IR: Split out DebugInfoMetadata.h, NFC
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/UseListOrder.h"
27 #include "llvm/IR/ValueSymbolTable.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/Program.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <cctype>
34 #include <map>
35 using namespace llvm;
36
37 /// These are manifest constants used by the bitcode writer. They do not need to
38 /// be kept in sync with the reader, but need to be consistent within this file.
39 enum {
40   // VALUE_SYMTAB_BLOCK abbrev id's.
41   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42   VST_ENTRY_7_ABBREV,
43   VST_ENTRY_6_ABBREV,
44   VST_BBENTRY_6_ABBREV,
45
46   // CONSTANTS_BLOCK abbrev id's.
47   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48   CONSTANTS_INTEGER_ABBREV,
49   CONSTANTS_CE_CAST_Abbrev,
50   CONSTANTS_NULL_Abbrev,
51
52   // FUNCTION_BLOCK abbrev id's.
53   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54   FUNCTION_INST_BINOP_ABBREV,
55   FUNCTION_INST_BINOP_FLAGS_ABBREV,
56   FUNCTION_INST_CAST_ABBREV,
57   FUNCTION_INST_RET_VOID_ABBREV,
58   FUNCTION_INST_RET_VAL_ABBREV,
59   FUNCTION_INST_UNREACHABLE_ABBREV
60 };
61
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
78   }
79 }
80
81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
82   switch (Opcode) {
83   default: llvm_unreachable("Unknown binary instruction!");
84   case Instruction::Add:
85   case Instruction::FAdd: return bitc::BINOP_ADD;
86   case Instruction::Sub:
87   case Instruction::FSub: return bitc::BINOP_SUB;
88   case Instruction::Mul:
89   case Instruction::FMul: return bitc::BINOP_MUL;
90   case Instruction::UDiv: return bitc::BINOP_UDIV;
91   case Instruction::FDiv:
92   case Instruction::SDiv: return bitc::BINOP_SDIV;
93   case Instruction::URem: return bitc::BINOP_UREM;
94   case Instruction::FRem:
95   case Instruction::SRem: return bitc::BINOP_SREM;
96   case Instruction::Shl:  return bitc::BINOP_SHL;
97   case Instruction::LShr: return bitc::BINOP_LSHR;
98   case Instruction::AShr: return bitc::BINOP_ASHR;
99   case Instruction::And:  return bitc::BINOP_AND;
100   case Instruction::Or:   return bitc::BINOP_OR;
101   case Instruction::Xor:  return bitc::BINOP_XOR;
102   }
103 }
104
105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
106   switch (Op) {
107   default: llvm_unreachable("Unknown RMW operation!");
108   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
109   case AtomicRMWInst::Add: return bitc::RMW_ADD;
110   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
111   case AtomicRMWInst::And: return bitc::RMW_AND;
112   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
113   case AtomicRMWInst::Or: return bitc::RMW_OR;
114   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
115   case AtomicRMWInst::Max: return bitc::RMW_MAX;
116   case AtomicRMWInst::Min: return bitc::RMW_MIN;
117   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
118   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
119   }
120 }
121
122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
123   switch (Ordering) {
124   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
125   case Unordered: return bitc::ORDERING_UNORDERED;
126   case Monotonic: return bitc::ORDERING_MONOTONIC;
127   case Acquire: return bitc::ORDERING_ACQUIRE;
128   case Release: return bitc::ORDERING_RELEASE;
129   case AcquireRelease: return bitc::ORDERING_ACQREL;
130   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
131   }
132   llvm_unreachable("Invalid ordering");
133 }
134
135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
136   switch (SynchScope) {
137   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
138   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
139   }
140   llvm_unreachable("Invalid synch scope");
141 }
142
143 static void WriteStringRecord(unsigned Code, StringRef Str,
144                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
145   SmallVector<unsigned, 64> Vals;
146
147   // Code: [strchar x N]
148   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
149     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
150       AbbrevToUse = 0;
151     Vals.push_back(Str[i]);
152   }
153
154   // Emit the finished record.
155   Stream.EmitRecord(Code, Vals, AbbrevToUse);
156 }
157
158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
159   switch (Kind) {
160   case Attribute::Alignment:
161     return bitc::ATTR_KIND_ALIGNMENT;
162   case Attribute::AlwaysInline:
163     return bitc::ATTR_KIND_ALWAYS_INLINE;
164   case Attribute::Builtin:
165     return bitc::ATTR_KIND_BUILTIN;
166   case Attribute::ByVal:
167     return bitc::ATTR_KIND_BY_VAL;
168   case Attribute::InAlloca:
169     return bitc::ATTR_KIND_IN_ALLOCA;
170   case Attribute::Cold:
171     return bitc::ATTR_KIND_COLD;
172   case Attribute::InlineHint:
173     return bitc::ATTR_KIND_INLINE_HINT;
174   case Attribute::InReg:
175     return bitc::ATTR_KIND_IN_REG;
176   case Attribute::JumpTable:
177     return bitc::ATTR_KIND_JUMP_TABLE;
178   case Attribute::MinSize:
179     return bitc::ATTR_KIND_MIN_SIZE;
180   case Attribute::Naked:
181     return bitc::ATTR_KIND_NAKED;
182   case Attribute::Nest:
183     return bitc::ATTR_KIND_NEST;
184   case Attribute::NoAlias:
185     return bitc::ATTR_KIND_NO_ALIAS;
186   case Attribute::NoBuiltin:
187     return bitc::ATTR_KIND_NO_BUILTIN;
188   case Attribute::NoCapture:
189     return bitc::ATTR_KIND_NO_CAPTURE;
190   case Attribute::NoDuplicate:
191     return bitc::ATTR_KIND_NO_DUPLICATE;
192   case Attribute::NoImplicitFloat:
193     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
194   case Attribute::NoInline:
195     return bitc::ATTR_KIND_NO_INLINE;
196   case Attribute::NonLazyBind:
197     return bitc::ATTR_KIND_NON_LAZY_BIND;
198   case Attribute::NonNull:
199     return bitc::ATTR_KIND_NON_NULL;
200   case Attribute::Dereferenceable:
201     return bitc::ATTR_KIND_DEREFERENCEABLE;
202   case Attribute::NoRedZone:
203     return bitc::ATTR_KIND_NO_RED_ZONE;
204   case Attribute::NoReturn:
205     return bitc::ATTR_KIND_NO_RETURN;
206   case Attribute::NoUnwind:
207     return bitc::ATTR_KIND_NO_UNWIND;
208   case Attribute::OptimizeForSize:
209     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
210   case Attribute::OptimizeNone:
211     return bitc::ATTR_KIND_OPTIMIZE_NONE;
212   case Attribute::ReadNone:
213     return bitc::ATTR_KIND_READ_NONE;
214   case Attribute::ReadOnly:
215     return bitc::ATTR_KIND_READ_ONLY;
216   case Attribute::Returned:
217     return bitc::ATTR_KIND_RETURNED;
218   case Attribute::ReturnsTwice:
219     return bitc::ATTR_KIND_RETURNS_TWICE;
220   case Attribute::SExt:
221     return bitc::ATTR_KIND_S_EXT;
222   case Attribute::StackAlignment:
223     return bitc::ATTR_KIND_STACK_ALIGNMENT;
224   case Attribute::StackProtect:
225     return bitc::ATTR_KIND_STACK_PROTECT;
226   case Attribute::StackProtectReq:
227     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
228   case Attribute::StackProtectStrong:
229     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
230   case Attribute::StructRet:
231     return bitc::ATTR_KIND_STRUCT_RET;
232   case Attribute::SanitizeAddress:
233     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
234   case Attribute::SanitizeThread:
235     return bitc::ATTR_KIND_SANITIZE_THREAD;
236   case Attribute::SanitizeMemory:
237     return bitc::ATTR_KIND_SANITIZE_MEMORY;
238   case Attribute::UWTable:
239     return bitc::ATTR_KIND_UW_TABLE;
240   case Attribute::ZExt:
241     return bitc::ATTR_KIND_Z_EXT;
242   case Attribute::EndAttrKinds:
243     llvm_unreachable("Can not encode end-attribute kinds marker.");
244   case Attribute::None:
245     llvm_unreachable("Can not encode none-attribute.");
246   }
247
248   llvm_unreachable("Trying to encode unknown attribute");
249 }
250
251 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
252                                      BitstreamWriter &Stream) {
253   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
254   if (AttrGrps.empty()) return;
255
256   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
257
258   SmallVector<uint64_t, 64> Record;
259   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
260     AttributeSet AS = AttrGrps[i];
261     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
262       AttributeSet A = AS.getSlotAttributes(i);
263
264       Record.push_back(VE.getAttributeGroupID(A));
265       Record.push_back(AS.getSlotIndex(i));
266
267       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
268            I != E; ++I) {
269         Attribute Attr = *I;
270         if (Attr.isEnumAttribute()) {
271           Record.push_back(0);
272           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
273         } else if (Attr.isIntAttribute()) {
274           Record.push_back(1);
275           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
276           Record.push_back(Attr.getValueAsInt());
277         } else {
278           StringRef Kind = Attr.getKindAsString();
279           StringRef Val = Attr.getValueAsString();
280
281           Record.push_back(Val.empty() ? 3 : 4);
282           Record.append(Kind.begin(), Kind.end());
283           Record.push_back(0);
284           if (!Val.empty()) {
285             Record.append(Val.begin(), Val.end());
286             Record.push_back(0);
287           }
288         }
289       }
290
291       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
292       Record.clear();
293     }
294   }
295
296   Stream.ExitBlock();
297 }
298
299 static void WriteAttributeTable(const ValueEnumerator &VE,
300                                 BitstreamWriter &Stream) {
301   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
302   if (Attrs.empty()) return;
303
304   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
305
306   SmallVector<uint64_t, 64> Record;
307   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
308     const AttributeSet &A = Attrs[i];
309     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
310       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
311
312     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
313     Record.clear();
314   }
315
316   Stream.ExitBlock();
317 }
318
319 /// WriteTypeTable - Write out the type table for a module.
