Make WriteConstants() more robust against stray values in ValueEnumerator's ValueList
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/System/Program.h"
30 using namespace llvm;
31
32 /// These are manifest constants used by the bitcode writer. They do not need to
33 /// be kept in sync with the reader, but need to be consistent within this file.
34 enum {
35   CurVersion = 0,
36
37   // VALUE_SYMTAB_BLOCK abbrev id's.
38   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
39   VST_ENTRY_7_ABBREV,
40   VST_ENTRY_6_ABBREV,
41   VST_BBENTRY_6_ABBREV,
42
43   // CONSTANTS_BLOCK abbrev id's.
44   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
45   CONSTANTS_INTEGER_ABBREV,
46   CONSTANTS_CE_CAST_Abbrev,
47   CONSTANTS_NULL_Abbrev,
48
49   // FUNCTION_BLOCK abbrev id's.
50   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
51   FUNCTION_INST_BINOP_ABBREV,
52   FUNCTION_INST_BINOP_FLAGS_ABBREV,
53   FUNCTION_INST_CAST_ABBREV,
54   FUNCTION_INST_RET_VOID_ABBREV,
55   FUNCTION_INST_RET_VAL_ABBREV,
56   FUNCTION_INST_UNREACHABLE_ABBREV
57 };
58
59
60 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
61   switch (Opcode) {
62   default: llvm_unreachable("Unknown cast instruction!");
63   case Instruction::Trunc   : return bitc::CAST_TRUNC;
64   case Instruction::ZExt    : return bitc::CAST_ZEXT;
65   case Instruction::SExt    : return bitc::CAST_SEXT;
66   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
67   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
68   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
69   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
70   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
71   case Instruction::FPExt   : return bitc::CAST_FPEXT;
72   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
73   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
74   case Instruction::BitCast : return bitc::CAST_BITCAST;
75   }
76 }
77
78 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
79   switch (Opcode) {
80   default: llvm_unreachable("Unknown binary instruction!");
81   case Instruction::Add:
82   case Instruction::FAdd: return bitc::BINOP_ADD;
83   case Instruction::Sub:
84   case Instruction::FSub: return bitc::BINOP_SUB;
85   case Instruction::Mul:
86   case Instruction::FMul: return bitc::BINOP_MUL;
87   case Instruction::UDiv: return bitc::BINOP_UDIV;
88   case Instruction::FDiv:
89   case Instruction::SDiv: return bitc::BINOP_SDIV;
90   case Instruction::URem: return bitc::BINOP_UREM;
91   case Instruction::FRem:
92   case Instruction::SRem: return bitc::BINOP_SREM;
93   case Instruction::Shl:  return bitc::BINOP_SHL;
94   case Instruction::LShr: return bitc::BINOP_LSHR;
95   case Instruction::AShr: return bitc::BINOP_ASHR;
96   case Instruction::And:  return bitc::BINOP_AND;
97   case Instruction::Or:   return bitc::BINOP_OR;
98   case Instruction::Xor:  return bitc::BINOP_XOR;
99   }
100 }
101
102
103
104 static void WriteStringRecord(unsigned Code, const std::string &Str,
105                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
106   SmallVector<unsigned, 64> Vals;
107
108   // Code: [strchar x N]
109   for (unsigned i = 0, e = Str.size(); i != e; ++i)
110     Vals.push_back(Str[i]);
111
112   // Emit the finished record.
113   Stream.EmitRecord(Code, Vals, AbbrevToUse);
114 }
115
116 // Emit information about parameter attributes.
117 static void WriteAttributeTable(const ValueEnumerator &VE,
118                                 BitstreamWriter &Stream) {
119   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
120   if (Attrs.empty()) return;
121
122   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
123
124   SmallVector<uint64_t, 64> Record;
125   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
126     const AttrListPtr &A = Attrs[i];
127     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
128       const AttributeWithIndex &PAWI = A.getSlot(i);
129       Record.push_back(PAWI.Index);
130
131       // FIXME: remove in LLVM 3.0
132       // Store the alignment in the bitcode as a 16-bit raw value instead of a
133       // 5-bit log2 encoded value. Shift the bits above the alignment up by
134       // 11 bits.
135       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
136       if (PAWI.Attrs & Attribute::Alignment)
137         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
138       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
139
140       Record.push_back(FauxAttr);
141     }
142
143     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
144     Record.clear();
145   }
146
147   Stream.ExitBlock();
148 }
149
150 /// WriteTypeTable - Write out the type table for a module.
