Introducing nocapture, a parameter attribute for pointers to indicate that the
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/Streams.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/System/Program.h"
29 using namespace llvm;
30
31 /// These are manifest constants used by the bitcode writer. They do not need to
32 /// be kept in sync with the reader, but need to be consistent within this file.
33 enum {
34   CurVersion = 0,
35   
36   // VALUE_SYMTAB_BLOCK abbrev id's.
37   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
38   VST_ENTRY_7_ABBREV,
39   VST_ENTRY_6_ABBREV,
40   VST_BBENTRY_6_ABBREV,
41   
42   // CONSTANTS_BLOCK abbrev id's.
43   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
44   CONSTANTS_INTEGER_ABBREV,
45   CONSTANTS_CE_CAST_Abbrev,
46   CONSTANTS_NULL_Abbrev,
47   
48   // FUNCTION_BLOCK abbrev id's.
49   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
50   FUNCTION_INST_BINOP_ABBREV,
51   FUNCTION_INST_CAST_ABBREV,
52   FUNCTION_INST_RET_VOID_ABBREV,
53   FUNCTION_INST_RET_VAL_ABBREV,
54   FUNCTION_INST_UNREACHABLE_ABBREV
55 };
56
57
58 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
59   switch (Opcode) {
60   default: assert(0 && "Unknown cast instruction!");
61   case Instruction::Trunc   : return bitc::CAST_TRUNC;
62   case Instruction::ZExt    : return bitc::CAST_ZEXT;
63   case Instruction::SExt    : return bitc::CAST_SEXT;
64   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
65   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
66   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
67   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
68   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
69   case Instruction::FPExt   : return bitc::CAST_FPEXT;
70   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
71   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
72   case Instruction::BitCast : return bitc::CAST_BITCAST;
73   }
74 }
75
76 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
77   switch (Opcode) {
78   default: assert(0 && "Unknown binary instruction!");
79   case Instruction::Add:  return bitc::BINOP_ADD;
80   case Instruction::Sub:  return bitc::BINOP_SUB;
81   case Instruction::Mul:  return bitc::BINOP_MUL;
82   case Instruction::UDiv: return bitc::BINOP_UDIV;
83   case Instruction::FDiv:
84   case Instruction::SDiv: return bitc::BINOP_SDIV;
85   case Instruction::URem: return bitc::BINOP_UREM;
86   case Instruction::FRem:
87   case Instruction::SRem: return bitc::BINOP_SREM;
88   case Instruction::Shl:  return bitc::BINOP_SHL;
89   case Instruction::LShr: return bitc::BINOP_LSHR;
90   case Instruction::AShr: return bitc::BINOP_ASHR;
91   case Instruction::And:  return bitc::BINOP_AND;
92   case Instruction::Or:   return bitc::BINOP_OR;
93   case Instruction::Xor:  return bitc::BINOP_XOR;
94   }
95 }
96
97
98
99 static void WriteStringRecord(unsigned Code, const std::string &Str, 
100                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
101   SmallVector<unsigned, 64> Vals;
102   
103   // Code: [strchar x N]
104   for (unsigned i = 0, e = Str.size(); i != e; ++i)
105     Vals.push_back(Str[i]);
106     
107   // Emit the finished record.
108   Stream.EmitRecord(Code, Vals, AbbrevToUse);
109 }
110
111 // Emit information about parameter attributes.
112 static void WriteAttributeTable(const ValueEnumerator &VE, 
113                                 BitstreamWriter &Stream) {
114   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
115   if (Attrs.empty()) return;
116   
117   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
118
119   SmallVector<uint64_t, 64> Record;
120   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
121     const AttrListPtr &A = Attrs[i];
122     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
123       const AttributeWithIndex &PAWI = A.getSlot(i);
124       Record.push_back(PAWI.Index);
125
126       // FIXME: remove in LLVM 3.0
127       // Store the alignment in the bitcode as a 16-bit raw value instead of a
128       // 5-bit log2 encoded value. Shift the bits above the alignment up by
129       // 11 bits.
130       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
131       FauxAttr |= (1ull<<16)<<((PAWI.Attrs & Attribute::Alignment) >> 16);
132       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
133
134       Record.push_back(FauxAttr);
135     }
136     
137     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
138     Record.clear();
139   }
140   
141   Stream.ExitBlock();
142 }
143
144 /// WriteTypeTable - Write out the type table for a module.
145 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
146   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
147   
148   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
149   SmallVector<uint64_t, 64> TypeVals;
150   
151   // Abbrev for TYPE_CODE_POINTER.
152   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
153   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
154   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
155                             Log2_32_Ceil(VE.getTypes().size()+1)));
156   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
157   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
158   
159   // Abbrev for TYPE_CODE_FUNCTION.
160   Abbv = new BitCodeAbbrev();
161   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
163   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
164   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
165   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
166                             Log2_32_Ceil(VE.getTypes().size()+1)));
167   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
168   
169   // Abbrev for TYPE_CODE_STRUCT.
170   Abbv = new BitCodeAbbrev();
171   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
174   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
175                             Log2_32_Ceil(VE.getTypes().size()+1)));
176   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
177  
178   // Abbrev for TYPE_CODE_ARRAY.
179   Abbv = new BitCodeAbbrev();
180   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
181   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
183                             Log2_32_Ceil(VE.getTypes().size()+1)));
184   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
185   
186   // Emit an entry count so the reader can reserve space.
187   TypeVals.push_back(TypeList.size());
188   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
189   TypeVals.clear();
190   
191   // Loop over all of the types, emitting each in turn.