320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
321   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
322
323   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
324   SmallVector<uint64_t, 64> TypeVals;
325
326   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
327
328   // Abbrev for TYPE_CODE_POINTER.
329   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
330   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
331   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
332   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
333   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
334
335   // Abbrev for TYPE_CODE_FUNCTION.
336   Abbv = new BitCodeAbbrev();
337   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
340   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
341
342   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
343
344   // Abbrev for TYPE_CODE_STRUCT_ANON.
345   Abbv = new BitCodeAbbrev();
346   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
349   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
350
351   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
352
353   // Abbrev for TYPE_CODE_STRUCT_NAME.
354   Abbv = new BitCodeAbbrev();
355   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
357   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
358   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
359
360   // Abbrev for TYPE_CODE_STRUCT_NAMED.
361   Abbv = new BitCodeAbbrev();
362   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
366
367   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
368
369   // Abbrev for TYPE_CODE_ARRAY.
370   Abbv = new BitCodeAbbrev();
371   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
374
375   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
376
377   // Emit an entry count so the reader can reserve space.
378   TypeVals.push_back(TypeList.size());
379   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
380   TypeVals.clear();
381
382   // Loop over all of the types, emitting each in turn.
383   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
384     Type *T = TypeList[i];
385     int AbbrevToUse = 0;
386     unsigned Code = 0;
387
388     switch (T->getTypeID()) {
389     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
390     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
391     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
392     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
393     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
394     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
395     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
396     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
397     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
398     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
399     case Type::IntegerTyID:
400       // INTEGER: [width]
401       Code = bitc::TYPE_CODE_INTEGER;
402       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
403       break;
404     case Type::PointerTyID: {
405       PointerType *PTy = cast<PointerType>(T);
406       // POINTER: [pointee type, address space]
407       Code = bitc::TYPE_CODE_POINTER;
408       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
409       unsigned AddressSpace = PTy->getAddressSpace();
410       TypeVals.push_back(AddressSpace);
411       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
412       break;
413     }
414     case Type::FunctionTyID: {
415       FunctionType *FT = cast<FunctionType>(T);
416       // FUNCTION: [isvararg, retty, paramty x N]
417       Code = bitc::TYPE_CODE_FUNCTION;
418       TypeVals.push_back(FT->isVarArg());
419       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
420       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
421         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
422       AbbrevToUse = FunctionAbbrev;
423       break;
424     }
425     case Type::StructTyID: {
426       StructType *ST = cast<StructType>(T);
427       // STRUCT: [ispacked, eltty x N]
428       TypeVals.push_back(ST->isPacked());
429       // Output all of the element types.
430       for (StructType::element_iterator I = ST->element_begin(),
431            E = ST->element_end(); I != E; ++I)
432         TypeVals.push_back(VE.getTypeID(*I));
433
434       if (ST->isLiteral()) {
435         Code = bitc::TYPE_CODE_STRUCT_ANON;
436         AbbrevToUse = StructAnonAbbrev;
437       } else {
438         if (ST->isOpaque()) {
439           Code = bitc::TYPE_CODE_OPAQUE;
440         } else {
441           Code = bitc::TYPE_CODE_STRUCT_NAMED;
442           AbbrevToUse = StructNamedAbbrev;
443         }
444
445         // Emit the name if it is present.
446         if (!ST->getName().empty())
447           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
448                             StructNameAbbrev, Stream);
449       }
450       break;
451     }
452     case Type::ArrayTyID: {
453       ArrayType *AT = cast<ArrayType>(T);
454       // ARRAY: [numelts, eltty]
455       Code = bitc::TYPE_CODE_ARRAY;
456       TypeVals.push_back(AT->getNumElements());
457       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
458       AbbrevToUse = ArrayAbbrev;
459       break;
460     }
461     case Type::VectorTyID: {
462       VectorType *VT = cast<VectorType>(T);
463       // VECTOR [numelts, eltty]
464       Code = bitc::TYPE_CODE_VECTOR;
465       TypeVals.push_back(VT->getNumElements());
466       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
467       break;
468     }
469     }
470
471     // Emit the finished record.
472     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
473     TypeVals.clear();
474   }
475
476   Stream.ExitBlock();
477 }
478
479 static unsigned getEncodedLinkage(const GlobalValue &GV) {
480   switch (GV.getLinkage()) {
481   case GlobalValue::ExternalLinkage:
482     return 0;
483   case GlobalValue::WeakAnyLinkage:
484     return 16;
485   case GlobalValue::AppendingLinkage:
486     return 2;
487   case GlobalValue::InternalLinkage:
488     return 3;
489   case GlobalValue::LinkOnceAnyLinkage:
490     return 18;
491   case GlobalValue::ExternalWeakLinkage:
492     return 7;
493   case GlobalValue::CommonLinkage:
494     return 8;
495   case GlobalValue::PrivateLinkage:
496     return 9;
497   case GlobalValue::WeakODRLinkage:
498     return 17;
499   case GlobalValue::LinkOnceODRLinkage:
500     return 19;
501   case GlobalValue::AvailableExternallyLinkage:
502     return 12;
503   }
504   llvm_unreachable("Invalid linkage");
505 }
506
507 static unsigned getEncodedVisibility(const GlobalValue &GV) {
508   switch (GV.getVisibility()) {
509   case GlobalValue::DefaultVisibility:   return 0;
510   case GlobalValue::HiddenVisibility:    return 1;
511   case GlobalValue::ProtectedVisibility: return 2;
512   }
513   llvm_unreachable("Invalid visibility");
514 }
515
516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
517   switch (GV.getDLLStorageClass()) {
518   case GlobalValue::DefaultStorageClass:   return 0;
519   case GlobalValue::DLLImportStorageClass: return 1;
520   case GlobalValue::DLLExportStorageClass: return 2;
521   }
522   llvm_unreachable("Invalid DLL storage class");
523 }
524
525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
526   switch (GV.getThreadLocalMode()) {
527     case GlobalVariable::NotThreadLocal:         return 0;
528     case GlobalVariable::GeneralDynamicTLSModel: return 1;
529     case GlobalVariable::LocalDynamicTLSModel:   return 2;
530     case GlobalVariable::InitialExecTLSModel:    return 3;
531     case GlobalVariable::LocalExecTLSModel:      return 4;
532   }
533   llvm_unreachable("Invalid TLS model");
534 }
535
536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
537   switch (C.getSelectionKind()) {
538   case Comdat::Any:
539     return bitc::COMDAT_SELECTION_KIND_ANY;
540   case Comdat::ExactMatch:
541     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
542   case Comdat::Largest:
543     return bitc::COMDAT_SELECTION_KIND_LARGEST;
544   case Comdat::NoDuplicates:
545     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
546   case Comdat::SameSize:
547     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
548   }
549   llvm_unreachable("Invalid selection kind");
550 }
551
552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
553   SmallVector<uint16_t, 64> Vals;
554   for (const Comdat *C : VE.getComdats()) {
555     // COMDAT: [selection_kind, name]
556     Vals.push_back(getEncodedComdatSelectionKind(*C));
557     size_t Size = C->getName().size();
558     assert(isUInt<16>(Size));
559     Vals.push_back(Size);
560     for (char Chr : C->getName())
561       Vals.push_back((unsigned char)Chr);
562     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
563     Vals.clear();
564   }
565 }
566
567 // Emit top-level description of module, including target triple, inline asm,
568 // descriptors for global variables, and function prototype info.