151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
152   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
153
154   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
155   SmallVector<uint64_t, 64> TypeVals;
156
157   // Abbrev for TYPE_CODE_POINTER.
158   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
159   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
160   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
161                             Log2_32_Ceil(VE.getTypes().size()+1)));
162   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
163   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
164
165   // Abbrev for TYPE_CODE_FUNCTION.
166   Abbv = new BitCodeAbbrev();
167   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
168   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
169   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
171   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
172                             Log2_32_Ceil(VE.getTypes().size()+1)));
173   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
174
175   // Abbrev for TYPE_CODE_STRUCT.
176   Abbv = new BitCodeAbbrev();
177   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
178   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
179   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
181                             Log2_32_Ceil(VE.getTypes().size()+1)));
182   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
183
184   // Abbrev for TYPE_CODE_ARRAY.
185   Abbv = new BitCodeAbbrev();
186   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
187   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
188   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
189                             Log2_32_Ceil(VE.getTypes().size()+1)));
190   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
191
192   // Emit an entry count so the reader can reserve space.
193   TypeVals.push_back(TypeList.size());
194   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
195   TypeVals.clear();
196
197   // Loop over all of the types, emitting each in turn.
198   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
199     const Type *T = TypeList[i].first;
200     int AbbrevToUse = 0;
201     unsigned Code = 0;
202
203     switch (T->getTypeID()) {
204     default: llvm_unreachable("Unknown type!");
205     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
206     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
207     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
208     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
209     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
210     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
211     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
212     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
213     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
214     case Type::IntegerTyID:
215       // INTEGER: [width]
216       Code = bitc::TYPE_CODE_INTEGER;
217       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
218       break;
219     case Type::PointerTyID: {
220       const PointerType *PTy = cast<PointerType>(T);
221       // POINTER: [pointee type, address space]
222       Code = bitc::TYPE_CODE_POINTER;
223       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
224       unsigned AddressSpace = PTy->getAddressSpace();
225       TypeVals.push_back(AddressSpace);
226       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
227       break;
228     }
229     case Type::FunctionTyID: {
230       const FunctionType *FT = cast<FunctionType>(T);
231       // FUNCTION: [isvararg, attrid, retty, paramty x N]
232       Code = bitc::TYPE_CODE_FUNCTION;
233       TypeVals.push_back(FT->isVarArg());
234       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
235       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
236       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
237         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
238       AbbrevToUse = FunctionAbbrev;
239       break;
240     }
241     case Type::StructTyID: {
242       const StructType *ST = cast<StructType>(T);
243       // STRUCT: [ispacked, eltty x N]
244       Code = bitc::TYPE_CODE_STRUCT;
245       TypeVals.push_back(ST->isPacked());
246       // Output all of the element types.
247       for (StructType::element_iterator I = ST->element_begin(),
248            E = ST->element_end(); I != E; ++I)
249         TypeVals.push_back(VE.getTypeID(*I));
250       AbbrevToUse = StructAbbrev;
251       break;
252     }
253     case Type::ArrayTyID: {
254       const ArrayType *AT = cast<ArrayType>(T);
255       // ARRAY: [numelts, eltty]
256       Code = bitc::TYPE_CODE_ARRAY;
257       TypeVals.push_back(AT->getNumElements());
258       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
259       AbbrevToUse = ArrayAbbrev;
260       break;
261     }
262     case Type::VectorTyID: {
263       const VectorType *VT = cast<VectorType>(T);
264       // VECTOR [numelts, eltty]
265       Code = bitc::TYPE_CODE_VECTOR;
266       TypeVals.push_back(VT->getNumElements());
267       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
268       break;
269     }
270     }
271
272     // Emit the finished record.