192   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
193     const Type *T = TypeList[i].first;
194     int AbbrevToUse = 0;
195     unsigned Code = 0;
196     
197     switch (T->getTypeID()) {
198     default: assert(0 && "Unknown type!");
199     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
200     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
201     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
202     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
203     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
204     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
205     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
206     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
207     case Type::IntegerTyID:
208       // INTEGER: [width]
209       Code = bitc::TYPE_CODE_INTEGER;
210       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
211       break;
212     case Type::PointerTyID: {
213       const PointerType *PTy = cast<PointerType>(T);
214       // POINTER: [pointee type, address space]
215       Code = bitc::TYPE_CODE_POINTER;
216       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
217       unsigned AddressSpace = PTy->getAddressSpace();
218       TypeVals.push_back(AddressSpace);
219       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
220       break;
221     }
222     case Type::FunctionTyID: {
223       const FunctionType *FT = cast<FunctionType>(T);
224       // FUNCTION: [isvararg, attrid, retty, paramty x N]
225       Code = bitc::TYPE_CODE_FUNCTION;
226       TypeVals.push_back(FT->isVarArg());
227       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
228       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
229       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
230         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
231       AbbrevToUse = FunctionAbbrev;
232       break;
233     }
234     case Type::StructTyID: {
235       const StructType *ST = cast<StructType>(T);
236       // STRUCT: [ispacked, eltty x N]
237       Code = bitc::TYPE_CODE_STRUCT;
238       TypeVals.push_back(ST->isPacked());
239       // Output all of the element types.
240       for (StructType::element_iterator I = ST->element_begin(),
241            E = ST->element_end(); I != E; ++I)
242         TypeVals.push_back(VE.getTypeID(*I));
243       AbbrevToUse = StructAbbrev;
244       break;
245     }
246     case Type::ArrayTyID: {
247       const ArrayType *AT = cast<ArrayType>(T);
248       // ARRAY: [numelts, eltty]
249       Code = bitc::TYPE_CODE_ARRAY;
250       TypeVals.push_back(AT->getNumElements());
251       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
252       AbbrevToUse = ArrayAbbrev;
253       break;
254     }
255     case Type::VectorTyID: {
256       const VectorType *VT = cast<VectorType>(T);
257       // VECTOR [numelts, eltty]
258       Code = bitc::TYPE_CODE_VECTOR;
259       TypeVals.push_back(VT->getNumElements());
260       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
261       break;
262     }
263     }
264
265     // Emit the finished record.
266     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
267     TypeVals.clear();
268   }
269   
270   Stream.ExitBlock();
271 }
272
273 static unsigned getEncodedLinkage(const GlobalValue *GV) {
274   switch (GV->getLinkage()) {
275   default: assert(0 && "Invalid linkage!");
276   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
277   case GlobalValue::ExternalLinkage:     return 0;
278   case GlobalValue::WeakLinkage:         return 1;
279   case GlobalValue::AppendingLinkage:    return 2;
280   case GlobalValue::InternalLinkage:     return 3;
281   case GlobalValue::LinkOnceLinkage:     return 4;
282   case GlobalValue::DLLImportLinkage:    return 5;
283   case GlobalValue::DLLExportLinkage:    return 6;
284   case GlobalValue::ExternalWeakLinkage: return 7;
285   case GlobalValue::CommonLinkage:       return 8;
286   }
287 }
288
289 static unsigned getEncodedVisibility(const GlobalValue *GV) {
290   switch (GV->getVisibility()) {
291   default: assert(0 && "Invalid visibility!");
292   case GlobalValue::DefaultVisibility:   return 0;
293   case GlobalValue::HiddenVisibility:    return 1;
294   case GlobalValue::ProtectedVisibility: return 2;
295   }
296 }
297
298 // Emit top-level description of module, including target triple, inline asm,
299 // descriptors for global variables, and function prototype info.
300 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
301                             BitstreamWriter &Stream) {
302   // Emit the list of dependent libraries for the Module.
303   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
304     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
305
306   // Emit various pieces of data attached to a module.
307   if (!M->getTargetTriple().empty())
308     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
309                       0/*TODO*/, Stream);
310   if (!M->getDataLayout().empty())
311     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
312                       0/*TODO*/, Stream);
313   if (!M->getModuleInlineAsm().empty())
314     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
315                       0/*TODO*/, Stream);
316
317   // Emit information about sections and GC, computing how many there are. Also
318   // compute the maximum alignment value.
319   std::map<std::string, unsigned> SectionMap;
320   std::map<std::string, unsigned> GCMap;
321   unsigned MaxAlignment = 0;
322   unsigned MaxGlobalType = 0;
323   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
324        GV != E; ++GV) {
325     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
326     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
327     
328     if (!GV->hasSection()) continue;
329     // Give section names unique ID's.
330     unsigned &Entry = SectionMap[GV->getSection()];
331     if (Entry != 0) continue;
332     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
333                       0/*TODO*/, Stream);
334     Entry = SectionMap.size();
335   }
336   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
337     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
338     if (F->hasSection()) {
339       // Give section names unique ID's.
340       unsigned &Entry = SectionMap[F->getSection()];
341       if (!Entry) {
342         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
343                           0/*TODO*/, Stream);
344         Entry = SectionMap.size();
345       }
346     }
347     if (F->hasGC()) {
348       // Same for GC names.
349       unsigned &Entry = GCMap[F->getGC()];
350       if (!Entry) {
351         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
352                           0/*TODO*/, Stream);
353         Entry = GCMap.size();
354       }
355     }
356   }
357   
358   // Emit abbrev for globals, now that we know # sections and max alignment.
