rename indbr -> indirectbr to appease the residents of #llvm.
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Metadata.h"
24 #include "llvm/Module.h"
25 #include "llvm/Operator.h"
26 #include "llvm/TypeSymbolTable.h"
27 #include "llvm/ValueSymbolTable.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/System/Program.h"
32 using namespace llvm;
33
34 /// These are manifest constants used by the bitcode writer. They do not need to
35 /// be kept in sync with the reader, but need to be consistent within this file.
36 enum {
37   CurVersion = 0,
38
39   // VALUE_SYMTAB_BLOCK abbrev id's.
40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   VST_ENTRY_7_ABBREV,
42   VST_ENTRY_6_ABBREV,
43   VST_BBENTRY_6_ABBREV,
44
45   // CONSTANTS_BLOCK abbrev id's.
46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   CONSTANTS_INTEGER_ABBREV,
48   CONSTANTS_CE_CAST_Abbrev,
49   CONSTANTS_NULL_Abbrev,
50
51   // FUNCTION_BLOCK abbrev id's.
52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53   FUNCTION_INST_BINOP_ABBREV,
54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
55   FUNCTION_INST_CAST_ABBREV,
56   FUNCTION_INST_RET_VOID_ABBREV,
57   FUNCTION_INST_RET_VAL_ABBREV,
58   FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60
61
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   }
78 }
79
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81   switch (Opcode) {
82   default: llvm_unreachable("Unknown binary instruction!");
83   case Instruction::Add:
84   case Instruction::FAdd: return bitc::BINOP_ADD;
85   case Instruction::Sub:
86   case Instruction::FSub: return bitc::BINOP_SUB;
87   case Instruction::Mul:
88   case Instruction::FMul: return bitc::BINOP_MUL;
89   case Instruction::UDiv: return bitc::BINOP_UDIV;
90   case Instruction::FDiv:
91   case Instruction::SDiv: return bitc::BINOP_SDIV;
92   case Instruction::URem: return bitc::BINOP_UREM;
93   case Instruction::FRem:
94   case Instruction::SRem: return bitc::BINOP_SREM;
95   case Instruction::Shl:  return bitc::BINOP_SHL;
96   case Instruction::LShr: return bitc::BINOP_LSHR;
97   case Instruction::AShr: return bitc::BINOP_ASHR;
98   case Instruction::And:  return bitc::BINOP_AND;
99   case Instruction::Or:   return bitc::BINOP_OR;
100   case Instruction::Xor:  return bitc::BINOP_XOR;
101   }
102 }
103
104
105
106 static void WriteStringRecord(unsigned Code, const std::string &Str,
107                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
108   SmallVector<unsigned, 64> Vals;
109
110   // Code: [strchar x N]
111   for (unsigned i = 0, e = Str.size(); i != e; ++i)
112     Vals.push_back(Str[i]);
113
114   // Emit the finished record.
115   Stream.EmitRecord(Code, Vals, AbbrevToUse);
116 }
117
118 // Emit information about parameter attributes.
119 static void WriteAttributeTable(const ValueEnumerator &VE,
120                                 BitstreamWriter &Stream) {
121   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
122   if (Attrs.empty()) return;
123
124   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
125
126   SmallVector<uint64_t, 64> Record;
127   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
128     const AttrListPtr &A = Attrs[i];
129     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
130       const AttributeWithIndex &PAWI = A.getSlot(i);
131       Record.push_back(PAWI.Index);
132
133       // FIXME: remove in LLVM 3.0
134       // Store the alignment in the bitcode as a 16-bit raw value instead of a
135       // 5-bit log2 encoded value. Shift the bits above the alignment up by
136       // 11 bits.
137       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
138       if (PAWI.Attrs & Attribute::Alignment)
139         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
140       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
141
142       Record.push_back(FauxAttr);
143     }
144
145     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
146     Record.clear();
147   }
148
149   Stream.ExitBlock();
150 }
151
152 /// WriteTypeTable - Write out the type table for a module.
153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
154   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
155
156   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
157   SmallVector<uint64_t, 64> TypeVals;
158
159   // Abbrev for TYPE_CODE_POINTER.
160   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
161   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                             Log2_32_Ceil(VE.getTypes().size()+1)));
164   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
165   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
166
167   // Abbrev for TYPE_CODE_FUNCTION.
168   Abbv = new BitCodeAbbrev();
169   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
171   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
174                             Log2_32_Ceil(VE.getTypes().size()+1)));
175   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
176
177   // Abbrev for TYPE_CODE_STRUCT.
178   Abbv = new BitCodeAbbrev();
179   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
181   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
183                             Log2_32_Ceil(VE.getTypes().size()+1)));
184   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
185
186   // Abbrev for TYPE_CODE_ARRAY.
187   Abbv = new BitCodeAbbrev();
188   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
189   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
190   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
191                             Log2_32_Ceil(VE.getTypes().size()+1)));
192   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
193
194   // Emit an entry count so the reader can reserve space.
195   TypeVals.push_back(TypeList.size());
196   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
197   TypeVals.clear();
198
199   // Loop over all of the types, emitting each in turn.
200   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
201     const Type *T = TypeList[i].first;
202     int AbbrevToUse = 0;
203     unsigned Code = 0;
204
205     switch (T->getTypeID()) {
206     default: llvm_unreachable("Unknown type!");
207     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
208     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
209     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
210     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
211     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
212     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
213     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
214     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
215     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
216     case Type::IntegerTyID:
217       // INTEGER: [width]
218       Code = bitc::TYPE_CODE_INTEGER;
219       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
220       break;
221     case Type::PointerTyID: {
222       const PointerType *PTy = cast<PointerType>(T);
223       // POINTER: [pointee type, address space]
224       Code = bitc::TYPE_CODE_POINTER;
225       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
226       unsigned AddressSpace = PTy->getAddressSpace();
227       TypeVals.push_back(AddressSpace);
228       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
229       break;
230     }
231     case Type::FunctionTyID: {
232       const FunctionType *FT = cast<FunctionType>(T);
233       // FUNCTION: [isvararg, attrid, retty, paramty x N]
234       Code = bitc::TYPE_CODE_FUNCTION;
235       TypeVals.push_back(FT->isVarArg());
236       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
237       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
238       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
239         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
240       AbbrevToUse = FunctionAbbrev;
241       break;
242     }
243     case Type::StructTyID: {
244       const StructType *ST = cast<StructType>(T);
245       // STRUCT: [ispacked, eltty x N]
246       Code = bitc::TYPE_CODE_STRUCT;
247       TypeVals.push_back(ST->isPacked());
248       // Output all of the element types.
