cast<StructType>(T)->getNumElements();
374 /// Move the given iterators to the next leaf type in depth first traversal.
376 /// Performs a depth-first traversal of the type as specified by its arguments,
377 /// stopping at the next leaf node (which may be a legitimate scalar type or an
378 /// empty struct or array).
380 /// @param SubTypes List of the partial components making up the type from
381 /// outermost to innermost non-empty aggregate. The element currently
382 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
384 /// @param Path Set of extractvalue indices leading from the outermost type
385 /// (SubTypes[0]) to the leaf node currently represented.
387 /// @returns true if a new type was found, false otherwise. Calling this
388 /// function again on a finished iterator will repeatedly return
389 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
390 /// aggregate or a non-aggregate
391 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
392 SmallVectorImpl<unsigned> &Path) {
393 // First march back up the tree until we can successfully increment one of the
394 // coordinates in Path.
395 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
400 // If we reached the top, then the iterator is done.
404 // We know there's *some* valid leaf now, so march back down the tree picking
405 // out the left-most element at each node.
407 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
408 while (DeeperType->isAggregateType()) {
409 CompositeType *CT = cast<CompositeType>(DeeperType);
410 if (!indexReallyValid(CT, 0))
413 SubTypes.push_back(CT);
416 DeeperType = CT->getTypeAtIndex(0U);
422 /// Find the first non-empty, scalar-like type in Next and setup the iterator
425 /// Assuming Next is an aggregate of some kind, this function will traverse the
426 /// tree from left to right (i.e. depth-first) looking for the first
427 /// non-aggregate type which will play a role in function return.
429 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
430 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
431 /// i32 in that type.
432 static bool firstRealType(Type *Next,
433 SmallVectorImpl<CompositeType *> &SubTypes,
434 SmallVectorImpl<unsigned> &Path) {
435 // First initialise the iterator components to the first "leaf" node
436 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
437 // despite nominally being an aggregate).
438 while (Next->isAggregateType() &&
439 indexReallyValid(cast<CompositeType>(Next), 0)) {
440 SubTypes.push_back(cast<CompositeType>(Next));
442 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
445 // If there's no Path now, Next was originally scalar already (or empty
446 // leaf). We're done.
450 // Otherwise, use normal iteration to keep looking through the tree until we
451 // find a non-aggregate type.
452 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
453 if (!advanceToNextLeafType(SubTypes, Path))
460 /// Set the iterator data-structures to the next non-empty, non-aggregate
462 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
463 SmallVectorImpl<unsigned> &Path) {
465 if (!advanceToNextLeafType(SubTypes, Path))
468 assert(!Path.empty() && "found a leaf but didn't set the path?");
469 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
475 /// Test if the given instruction is in a position to be optimized
476 /// with a tail-call. This roughly means that it's in a block with
477 /// a return and there's nothing that needs to be scheduled
478 /// between it and the return.
480 /// This function only tests target-independent requirements.
481 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
482 const Instruction *I = CS.getInstruction();
483 const BasicBlock *ExitBB = I->getParent();
484 const TerminatorInst *Term = ExitBB->getTerminator();
485 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
487 // The block must end in a return statement or unreachable.
489 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
490 // an unreachable, for now. The way tailcall optimization is currently
491 // implemented means it will add an epilogue followed by a jump. That is
492 // not profitable. Also, if the callee is a special function (e.g.
493 // longjmp on x86), it can end up causing miscompilation that has not
494 // been fully understood.
496 (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
499 // If I will have a chain, make sure no other instruction that will have a
500 // chain interposes between I and the return.
501 if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
502 !isSafeToSpeculativelyExecute(I))
503 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
506 // Debug info intrinsics do not get in the way of tail call optimization.