359   unsigned SimpleGVarAbbrev = 0;
360   if (!M->global_empty()) { 
361     // Add an abbrev for common globals with no visibility or thread localness.
362     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
363     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
364     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
365                               Log2_32_Ceil(MaxGlobalType+1)));
366     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
367     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
368     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
369     if (MaxAlignment == 0)                                      // Alignment.
370       Abbv->Add(BitCodeAbbrevOp(0));
371     else {
372       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
373       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
374                                Log2_32_Ceil(MaxEncAlignment+1)));
375     }
376     if (SectionMap.empty())                                    // Section.
377       Abbv->Add(BitCodeAbbrevOp(0));
378     else
379       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
380                                Log2_32_Ceil(SectionMap.size()+1)));
381     // Don't bother emitting vis + thread local.
382     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
383   }
384   
385   // Emit the global variable information.
386   SmallVector<unsigned, 64> Vals;
387   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
388        GV != E; ++GV) {
389     unsigned AbbrevToUse = 0;
390
391     // GLOBALVAR: [type, isconst, initid, 
392     //             linkage, alignment, section, visibility, threadlocal]
393     Vals.push_back(VE.getTypeID(GV->getType()));
394     Vals.push_back(GV->isConstant());
395     Vals.push_back(GV->isDeclaration() ? 0 :
396                    (VE.getValueID(GV->getInitializer()) + 1));
397     Vals.push_back(getEncodedLinkage(GV));
398     Vals.push_back(Log2_32(GV->getAlignment())+1);
399     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
400     if (GV->isThreadLocal() || 
401         GV->getVisibility() != GlobalValue::DefaultVisibility) {
402       Vals.push_back(getEncodedVisibility(GV));
403       Vals.push_back(GV->isThreadLocal());
404     } else {
405       AbbrevToUse = SimpleGVarAbbrev;
406     }
407     
408     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
409     Vals.clear();
410   }
411
412   // Emit the function proto information.
413   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
414     // FUNCTION:  [type, callingconv, isproto, paramattr,
415     //             linkage, alignment, section, visibility, gc]
416     Vals.push_back(VE.getTypeID(F->getType()));
417     Vals.push_back(F->getCallingConv());
418     Vals.push_back(F->isDeclaration());
419     Vals.push_back(getEncodedLinkage(F));
420     Vals.push_back(VE.getAttributeID(F->getAttributes()));
421     Vals.push_back(Log2_32(F->getAlignment())+1);
422     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
423     Vals.push_back(getEncodedVisibility(F));
424     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
425     
426     unsigned AbbrevToUse = 0;
427     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
428     Vals.clear();
429   }
430   
431   
432   // Emit the alias information.
433   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
434        AI != E; ++AI) {
435     Vals.push_back(VE.getTypeID(AI->getType()));
436     Vals.push_back(VE.getValueID(AI->getAliasee()));
437     Vals.push_back(getEncodedLinkage(AI));
438     Vals.push_back(getEncodedVisibility(AI));
439     unsigned AbbrevToUse = 0;
440     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
441     Vals.clear();
442   }
443 }
444
445
446 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
447                            const ValueEnumerator &VE,
448                            BitstreamWriter &Stream, bool isGlobal) {
449   if (FirstVal == LastVal) return;
450   
451   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
452
453   unsigned AggregateAbbrev = 0;
454   unsigned String8Abbrev = 0;
455   unsigned CString7Abbrev = 0;
456   unsigned CString6Abbrev = 0;
457   // If this is a constant pool for the module, emit module-specific abbrevs.
458   if (isGlobal) {
459     // Abbrev for CST_CODE_AGGREGATE.
460     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
461     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
462     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
463     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
464     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
465
466     // Abbrev for CST_CODE_STRING.
467     Abbv = new BitCodeAbbrev();
468     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
469     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
470     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
471     String8Abbrev = Stream.EmitAbbrev(Abbv);
472     // Abbrev for CST_CODE_CSTRING.
473     Abbv = new BitCodeAbbrev();
474     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
475     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
476     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
477     CString7Abbrev = Stream.EmitAbbrev(Abbv);
478     // Abbrev for CST_CODE_CSTRING.
479     Abbv = new BitCodeAbbrev();
480     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
481     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
482     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
483     CString6Abbrev = Stream.EmitAbbrev(Abbv);
484   }  
485   
486   SmallVector<uint64_t, 64> Record;
487
488   const ValueEnumerator::ValueList &Vals = VE.getValues();
489   const Type *LastTy = 0;
490   for (unsigned i = FirstVal; i != LastVal; ++i) {
491     const Value *V = Vals[i].first;
492     // If we need to switch types, do so now.
493     if (V->getType() != LastTy) {
494       LastTy = V->getType();
495       Record.push_back(VE.getTypeID(LastTy));
496       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
497                         CONSTANTS_SETTYPE_ABBREV);
498       Record.clear();
499     }
500     
501     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
502       Record.push_back(unsigned(IA->hasSideEffects()));
503       
504       // Add the asm string.
505       const std::string &AsmStr = IA->getAsmString();
506       Record.push_back(AsmStr.size());
507       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
508         Record.push_back(AsmStr[i]);
509       
510       // Add the constraint string.