249       for (StructType::element_iterator I = ST->element_begin(),
250            E = ST->element_end(); I != E; ++I)
251         TypeVals.push_back(VE.getTypeID(*I));
252       AbbrevToUse = StructAbbrev;
253       break;
254     }
255     case Type::ArrayTyID: {
256       const ArrayType *AT = cast<ArrayType>(T);
257       // ARRAY: [numelts, eltty]
258       Code = bitc::TYPE_CODE_ARRAY;
259       TypeVals.push_back(AT->getNumElements());
260       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
261       AbbrevToUse = ArrayAbbrev;
262       break;
263     }
264     case Type::VectorTyID: {
265       const VectorType *VT = cast<VectorType>(T);
266       // VECTOR [numelts, eltty]
267       Code = bitc::TYPE_CODE_VECTOR;
268       TypeVals.push_back(VT->getNumElements());
269       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
270       break;
271     }
272     }
273
274     // Emit the finished record.
275     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
276     TypeVals.clear();
277   }
278
279   Stream.ExitBlock();
280 }
281
282 static unsigned getEncodedLinkage(const GlobalValue *GV) {
283   switch (GV->getLinkage()) {
284   default: llvm_unreachable("Invalid linkage!");
285   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
286   case GlobalValue::ExternalLinkage:            return 0;
287   case GlobalValue::WeakAnyLinkage:             return 1;
288   case GlobalValue::AppendingLinkage:           return 2;
289   case GlobalValue::InternalLinkage:            return 3;
290   case GlobalValue::LinkOnceAnyLinkage:         return 4;
291   case GlobalValue::DLLImportLinkage:           return 5;
292   case GlobalValue::DLLExportLinkage:           return 6;
293   case GlobalValue::ExternalWeakLinkage:        return 7;
294   case GlobalValue::CommonLinkage:              return 8;
295   case GlobalValue::PrivateLinkage:             return 9;
296   case GlobalValue::WeakODRLinkage:             return 10;
297   case GlobalValue::LinkOnceODRLinkage:         return 11;
298   case GlobalValue::AvailableExternallyLinkage: return 12;
299   case GlobalValue::LinkerPrivateLinkage:       return 13;
300   }
301 }
302
303 static unsigned getEncodedVisibility(const GlobalValue *GV) {
304   switch (GV->getVisibility()) {
305   default: llvm_unreachable("Invalid visibility!");
306   case GlobalValue::DefaultVisibility:   return 0;
307   case GlobalValue::HiddenVisibility:    return 1;
308   case GlobalValue::ProtectedVisibility: return 2;
309   }
310 }
311
312 // Emit top-level description of module, including target triple, inline asm,
313 // descriptors for global variables, and function prototype info.
314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
315                             BitstreamWriter &Stream) {
316   // Emit the list of dependent libraries for the Module.
317   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
318     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
319
320   // Emit various pieces of data attached to a module.
321   if (!M->getTargetTriple().empty())
322     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
323                       0/*TODO*/, Stream);
324   if (!M->getDataLayout().empty())
325     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
326                       0/*TODO*/, Stream);
327   if (!M->getModuleInlineAsm().empty())
328     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
329                       0/*TODO*/, Stream);
330
331   // Emit information about sections and GC, computing how many there are. Also
332   // compute the maximum alignment value.
333   std::map<std::string, unsigned> SectionMap;
334   std::map<std::string, unsigned> GCMap;
335   unsigned MaxAlignment = 0;
336   unsigned MaxGlobalType = 0;
337   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
338        GV != E; ++GV) {
339     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
340     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
341
342     if (!GV->hasSection()) continue;
343     // Give section names unique ID's.
344     unsigned &Entry = SectionMap[GV->getSection()];
345     if (Entry != 0) continue;
346     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
347                       0/*TODO*/, Stream);
348     Entry = SectionMap.size();
349   }
350   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
351     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
352     if (F->hasSection()) {
353       // Give section names unique ID's.
354       unsigned &Entry = SectionMap[F->getSection()];
355       if (!Entry) {
356         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
357                           0/*TODO*/, Stream);
358         Entry = SectionMap.size();
359       }
360     }
361     if (F->hasGC()) {
362       // Same for GC names.
363       unsigned &Entry = GCMap[F->getGC()];
364       if (!Entry) {
365         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
366                           0/*TODO*/, Stream);
367         Entry = GCMap.size();
368       }
369     }
370   }
371
372   // Emit abbrev for globals, now that we know # sections and max alignment.
373   unsigned SimpleGVarAbbrev = 0;
374   if (!M->global_empty()) {
375     // Add an abbrev for common globals with no visibility or thread localness.
376     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
377     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
379                               Log2_32_Ceil(MaxGlobalType+1)));
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
383     if (MaxAlignment == 0)                                      // Alignment.
384       Abbv->Add(BitCodeAbbrevOp(0));
385     else {
386       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
387       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
388                                Log2_32_Ceil(MaxEncAlignment+1)));
389     }
390     if (SectionMap.empty())                                    // Section.
391       Abbv->Add(BitCodeAbbrevOp(0));
392     else
393       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
394                                Log2_32_Ceil(SectionMap.size()+1)));
395     // Don't bother emitting vis + thread local.
396     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
397   }
398
399   // Emit the global variable information.