273     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
274     TypeVals.clear();
275   }
276
277   Stream.ExitBlock();
278 }
279
280 static unsigned getEncodedLinkage(const GlobalValue *GV) {
281   switch (GV->getLinkage()) {
282   default: llvm_unreachable("Invalid linkage!");
283   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
284   case GlobalValue::ExternalLinkage:            return 0;
285   case GlobalValue::WeakAnyLinkage:             return 1;
286   case GlobalValue::AppendingLinkage:           return 2;
287   case GlobalValue::InternalLinkage:            return 3;
288   case GlobalValue::LinkOnceAnyLinkage:         return 4;
289   case GlobalValue::DLLImportLinkage:           return 5;
290   case GlobalValue::DLLExportLinkage:           return 6;
291   case GlobalValue::ExternalWeakLinkage:        return 7;
292   case GlobalValue::CommonLinkage:              return 8;
293   case GlobalValue::PrivateLinkage:             return 9;
294   case GlobalValue::WeakODRLinkage:             return 10;
295   case GlobalValue::LinkOnceODRLinkage:         return 11;
296   case GlobalValue::AvailableExternallyLinkage: return 12;
297   case GlobalValue::LinkerPrivateLinkage:       return 13;
298   }
299 }
300
301 static unsigned getEncodedVisibility(const GlobalValue *GV) {
302   switch (GV->getVisibility()) {
303   default: llvm_unreachable("Invalid visibility!");
304   case GlobalValue::DefaultVisibility:   return 0;
305   case GlobalValue::HiddenVisibility:    return 1;
306   case GlobalValue::ProtectedVisibility: return 2;
307   }
308 }
309
310 // Emit top-level description of module, including target triple, inline asm,
311 // descriptors for global variables, and function prototype info.
312 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
313                             BitstreamWriter &Stream) {
314   // Emit the list of dependent libraries for the Module.
315   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
316     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
317
318   // Emit various pieces of data attached to a module.
319   if (!M->getTargetTriple().empty())
320     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
321                       0/*TODO*/, Stream);
322   if (!M->getDataLayout().empty())
323     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
324                       0/*TODO*/, Stream);
325   if (!M->getModuleInlineAsm().empty())
326     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
327                       0/*TODO*/, Stream);
328
329   // Emit information about sections and GC, computing how many there are. Also
330   // compute the maximum alignment value.
331   std::map<std::string, unsigned> SectionMap;
332   std::map<std::string, unsigned> GCMap;
333   unsigned MaxAlignment = 0;
334   unsigned MaxGlobalType = 0;
335   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
336        GV != E; ++GV) {
337     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
338     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
339
340     if (!GV->hasSection()) continue;
341     // Give section names unique ID's.
342     unsigned &Entry = SectionMap[GV->getSection()];
343     if (Entry != 0) continue;
344     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
345                       0/*TODO*/, Stream);
346     Entry = SectionMap.size();
347   }
348   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
349     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
350     if (F->hasSection()) {
351       // Give section names unique ID's.
352       unsigned &Entry = SectionMap[F->getSection()];
353       if (!Entry) {
354         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
355                           0/*TODO*/, Stream);
356         Entry = SectionMap.size();
357       }
358     }
359     if (F->hasGC()) {
360       // Same for GC names.
361       unsigned &Entry = GCMap[F->getGC()];
362       if (!Entry) {
363         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
364                           0/*TODO*/, Stream);
365         Entry = GCMap.size();
366       }
367     }
368   }
369
370   // Emit abbrev for globals, now that we know # sections and max alignment.
371   unsigned SimpleGVarAbbrev = 0;
372   if (!M->global_empty()) {
373     // Add an abbrev for common globals with no visibility or thread localness.
374     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
375     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
376     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
377                               Log2_32_Ceil(MaxGlobalType+1)));
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
379     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
381     if (MaxAlignment == 0)                                      // Alignment.
382       Abbv->Add(BitCodeAbbrevOp(0));
383     else {
384       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
385       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
386                                Log2_32_Ceil(MaxEncAlignment+1)));
387     }
388     if (SectionMap.empty())                                    // Section.
389       Abbv->Add(BitCodeAbbrevOp(0));
390     else
391       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
392                                Log2_32_Ceil(SectionMap.size()+1)));
393     // Don't bother emitting vis + thread local.
394     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
395   }
396
397   // Emit the global variable information.
398   SmallVector<unsigned, 64> Vals;
399   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
400        GV != E; ++GV) {
401     unsigned AbbrevToUse = 0;
402
403     // GLOBALVAR: [type, isconst, initid,
404     //             linkage, alignment, section, visibility, threadlocal]
405     Vals.push_back(VE.getTypeID(GV->getType()));
406     Vals.push_back(GV->isConstant());
407     Vals.push_back(GV->isDeclaration() ? 0 :
408                    (VE.getValueID(GV->getInitializer()) + 1));
409     Vals.push_back(getEncodedLinkage(GV));
410     Vals.push_back(Log2_32(GV->getAlignment())+1);
411     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
412     if (GV->isThreadLocal() ||
413         GV->getVisibility() != GlobalValue::DefaultVisibility) {
414       Vals.push_back(getEncodedVisibility(GV));
415       Vals.push_back(GV->isThreadLocal());
416     } else {
417       AbbrevToUse = SimpleGVarAbbrev;
418     }
419
420     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
421     Vals.clear();
422   }
423
424   // Emit the function proto information.