569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
570                             BitstreamWriter &Stream) {
571   // Emit various pieces of data attached to a module.
572   if (!M->getTargetTriple().empty())
573     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
574                       0/*TODO*/, Stream);
575   const std::string &DL = M->getDataLayoutStr();
576   if (!DL.empty())
577     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
578   if (!M->getModuleInlineAsm().empty())
579     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
580                       0/*TODO*/, Stream);
581
582   // Emit information about sections and GC, computing how many there are. Also
583   // compute the maximum alignment value.
584   std::map<std::string, unsigned> SectionMap;
585   std::map<std::string, unsigned> GCMap;
586   unsigned MaxAlignment = 0;
587   unsigned MaxGlobalType = 0;
588   for (const GlobalValue &GV : M->globals()) {
589     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
590     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
591     if (GV.hasSection()) {
592       // Give section names unique ID's.
593       unsigned &Entry = SectionMap[GV.getSection()];
594       if (!Entry) {
595         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
596                           0/*TODO*/, Stream);
597         Entry = SectionMap.size();
598       }
599     }
600   }
601   for (const Function &F : *M) {
602     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
603     if (F.hasSection()) {
604       // Give section names unique ID's.
605       unsigned &Entry = SectionMap[F.getSection()];
606       if (!Entry) {
607         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
608                           0/*TODO*/, Stream);
609         Entry = SectionMap.size();
610       }
611     }
612     if (F.hasGC()) {
613       // Same for GC names.
614       unsigned &Entry = GCMap[F.getGC()];
615       if (!Entry) {
616         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
617                           0/*TODO*/, Stream);
618         Entry = GCMap.size();
619       }
620     }
621   }
622
623   // Emit abbrev for globals, now that we know # sections and max alignment.
624   unsigned SimpleGVarAbbrev = 0;
625   if (!M->global_empty()) {
626     // Add an abbrev for common globals with no visibility or thread localness.
627     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
628     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
629     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
630                               Log2_32_Ceil(MaxGlobalType+1)));
631     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
632     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
633     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5));      // Linkage.
634     if (MaxAlignment == 0)                                      // Alignment.
635       Abbv->Add(BitCodeAbbrevOp(0));
636     else {
637       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
638       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
639                                Log2_32_Ceil(MaxEncAlignment+1)));
640     }
641     if (SectionMap.empty())                                    // Section.
642       Abbv->Add(BitCodeAbbrevOp(0));
643     else
644       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
645                                Log2_32_Ceil(SectionMap.size()+1)));
646     // Don't bother emitting vis + thread local.
647     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
648   }
649
650   // Emit the global variable information.
651   SmallVector<unsigned, 64> Vals;
652   for (const GlobalVariable &GV : M->globals()) {
653     unsigned AbbrevToUse = 0;
654
655     // GLOBALVAR: [type, isconst, initid,
656     //             linkage, alignment, section, visibility, threadlocal,
657     //             unnamed_addr, externally_initialized, dllstorageclass]
658     Vals.push_back(VE.getTypeID(GV.getType()));
659     Vals.push_back(GV.isConstant());
660     Vals.push_back(GV.isDeclaration() ? 0 :
661                    (VE.getValueID(GV.getInitializer()) + 1));
662     Vals.push_back(getEncodedLinkage(GV));
663     Vals.push_back(Log2_32(GV.getAlignment())+1);
664     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
665     if (GV.isThreadLocal() ||
666         GV.getVisibility() != GlobalValue::DefaultVisibility ||
667         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
668         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
669         GV.hasComdat()) {
670       Vals.push_back(getEncodedVisibility(GV));
671       Vals.push_back(getEncodedThreadLocalMode(GV));
672       Vals.push_back(GV.hasUnnamedAddr());
673       Vals.push_back(GV.isExternallyInitialized());
674       Vals.push_back(getEncodedDLLStorageClass(GV));
675       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
676     } else {
677       AbbrevToUse = SimpleGVarAbbrev;
678     }
679
680     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
681     Vals.clear();
682   }
683
684   // Emit the function proto information.
685   for (const Function &F : *M) {
686     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
687     //             section, visibility, gc, unnamed_addr, prologuedata,
688     //             dllstorageclass, comdat, prefixdata]
689     Vals.push_back(VE.getTypeID(F.getType()));
690     Vals.push_back(F.getCallingConv());
691     Vals.push_back(F.isDeclaration());
692     Vals.push_back(getEncodedLinkage(F));
693     Vals.push_back(VE.getAttributeID(F.getAttributes()));
694     Vals.push_back(Log2_32(F.getAlignment())+1);
695     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
696     Vals.push_back(getEncodedVisibility(F));
697     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
698     Vals.push_back(F.hasUnnamedAddr());
699     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
700                                        : 0);
701     Vals.push_back(getEncodedDLLStorageClass(F));
702     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
703     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
704                                      : 0);
705
706     unsigned AbbrevToUse = 0;
707     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
708     Vals.clear();
709   }
710
711   // Emit the alias information.
712   for (const GlobalAlias &A : M->aliases()) {
713     // ALIAS: [alias type, aliasee val#, linkage, visibility]
714     Vals.push_back(VE.getTypeID(A.getType()));
715     Vals.push_back(VE.getValueID(A.getAliasee()));
716     Vals.push_back(getEncodedLinkage(A));
717     Vals.push_back(getEncodedVisibility(A));
718     Vals.push_back(getEncodedDLLStorageClass(A));
719     Vals.push_back(getEncodedThreadLocalMode(A));
720     Vals.push_back(A.hasUnnamedAddr());
721     unsigned AbbrevToUse = 0;
722     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
723     Vals.clear();
724   }
725 }
726
727 static uint64_t GetOptimizationFlags(const Value *V) {
728   uint64_t Flags = 0;
729
730   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
731     if (OBO->hasNoSignedWrap())
732       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
733     if (OBO->hasNoUnsignedWrap())
734       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
735   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
736     if (PEO->isExact())
737       Flags |= 1 << bitc::PEO_EXACT;
738   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
739     if (FPMO->hasUnsafeAlgebra())
740       Flags |= FastMathFlags::UnsafeAlgebra;
741     if (FPMO->hasNoNaNs())
742       Flags |= FastMathFlags::NoNaNs;
743     if (FPMO->hasNoInfs())
744       Flags |= FastMathFlags::NoInfs;
745     if (FPMO->hasNoSignedZeros())
746       Flags |= FastMathFlags::NoSignedZeros;
747     if (FPMO->hasAllowReciprocal())
748       Flags |= FastMathFlags::AllowReciprocal;
749   }
750
751   return Flags;
752 }
753
754 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
755                                  const ValueEnumerator &VE,
756                                  BitstreamWriter &Stream,
757                                  SmallVectorImpl<uint64_t> &Record) {
758   // Mimic an MDNode with a value as one operand.