511       const std::string &ConstraintStr = IA->getConstraintString();
512       Record.push_back(ConstraintStr.size());
513       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
514         Record.push_back(ConstraintStr[i]);
515       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
516       Record.clear();
517       continue;
518     }
519     const Constant *C = cast<Constant>(V);
520     unsigned Code = -1U;
521     unsigned AbbrevToUse = 0;
522     if (C->isNullValue()) {
523       Code = bitc::CST_CODE_NULL;
524     } else if (isa<UndefValue>(C)) {
525       Code = bitc::CST_CODE_UNDEF;
526     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
527       if (IV->getBitWidth() <= 64) {
528         int64_t V = IV->getSExtValue();
529         if (V >= 0)
530           Record.push_back(V << 1);
531         else
532           Record.push_back((-V << 1) | 1);
533         Code = bitc::CST_CODE_INTEGER;
534         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
535       } else {                             // Wide integers, > 64 bits in size.
536         // We have an arbitrary precision integer value to write whose 
537         // bit width is > 64. However, in canonical unsigned integer 
538         // format it is likely that the high bits are going to be zero.
539         // So, we only write the number of active words.
540         unsigned NWords = IV->getValue().getActiveWords(); 
541         const uint64_t *RawWords = IV->getValue().getRawData();
542         for (unsigned i = 0; i != NWords; ++i) {
543           int64_t V = RawWords[i];
544           if (V >= 0)
545             Record.push_back(V << 1);
546           else
547             Record.push_back((-V << 1) | 1);
548         }
549         Code = bitc::CST_CODE_WIDE_INTEGER;
550       }
551     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
552       Code = bitc::CST_CODE_FLOAT;
553       const Type *Ty = CFP->getType();
554       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
555         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
556       } else if (Ty == Type::X86_FP80Ty) {
557         // api needed to prevent premature destruction
558         APInt api = CFP->getValueAPF().bitcastToAPInt();
559         const uint64_t *p = api.getRawData();
560         Record.push_back(p[0]);
561         Record.push_back((uint16_t)p[1]);
562       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
563         APInt api = CFP->getValueAPF().bitcastToAPInt();
564         const uint64_t *p = api.getRawData();
565         Record.push_back(p[0]);
566         Record.push_back(p[1]);
567       } else {
568         assert (0 && "Unknown FP type!");
569       }
570     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
571       // Emit constant strings specially.
572       unsigned NumOps = C->getNumOperands();
573       // If this is a null-terminated string, use the denser CSTRING encoding.
574       if (C->getOperand(NumOps-1)->isNullValue()) {
575         Code = bitc::CST_CODE_CSTRING;
576         --NumOps;  // Don't encode the null, which isn't allowed by char6.
577       } else {
578         Code = bitc::CST_CODE_STRING;
579         AbbrevToUse = String8Abbrev;
580       }
581       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
582       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
583       for (unsigned i = 0; i != NumOps; ++i) {
584         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
585         Record.push_back(V);
586         isCStr7 &= (V & 128) == 0;
587         if (isCStrChar6) 
588           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
589       }
590       
591       if (isCStrChar6)
592         AbbrevToUse = CString6Abbrev;
593       else if (isCStr7)
594         AbbrevToUse = CString7Abbrev;
595     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
596                isa<ConstantVector>(V)) {
597       Code = bitc::CST_CODE_AGGREGATE;
598       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
599         Record.push_back(VE.getValueID(C->getOperand(i)));
600       AbbrevToUse = AggregateAbbrev;
601     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
602       switch (CE->getOpcode()) {
603       default:
604         if (Instruction::isCast(CE->getOpcode())) {
605           Code = bitc::CST_CODE_CE_CAST;
606           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
607           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
608           Record.push_back(VE.getValueID(C->getOperand(0)));
609           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
610         } else {
611           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
612           Code = bitc::CST_CODE_CE_BINOP;
613           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
614           Record.push_back(VE.getValueID(C->getOperand(0)));
615           Record.push_back(VE.getValueID(C->getOperand(1)));
616         }
617         break;
618       case Instruction::GetElementPtr:
619         Code = bitc::CST_CODE_CE_GEP;
620         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
621           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
622           Record.push_back(VE.getValueID(C->getOperand(i)));
623         }
624         break;
625       case Instruction::Select:
626         Code = bitc::CST_CODE_CE_SELECT;
627         Record.push_back(VE.getValueID(C->getOperand(0)));
628         Record.push_back(VE.getValueID(C->getOperand(1)));
629         Record.push_back(VE.getValueID(C->getOperand(2)));
630         break;
631       case Instruction::ExtractElement:
632         Code = bitc::CST_CODE_CE_EXTRACTELT;
633         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
634         Record.push_back(VE.getValueID(C->getOperand(0)));
635         Record.push_back(VE.getValueID(C->getOperand(1)));
636         break;
637       case Instruction::InsertElement:
638         Code = bitc::CST_CODE_CE_INSERTELT;
639         Record.push_back(VE.getValueID(C->getOperand(0)));
640         Record.push_back(VE.getValueID(C->getOperand(1)));
641         Record.push_back(VE.getValueID(C->getOperand(2)));
642         break;
643       case Instruction::ShuffleVector:
644         Code = bitc::CST_CODE_CE_SHUFFLEVEC;
645         Record.push_back(VE.getValueID(C->getOperand(0)));
646         Record.push_back(VE.getValueID(C->getOperand(1)));
647         Record.push_back(VE.getValueID(C->getOperand(2)));
648         break;
649       case Instruction::ICmp:
650       case Instruction::FCmp:
651       case Instruction::VICmp:
652       case Instruction::VFCmp:
653         if (isa<VectorType>(C->getOperand(0)->getType())
654             && (CE->getOpcode() == Instruction::ICmp
655                 || CE->getOpcode() == Instruction::FCmp)) {
656           // compare returning vector of Int1Ty
657           assert(0 && "Unsupported constant!");
658         } else {
659           Code = bitc::CST_CODE_CE_CMP;
660         }
661         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
662         Record.push_back(VE.getValueID(C->getOperand(0)));
663         Record.push_back(VE.getValueID(C->getOperand(1)));
664         Record.push_back(CE->getPredicate());
665         break;
666       }
667     } else {
668       assert(0 && "Unknown constant!");
669     }
670     Stream.EmitRecord(Code, Record, AbbrevToUse);
671     Record.clear();
672   }
673
674   Stream.ExitBlock();
675 }
676
677 static void WriteModuleConstants(const ValueEnumerator &VE,
678                                  BitstreamWriter &Stream) {
679   const ValueEnumerator::ValueList &Vals = VE.getValues();
680   
681   // Find the first constant to emit, which is the first non-globalvalue value.