425   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
426     // FUNCTION:  [type, callingconv, isproto, paramattr,
427     //             linkage, alignment, section, visibility, gc]
428     Vals.push_back(VE.getTypeID(F->getType()));
429     Vals.push_back(F->getCallingConv());
430     Vals.push_back(F->isDeclaration());
431     Vals.push_back(getEncodedLinkage(F));
432     Vals.push_back(VE.getAttributeID(F->getAttributes()));
433     Vals.push_back(Log2_32(F->getAlignment())+1);
434     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
435     Vals.push_back(getEncodedVisibility(F));
436     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
437
438     unsigned AbbrevToUse = 0;
439     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
440     Vals.clear();
441   }
442
443
444   // Emit the alias information.
445   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
446        AI != E; ++AI) {
447     Vals.push_back(VE.getTypeID(AI->getType()));
448     Vals.push_back(VE.getValueID(AI->getAliasee()));
449     Vals.push_back(getEncodedLinkage(AI));
450     Vals.push_back(getEncodedVisibility(AI));
451     unsigned AbbrevToUse = 0;
452     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
453     Vals.clear();
454   }
455 }
456
457 static uint64_t GetOptimizationFlags(const Value *V) {
458   uint64_t Flags = 0;
459
460   if (const OverflowingBinaryOperator *OBO =
461         dyn_cast<OverflowingBinaryOperator>(V)) {
462     if (OBO->hasNoSignedWrap())
463       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
464     if (OBO->hasNoUnsignedWrap())
465       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
466   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
467     if (Div->isExact())
468       Flags |= 1 << bitc::SDIV_EXACT;
469   }
470
471   return Flags;
472 }
473
474 static void WriteMDNode(const MDNode *N,
475                         const ValueEnumerator &VE,
476                         BitstreamWriter &Stream,
477                         SmallVector<uint64_t, 64> &Record) {
478   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
479     if (N->getOperand(i)) {
480       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
481       Record.push_back(VE.getValueID(N->getOperand(i)));
482     } else {
483       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
484       Record.push_back(0);
485     }
486   }
487   unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
488                                            bitc::METADATA_NODE;
489   Stream.EmitRecord(MDCode, Record, 0);
490   Record.clear();
491 }
492
493 static void WriteModuleMetadata(const ValueEnumerator &VE,
494                                 BitstreamWriter &Stream) {
495   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
496   bool StartedMetadataBlock = false;
497   unsigned MDSAbbrev = 0;
498   SmallVector<uint64_t, 64> Record;
499   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
500
501     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
502       if (!StartedMetadataBlock) {
503         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
504         StartedMetadataBlock = true;
505       }
506       WriteMDNode(N, VE, Stream, Record);
507     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
508       if (!StartedMetadataBlock)  {
509         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
510
511         // Abbrev for METADATA_STRING.
512         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
513         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
514         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
515         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
516         MDSAbbrev = Stream.EmitAbbrev(Abbv);
517         StartedMetadataBlock = true;
518       }
519
520       // Code: [strchar x N]
521       Record.append(MDS->begin(), MDS->end());
522
523       // Emit the finished record.
524       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
525       Record.clear();
526     } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
527       if (!StartedMetadataBlock)  {
528         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
529         StartedMetadataBlock = true;
530       }
531
532       // Write name.
533       StringRef Str = NMD->getName();
534       for (unsigned i = 0, e = Str.size(); i != e; ++i)
535         Record.push_back(Str[i]);
536       Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
537       Record.clear();
538
539       // Write named metadata operands.