759   Value *V = MD->getValue();
760   Record.push_back(VE.getTypeID(V->getType()));
761   Record.push_back(VE.getValueID(V));
762   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
763   Record.clear();
764 }
765
766 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
767                          BitstreamWriter &Stream,
768                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
769   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
770     Metadata *MD = N->getOperand(i);
771     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
772            "Unexpected function-local metadata");
773     Record.push_back(VE.getMetadataOrNullID(MD));
774   }
775   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
776                                     : bitc::METADATA_NODE,
777                     Record, Abbrev);
778   Record.clear();
779 }
780
781 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE,
782                             BitstreamWriter &Stream,
783                             SmallVectorImpl<uint64_t> &Record,
784                             unsigned Abbrev) {
785   Record.push_back(N->isDistinct());
786   Record.push_back(N->getLine());
787   Record.push_back(N->getColumn());
788   Record.push_back(VE.getMetadataID(N->getScope()));
789   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
790
791   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
792   Record.clear();
793 }
794
795 static void WriteGenericDebugNode(const GenericDebugNode *,
796                                   const ValueEnumerator &, BitstreamWriter &,
797                                   SmallVectorImpl<uint64_t> &, unsigned) {
798   llvm_unreachable("unimplemented");
799 }
800
801 static void WriteModuleMetadata(const Module *M,
802                                 const ValueEnumerator &VE,
803                                 BitstreamWriter &Stream) {
804   const auto &MDs = VE.getMDs();
805   if (MDs.empty() && M->named_metadata_empty())
806     return;
807
808   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
809
810   unsigned MDSAbbrev = 0;
811   if (VE.hasMDString()) {
812     // Abbrev for METADATA_STRING.
813     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
814     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
815     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
816     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
817     MDSAbbrev = Stream.EmitAbbrev(Abbv);
818   }
819
820   unsigned MDLocationAbbrev = 0;
821   if (VE.hasMDLocation()) {
822     // Abbrev for METADATA_LOCATION.
823     //
824     // Assume the column is usually under 128, and always output the inlined-at
825     // location (it's never more expensive than building an array size 1).
826     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
827     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
828     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
829     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
830     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
831     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
832     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
833     MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
834   }
835
836   unsigned NameAbbrev = 0;
837   if (!M->named_metadata_empty()) {
838     // Abbrev for METADATA_NAME.
839     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
840     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
841     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
842     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
843     NameAbbrev = Stream.EmitAbbrev(Abbv);
844   }
845
846   unsigned MDTupleAbbrev = 0;
847   unsigned GenericDebugNodeAbbrev = 0;
848   SmallVector<uint64_t, 64> Record;
849   for (const Metadata *MD : MDs) {
850     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
851       switch (N->getMetadataID()) {
852       default:
853         llvm_unreachable("Invalid MDNode subclass");
854 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
855   case Metadata::CLASS##Kind:                                                  \
856     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
857     continue;
858 #include "llvm/IR/Metadata.def"
859       }
860     }
861     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
862       WriteValueAsMetadata(MDC, VE, Stream, Record);
863       continue;
864     }
865     const MDString *MDS = cast<MDString>(MD);
866     // Code: [strchar x N]
867     Record.append(MDS->bytes_begin(), MDS->bytes_end());
868
869     // Emit the finished record.
870     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
871     Record.clear();
872   }
873
874   // Write named metadata.
875   for (const NamedMDNode &NMD : M->named_metadata()) {
876     // Write name.
877     StringRef Str = NMD.getName();
878     Record.append(Str.bytes_begin(), Str.bytes_end());
879     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
880     Record.clear();
881
882     // Write named metadata operands.
883     for (const MDNode *N : NMD.operands())
884       Record.push_back(VE.getMetadataID(N));
885     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
886     Record.clear();
887   }
888
889   Stream.ExitBlock();
890 }
891
892 static void WriteFunctionLocalMetadata(const Function &F,
893                                        const ValueEnumerator &VE,
894                                        BitstreamWriter &Stream) {
895   bool StartedMetadataBlock = false;
896   SmallVector<uint64_t, 64> Record;
897   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
898       VE.getFunctionLocalMDs();
899   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
900     assert(MDs[i] && "Expected valid function-local metadata");
901     if (!StartedMetadataBlock) {
902       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
903       StartedMetadataBlock = true;
904     }
905     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
906   }
907
908   if (StartedMetadataBlock)
909     Stream.ExitBlock();
910 }
911
912 static void WriteMetadataAttachment(const Function &F,
913                                     const ValueEnumerator &VE,
914                                     BitstreamWriter &Stream) {
915   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
916
917   SmallVector<uint64_t, 64> Record;
918
919   // Write metadata attachments
920   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
921   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
922
923   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
924     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
925          I != E; ++I) {
926       MDs.clear();
927       I->getAllMetadataOtherThanDebugLoc(MDs);
928
929       // If no metadata, ignore instruction.
930       if (MDs.empty()) continue;
931
932       Record.push_back(VE.getInstructionID(I));
933
934       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
935         Record.push_back(MDs[i].first);
936         Record.push_back(VE.getMetadataID(MDs[i].second));
937       }
938       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
939       Record.clear();
940     }
941
942   Stream.ExitBlock();
943 }
944
945 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
946   SmallVector<uint64_t, 64> Record;
947
948   // Write metadata kinds
949   // METADATA_KIND - [n x [id, name]]
950   SmallVector<StringRef, 8> Names;
951   M->getMDKindNames(Names);
952
953   if (Names.empty()) return;
954
955   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
956
957   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
958     Record.push_back(MDKindID);
959     StringRef KName = Names[MDKindID];
960     Record.append(KName.begin(), KName.end());
961
962     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
963     Record.clear();
964   }
965
966   Stream.ExitBlock();
967 }
968
969 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
970   if ((int64_t)V >= 0)
971     Vals.push_back(V << 1);
972   else
973     Vals.push_back((-V << 1) | 1);
974 }
975
976 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
977                            const ValueEnumerator &VE,
978                            BitstreamWriter &Stream, bool isGlobal) {
979   if (FirstVal == LastVal) return;
980
981   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
982
983   unsigned AggregateAbbrev = 0;
984   unsigned String8Abbrev = 0;
985   unsigned CString7Abbrev = 0;
986   unsigned CString6Abbrev = 0;
987   // If this is a constant pool for the module, emit module-specific abbrevs.
988   if (isGlobal) {
989     // Abbrev for CST_CODE_AGGREGATE.
990     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
991     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
992     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
993     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
994     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
995
996     // Abbrev for CST_CODE_STRING.
997     Abbv = new BitCodeAbbrev();
998     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
999     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1000     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1001     String8Abbrev = Stream.EmitAbbrev(Abbv);
1002     // Abbrev for CST_CODE_CSTRING.
1003     Abbv = new BitCodeAbbrev();
1004     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1005     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1006     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1007     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1008     // Abbrev for CST_CODE_CSTRING.
1009     Abbv = new BitCodeAbbrev();
1010     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1011     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1012     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1013     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1014   }
1015
1016   SmallVector<uint64_t, 64> Record;
1017
1018   const ValueEnumerator::ValueList &Vals = VE.getValues();
1019   Type *LastTy = nullptr;
1020   for (unsigned i = FirstVal; i != LastVal; ++i) {
1021     const Value *V = Vals[i].first;
1022     // If we need to switch types, do so now.
1023     if (V->getType() != LastTy) {
1024       LastTy = V->getType();
1025       Record.push_back(VE.getTypeID(LastTy));
1026       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1027                         CONSTANTS_SETTYPE_ABBREV);
1028       Record.clear();
1029     }
1030
1031     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1032       Record.push_back(unsigned(IA->hasSideEffects()) |
1033                        unsigned(IA->isAlignStack()) << 1 |
1034                        unsigned(IA->getDialect()&1) << 2);
1035
1036       // Add the asm string.
1037       const std::string &AsmStr = IA->getAsmString();
1038       Record.push_back(AsmStr.size());
1039       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
1040         Record.push_back(AsmStr[i]);
1041
1042       // Add the constraint string.
1043       const std::string &ConstraintStr = IA->getConstraintString();
1044       Record.push_back(ConstraintStr.size());
1045       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
1046         Record.push_back(ConstraintStr[i]);
1047       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1048       Record.clear();
1049       continue;
1050     }
1051     const Constant *C = cast<Constant>(V);
1052     unsigned Code = -1U;
1053     unsigned AbbrevToUse = 0;
1054     if (C->isNullValue()) {
1055       Code = bitc::CST_CODE_NULL;
1056     } else if (isa<UndefValue>(C)) {
1057       Code = bitc::CST_CODE_UNDEF;
1058     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1059       if (IV->getBitWidth() <= 64) {
1060         uint64_t V = IV->getSExtValue();
1061         emitSignedInt64(Record, V);
1062         Code = bitc::CST_CODE_INTEGER;
1063         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1064       } else {                             // Wide integers, > 64 bits in size.