682   // We know globalvalues have been emitted by WriteModuleInfo.
683   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
684     if (!isa<GlobalValue>(Vals[i].first)) {
685       WriteConstants(i, Vals.size(), VE, Stream, true);
686       return;
687     }
688   }
689 }
690
691 /// PushValueAndType - The file has to encode both the value and type id for
692 /// many values, because we need to know what type to create for forward
693 /// references.  However, most operands are not forward references, so this type
694 /// field is not needed.
695 ///
696 /// This function adds V's value ID to Vals.  If the value ID is higher than the
697 /// instruction ID, then it is a forward reference, and it also includes the
698 /// type ID.
699 static bool PushValueAndType(Value *V, unsigned InstID,
700                              SmallVector<unsigned, 64> &Vals, 
701                              ValueEnumerator &VE) {
702   unsigned ValID = VE.getValueID(V);
703   Vals.push_back(ValID);
704   if (ValID >= InstID) {
705     Vals.push_back(VE.getTypeID(V->getType()));
706     return true;
707   }
708   return false;
709 }
710
711 /// WriteInstruction - Emit an instruction to the specified stream.
712 static void WriteInstruction(const Instruction &I, unsigned InstID,
713                              ValueEnumerator &VE, BitstreamWriter &Stream,
714                              SmallVector<unsigned, 64> &Vals) {
715   unsigned Code = 0;
716   unsigned AbbrevToUse = 0;
717   switch (I.getOpcode()) {
718   default:
719     if (Instruction::isCast(I.getOpcode())) {
720       Code = bitc::FUNC_CODE_INST_CAST;
721       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
722         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
723       Vals.push_back(VE.getTypeID(I.getType()));
724       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
725     } else {
726       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
727       Code = bitc::FUNC_CODE_INST_BINOP;
728       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
729         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
730       Vals.push_back(VE.getValueID(I.getOperand(1)));
731       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
732     }
733     break;
734
735   case Instruction::GetElementPtr:
736     Code = bitc::FUNC_CODE_INST_GEP;
737     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
738       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
739     break;
740   case Instruction::ExtractValue: {
741     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
742     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
743     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
744     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
745       Vals.push_back(*i);
746     break;
747   }
748   case Instruction::InsertValue: {
749     Code = bitc::FUNC_CODE_INST_INSERTVAL;
750     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
751     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
752     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
753     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
754       Vals.push_back(*i);
755     break;
756   }
757   case Instruction::Select:
758     Code = bitc::FUNC_CODE_INST_VSELECT;
759     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
760     Vals.push_back(VE.getValueID(I.getOperand(2)));
761     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
762     break;
763   case Instruction::ExtractElement:
764     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
765     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
766     Vals.push_back(VE.getValueID(I.getOperand(1)));
767     break;
768   case Instruction::InsertElement:
769     Code = bitc::FUNC_CODE_INST_INSERTELT;
770     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
771     Vals.push_back(VE.getValueID(I.getOperand(1)));
772     Vals.push_back(VE.getValueID(I.getOperand(2)));
773     break;
774   case Instruction::ShuffleVector:
775     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
776     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
777     Vals.push_back(VE.getValueID(I.getOperand(1)));
778     Vals.push_back(VE.getValueID(I.getOperand(2)));
779     break;
780   case Instruction::ICmp:
781   case Instruction::FCmp:
782   case Instruction::VICmp:
783   case Instruction::VFCmp:
784     if (I.getOpcode() == Instruction::ICmp
785         || I.getOpcode() == Instruction::FCmp) {
786       // compare returning Int1Ty or vector of Int1Ty
787       Code = bitc::FUNC_CODE_INST_CMP2;
788     } else {
789       Code = bitc::FUNC_CODE_INST_CMP;
790     }
791     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
792     Vals.push_back(VE.getValueID(I.getOperand(1)));
793     Vals.push_back(cast<CmpInst>(I).getPredicate());
794     break;
795
796   case Instruction::Ret: 
797     {
798       Code = bitc::FUNC_CODE_INST_RET;
799       unsigned NumOperands = I.getNumOperands();
800       if (NumOperands == 0)
801         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
802       else if (NumOperands == 1) {
803         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
804           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
805       } else {
806         for (unsigned i = 0, e = NumOperands; i != e; ++i)
807           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
808       }
809     }
810     break;
811   case Instruction::Br:
812     Code = bitc::FUNC_CODE_INST_BR;
813     Vals.push_back(VE.getValueID(I.getOperand(0)));
814     if (cast<BranchInst>(I).isConditional()) {
815       Vals.push_back(VE.getValueID(I.getOperand(1)));
816       Vals.push_back(VE.getValueID(I.getOperand(2)));
817     }
818     break;
819   case Instruction::Switch:
820     Code = bitc::FUNC_CODE_INST_SWITCH;
821     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
822     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
823       Vals.push_back(VE.getValueID(I.getOperand(i)));
824     break;
825   case Instruction::Invoke: {
826     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
827     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
828     Code = bitc::FUNC_CODE_INST_INVOKE;
829     
830     const InvokeInst *II = cast<InvokeInst>(&I);
831     Vals.push_back(VE.getAttributeID(II->getAttributes()));
832     Vals.push_back(II->getCallingConv());
833     Vals.push_back(VE.getValueID(I.getOperand(1)));      // normal dest
834     Vals.push_back(VE.getValueID(I.getOperand(2)));      // unwind dest
835     PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
836     
837     // Emit value #'s for the fixed parameters.