400   SmallVector<unsigned, 64> Vals;
401   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
402        GV != E; ++GV) {
403     unsigned AbbrevToUse = 0;
404
405     // GLOBALVAR: [type, isconst, initid,
406     //             linkage, alignment, section, visibility, threadlocal]
407     Vals.push_back(VE.getTypeID(GV->getType()));
408     Vals.push_back(GV->isConstant());
409     Vals.push_back(GV->isDeclaration() ? 0 :
410                    (VE.getValueID(GV->getInitializer()) + 1));
411     Vals.push_back(getEncodedLinkage(GV));
412     Vals.push_back(Log2_32(GV->getAlignment())+1);
413     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
414     if (GV->isThreadLocal() ||
415         GV->getVisibility() != GlobalValue::DefaultVisibility) {
416       Vals.push_back(getEncodedVisibility(GV));
417       Vals.push_back(GV->isThreadLocal());
418     } else {
419       AbbrevToUse = SimpleGVarAbbrev;
420     }
421
422     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
423     Vals.clear();
424   }
425
426   // Emit the function proto information.
427   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
428     // FUNCTION:  [type, callingconv, isproto, paramattr,
429     //             linkage, alignment, section, visibility, gc]
430     Vals.push_back(VE.getTypeID(F->getType()));
431     Vals.push_back(F->getCallingConv());
432     Vals.push_back(F->isDeclaration());
433     Vals.push_back(getEncodedLinkage(F));
434     Vals.push_back(VE.getAttributeID(F->getAttributes()));
435     Vals.push_back(Log2_32(F->getAlignment())+1);
436     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
437     Vals.push_back(getEncodedVisibility(F));
438     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
439
440     unsigned AbbrevToUse = 0;
441     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
442     Vals.clear();
443   }
444
445
446   // Emit the alias information.
447   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
448        AI != E; ++AI) {
449     Vals.push_back(VE.getTypeID(AI->getType()));
450     Vals.push_back(VE.getValueID(AI->getAliasee()));
451     Vals.push_back(getEncodedLinkage(AI));
452     Vals.push_back(getEncodedVisibility(AI));
453     unsigned AbbrevToUse = 0;
454     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
455     Vals.clear();
456   }
457 }
458
459 static uint64_t GetOptimizationFlags(const Value *V) {
460   uint64_t Flags = 0;
461
462   if (const OverflowingBinaryOperator *OBO =
463         dyn_cast<OverflowingBinaryOperator>(V)) {
464     if (OBO->hasNoSignedWrap())
465       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
466     if (OBO->hasNoUnsignedWrap())
467       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
468   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
469     if (Div->isExact())
470       Flags |= 1 << bitc::SDIV_EXACT;
471   }
472
473   return Flags;
474 }
475
476 static void WriteMDNode(const MDNode *N,
477                         const ValueEnumerator &VE,
478                         BitstreamWriter &Stream,
479                         SmallVector<uint64_t, 64> &Record) {
480   for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
481     if (N->getElement(i)) {
482       Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
483       Record.push_back(VE.getValueID(N->getElement(i)));
484     } else {
485       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
486       Record.push_back(0);
487     }
488   }
489   Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
490   Record.clear();
491 }
492
493 static void WriteModuleMetadata(const ValueEnumerator &VE,
494                                 BitstreamWriter &Stream) {
495   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
496   bool StartedMetadataBlock = false;
497   unsigned MDSAbbrev = 0;
498   SmallVector<uint64_t, 64> Record;
499   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
500
501     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
502       if (!StartedMetadataBlock) {
503         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
504         StartedMetadataBlock = true;
505       }
506       WriteMDNode(N, VE, Stream, Record);
507     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
508       if (!StartedMetadataBlock)  {
509         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
510
511         // Abbrev for METADATA_STRING.
512         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
513         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
514         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
515         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
516         MDSAbbrev = Stream.EmitAbbrev(Abbv);
517         StartedMetadataBlock = true;
518       }
519
520       // Code: [strchar x N]
521       Record.append(MDS->begin(), MDS->end());
522
523       // Emit the finished record.
524       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
525       Record.clear();
526     } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
527       if (!StartedMetadataBlock)  {
528         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
529         StartedMetadataBlock = true;
530       }
531
532       // Write name.
533       std::string Str = NMD->getNameStr();
534       const char *StrBegin = Str.c_str();
535       for (unsigned i = 0, e = Str.length(); i != e; ++i)
536         Record.push_back(StrBegin[i]);
537       Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
538       Record.clear();
539
540       // Write named metadata elements.
541       for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
542         if (NMD->getElement(i))
543           Record.push_back(VE.getValueID(NMD->getElement(i)));
544         else
545           Record.push_back(0);
546       }
547       Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
548       Record.clear();
549     }
550   }
551
552   if (StartedMetadataBlock)
553     Stream.ExitBlock();
554 }
555
556 static void WriteMetadataAttachment(const Function &F,
557                                     const ValueEnumerator &VE,
558                                     BitstreamWriter &Stream) {
559   bool StartedMetadataBlock = false;
560   SmallVector<uint64_t, 64> Record;
561
562   // Write metadata attachments
563   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
564   MetadataContext &TheMetadata = F.getContext().getMetadata();
565   typedef SmallVector<std::pair<unsigned, TrackingVH<MDNode> >, 2> MDMapTy;
566   MDMapTy MDs;
567   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
568     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
569          I != E; ++I) {
570       MDs.clear();
571       TheMetadata.getMDs(I, MDs);
572       bool RecordedInstruction = false;
573       for (MDMapTy::const_iterator PI = MDs.begin(), PE = MDs.end();
574              PI != PE; ++PI) {
575         if (RecordedInstruction == false) {
576           Record.push_back(VE.getInstructionID(I));
577           RecordedInstruction = true;
578         }
579         Record.push_back(PI->first);
580         Record.push_back(VE.getValueID(PI->second));
581       }
582       if (!Record.empty()) {
583         if (!StartedMetadataBlock)  {
584           Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
585           StartedMetadataBlock = true;
586         }
587         Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
588         Record.clear();
589       }
590     }
591
592   if (StartedMetadataBlock)
593     Stream.ExitBlock();
594 }
595
596 static void WriteModuleMetadataStore(const Module *M,
597                                      const ValueEnumerator &VE,
598                                      BitstreamWriter &Stream) {
599
600   bool StartedMetadataBlock = false;
601   SmallVector<uint64_t, 64> Record;
602
603   // Write metadata kinds
604   // METADATA_KIND - [n x [id, name]]
605   MetadataContext &TheMetadata = M->getContext().getMetadata();
606   SmallVector<std::pair<unsigned, StringRef>, 4> Names;
607   TheMetadata.getHandlerNames(Names);
608   for (SmallVector<std::pair<unsigned, StringRef>, 4>::iterator 
609          I = Names.begin(),
610          E = Names.end(); I != E; ++I) {
611     Record.push_back(I->first);
612     StringRef KName = I->second;
613     for (unsigned i = 0, e = KName.size(); i != e; ++i)
614       Record.push_back(KName[i]);
615     if (!StartedMetadataBlock)  {
616       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
617       StartedMetadataBlock = true;
618     }
619     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
620     Record.clear();
621   }
622
623   if (StartedMetadataBlock)
624     Stream.ExitBlock();
625 }
626
627 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
628                            const ValueEnumerator &VE,
629                            BitstreamWriter &Stream, bool isGlobal) {
630   if (FirstVal == LastVal) return;
631
632   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
633
634   unsigned AggregateAbbrev = 0;
635   unsigned String8Abbrev = 0;
636   unsigned CString7Abbrev = 0;
637   unsigned CString6Abbrev = 0;
638   // If this is a constant pool for the module, emit module-specific abbrevs.