1065         // We have an arbitrary precision integer value to write whose
1066         // bit width is > 64. However, in canonical unsigned integer
1067         // format it is likely that the high bits are going to be zero.
1068         // So, we only write the number of active words.
1069         unsigned NWords = IV->getValue().getActiveWords();
1070         const uint64_t *RawWords = IV->getValue().getRawData();
1071         for (unsigned i = 0; i != NWords; ++i) {
1072           emitSignedInt64(Record, RawWords[i]);
1073         }
1074         Code = bitc::CST_CODE_WIDE_INTEGER;
1075       }
1076     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1077       Code = bitc::CST_CODE_FLOAT;
1078       Type *Ty = CFP->getType();
1079       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1080         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1081       } else if (Ty->isX86_FP80Ty()) {
1082         // api needed to prevent premature destruction
1083         // bits are not in the same order as a normal i80 APInt, compensate.
1084         APInt api = CFP->getValueAPF().bitcastToAPInt();
1085         const uint64_t *p = api.getRawData();
1086         Record.push_back((p[1] << 48) | (p[0] >> 16));
1087         Record.push_back(p[0] & 0xffffLL);
1088       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1089         APInt api = CFP->getValueAPF().bitcastToAPInt();
1090         const uint64_t *p = api.getRawData();
1091         Record.push_back(p[0]);
1092         Record.push_back(p[1]);
1093       } else {
1094         assert (0 && "Unknown FP type!");
1095       }
1096     } else if (isa<ConstantDataSequential>(C) &&
1097                cast<ConstantDataSequential>(C)->isString()) {
1098       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1099       // Emit constant strings specially.
1100       unsigned NumElts = Str->getNumElements();
1101       // If this is a null-terminated string, use the denser CSTRING encoding.
1102       if (Str->isCString()) {
1103         Code = bitc::CST_CODE_CSTRING;
1104         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1105       } else {
1106         Code = bitc::CST_CODE_STRING;
1107         AbbrevToUse = String8Abbrev;
1108       }
1109       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1110       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1111       for (unsigned i = 0; i != NumElts; ++i) {
1112         unsigned char V = Str->getElementAsInteger(i);
1113         Record.push_back(V);
1114         isCStr7 &= (V & 128) == 0;
1115         if (isCStrChar6)
1116           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1117       }
1118
1119       if (isCStrChar6)
1120         AbbrevToUse = CString6Abbrev;
1121       else if (isCStr7)
1122         AbbrevToUse = CString7Abbrev;
1123     } else if (const ConstantDataSequential *CDS =
1124                   dyn_cast<ConstantDataSequential>(C)) {
1125       Code = bitc::CST_CODE_DATA;
1126       Type *EltTy = CDS->getType()->getElementType();
1127       if (isa<IntegerType>(EltTy)) {
1128         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1129           Record.push_back(CDS->getElementAsInteger(i));
1130       } else if (EltTy->isFloatTy()) {
1131         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1132           union { float F; uint32_t I; };
1133           F = CDS->getElementAsFloat(i);
1134           Record.push_back(I);
1135         }
1136       } else {
1137         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1138         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1139           union { double F; uint64_t I; };
1140           F = CDS->getElementAsDouble(i);
1141           Record.push_back(I);
1142         }
1143       }
1144     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1145                isa<ConstantVector>(C)) {
1146       Code = bitc::CST_CODE_AGGREGATE;
1147       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
1148         Record.push_back(VE.getValueID(C->getOperand(i)));
1149       AbbrevToUse = AggregateAbbrev;
1150     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1151       switch (CE->getOpcode()) {
1152       default:
1153         if (Instruction::isCast(CE->getOpcode())) {
1154           Code = bitc::CST_CODE_CE_CAST;
1155           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1156           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1157           Record.push_back(VE.getValueID(C->getOperand(0)));
1158           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1159         } else {
1160           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1161           Code = bitc::CST_CODE_CE_BINOP;
1162           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1163           Record.push_back(VE.getValueID(C->getOperand(0)));
1164           Record.push_back(VE.getValueID(C->getOperand(1)));
1165           uint64_t Flags = GetOptimizationFlags(CE);
1166           if (Flags != 0)
1167             Record.push_back(Flags);
1168         }
1169         break;
1170       case Instruction::GetElementPtr:
1171         Code = bitc::CST_CODE_CE_GEP;
1172         if (cast<GEPOperator>(C)->isInBounds())
1173           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1174         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1175           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1176           Record.push_back(VE.getValueID(C->getOperand(i)));
1177         }
1178         break;
1179       case Instruction::Select:
1180         Code = bitc::CST_CODE_CE_SELECT;
1181         Record.push_back(VE.getValueID(C->getOperand(0)));
1182         Record.push_back(VE.getValueID(C->getOperand(1)));
1183         Record.push_back(VE.getValueID(C->getOperand(2)));
1184         break;
1185       case Instruction::ExtractElement:
1186         Code = bitc::CST_CODE_CE_EXTRACTELT;
1187         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1188         Record.push_back(VE.getValueID(C->getOperand(0)));
1189         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1190         Record.push_back(VE.getValueID(C->getOperand(1)));
1191         break;
1192       case Instruction::InsertElement:
1193         Code = bitc::CST_CODE_CE_INSERTELT;
1194         Record.push_back(VE.getValueID(C->getOperand(0)));
1195         Record.push_back(VE.getValueID(C->getOperand(1)));
1196         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1197         Record.push_back(VE.getValueID(C->getOperand(2)));
1198         break;
1199       case Instruction::ShuffleVector:
1200         // If the return type and argument types are the same, this is a
1201         // standard shufflevector instruction.  If the types are different,
1202         // then the shuffle is widening or truncating the input vectors, and
1203         // the argument type must also be encoded.
1204         if (C->getType() == C->getOperand(0)->getType()) {
1205           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1206         } else {
1207           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1208           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1209         }
1210         Record.push_back(VE.getValueID(C->getOperand(0)));
1211         Record.push_back(VE.getValueID(C->getOperand(1)));
1212         Record.push_back(VE.getValueID(C->getOperand(2)));
1213         break;
1214       case Instruction::ICmp:
1215       case Instruction::FCmp:
1216         Code = bitc::CST_CODE_CE_CMP;
1217         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1218         Record.push_back(VE.getValueID(C->getOperand(0)));
1219         Record.push_back(VE.getValueID(C->getOperand(1)));
1220         Record.push_back(CE->getPredicate());
1221         break;
1222       }
1223     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1224       Code = bitc::CST_CODE_BLOCKADDRESS;
1225       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1226       Record.push_back(VE.getValueID(BA->getFunction()));
1227       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1228     } else {
1229 #ifndef NDEBUG
1230       C->dump();
1231 #endif
1232       llvm_unreachable("Unknown constant!");
1233     }
1234     Stream.EmitRecord(Code, Record, AbbrevToUse);
1235     Record.clear();
1236   }
1237
1238   Stream.ExitBlock();
1239 }
1240
1241 static void WriteModuleConstants(const ValueEnumerator &VE,
1242                                  BitstreamWriter &Stream) {
1243   const ValueEnumerator::ValueList &Vals = VE.getValues();
1244
1245   // Find the first constant to emit, which is the first non-globalvalue value.
1246   // We know globalvalues have been emitted by WriteModuleInfo.
1247   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1248     if (!isa<GlobalValue>(Vals[i].first)) {
1249       WriteConstants(i, Vals.size(), VE, Stream, true);
1250       return;
1251     }
1252   }
1253 }
1254
1255 /// PushValueAndType - The file has to encode both the value and type id for
1256 /// many values, because we need to know what type to create for forward
1257 /// references.  However, most operands are not forward references, so this type
1258 /// field is not needed.
1259 ///
1260 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1261 /// instruction ID, then it is a forward reference, and it also includes the
1262 /// type ID.  The value ID that is written is encoded relative to the InstID.
1263 static bool PushValueAndType(const Value *V, unsigned InstID,
1264                              SmallVectorImpl<unsigned> &Vals,
1265                              ValueEnumerator &VE) {
1266   unsigned ValID = VE.getValueID(V);
1267   // Make encoding relative to the InstID.
1268   Vals.push_back(InstID - ValID);
1269   if (ValID >= InstID) {
1270     Vals.push_back(VE.getTypeID(V->getType()));
1271     return true;
1272   }
1273   return false;
1274 }
1275
1276 /// pushValue - Like PushValueAndType, but where the type of the value is
1277 /// omitted (perhaps it was already encoded in an earlier operand).