838     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
839       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
840
841     // Emit type/value pairs for varargs params.
842     if (FTy->isVarArg()) {
843       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
844            i != e; ++i)
845         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
846     }
847     break;
848   }
849   case Instruction::Unwind:
850     Code = bitc::FUNC_CODE_INST_UNWIND;
851     break;
852   case Instruction::Unreachable:
853     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
854     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
855     break;
856   
857   case Instruction::PHI:
858     Code = bitc::FUNC_CODE_INST_PHI;
859     Vals.push_back(VE.getTypeID(I.getType()));
860     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
861       Vals.push_back(VE.getValueID(I.getOperand(i)));
862     break;
863     
864   case Instruction::Malloc:
865     Code = bitc::FUNC_CODE_INST_MALLOC;
866     Vals.push_back(VE.getTypeID(I.getType()));
867     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
868     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
869     break;
870     
871   case Instruction::Free:
872     Code = bitc::FUNC_CODE_INST_FREE;
873     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
874     break;
875     
876   case Instruction::Alloca:
877     Code = bitc::FUNC_CODE_INST_ALLOCA;
878     Vals.push_back(VE.getTypeID(I.getType()));
879     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
880     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
881     break;
882     
883   case Instruction::Load:
884     Code = bitc::FUNC_CODE_INST_LOAD;
885     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
886       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
887       
888     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
889     Vals.push_back(cast<LoadInst>(I).isVolatile());
890     break;
891   case Instruction::Store:
892     Code = bitc::FUNC_CODE_INST_STORE2;
893     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
894     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
895     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
896     Vals.push_back(cast<StoreInst>(I).isVolatile());
897     break;
898   case Instruction::Call: {
899     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
900     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
901
902     Code = bitc::FUNC_CODE_INST_CALL;
903     
904     const CallInst *CI = cast<CallInst>(&I);
905     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
906     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
907     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
908     
909     // Emit value #'s for the fixed parameters.
910     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
911       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
912       
913     // Emit type/value pairs for varargs params.
914     if (FTy->isVarArg()) {
915       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
916       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
917            i != e; ++i)
918         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
919     }
920     break;
921   }
922   case Instruction::VAArg:
923     Code = bitc::FUNC_CODE_INST_VAARG;
924     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
925     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
926     Vals.push_back(VE.getTypeID(I.getType())); // restype.
927     break;
928   }
929   
930   Stream.EmitRecord(Code, Vals, AbbrevToUse);
931   Vals.clear();
932 }
933
934 // Emit names for globals/functions etc.
935 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
936                                   const ValueEnumerator &VE,
937                                   BitstreamWriter &Stream) {
938   if (VST.empty()) return;
939   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
940
941   // FIXME: Set up the abbrev, we know how many values there are!
942   // FIXME: We know if the type names can use 7-bit ascii.
943   SmallVector<unsigned, 64> NameVals;
944   
945   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
946        SI != SE; ++SI) {
947     
948     const ValueName &Name = *SI;
949     
950     // Figure out the encoding to use for the name.
951     bool is7Bit = true;
952     bool isChar6 = true;
953     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
954          C != E; ++C) {
955       if (isChar6) 
956         isChar6 = BitCodeAbbrevOp::isChar6(*C);
957       if ((unsigned char)*C & 128) {
958         is7Bit = false;
959         break;  // don't bother scanning the rest.
960       }
961     }
962     
963     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
964     
965     // VST_ENTRY:   [valueid, namechar x N]
966     // VST_BBENTRY: [bbid, namechar x N]
967     unsigned Code;
968     if (isa<BasicBlock>(SI->getValue())) {
969       Code = bitc::VST_CODE_BBENTRY;
970       if (isChar6)
971         AbbrevToUse = VST_BBENTRY_6_ABBREV;
972     } else {
973       Code = bitc::VST_CODE_ENTRY;
974       if (isChar6)
975         AbbrevToUse = VST_ENTRY_6_ABBREV;
976       else if (is7Bit)
977         AbbrevToUse = VST_ENTRY_7_ABBREV;
978     }
979     
980     NameVals.push_back(VE.getValueID(SI->getValue()));
981     for (const char *P = Name.getKeyData(),
982          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
983       NameVals.push_back((unsigned char)*P);
984     
985     // Emit the finished record.
986     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
987     NameVals.clear();
988   }
989   Stream.ExitBlock();
990 }
991
992 /// WriteFunction - Emit a function body to the module stream.
993 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
994                           BitstreamWriter &Stream) {
995   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
996   VE.incorporateFunction(F);
997
998   SmallVector<unsigned, 64> Vals;
999   
1000   // Emit the number of basic blocks, so the reader can create them ahead of
1001   // time.