639   if (isGlobal) {
640     // Abbrev for CST_CODE_AGGREGATE.
641     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
642     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
643     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
644     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
645     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
646
647     // Abbrev for CST_CODE_STRING.
648     Abbv = new BitCodeAbbrev();
649     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
650     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
651     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
652     String8Abbrev = Stream.EmitAbbrev(Abbv);
653     // Abbrev for CST_CODE_CSTRING.
654     Abbv = new BitCodeAbbrev();
655     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
656     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
657     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
658     CString7Abbrev = Stream.EmitAbbrev(Abbv);
659     // Abbrev for CST_CODE_CSTRING.
660     Abbv = new BitCodeAbbrev();
661     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
662     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
663     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
664     CString6Abbrev = Stream.EmitAbbrev(Abbv);
665   }
666
667   SmallVector<uint64_t, 64> Record;
668
669   const ValueEnumerator::ValueList &Vals = VE.getValues();
670   const Type *LastTy = 0;
671   for (unsigned i = FirstVal; i != LastVal; ++i) {
672     const Value *V = Vals[i].first;
673     // If we need to switch types, do so now.
674     if (V->getType() != LastTy) {
675       LastTy = V->getType();
676       Record.push_back(VE.getTypeID(LastTy));
677       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
678                         CONSTANTS_SETTYPE_ABBREV);
679       Record.clear();
680     }
681
682     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
683       Record.push_back(unsigned(IA->hasSideEffects()) |
684                        unsigned(IA->isAlignStack()) << 1);
685
686       // Add the asm string.
687       const std::string &AsmStr = IA->getAsmString();
688       Record.push_back(AsmStr.size());
689       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
690         Record.push_back(AsmStr[i]);
691
692       // Add the constraint string.
693       const std::string &ConstraintStr = IA->getConstraintString();
694       Record.push_back(ConstraintStr.size());
695       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
696         Record.push_back(ConstraintStr[i]);
697       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
698       Record.clear();
699       continue;
700     }
701     const Constant *C = cast<Constant>(V);
702     unsigned Code = -1U;
703     unsigned AbbrevToUse = 0;
704     if (C->isNullValue()) {
705       Code = bitc::CST_CODE_NULL;
706     } else if (isa<UndefValue>(C)) {
707       Code = bitc::CST_CODE_UNDEF;
708     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
709       if (IV->getBitWidth() <= 64) {
710         int64_t V = IV->getSExtValue();
711         if (V >= 0)
712           Record.push_back(V << 1);
713         else
714           Record.push_back((-V << 1) | 1);
715         Code = bitc::CST_CODE_INTEGER;
716         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
717       } else {                             // Wide integers, > 64 bits in size.
718         // We have an arbitrary precision integer value to write whose
719         // bit width is > 64. However, in canonical unsigned integer
720         // format it is likely that the high bits are going to be zero.
721         // So, we only write the number of active words.
722         unsigned NWords = IV->getValue().getActiveWords();
723         const uint64_t *RawWords = IV->getValue().getRawData();
724         for (unsigned i = 0; i != NWords; ++i) {
725           int64_t V = RawWords[i];
726           if (V >= 0)
727             Record.push_back(V << 1);
728           else
729             Record.push_back((-V << 1) | 1);
730         }
731         Code = bitc::CST_CODE_WIDE_INTEGER;
732       }
733     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
734       Code = bitc::CST_CODE_FLOAT;
735       const Type *Ty = CFP->getType();
736       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
737         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
738       } else if (Ty->isX86_FP80Ty()) {
739         // api needed to prevent premature destruction
740         // bits are not in the same order as a normal i80 APInt, compensate.
741         APInt api = CFP->getValueAPF().bitcastToAPInt();
742         const uint64_t *p = api.getRawData();
743         Record.push_back((p[1] << 48) | (p[0] >> 16));
744         Record.push_back(p[0] & 0xffffLL);
745       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
746         APInt api = CFP->getValueAPF().bitcastToAPInt();
747         const uint64_t *p = api.getRawData();
748         Record.push_back(p[0]);
749         Record.push_back(p[1]);
750       } else {
751         assert (0 && "Unknown FP type!");
752       }
753     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
754       // Emit constant strings specially.
755       unsigned NumOps = C->getNumOperands();
756       // If this is a null-terminated string, use the denser CSTRING encoding.
757       if (C->getOperand(NumOps-1)->isNullValue()) {
758         Code = bitc::CST_CODE_CSTRING;
759         --NumOps;  // Don't encode the null, which isn't allowed by char6.