1278 static void pushValue(const Value *V, unsigned InstID,
1279                       SmallVectorImpl<unsigned> &Vals,
1280                       ValueEnumerator &VE) {
1281   unsigned ValID = VE.getValueID(V);
1282   Vals.push_back(InstID - ValID);
1283 }
1284
1285 static void pushValueSigned(const Value *V, unsigned InstID,
1286                             SmallVectorImpl<uint64_t> &Vals,
1287                             ValueEnumerator &VE) {
1288   unsigned ValID = VE.getValueID(V);
1289   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1290   emitSignedInt64(Vals, diff);
1291 }
1292
1293 /// WriteInstruction - Emit an instruction to the specified stream.
1294 static void WriteInstruction(const Instruction &I, unsigned InstID,
1295                              ValueEnumerator &VE, BitstreamWriter &Stream,
1296                              SmallVectorImpl<unsigned> &Vals) {
1297   unsigned Code = 0;
1298   unsigned AbbrevToUse = 0;
1299   VE.setInstructionID(&I);
1300   switch (I.getOpcode()) {
1301   default:
1302     if (Instruction::isCast(I.getOpcode())) {
1303       Code = bitc::FUNC_CODE_INST_CAST;
1304       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1305         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1306       Vals.push_back(VE.getTypeID(I.getType()));
1307       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1308     } else {
1309       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1310       Code = bitc::FUNC_CODE_INST_BINOP;
1311       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1312         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1313       pushValue(I.getOperand(1), InstID, Vals, VE);
1314       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1315       uint64_t Flags = GetOptimizationFlags(&I);
1316       if (Flags != 0) {
1317         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1318           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1319         Vals.push_back(Flags);
1320       }
1321     }
1322     break;
1323
1324   case Instruction::GetElementPtr:
1325     Code = bitc::FUNC_CODE_INST_GEP;
1326     if (cast<GEPOperator>(&I)->isInBounds())
1327       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1328     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1329       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1330     break;
1331   case Instruction::ExtractValue: {
1332     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1333     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1334     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1335     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1336       Vals.push_back(*i);
1337     break;
1338   }
1339   case Instruction::InsertValue: {
1340     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1341     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1342     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1343     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1344     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1345       Vals.push_back(*i);
1346     break;
1347   }
1348   case Instruction::Select:
1349     Code = bitc::FUNC_CODE_INST_VSELECT;
1350     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1351     pushValue(I.getOperand(2), InstID, Vals, VE);
1352     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1353     break;
1354   case Instruction::ExtractElement:
1355     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1356     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1357     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1358     break;
1359   case Instruction::InsertElement:
1360     Code = bitc::FUNC_CODE_INST_INSERTELT;
1361     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1362     pushValue(I.getOperand(1), InstID, Vals, VE);
1363     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1364     break;
1365   case Instruction::ShuffleVector:
1366     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1367     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1368     pushValue(I.getOperand(1), InstID, Vals, VE);
1369     pushValue(I.getOperand(2), InstID, Vals, VE);
1370     break;
1371   case Instruction::ICmp:
1372   case Instruction::FCmp:
1373     // compare returning Int1Ty or vector of Int1Ty
1374     Code = bitc::FUNC_CODE_INST_CMP2;
1375     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1376     pushValue(I.getOperand(1), InstID, Vals, VE);
1377     Vals.push_back(cast<CmpInst>(I).getPredicate());
1378     break;
1379
1380   case Instruction::Ret:
1381     {
1382       Code = bitc::FUNC_CODE_INST_RET;
1383       unsigned NumOperands = I.getNumOperands();
1384       if (NumOperands == 0)
1385         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1386       else if (NumOperands == 1) {
1387         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1388           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1389       } else {
1390         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1391           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1392       }
1393     }
1394     break;
1395   case Instruction::Br:
1396     {
1397       Code = bitc::FUNC_CODE_INST_BR;
1398       const BranchInst &II = cast<BranchInst>(I);
1399       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1400       if (II.isConditional()) {
1401         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1402         pushValue(II.getCondition(), InstID, Vals, VE);
1403       }
1404     }
1405     break;
1406   case Instruction::Switch:
1407     {
1408       Code = bitc::FUNC_CODE_INST_SWITCH;
1409       const SwitchInst &SI = cast<SwitchInst>(I);
1410       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1411       pushValue(SI.getCondition(), InstID, Vals, VE);
1412       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1413       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1414            i != e; ++i) {
1415         Vals.push_back(VE.getValueID(i.getCaseValue()));
1416         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1417       }
1418     }
1419     break;
1420   case Instruction::IndirectBr:
1421     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1422     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1423     // Encode the address operand as relative, but not the basic blocks.
1424     pushValue(I.getOperand(0), InstID, Vals, VE);
1425     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1426       Vals.push_back(VE.getValueID(I.getOperand(i)));
1427     break;
1428
1429   case Instruction::Invoke: {
1430     const InvokeInst *II = cast<InvokeInst>(&I);
1431     const Value *Callee(II->getCalledValue());
1432     PointerType *PTy = cast<PointerType>(Callee->getType());
1433     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1434     Code = bitc::FUNC_CODE_INST_INVOKE;
1435
1436     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1437     Vals.push_back(II->getCallingConv());
1438     Vals.push_back(VE.getValueID(II->getNormalDest()));
1439     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1440     PushValueAndType(Callee, InstID, Vals, VE);
1441
1442     // Emit value #'s for the fixed parameters.
1443     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1444       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1445
1446     // Emit type/value pairs for varargs params.
1447     if (FTy->isVarArg()) {
1448       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1449            i != e; ++i)
1450         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1451     }
1452     break;
1453   }
1454   case Instruction::Resume:
1455     Code = bitc::FUNC_CODE_INST_RESUME;
1456     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1457     break;
1458   case Instruction::Unreachable:
1459     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1460     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1461     break;
1462
1463   case Instruction::PHI: {
1464     const PHINode &PN = cast<PHINode>(I);
1465     Code = bitc::FUNC_CODE_INST_PHI;
1466     // With the newer instruction encoding, forward references could give
1467     // negative valued IDs.  This is most common for PHIs, so we use
1468     // signed VBRs.
1469     SmallVector<uint64_t, 128> Vals64;
1470     Vals64.push_back(VE.getTypeID(PN.getType()));
1471     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1472       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1473       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1474     }
1475     // Emit a Vals64 vector and exit.
1476     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1477     Vals64.clear();
1478     return;
1479   }
1480
1481   case Instruction::LandingPad: {
1482     const LandingPadInst &LP = cast<LandingPadInst>(I);
1483     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1484     Vals.push_back(VE.getTypeID(LP.getType()));
1485     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1486     Vals.push_back(LP.isCleanup());
1487     Vals.push_back(LP.getNumClauses());
1488     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1489       if (LP.isCatch(I))
1490         Vals.push_back(LandingPadInst::Catch);
1491       else
1492         Vals.push_back(LandingPadInst::Filter);
1493       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1494     }
1495     break;
1496   }
1497
1498   case Instruction::Alloca: {
1499     Code = bitc::FUNC_CODE_INST_ALLOCA;
1500     Vals.push_back(VE.getTypeID(I.getType()));
1501     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1502     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1503     const AllocaInst &AI = cast<AllocaInst>(I);
1504     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
1505     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
1506            "not enough bits for maximum alignment");
1507     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
1508     AlignRecord |= AI.isUsedWithInAlloca() << 5;
1509     Vals.push_back(AlignRecord);
1510     break;
1511   }
1512
1513   case Instruction::Load:
1514     if (cast<LoadInst>(I).isAtomic()) {
1515       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1516       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1517     } else {
1518       Code = bitc::FUNC_CODE_INST_LOAD;
1519       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1520         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1521     }
1522     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1523     Vals.push_back(cast<LoadInst>(I).isVolatile());
1524     if (cast<LoadInst>(I).isAtomic()) {
1525       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1526       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1527     }
1528     break;
1529   case Instruction::Store:
1530     if (cast<StoreInst>(I).isAtomic())
1531       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1532     else
1533       Code = bitc::FUNC_CODE_INST_STORE;
1534     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1535     pushValue(I.getOperand(0), InstID, Vals, VE);         // val.