540       for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
541         if (NMD->getOperand(i))
542           Record.push_back(VE.getValueID(NMD->getOperand(i)));
543         else
544           Record.push_back(~0U);
545       }
546       Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
547       Record.clear();
548     }
549   }
550
551   if (StartedMetadataBlock)
552     Stream.ExitBlock();
553 }
554
555 static void WriteMetadataAttachment(const Function &F,
556                                     const ValueEnumerator &VE,
557                                     BitstreamWriter &Stream) {
558   bool StartedMetadataBlock = false;
559   SmallVector<uint64_t, 64> Record;
560
561   // Write metadata attachments
562   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
563   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
564   
565   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
566     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
567          I != E; ++I) {
568       MDs.clear();
569       I->getAllMetadata(MDs);
570       
571       // If no metadata, ignore instruction.
572       if (MDs.empty()) continue;
573
574       Record.push_back(VE.getInstructionID(I));
575       
576       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
577         Record.push_back(MDs[i].first);
578         Record.push_back(VE.getValueID(MDs[i].second));
579       }
580       if (!StartedMetadataBlock)  {
581         Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
582         StartedMetadataBlock = true;
583       }
584       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
585       Record.clear();
586     }
587
588   if (StartedMetadataBlock)
589     Stream.ExitBlock();
590 }
591
592 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
593   SmallVector<uint64_t, 64> Record;
594
595   // Write metadata kinds
596   // METADATA_KIND - [n x [id, name]]
597   SmallVector<StringRef, 4> Names;
598   M->getMDKindNames(Names);
599   
600   assert(Names[0] == "" && "MDKind #0 is invalid");
601   if (Names.size() == 1) return;
602
603   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
604   
605   for (unsigned MDKindID = 1, e = Names.size(); MDKindID != e; ++MDKindID) {
606     Record.push_back(MDKindID);
607     StringRef KName = Names[MDKindID];
608     Record.append(KName.begin(), KName.end());
609     
610     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
611     Record.clear();
612   }
613
614   Stream.ExitBlock();
615 }
616
617 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
618                            const ValueEnumerator &VE,
619                            BitstreamWriter &Stream, bool isGlobal) {
620   if (FirstVal == LastVal) return;
621
622   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
623
624   unsigned AggregateAbbrev = 0;
625   unsigned String8Abbrev = 0;
626   unsigned CString7Abbrev = 0;
627   unsigned CString6Abbrev = 0;
628   // If this is a constant pool for the module, emit module-specific abbrevs.
629   if (isGlobal) {
630     // Abbrev for CST_CODE_AGGREGATE.
631     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
632     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
633     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
634     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
635     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
636
637     // Abbrev for CST_CODE_STRING.
638     Abbv = new BitCodeAbbrev();
639     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
640     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
641     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
642     String8Abbrev = Stream.EmitAbbrev(Abbv);
643     // Abbrev for CST_CODE_CSTRING.
644     Abbv = new BitCodeAbbrev();
645     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
646     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
647     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
648     CString7Abbrev = Stream.EmitAbbrev(Abbv);
649     // Abbrev for CST_CODE_CSTRING.
650     Abbv = new BitCodeAbbrev();
651     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
652     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
653     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
654     CString6Abbrev = Stream.EmitAbbrev(Abbv);
655   }
656
657   SmallVector<uint64_t, 64> Record;
658
659   const ValueEnumerator::ValueList &Vals = VE.getValues();
660   const Type *LastTy = 0;
661   for (unsigned i = FirstVal; i != LastVal; ++i) {
662     const Value *V = Vals[i].first;
663     // If we need to switch types, do so now.
664     if (V->getType() != LastTy) {
665       LastTy = V->getType();
666       Record.push_back(VE.getTypeID(LastTy));
667       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
668                         CONSTANTS_SETTYPE_ABBREV);
669       Record.clear();
670     }
671
672     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
673       Record.push_back(unsigned(IA->hasSideEffects()) |
674                        unsigned(IA->isAlignStack()) << 1);
675
676       // Add the asm string.
677       const std::string &AsmStr = IA->getAsmString();
678       Record.push_back(AsmStr.size());
679       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
680         Record.push_back(AsmStr[i]);
681
682       // Add the constraint string.
683       const std::string &ConstraintStr = IA->getConstraintString();
684       Record.push_back(ConstraintStr.size());
685       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
686         Record.push_back(ConstraintStr[i]);
687       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
688       Record.clear();
689       continue;
690     }
691
692     // Ignore all values in ValueList except for Constants.