760       } else {
761         Code = bitc::CST_CODE_STRING;
762         AbbrevToUse = String8Abbrev;
763       }
764       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
765       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
766       for (unsigned i = 0; i != NumOps; ++i) {
767         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
768         Record.push_back(V);
769         isCStr7 &= (V & 128) == 0;
770         if (isCStrChar6)
771           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
772       }
773
774       if (isCStrChar6)
775         AbbrevToUse = CString6Abbrev;
776       else if (isCStr7)
777         AbbrevToUse = CString7Abbrev;
778     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
779                isa<ConstantVector>(V)) {
780       Code = bitc::CST_CODE_AGGREGATE;
781       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
782         Record.push_back(VE.getValueID(C->getOperand(i)));
783       AbbrevToUse = AggregateAbbrev;
784     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
785       switch (CE->getOpcode()) {
786       default:
787         if (Instruction::isCast(CE->getOpcode())) {
788           Code = bitc::CST_CODE_CE_CAST;
789           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
790           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
791           Record.push_back(VE.getValueID(C->getOperand(0)));
792           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
793         } else {
794           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
795           Code = bitc::CST_CODE_CE_BINOP;
796           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
797           Record.push_back(VE.getValueID(C->getOperand(0)));
798           Record.push_back(VE.getValueID(C->getOperand(1)));
799           uint64_t Flags = GetOptimizationFlags(CE);
800           if (Flags != 0)
801             Record.push_back(Flags);
802         }
803         break;
804       case Instruction::GetElementPtr:
805         Code = bitc::CST_CODE_CE_GEP;
806         if (cast<GEPOperator>(C)->isInBounds())
807           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
808         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
809           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
810           Record.push_back(VE.getValueID(C->getOperand(i)));
811         }
812         break;
813       case Instruction::Select:
814         Code = bitc::CST_CODE_CE_SELECT;
815         Record.push_back(VE.getValueID(C->getOperand(0)));
816         Record.push_back(VE.getValueID(C->getOperand(1)));
817         Record.push_back(VE.getValueID(C->getOperand(2)));
818         break;
819       case Instruction::ExtractElement:
820         Code = bitc::CST_CODE_CE_EXTRACTELT;
821         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
822         Record.push_back(VE.getValueID(C->getOperand(0)));
823         Record.push_back(VE.getValueID(C->getOperand(1)));
824         break;
825       case Instruction::InsertElement:
826         Code = bitc::CST_CODE_CE_INSERTELT;
827         Record.push_back(VE.getValueID(C->getOperand(0)));
828         Record.push_back(VE.getValueID(C->getOperand(1)));
829         Record.push_back(VE.getValueID(C->getOperand(2)));
830         break;
831       case Instruction::ShuffleVector:
832         // If the return type and argument types are the same, this is a
833         // standard shufflevector instruction.  If the types are different,
834         // then the shuffle is widening or truncating the input vectors, and
835         // the argument type must also be encoded.
836         if (C->getType() == C->getOperand(0)->getType()) {
837           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
838         } else {
839           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
840           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
841         }
842         Record.push_back(VE.getValueID(C->getOperand(0)));
843         Record.push_back(VE.getValueID(C->getOperand(1)));
844         Record.push_back(VE.getValueID(C->getOperand(2)));
845         break;
846       case Instruction::ICmp:
847       case Instruction::FCmp:
848         Code = bitc::CST_CODE_CE_CMP;
849         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
850         Record.push_back(VE.getValueID(C->getOperand(0)));
851         Record.push_back(VE.getValueID(C->getOperand(1)));
852         Record.push_back(CE->getPredicate());
853         break;
854       }
855     } else {
856       llvm_unreachable("Unknown constant!");
857     }
858     Stream.EmitRecord(Code, Record, AbbrevToUse);
859     Record.clear();
860   }
861
862   Stream.ExitBlock();
863 }
864
865 static void WriteModuleConstants(const ValueEnumerator &VE,
866                                  BitstreamWriter &Stream) {
867   const ValueEnumerator::ValueList &Vals = VE.getValues();
868
869   // Find the first constant to emit, which is the first non-globalvalue value.
870   // We know globalvalues have been emitted by WriteModuleInfo.
871   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
872     if (!isa<GlobalValue>(Vals[i].first)) {
873       WriteConstants(i, Vals.size(), VE, Stream, true);
874       return;
875     }
876   }
877 }
878
879 /// PushValueAndType - The file has to encode both the value and type id for
880 /// many values, because we need to know what type to create for forward
881 /// references.  However, most operands are not forward references, so this type
882 /// field is not needed.
883 ///
884 /// This function adds V's value ID to Vals.  If the value ID is higher than the
885 /// instruction ID, then it is a forward reference, and it also includes the
886 /// type ID.
887 static bool PushValueAndType(const Value *V, unsigned InstID,
888                              SmallVector<unsigned, 64> &Vals,
889                              ValueEnumerator &VE) {
890   unsigned ValID = VE.getValueID(V);
891   Vals.push_back(ValID);
892   if (ValID >= InstID) {
893     Vals.push_back(VE.getTypeID(V->getType()));
894     return true;
895   }
896   return false;
897 }
898
899 /// WriteInstruction - Emit an instruction to the specified stream.