1536     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1537     Vals.push_back(cast<StoreInst>(I).isVolatile());
1538     if (cast<StoreInst>(I).isAtomic()) {
1539       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1540       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1541     }
1542     break;
1543   case Instruction::AtomicCmpXchg:
1544     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1545     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1546     pushValue(I.getOperand(1), InstID, Vals, VE);         // cmp.
1547     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
1548     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1549     Vals.push_back(GetEncodedOrdering(
1550                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1551     Vals.push_back(GetEncodedSynchScope(
1552                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1553     Vals.push_back(GetEncodedOrdering(
1554                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
1555     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
1556     break;
1557   case Instruction::AtomicRMW:
1558     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1559     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1560     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
1561     Vals.push_back(GetEncodedRMWOperation(
1562                      cast<AtomicRMWInst>(I).getOperation()));
1563     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1564     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1565     Vals.push_back(GetEncodedSynchScope(
1566                      cast<AtomicRMWInst>(I).getSynchScope()));
1567     break;
1568   case Instruction::Fence:
1569     Code = bitc::FUNC_CODE_INST_FENCE;
1570     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1571     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1572     break;
1573   case Instruction::Call: {
1574     const CallInst &CI = cast<CallInst>(I);
1575     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1576     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1577
1578     Code = bitc::FUNC_CODE_INST_CALL;
1579
1580     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1581     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
1582                    unsigned(CI.isMustTailCall()) << 14);
1583     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1584
1585     // Emit value #'s for the fixed parameters.
1586     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1587       // Check for labels (can happen with asm labels).
1588       if (FTy->getParamType(i)->isLabelTy())
1589         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1590       else
1591         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
1592     }
1593
1594     // Emit type/value pairs for varargs params.
1595     if (FTy->isVarArg()) {
1596       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1597            i != e; ++i)
1598         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1599     }
1600     break;
1601   }
1602   case Instruction::VAArg:
1603     Code = bitc::FUNC_CODE_INST_VAARG;
1604     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1605     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1606     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1607     break;
1608   }
1609
1610   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1611   Vals.clear();
1612 }
1613
1614 // Emit names for globals/functions etc.
1615 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1616                                   const ValueEnumerator &VE,
1617                                   BitstreamWriter &Stream) {
1618   if (VST.empty()) return;
1619   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1620
1621   // FIXME: Set up the abbrev, we know how many values there are!
1622   // FIXME: We know if the type names can use 7-bit ascii.
1623   SmallVector<unsigned, 64> NameVals;
1624
1625   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1626        SI != SE; ++SI) {
1627
1628     const ValueName &Name = *SI;
1629
1630     // Figure out the encoding to use for the name.
1631     bool is7Bit = true;
1632     bool isChar6 = true;
1633     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1634          C != E; ++C) {
1635       if (isChar6)
1636         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1637       if ((unsigned char)*C & 128) {
1638         is7Bit = false;
1639         break;  // don't bother scanning the rest.
1640       }
1641     }
1642
1643     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1644
1645     // VST_ENTRY:   [valueid, namechar x N]
1646     // VST_BBENTRY: [bbid, namechar x N]
1647     unsigned Code;
1648     if (isa<BasicBlock>(SI->getValue())) {
1649       Code = bitc::VST_CODE_BBENTRY;
1650       if (isChar6)
1651         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1652     } else {
1653       Code = bitc::VST_CODE_ENTRY;
1654       if (isChar6)
1655         AbbrevToUse = VST_ENTRY_6_ABBREV;
1656       else if (is7Bit)
1657         AbbrevToUse = VST_ENTRY_7_ABBREV;
1658     }
1659
1660     NameVals.push_back(VE.getValueID(SI->getValue()));
1661     for (const char *P = Name.getKeyData(),
1662          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1663       NameVals.push_back((unsigned char)*P);
1664
1665     // Emit the finished record.
1666     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1667     NameVals.clear();
1668   }
1669   Stream.ExitBlock();
1670 }
1671
1672 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
1673                          BitstreamWriter &Stream) {
1674   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
1675   unsigned Code;
1676   if (isa<BasicBlock>(Order.V))
1677     Code = bitc::USELIST_CODE_BB;
1678   else
1679     Code = bitc::USELIST_CODE_DEFAULT;
1680
1681   SmallVector<uint64_t, 64> Record;
1682   for (unsigned I : Order.Shuffle)
1683     Record.push_back(I);
1684   Record.push_back(VE.getValueID(Order.V));
1685   Stream.EmitRecord(Code, Record);
1686 }
1687
1688 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
1689                               BitstreamWriter &Stream) {
1690   auto hasMore = [&]() {
1691     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
1692   };
1693   if (!hasMore())
1694     // Nothing to do.
1695     return;
1696
1697   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1698   while (hasMore()) {
1699     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
1700     VE.UseListOrders.pop_back();
1701   }
1702   Stream.ExitBlock();
1703 }
1704
1705 /// WriteFunction - Emit a function body to the module stream.
1706 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1707                           BitstreamWriter &Stream) {
1708   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1709   VE.incorporateFunction(F);
1710
1711   SmallVector<unsigned, 64> Vals;
1712
1713   // Emit the number of basic blocks, so the reader can create them ahead of
1714   // time.
1715   Vals.push_back(VE.getBasicBlocks().size());
1716   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1717   Vals.clear();
1718
1719   // If there are function-local constants, emit them now.
1720   unsigned CstStart, CstEnd;
1721   VE.getFunctionConstantRange(CstStart, CstEnd);
1722   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1723
1724   // If there is function-local metadata, emit it now.
1725   WriteFunctionLocalMetadata(F, VE, Stream);
1726
1727   // Keep a running idea of what the instruction ID is.
1728   unsigned InstID = CstEnd;
1729
1730   bool NeedsMetadataAttachment = false;
1731
1732   DebugLoc LastDL;
1733
1734   // Finally, emit all the instructions, in order.
1735   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1736     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1737          I != E; ++I) {
1738       WriteInstruction(*I, InstID, VE, Stream, Vals);
1739
1740       if (!I->getType()->isVoidTy())
1741         ++InstID;
1742
1743       // If the instruction has metadata, write a metadata attachment later.
1744       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1745
1746       // If the instruction has a debug location, emit it.
1747       DebugLoc DL = I->getDebugLoc();
1748       if (DL.isUnknown()) {
1749         // nothing todo.
1750       } else if (DL == LastDL) {
1751         // Just repeat the same debug loc as last time.
1752         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1753       } else {
1754         MDNode *Scope, *IA;
1755         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1756         assert(Scope && "Expected valid scope");
1757
1758         Vals.push_back(DL.getLine());
1759         Vals.push_back(DL.getCol());
1760         Vals.push_back(VE.getMetadataOrNullID(Scope));
1761         Vals.push_back(VE.getMetadataOrNullID(IA));
1762         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1763         Vals.clear();
1764
1765         LastDL = DL;
1766       }
1767     }
1768
1769   // Emit names for all the instructions etc.
1770   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1771
1772   if (NeedsMetadataAttachment)
1773     WriteMetadataAttachment(F, VE, Stream);
1774   if (shouldPreserveBitcodeUseListOrder())
1775     WriteUseListBlock(&F, VE, Stream);
1776   VE.purgeFunction();
1777   Stream.ExitBlock();
1778 }
1779
1780 // Emit blockinfo, which defines the standard abbreviations etc.
1781 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1782   // We only want to emit block info records for blocks that have multiple
1783   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
1784   // Other blocks can define their abbrevs inline.
1785   Stream.EnterBlockInfoBlock(2);
1786
1787   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1788     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1789     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1790     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1791     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1792     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1793     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1794                                    Abbv) != VST_ENTRY_8_ABBREV)
1795       llvm_unreachable("Unexpected abbrev ordering!");
1796   }
1797
1798   { // 7-bit fixed width VST_ENTRY strings.
1799     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1800     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1801     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1802     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1803     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1804     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1805                                    Abbv) != VST_ENTRY_7_ABBREV)
1806       llvm_unreachable("Unexpected abbrev ordering!");
1807   }
1808   { // 6-bit char6 VST_ENTRY strings.
1809     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1810     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1811     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1812     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1813     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1814     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1815                                    Abbv) != VST_ENTRY_6_ABBREV)
1816       llvm_unreachable("Unexpected abbrev ordering!");
1817   }
1818   { // 6-bit char6 VST_BBENTRY strings.