1002   Vals.push_back(VE.getBasicBlocks().size());
1003   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1004   Vals.clear();
1005   
1006   // If there are function-local constants, emit them now.
1007   unsigned CstStart, CstEnd;
1008   VE.getFunctionConstantRange(CstStart, CstEnd);
1009   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1010   
1011   // Keep a running idea of what the instruction ID is. 
1012   unsigned InstID = CstEnd;
1013   
1014   // Finally, emit all the instructions, in order.
1015   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1016     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1017          I != E; ++I) {
1018       WriteInstruction(*I, InstID, VE, Stream, Vals);
1019       if (I->getType() != Type::VoidTy)
1020         ++InstID;
1021     }
1022   
1023   // Emit names for all the instructions etc.
1024   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1025     
1026   VE.purgeFunction();
1027   Stream.ExitBlock();
1028 }
1029
1030 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1031 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1032                                  const ValueEnumerator &VE,
1033                                  BitstreamWriter &Stream) {
1034   if (TST.empty()) return;
1035   
1036   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1037   
1038   // 7-bit fixed width VST_CODE_ENTRY strings.
1039   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1040   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1041   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1042                             Log2_32_Ceil(VE.getTypes().size()+1)));
1043   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1044   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1045   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1046   
1047   SmallVector<unsigned, 64> NameVals;
1048   
1049   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
1050        TI != TE; ++TI) {
1051     // TST_ENTRY: [typeid, namechar x N]
1052     NameVals.push_back(VE.getTypeID(TI->second));
1053     
1054     const std::string &Str = TI->first;
1055     bool is7Bit = true;
1056     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1057       NameVals.push_back((unsigned char)Str[i]);
1058       if (Str[i] & 128)
1059         is7Bit = false;
1060     }
1061     
1062     // Emit the finished record.
1063     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1064     NameVals.clear();
1065   }
1066   
1067   Stream.ExitBlock();
1068 }
1069
1070 // Emit blockinfo, which defines the standard abbreviations etc.
1071 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1072   // We only want to emit block info records for blocks that have multiple
1073   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1074   // blocks can defined their abbrevs inline.
1075   Stream.EnterBlockInfoBlock(2);
1076   
1077   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1078     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1079     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1080     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1081     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1082     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1083     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1084                                    Abbv) != VST_ENTRY_8_ABBREV)
1085       assert(0 && "Unexpected abbrev ordering!");
1086   }
1087   
1088   { // 7-bit fixed width VST_ENTRY strings.
1089     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1090     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1091     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1092     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1093     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1094     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1095                                    Abbv) != VST_ENTRY_7_ABBREV)
1096       assert(0 && "Unexpected abbrev ordering!");
1097   }
1098   { // 6-bit char6 VST_ENTRY strings.
1099     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1100     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1101     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1102     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1103     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1104     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1105                                    Abbv) != VST_ENTRY_6_ABBREV)
1106       assert(0 && "Unexpected abbrev ordering!");
1107   }
1108   { // 6-bit char6 VST_BBENTRY strings.
1109     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1110     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1111     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1112     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1113     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1114     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1115                                    Abbv) != VST_BBENTRY_6_ABBREV)
1116       assert(0 && "Unexpected abbrev ordering!");
1117   }
1118   
1119   
1120   
1121   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1122     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1123     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1124     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1125                               Log2_32_Ceil(VE.getTypes().size()+1)));
1126     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1127                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1128       assert(0 && "Unexpected abbrev ordering!");
1129   }
1130   
1131   { // INTEGER abbrev for CONSTANTS_BLOCK.
1132     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1133     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1134     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1135     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1136                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1137       assert(0 && "Unexpected abbrev ordering!");
1138   }
1139   
1140   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1141     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1142     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1143     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1144     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1145                               Log2_32_Ceil(VE.getTypes().size()+1)));
1146     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1147
1148     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1149                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1150       assert(0 && "Unexpected abbrev ordering!");
1151   }
1152   { // NULL abbrev for CONSTANTS_BLOCK.
1153     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1154     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1155     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1156                                    Abbv) != CONSTANTS_NULL_Abbrev)
1157       assert(0 && "Unexpected abbrev ordering!");
1158   }
1159   
1160   // FIXME: This should only use space for first class types!
1161  
1162   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1163     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1164     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1165     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1166     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1167     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1168     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1169                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1170       assert(0 && "Unexpected abbrev ordering!");
1171   }
1172   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1173     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1174     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1176     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1177     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1178     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1179                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1180       assert(0 && "Unexpected abbrev ordering!");
1181   }
1182   { // INST_CAST abbrev for FUNCTION_BLOCK.
1183     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1184     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1185     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1186     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1187                               Log2_32_Ceil(VE.getTypes().size()+1)));
1188     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1189     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1190                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1191       assert(0 && "Unexpected abbrev ordering!");
1192   }
1193   
1194   { // INST_RET abbrev for FUNCTION_BLOCK.
1195     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1196     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1197     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1198                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1199       assert(0 && "Unexpected abbrev ordering!");
1200   }
1201   { // INST_RET abbrev for FUNCTION_BLOCK.
1202     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1203     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1204     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1205     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1206                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1207       assert(0 && "Unexpected abbrev ordering!");
1208   }
1209   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1210     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1211     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1212     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1213                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1214       assert(0 && "Unexpected abbrev ordering!");
1215   }
1216   
1217   Stream.ExitBlock();
1218 }
1219
1220
1221 /// WriteModule - Emit the specified module to the bitstream.
1222 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1223   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1224   
1225   // Emit the version number if it is non-zero.