507 if (isa<DbgInfoIntrinsic>(BBI))
509 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
510 !isSafeToSpeculativelyExecute(BBI))
514 return returnTypeIsEligibleForTailCall(
515 ExitBB->getParent(), I, Ret, *TM.getSubtargetImpl()->getTargetLowering());
518 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
519 const Instruction *I,
520 const ReturnInst *Ret,
521 const TargetLoweringBase &TLI) {
522 // If the block ends with a void return or unreachable, it doesn't matter
523 // what the call's return type is.
524 if (!Ret || Ret->getNumOperands() == 0) return true;
526 // If the return value is undef, it doesn't matter what the call's
528 if (isa<UndefValue>(Ret->getOperand(0))) return true;
530 // Make sure the attributes attached to each return are compatible.
531 AttrBuilder CallerAttrs(F->getAttributes(),
532 AttributeSet::ReturnIndex);
533 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
534 AttributeSet::ReturnIndex);
536 // Noalias is completely benign as far as calling convention goes, it
537 // shouldn't affect whether the call is a tail call.
538 CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
539 CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
541 bool AllowDifferingSizes = true;
542 if (CallerAttrs.contains(Attribute::ZExt)) {
543 if (!CalleeAttrs.contains(Attribute::ZExt))
546 AllowDifferingSizes = false;
547 CallerAttrs.removeAttribute(Attribute::ZExt);
548 CalleeAttrs.removeAttribute(Attribute::ZExt);
549 } else if (CallerAttrs.contains(Attribute::SExt)) {
550 if (!CalleeAttrs.contains(Attribute::SExt))
553 AllowDifferingSizes = false;
554 CallerAttrs.removeAttribute(Attribute::SExt);
555 CalleeAttrs.removeAttribute(Attribute::SExt);
558 // If they're still different, there's some facet we don't understand
559 // (currently only "inreg", but in future who knows). It may be OK but the
560 // only safe option is to reject the tail call.
561 if (CallerAttrs != CalleeAttrs)
564 const Value *RetVal = Ret->getOperand(0), *CallVal = I;
565 SmallVector<unsigned, 4> RetPath, CallPath;
566 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
568 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
569 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
571 // Nothing's actually returned, it doesn't matter what the callee put there
572 // it's a valid tail call.
576 // Iterate pairwise through each of the value types making up the tail call
577 // and the corresponding return. For each one we want to know whether it's
578 // essentially going directly from the tail call to the ret, via operations
579 // that end up not generating any code.
581 // We allow a certain amount of covariance here. For example it's permitted
582 // for the tail call to define more bits than the ret actually cares about
583 // (e.g. via a truncate).
586 // We've exhausted the values produced by the tail call instruction, the
587 // rest are essentially undef. The type doesn't really matter, but we need
589 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
590 CallVal = UndefValue::get(SlotType);
593 // The manipulations performed when we're looking through an insertvalue or
594 // an extractvalue would happen at the front of the RetPath list, so since
595 // we have to copy it anyway it's more efficient to create a reversed copy.
597 SmallVector<unsigned, 4> TmpRetPath, TmpCallPath;
598 copy(RetPath.rbegin(), RetPath.rend(), std::back_inserter(TmpRetPath));
599 copy(CallPath.rbegin(), CallPath.rend(), std::back_inserter(TmpCallPath));
601 // Finally, we can check whether the value produced by the tail call at this
602 // index is compatible with the value we return.
603 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
604 AllowDifferingSizes, TLI))
607 CallEmpty = !nextRealType(CallSubTypes, CallPath);
608 } while(nextRealType(RetSubTypes, RetPath));
613 bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) {
614 if (!GV->hasLinkOnceODRLinkage())
617 if (GV->hasUnnamedAddr())
620 // If it is a non constant variable, it needs to be uniqued across shared
622 if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
623 if (!Var->isConstant())
627 // An alias can point to a variable. We could try to resolve the alias to
628 // decide, but for now just don't hide them.
629 if (isa<GlobalAlias>(GV))
633 if (GlobalStatus::analyzeGlobal(GV, GS))
636 return !GS.IsCompared;