900 static void WriteInstruction(const Instruction &I, unsigned InstID,
901                              ValueEnumerator &VE, BitstreamWriter &Stream,
902                              SmallVector<unsigned, 64> &Vals) {
903   unsigned Code = 0;
904   unsigned AbbrevToUse = 0;
905   VE.setInstructionID(&I);
906   switch (I.getOpcode()) {
907   default:
908     if (Instruction::isCast(I.getOpcode())) {
909       Code = bitc::FUNC_CODE_INST_CAST;
910       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
911         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
912       Vals.push_back(VE.getTypeID(I.getType()));
913       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
914     } else {
915       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
916       Code = bitc::FUNC_CODE_INST_BINOP;
917       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
918         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
919       Vals.push_back(VE.getValueID(I.getOperand(1)));
920       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
921       uint64_t Flags = GetOptimizationFlags(&I);
922       if (Flags != 0) {
923         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
924           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
925         Vals.push_back(Flags);
926       }
927     }
928     break;
929
930   case Instruction::GetElementPtr:
931     Code = bitc::FUNC_CODE_INST_GEP;
932     if (cast<GEPOperator>(&I)->isInBounds())
933       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
934     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
935       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
936     break;
937   case Instruction::ExtractValue: {
938     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
939     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
940     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
941     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
942       Vals.push_back(*i);
943     break;
944   }
945   case Instruction::InsertValue: {
946     Code = bitc::FUNC_CODE_INST_INSERTVAL;
947     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
948     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
949     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
950     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
951       Vals.push_back(*i);
952     break;
953   }
954   case Instruction::Select:
955     Code = bitc::FUNC_CODE_INST_VSELECT;
956     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
957     Vals.push_back(VE.getValueID(I.getOperand(2)));
958     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
959     break;
960   case Instruction::ExtractElement:
961     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
962     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
963     Vals.push_back(VE.getValueID(I.getOperand(1)));
964     break;
965   case Instruction::InsertElement:
966     Code = bitc::FUNC_CODE_INST_INSERTELT;
967     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
968     Vals.push_back(VE.getValueID(I.getOperand(1)));
969     Vals.push_back(VE.getValueID(I.getOperand(2)));
970     break;
971   case Instruction::ShuffleVector:
972     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
973     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
974     Vals.push_back(VE.getValueID(I.getOperand(1)));
975     Vals.push_back(VE.getValueID(I.getOperand(2)));
976     break;
977   case Instruction::ICmp:
978   case Instruction::FCmp:
979     // compare returning Int1Ty or vector of Int1Ty
980     Code = bitc::FUNC_CODE_INST_CMP2;
981     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
982     Vals.push_back(VE.getValueID(I.getOperand(1)));
983     Vals.push_back(cast<CmpInst>(I).getPredicate());
984     break;
985
986   case Instruction::Ret:
987     {
988       Code = bitc::FUNC_CODE_INST_RET;
989       unsigned NumOperands = I.getNumOperands();
990       if (NumOperands == 0)
991         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
992       else if (NumOperands == 1) {
993         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
994           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
995       } else {
996         for (unsigned i = 0, e = NumOperands; i != e; ++i)
997           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
998       }
999     }
1000     break;
1001   case Instruction::Br:
1002     {
1003       Code = bitc::FUNC_CODE_INST_BR;
1004       BranchInst &II = cast<BranchInst>(I);
1005       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1006       if (II.isConditional()) {
1007         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1008         Vals.push_back(VE.getValueID(II.getCondition()));
1009       }
1010     }
1011     break;
1012   case Instruction::Switch:
1013     Code = bitc::FUNC_CODE_INST_SWITCH;
1014     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1015     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1016       Vals.push_back(VE.getValueID(I.getOperand(i)));
1017     break;
1018   case Instruction::IndirectBr:
1019     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1020     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1021     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1022       Vals.push_back(VE.getValueID(I.getOperand(i)));
1023     break;
1024       
1025   case Instruction::Invoke: {
1026     const InvokeInst *II = cast<InvokeInst>(&I);
1027     const Value *Callee(II->getCalledValue());
1028     const PointerType *PTy = cast<PointerType>(Callee->getType());
1029     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1030     Code = bitc::FUNC_CODE_INST_INVOKE;
1031
1032     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1033     Vals.push_back(II->getCallingConv());
1034     Vals.push_back(VE.getValueID(II->getNormalDest()));
1035     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1036     PushValueAndType(Callee, InstID, Vals, VE);
1037
1038     // Emit value #'s for the fixed parameters.
1039     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1040       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
1041
1042     // Emit type/value pairs for varargs params.
1043     if (FTy->isVarArg()) {
1044       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
1045            i != e; ++i)
1046         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1047     }
1048     break;
1049   }
1050   case Instruction::Unwind:
1051     Code = bitc::FUNC_CODE_INST_UNWIND;
1052     break;
1053   case Instruction::Unreachable:
1054     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1055     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1056     break;
1057
1058   case Instruction::PHI:
1059     Code = bitc::FUNC_CODE_INST_PHI;
1060     Vals.push_back(VE.getTypeID(I.getType()));
1061     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1062       Vals.push_back(VE.getValueID(I.getOperand(i)));
1063     break;
1064
1065   case Instruction::Alloca:
1066     Code = bitc::FUNC_CODE_INST_ALLOCA;
1067     Vals.push_back(VE.getTypeID(I.getType()));
1068     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1069     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1070     break;
1071
1072   case Instruction::Load:
1073     Code = bitc::FUNC_CODE_INST_LOAD;
1074     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1075       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1076
1077     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1078     Vals.push_back(cast<LoadInst>(I).isVolatile());
1079     break;
1080   case Instruction::Store:
1081     Code = bitc::FUNC_CODE_INST_STORE2;
1082     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1083     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1084     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1085     Vals.push_back(cast<StoreInst>(I).isVolatile());
1086     break;
1087   case Instruction::Call: {
1088     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1089     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1090
1091     Code = bitc::FUNC_CODE_INST_CALL;
1092
1093     const CallInst *CI = cast<CallInst>(&I);
1094     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1095     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1096     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1097
1098     // Emit value #'s for the fixed parameters.
1099     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1100       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1101
1102     // Emit type/value pairs for varargs params.
1103     if (FTy->isVarArg()) {
1104       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1105       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1106            i != e; ++i)
1107         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1108     }
1109     break;
1110   }
1111   case Instruction::VAArg:
1112     Code = bitc::FUNC_CODE_INST_VAARG;
1113     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1114     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1115     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1116     break;
1117   }
1118
1119   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1120   Vals.clear();
1121 }
1122
1123 // Emit names for globals/functions etc.
1124 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1125                                   const ValueEnumerator &VE,
1126                                   BitstreamWriter &Stream) {
1127   if (VST.empty()) return;
1128   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1129
1130   // FIXME: Set up the abbrev, we know how many values there are!
1131   // FIXME: We know if the type names can use 7-bit ascii.
1132   SmallVector<unsigned, 64> NameVals;
1133
1134   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1135        SI != SE; ++SI) {
1136
1137     const ValueName &Name = *SI;
1138
1139     // Figure out the encoding to use for the name.
1140     bool is7Bit = true;
1141     bool isChar6 = true;
1142     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1143          C != E; ++C) {
1144       if (isChar6)
1145         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1146       if ((unsigned char)*C & 128) {
1147         is7Bit = false;
1148         break;  // don't bother scanning the rest.