1226   if (CurVersion) {
1227     SmallVector<unsigned, 1> Vals;
1228     Vals.push_back(CurVersion);
1229     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1230   }
1231   
1232   // Analyze the module, enumerating globals, functions, etc.
1233   ValueEnumerator VE(M);
1234
1235   // Emit blockinfo, which defines the standard abbreviations etc.
1236   WriteBlockInfo(VE, Stream);
1237   
1238   // Emit information about parameter attributes.
1239   WriteAttributeTable(VE, Stream);
1240   
1241   // Emit information describing all of the types in the module.
1242   WriteTypeTable(VE, Stream);
1243   
1244   // Emit top-level description of module, including target triple, inline asm,
1245   // descriptors for global variables, and function prototype info.
1246   WriteModuleInfo(M, VE, Stream);
1247   
1248   // Emit constants.
1249   WriteModuleConstants(VE, Stream);
1250   
1251   // If we have any aggregate values in the value table, purge them - these can
1252   // only be used to initialize global variables.  Doing so makes the value
1253   // namespace smaller for code in functions.
1254   int NumNonAggregates = VE.PurgeAggregateValues();
1255   if (NumNonAggregates != -1) {
1256     SmallVector<unsigned, 1> Vals;
1257     Vals.push_back(NumNonAggregates);
1258     Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1259   }
1260   
1261   // Emit function bodies.
1262   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1263     if (!I->isDeclaration())
1264       WriteFunction(*I, VE, Stream);
1265   
1266   // Emit the type symbol table information.
1267   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1268   
1269   // Emit names for globals/functions etc.
1270   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1271   
1272   Stream.ExitBlock();
1273 }
1274
1275 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1276 /// header and trailer to make it compatible with the system archiver.  To do
1277 /// this we emit the following header, and then emit a trailer that pads the
1278 /// file out to be a multiple of 16 bytes.
1279 /// 
1280 /// struct bc_header {
1281 ///   uint32_t Magic;         // 0x0B17C0DE
1282 ///   uint32_t Version;       // Version, currently always 0.
1283 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1284 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1285 ///   uint32_t CPUType;       // CPU specifier.
1286 ///   ... potentially more later ...
1287 /// };
1288 enum {
1289   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1290   DarwinBCHeaderSize = 5*4
1291 };
1292
1293 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1294                                const std::string &TT) {
1295   unsigned CPUType = ~0U;
1296   
1297   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1298   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1299   // specific constants here because they are implicitly part of the Darwin ABI.
1300   enum {
1301     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1302     DARWIN_CPU_TYPE_X86        = 7,
1303     DARWIN_CPU_TYPE_POWERPC    = 18
1304   };
1305   
1306   if (TT.find("x86_64-") == 0)
1307     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1308   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1309            TT[4] == '-' && TT[1] - '3' < 6)
1310     CPUType = DARWIN_CPU_TYPE_X86;
1311   else if (TT.find("powerpc-") == 0)
1312     CPUType = DARWIN_CPU_TYPE_POWERPC;
1313   else if (TT.find("powerpc64-") == 0)
1314     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1315   
1316   // Traditional Bitcode starts after header.
1317   unsigned BCOffset = DarwinBCHeaderSize;
1318   
1319   Stream.Emit(0x0B17C0DE, 32);
1320   Stream.Emit(0         , 32);  // Version.
1321   Stream.Emit(BCOffset  , 32);
1322   Stream.Emit(0         , 32);  // Filled in later.
1323   Stream.Emit(CPUType   , 32);
1324 }
1325
1326 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1327 /// finalize the header.
1328 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1329   // Update the size field in the header.
1330   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1331   
1332   // If the file is not a multiple of 16 bytes, insert dummy padding.
1333   while (BufferSize & 15) {
1334     Stream.Emit(0, 8);
1335     ++BufferSize;
1336   }
1337 }
1338
1339
1340 /// WriteBitcodeToFile - Write the specified module to the specified output
1341 /// stream.
1342 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1343   raw_os_ostream RawOut(Out);
1344   // If writing to stdout, set binary mode.
1345   if (llvm::cout == Out)
1346     sys::Program::ChangeStdoutToBinary();
1347   WriteBitcodeToFile(M, RawOut);
1348 }
1349
1350 /// WriteBitcodeToFile - Write the specified module to the specified output
1351 /// stream.
1352 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1353   std::vector<unsigned char> Buffer;
1354   BitstreamWriter Stream(Buffer);
1355   
1356   Buffer.reserve(256*1024);
1357   
1358   // If this is darwin, emit a file header and trailer if needed.
1359   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1360   if (isDarwin)
1361     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1362   
1363   // Emit the file header.
1364   Stream.Emit((unsigned)'B', 8);
1365   Stream.Emit((unsigned)'C', 8);
1366   Stream.Emit(0x0, 4);
1367   Stream.Emit(0xC, 4);
1368   Stream.Emit(0xE, 4);
1369   Stream.Emit(0xD, 4);
1370
1371   // Emit the module.
1372   WriteModule(M, Stream);
1373
1374   if (isDarwin)
1375     EmitDarwinBCTrailer(Stream, Buffer.size());
1376
1377   
1378   // If writing to stdout, set binary mode.
1379   if (&llvm::outs() == &Out)
1380     sys::Program::ChangeStdoutToBinary();
1381
1382   // Write the generated bitstream to "Out".
1383   Out.write((char*)&Buffer.front(), Buffer.size());
1384   
1385   // Make sure it hits disk now.
1386   Out.flush();
1387 }