693     if (V && (isa<Instruction>(V) || isa<Argument>(V)))
694       continue;
695
696     const Constant *C = cast<Constant>(V);
697     unsigned Code = -1U;
698     unsigned AbbrevToUse = 0;
699     if (C->isNullValue()) {
700       Code = bitc::CST_CODE_NULL;
701     } else if (isa<UndefValue>(C)) {
702       Code = bitc::CST_CODE_UNDEF;
703     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
704       if (IV->getBitWidth() <= 64) {
705         int64_t V = IV->getSExtValue();
706         if (V >= 0)
707           Record.push_back(V << 1);
708         else
709           Record.push_back((-V << 1) | 1);
710         Code = bitc::CST_CODE_INTEGER;
711         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
712       } else {                             // Wide integers, > 64 bits in size.
713         // We have an arbitrary precision integer value to write whose
714         // bit width is > 64. However, in canonical unsigned integer
715         // format it is likely that the high bits are going to be zero.
716         // So, we only write the number of active words.
717         unsigned NWords = IV->getValue().getActiveWords();
718         const uint64_t *RawWords = IV->getValue().getRawData();
719         for (unsigned i = 0; i != NWords; ++i) {
720           int64_t V = RawWords[i];
721           if (V >= 0)
722             Record.push_back(V << 1);
723           else
724             Record.push_back((-V << 1) | 1);
725         }
726         Code = bitc::CST_CODE_WIDE_INTEGER;
727       }
728     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
729       Code = bitc::CST_CODE_FLOAT;
730       const Type *Ty = CFP->getType();
731       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
732         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
733       } else if (Ty->isX86_FP80Ty()) {
734         // api needed to prevent premature destruction
735         // bits are not in the same order as a normal i80 APInt, compensate.
736         APInt api = CFP->getValueAPF().bitcastToAPInt();
737         const uint64_t *p = api.getRawData();
738         Record.push_back((p[1] << 48) | (p[0] >> 16));
739         Record.push_back(p[0] & 0xffffLL);
740       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
741         APInt api = CFP->getValueAPF().bitcastToAPInt();
742         const uint64_t *p = api.getRawData();
743         Record.push_back(p[0]);
744         Record.push_back(p[1]);
745       } else {
746         assert (0 && "Unknown FP type!");
747       }
748     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
749       const ConstantArray *CA = cast<ConstantArray>(C);
750       // Emit constant strings specially.
751       unsigned NumOps = CA->getNumOperands();
752       // If this is a null-terminated string, use the denser CSTRING encoding.
753       if (CA->getOperand(NumOps-1)->isNullValue()) {
754         Code = bitc::CST_CODE_CSTRING;
755         --NumOps;  // Don't encode the null, which isn't allowed by char6.
756       } else {
757         Code = bitc::CST_CODE_STRING;
758         AbbrevToUse = String8Abbrev;
759       }
760       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
761       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
762       for (unsigned i = 0; i != NumOps; ++i) {
763         unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
764         Record.push_back(V);
765         isCStr7 &= (V & 128) == 0;
766         if (isCStrChar6)
767           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
768       }
769
770       if (isCStrChar6)
771         AbbrevToUse = CString6Abbrev;
772       else if (isCStr7)
773         AbbrevToUse = CString7Abbrev;
774     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
775                isa<ConstantVector>(V)) {
776       Code = bitc::CST_CODE_AGGREGATE;
777       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
778         Record.push_back(VE.getValueID(C->getOperand(i)));
779       AbbrevToUse = AggregateAbbrev;
780     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
781       switch (CE->getOpcode()) {
782       default:
783         if (Instruction::isCast(CE->getOpcode())) {
784           Code = bitc::CST_CODE_CE_CAST;
785           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
786           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
787           Record.push_back(VE.getValueID(C->getOperand(0)));
788           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
789         } else {
790           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
791           Code = bitc::CST_CODE_CE_BINOP;
792           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
793           Record.push_back(VE.getValueID(C->getOperand(0)));
794           Record.push_back(VE.getValueID(C->getOperand(1)));
795           uint64_t Flags = GetOptimizationFlags(CE);
796           if (Flags != 0)
797             Record.push_back(Flags);
798         }
799         break;
800       case Instruction::GetElementPtr:
801         Code = bitc::CST_CODE_CE_GEP;
802         if (cast<GEPOperator>(C)->isInBounds())
803           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
804         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
805           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
806           Record.push_back(VE.getValueID(C->getOperand(i)));
807         }
808         break;
809       case Instruction::Select:
810         Code = bitc::CST_CODE_CE_SELECT;
811         Record.push_back(VE.getValueID(C->getOperand(0)));
812         Record.push_back(VE.getValueID(C->getOperand(1)));
813         Record.push_back(VE.getValueID(C->getOperand(2)));
814         break;
815       case Instruction::ExtractElement:
816         Code = bitc::CST_CODE_CE_EXTRACTELT;
817         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
818         Record.push_back(VE.getValueID(C->getOperand(0)));
819         Record.push_back(VE.getValueID(C->getOperand(1)));
820         break;
821       case Instruction::InsertElement:
822         Code = bitc::CST_CODE_CE_INSERTELT;
823         Record.push_back(VE.getValueID(C->getOperand(0)));
824         Record.push_back(VE.getValueID(C->getOperand(1)));
825         Record.push_back(VE.getValueID(C->getOperand(2)));
826         break;
827       case Instruction::ShuffleVector:
828         // If the return type and argument types are the same, this is a
829         // standard shufflevector instruction.  If the types are different,
830         // then the shuffle is widening or truncating the input vectors, and
831         // the argument type must also be encoded.