1149       }
1150     }
1151
1152     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1153
1154     // VST_ENTRY:   [valueid, namechar x N]
1155     // VST_BBENTRY: [bbid, namechar x N]
1156     unsigned Code;
1157     if (isa<BasicBlock>(SI->getValue())) {
1158       Code = bitc::VST_CODE_BBENTRY;
1159       if (isChar6)
1160         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1161     } else {
1162       Code = bitc::VST_CODE_ENTRY;
1163       if (isChar6)
1164         AbbrevToUse = VST_ENTRY_6_ABBREV;
1165       else if (is7Bit)
1166         AbbrevToUse = VST_ENTRY_7_ABBREV;
1167     }
1168
1169     NameVals.push_back(VE.getValueID(SI->getValue()));
1170     for (const char *P = Name.getKeyData(),
1171          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1172       NameVals.push_back((unsigned char)*P);
1173
1174     // Emit the finished record.
1175     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1176     NameVals.clear();
1177   }
1178   Stream.ExitBlock();
1179 }
1180
1181 /// WriteFunction - Emit a function body to the module stream.
1182 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1183                           BitstreamWriter &Stream) {
1184   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1185   VE.incorporateFunction(F);
1186
1187   SmallVector<unsigned, 64> Vals;
1188
1189   // Emit the number of basic blocks, so the reader can create them ahead of
1190   // time.
1191   Vals.push_back(VE.getBasicBlocks().size());
1192   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1193   Vals.clear();
1194
1195   // If there are function-local constants, emit them now.
1196   unsigned CstStart, CstEnd;
1197   VE.getFunctionConstantRange(CstStart, CstEnd);
1198   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1199
1200   // Keep a running idea of what the instruction ID is.
1201   unsigned InstID = CstEnd;
1202
1203   // Finally, emit all the instructions, in order.
1204   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1205     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1206          I != E; ++I) {
1207       WriteInstruction(*I, InstID, VE, Stream, Vals);
1208       if (I->getType() != Type::getVoidTy(F.getContext()))
1209         ++InstID;
1210     }
1211
1212   // Emit names for all the instructions etc.
1213   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1214
1215   WriteMetadataAttachment(F, VE, Stream);
1216   VE.purgeFunction();
1217   Stream.ExitBlock();
1218 }
1219
1220 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1221 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1222                                  const ValueEnumerator &VE,
1223                                  BitstreamWriter &Stream) {
1224   if (TST.empty()) return;
1225
1226   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1227
1228   // 7-bit fixed width VST_CODE_ENTRY strings.
1229   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1230   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1231   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1232                             Log2_32_Ceil(VE.getTypes().size()+1)));
1233   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1234   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1235   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1236
1237   SmallVector<unsigned, 64> NameVals;
1238
1239   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1240        TI != TE; ++TI) {
1241     // TST_ENTRY: [typeid, namechar x N]
1242     NameVals.push_back(VE.getTypeID(TI->second));
1243
1244     const std::string &Str = TI->first;
1245     bool is7Bit = true;
1246     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1247       NameVals.push_back((unsigned char)Str[i]);
1248       if (Str[i] & 128)
1249         is7Bit = false;
1250     }
1251
1252     // Emit the finished record.
1253     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1254     NameVals.clear();
1255   }
1256
1257   Stream.ExitBlock();
1258 }
1259
1260 // Emit blockinfo, which defines the standard abbreviations etc.
1261 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1262   // We only want to emit block info records for blocks that have multiple
1263   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1264   // blocks can defined their abbrevs inline.
1265   Stream.EnterBlockInfoBlock(2);
1266
1267   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1268     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1269     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1270     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1271     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1272     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1273     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1274                                    Abbv) != VST_ENTRY_8_ABBREV)
1275       llvm_unreachable("Unexpected abbrev ordering!");
1276   }
1277
1278   { // 7-bit fixed width VST_ENTRY strings.
1279     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1280     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1281     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1282     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1283     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1284     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1285                                    Abbv) != VST_ENTRY_7_ABBREV)
1286       llvm_unreachable("Unexpected abbrev ordering!");
1287   }
1288   { // 6-bit char6 VST_ENTRY strings.
1289     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1290     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1291     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1292     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1293     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1294     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1295                                    Abbv) != VST_ENTRY_6_ABBREV)
1296       llvm_unreachable("Unexpected abbrev ordering!");
1297   }
1298   { // 6-bit char6 VST_BBENTRY strings.
1299     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1300     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1301     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1302     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1303     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1304     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1305                                    Abbv) != VST_BBENTRY_6_ABBREV)
1306       llvm_unreachable("Unexpected abbrev ordering!");
1307   }
1308
1309
1310
1311   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1312     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1313     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1314     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1315                               Log2_32_Ceil(VE.getTypes().size()+1)));
1316     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1317                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1318       llvm_unreachable("Unexpected abbrev ordering!");
1319   }
1320
1321   { // INTEGER abbrev for CONSTANTS_BLOCK.
1322     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1323     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1324     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1325     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1326                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1327       llvm_unreachable("Unexpected abbrev ordering!");
1328   }
1329
1330   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1331     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1332     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1333     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1334     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1335                               Log2_32_Ceil(VE.getTypes().size()+1)));
1336     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1337
1338     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1339                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1340       llvm_unreachable("Unexpected abbrev ordering!");
1341   }
1342   { // NULL abbrev for CONSTANTS_BLOCK.
1343     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1344     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1345     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1346                                    Abbv) != CONSTANTS_NULL_Abbrev)
1347       llvm_unreachable("Unexpected abbrev ordering!");
1348   }
1349
1350   // FIXME: This should only use space for first class types!
1351
1352   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1353     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1354     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1355     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1356     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1357     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1358     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1359                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1360       llvm_unreachable("Unexpected abbrev ordering!");
1361   }
1362   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1363     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1364     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1365     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1366     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1367     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1368     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1369                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1370       llvm_unreachable("Unexpected abbrev ordering!");
1371   }
1372   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1373     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1374     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1375     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1376     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1377     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1379     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1380                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1381       llvm_unreachable("Unexpected abbrev ordering!");
1382   }
1383   { // INST_CAST abbrev for FUNCTION_BLOCK.