1819     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1820     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1821     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1822     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1823     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1824     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1825                                    Abbv) != VST_BBENTRY_6_ABBREV)
1826       llvm_unreachable("Unexpected abbrev ordering!");
1827   }
1828
1829
1830
1831   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1832     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1833     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1834     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1835                               Log2_32_Ceil(VE.getTypes().size()+1)));
1836     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1837                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1838       llvm_unreachable("Unexpected abbrev ordering!");
1839   }
1840
1841   { // INTEGER abbrev for CONSTANTS_BLOCK.
1842     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1843     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1844     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1845     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1846                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1847       llvm_unreachable("Unexpected abbrev ordering!");
1848   }
1849
1850   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1851     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1852     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1853     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1854     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1855                               Log2_32_Ceil(VE.getTypes().size()+1)));
1856     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1857
1858     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1859                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1860       llvm_unreachable("Unexpected abbrev ordering!");
1861   }
1862   { // NULL abbrev for CONSTANTS_BLOCK.
1863     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1864     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1865     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1866                                    Abbv) != CONSTANTS_NULL_Abbrev)
1867       llvm_unreachable("Unexpected abbrev ordering!");
1868   }
1869
1870   // FIXME: This should only use space for first class types!
1871
1872   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1873     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1874     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1875     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1876     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1877     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1878     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1879                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1880       llvm_unreachable("Unexpected abbrev ordering!");
1881   }
1882   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1883     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1884     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1885     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1886     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1887     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1888     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1889                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1890       llvm_unreachable("Unexpected abbrev ordering!");
1891   }
1892   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1893     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1894     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1895     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1896     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1897     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1898     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1899     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1900                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1901       llvm_unreachable("Unexpected abbrev ordering!");
1902   }
1903   { // INST_CAST abbrev for FUNCTION_BLOCK.
1904     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1905     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1906     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1907     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1908                               Log2_32_Ceil(VE.getTypes().size()+1)));
1909     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1910     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1911                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1912       llvm_unreachable("Unexpected abbrev ordering!");
1913   }
1914
1915   { // INST_RET abbrev for FUNCTION_BLOCK.
1916     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1917     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1918     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1919                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1920       llvm_unreachable("Unexpected abbrev ordering!");
1921   }
1922   { // INST_RET abbrev for FUNCTION_BLOCK.
1923     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1924     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1925     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1926     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1927                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1928       llvm_unreachable("Unexpected abbrev ordering!");
1929   }
1930   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1931     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1932     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1933     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1934                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1935       llvm_unreachable("Unexpected abbrev ordering!");
1936   }
1937
1938   Stream.ExitBlock();
1939 }
1940
1941 /// WriteModule - Emit the specified module to the bitstream.
1942 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1943   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1944
1945   SmallVector<unsigned, 1> Vals;
1946   unsigned CurVersion = 1;
1947   Vals.push_back(CurVersion);
1948   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1949
1950   // Analyze the module, enumerating globals, functions, etc.
1951   ValueEnumerator VE(*M);
1952
1953   // Emit blockinfo, which defines the standard abbreviations etc.
1954   WriteBlockInfo(VE, Stream);
1955
1956   // Emit information about attribute groups.
1957   WriteAttributeGroupTable(VE, Stream);
1958
1959   // Emit information about parameter attributes.
1960   WriteAttributeTable(VE, Stream);
1961
1962   // Emit information describing all of the types in the module.
1963   WriteTypeTable(VE, Stream);
1964
1965   writeComdats(VE, Stream);
1966
1967   // Emit top-level description of module, including target triple, inline asm,
1968   // descriptors for global variables, and function prototype info.
1969   WriteModuleInfo(M, VE, Stream);
1970
1971   // Emit constants.
1972   WriteModuleConstants(VE, Stream);
1973
1974   // Emit metadata.
1975   WriteModuleMetadata(M, VE, Stream);
1976
1977   // Emit metadata.
1978   WriteModuleMetadataStore(M, Stream);
1979
1980   // Emit names for globals/functions etc.
1981   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1982
1983   // Emit module-level use-lists.
1984   if (shouldPreserveBitcodeUseListOrder())
1985     WriteUseListBlock(nullptr, VE, Stream);
1986
1987   // Emit function bodies.
1988   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1989     if (!F->isDeclaration())
1990       WriteFunction(*F, VE, Stream);
1991
1992   Stream.ExitBlock();
1993 }
1994
1995 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1996 /// header and trailer to make it compatible with the system archiver.  To do
1997 /// this we emit the following header, and then emit a trailer that pads the
1998 /// file out to be a multiple of 16 bytes.
1999 ///
2000 /// struct bc_header {
2001 ///   uint32_t Magic;         // 0x0B17C0DE
2002 ///   uint32_t Version;       // Version, currently always 0.
2003 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2004 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
2005 ///   uint32_t CPUType;       // CPU specifier.
2006 ///   ... potentially more later ...
2007 /// };
2008 enum {
2009   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2010   DarwinBCHeaderSize = 5*4
2011 };
2012
2013 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2014                                uint32_t &Position) {
2015   Buffer[Position + 0] = (unsigned char) (Value >>  0);
2016   Buffer[Position + 1] = (unsigned char) (Value >>  8);
2017   Buffer[Position + 2] = (unsigned char) (Value >> 16);
2018   Buffer[Position + 3] = (unsigned char) (Value >> 24);
2019   Position += 4;
2020 }
2021
2022 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2023                                          const Triple &TT) {
2024   unsigned CPUType = ~0U;
2025
2026   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2027   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2028   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
2029   // specific constants here because they are implicitly part of the Darwin ABI.
2030   enum {
2031     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
2032     DARWIN_CPU_TYPE_X86        = 7,
2033     DARWIN_CPU_TYPE_ARM        = 12,
2034     DARWIN_CPU_TYPE_POWERPC    = 18
2035   };
2036
2037   Triple::ArchType Arch = TT.getArch();
2038   if (Arch == Triple::x86_64)
2039     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2040   else if (Arch == Triple::x86)
2041     CPUType = DARWIN_CPU_TYPE_X86;
2042   else if (Arch == Triple::ppc)
2043     CPUType = DARWIN_CPU_TYPE_POWERPC;
2044   else if (Arch == Triple::ppc64)
2045     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
2046   else if (Arch == Triple::arm || Arch == Triple::thumb)
2047     CPUType = DARWIN_CPU_TYPE_ARM;
2048
2049   // Traditional Bitcode starts after header.
2050   assert(Buffer.size() >= DarwinBCHeaderSize &&
2051          "Expected header size to be reserved");
2052   unsigned BCOffset = DarwinBCHeaderSize;
2053   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2054
2055   // Write the magic and version.
2056   unsigned Position = 0;
2057   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2058   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
2059   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
2060   WriteInt32ToBuffer(BCSize     , Buffer, Position);
2061   WriteInt32ToBuffer(CPUType    , Buffer, Position);
2062
2063   // If the file is not a multiple of 16 bytes, insert dummy padding.
2064   while (Buffer.size() & 15)
2065     Buffer.push_back(0);
2066 }
2067
2068 /// WriteBitcodeToFile - Write the specified module to the specified output
2069 /// stream.
2070 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
2071   SmallVector<char, 0> Buffer;
2072   Buffer.reserve(256*1024);
2073
2074   // If this is darwin or another generic macho target, reserve space for the
2075   // header.
2076   Triple TT(M->getTargetTriple());
2077   if (TT.isOSDarwin())
2078     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2079
2080   // Emit the module into the buffer.
2081   {
2082     BitstreamWriter Stream(Buffer);
2083
2084     // Emit the file header.
2085     Stream.Emit((unsigned)'B', 8);
2086     Stream.Emit((unsigned)'C', 8);
2087     Stream.Emit(0x0, 4);
2088     Stream.Emit(0xC, 4);
2089     Stream.Emit(0xE, 4);
2090     Stream.Emit(0xD, 4);
2091
2092     // Emit the module.
2093     WriteModule(M, Stream);
2094   }
2095
2096   if (TT.isOSDarwin())
2097     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2098
2099   // Write the generated bitstream to "Out".
2100   Out.write((char*)&Buffer.front(), Buffer.size());
2101 }