1384     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1385     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1386     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1387     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1388                               Log2_32_Ceil(VE.getTypes().size()+1)));
1389     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1390     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1391                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1392       llvm_unreachable("Unexpected abbrev ordering!");
1393   }
1394
1395   { // INST_RET abbrev for FUNCTION_BLOCK.
1396     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1397     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1398     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1399                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1400       llvm_unreachable("Unexpected abbrev ordering!");
1401   }
1402   { // INST_RET abbrev for FUNCTION_BLOCK.
1403     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1404     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1405     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1406     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1407                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1408       llvm_unreachable("Unexpected abbrev ordering!");
1409   }
1410   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1411     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1412     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1413     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1414                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1415       llvm_unreachable("Unexpected abbrev ordering!");
1416   }
1417
1418   Stream.ExitBlock();
1419 }
1420
1421
1422 /// WriteModule - Emit the specified module to the bitstream.
1423 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1424   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1425
1426   // Emit the version number if it is non-zero.
1427   if (CurVersion) {
1428     SmallVector<unsigned, 1> Vals;
1429     Vals.push_back(CurVersion);
1430     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1431   }
1432
1433   // Analyze the module, enumerating globals, functions, etc.
1434   ValueEnumerator VE(M);
1435
1436   // Emit blockinfo, which defines the standard abbreviations etc.
1437   WriteBlockInfo(VE, Stream);
1438
1439   // Emit information about parameter attributes.
1440   WriteAttributeTable(VE, Stream);
1441
1442   // Emit information describing all of the types in the module.
1443   WriteTypeTable(VE, Stream);
1444
1445   // Emit top-level description of module, including target triple, inline asm,
1446   // descriptors for global variables, and function prototype info.
1447   WriteModuleInfo(M, VE, Stream);
1448
1449   // Emit constants.
1450   WriteModuleConstants(VE, Stream);
1451
1452   // Emit metadata.
1453   WriteModuleMetadata(VE, Stream);
1454
1455   // Emit function bodies.
1456   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1457     if (!I->isDeclaration())
1458       WriteFunction(*I, VE, Stream);
1459
1460   // Emit metadata.
1461   WriteModuleMetadataStore(M, VE, Stream);
1462
1463   // Emit the type symbol table information.
1464   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1465
1466   // Emit names for globals/functions etc.
1467   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1468
1469   Stream.ExitBlock();
1470 }
1471
1472 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1473 /// header and trailer to make it compatible with the system archiver.  To do
1474 /// this we emit the following header, and then emit a trailer that pads the
1475 /// file out to be a multiple of 16 bytes.
1476 ///
1477 /// struct bc_header {
1478 ///   uint32_t Magic;         // 0x0B17C0DE
1479 ///   uint32_t Version;       // Version, currently always 0.
1480 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1481 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1482 ///   uint32_t CPUType;       // CPU specifier.
1483 ///   ... potentially more later ...
1484 /// };
1485 enum {
1486   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1487   DarwinBCHeaderSize = 5*4
1488 };
1489
1490 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1491                                const std::string &TT) {
1492   unsigned CPUType = ~0U;
1493
1494   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1495   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1496   // specific constants here because they are implicitly part of the Darwin ABI.
1497   enum {
1498     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1499     DARWIN_CPU_TYPE_X86        = 7,
1500     DARWIN_CPU_TYPE_POWERPC    = 18
1501   };
1502
1503   if (TT.find("x86_64-") == 0)
1504     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1505   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1506            TT[4] == '-' && TT[1] - '3' < 6)
1507     CPUType = DARWIN_CPU_TYPE_X86;
1508   else if (TT.find("powerpc-") == 0)
1509     CPUType = DARWIN_CPU_TYPE_POWERPC;
1510   else if (TT.find("powerpc64-") == 0)
1511     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1512
1513   // Traditional Bitcode starts after header.
1514   unsigned BCOffset = DarwinBCHeaderSize;
1515
1516   Stream.Emit(0x0B17C0DE, 32);
1517   Stream.Emit(0         , 32);  // Version.
1518   Stream.Emit(BCOffset  , 32);
1519   Stream.Emit(0         , 32);  // Filled in later.
1520   Stream.Emit(CPUType   , 32);
1521 }
1522
1523 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1524 /// finalize the header.
1525 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1526   // Update the size field in the header.
1527   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1528
1529   // If the file is not a multiple of 16 bytes, insert dummy padding.
1530   while (BufferSize & 15) {
1531     Stream.Emit(0, 8);
1532     ++BufferSize;
1533   }
1534 }
1535
1536
1537 /// WriteBitcodeToFile - Write the specified module to the specified output
1538 /// stream.
1539 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1540   std::vector<unsigned char> Buffer;
1541   BitstreamWriter Stream(Buffer);
1542
1543   Buffer.reserve(256*1024);
1544
1545   WriteBitcodeToStream( M, Stream );
1546
1547   // If writing to stdout, set binary mode.
1548   if (&llvm::outs() == &Out)
1549     sys::Program::ChangeStdoutToBinary();
1550
1551   // Write the generated bitstream to "Out".
1552   Out.write((char*)&Buffer.front(), Buffer.size());
1553
1554   // Make sure it hits disk now.
1555   Out.flush();
1556 }
1557
1558 /// WriteBitcodeToStream - Write the specified module to the specified output
1559 /// stream.
1560 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1561   // If this is darwin, emit a file header and trailer if needed.
1562   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1563   if (isDarwin)
1564     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1565
1566   // Emit the file header.
1567   Stream.Emit((unsigned)'B', 8);
1568   Stream.Emit((unsigned)'C', 8);
1569   Stream.Emit(0x0, 4);
1570   Stream.Emit(0xC, 4);
1571   Stream.Emit(0xE, 4);
1572   Stream.Emit(0xD, 4);
1573
1574   // Emit the module.
1575   WriteModule(M, Stream);
1576
1577   if (isDarwin)
1578     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1579 }