832         if (C->getType() == C->getOperand(0)->getType()) {
833           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
834         } else {
835           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
836           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
837         }
838         Record.push_back(VE.getValueID(C->getOperand(0)));
839         Record.push_back(VE.getValueID(C->getOperand(1)));
840         Record.push_back(VE.getValueID(C->getOperand(2)));
841         break;
842       case Instruction::ICmp:
843       case Instruction::FCmp:
844         Code = bitc::CST_CODE_CE_CMP;
845         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
846         Record.push_back(VE.getValueID(C->getOperand(0)));
847         Record.push_back(VE.getValueID(C->getOperand(1)));
848         Record.push_back(CE->getPredicate());
849         break;
850       }
851     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
852       assert(BA->getFunction() == BA->getBasicBlock()->getParent() &&
853              "Malformed blockaddress");
854       Code = bitc::CST_CODE_BLOCKADDRESS;
855       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
856       Record.push_back(VE.getValueID(BA->getFunction()));
857       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
858     } else {
859       llvm_unreachable("Unknown constant!");
860     }
861     Stream.EmitRecord(Code, Record, AbbrevToUse);
862     Record.clear();
863   }
864
865   Stream.ExitBlock();
866 }
867
868 static void WriteModuleConstants(const ValueEnumerator &VE,
869                                  BitstreamWriter &Stream) {
870   const ValueEnumerator::ValueList &Vals = VE.getValues();
871
872   // Find the first constant to emit, which is the first non-globalvalue value.
873   // We know globalvalues have been emitted by WriteModuleInfo.
874   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
875     if (!isa<GlobalValue>(Vals[i].first)) {
876       WriteConstants(i, Vals.size(), VE, Stream, true);
877       return;
878     }
879   }
880 }
881
882 /// PushValueAndType - The file has to encode both the value and type id for
883 /// many values, because we need to know what type to create for forward
884 /// references.  However, most operands are not forward references, so this type
885 /// field is not needed.
886 ///
887 /// This function adds V's value ID to Vals.  If the value ID is higher than the
888 /// instruction ID, then it is a forward reference, and it also includes the
889 /// type ID.
890 static bool PushValueAndType(const Value *V, unsigned InstID,
891                              SmallVector<unsigned, 64> &Vals,
892                              ValueEnumerator &VE) {
893   unsigned ValID = VE.getValueID(V);
894   Vals.push_back(ValID);
895   if (ValID >= InstID) {
896     Vals.push_back(VE.getTypeID(V->getType()));
897     return true;
898   }
899   return false;
900 }
901
902 /// WriteInstruction - Emit an instruction to the specified stream.
903 static void WriteInstruction(const Instruction &I, unsigned InstID,
904                              ValueEnumerator &VE, BitstreamWriter &Stream,
905                              SmallVector<unsigned, 64> &Vals) {
906   unsigned Code = 0;
907   unsigned AbbrevToUse = 0;
908   VE.setInstructionID(&I);
909   switch (I.getOpcode()) {
910   default:
911     if (Instruction::isCast(I.getOpcode())) {
912       Code = bitc::FUNC_CODE_INST_CAST;
913       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
914         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
915       Vals.push_back(VE.getTypeID(I.getType()));
916       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
917     } else {
918       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
919       Code = bitc::FUNC_CODE_INST_BINOP;
920       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
921         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
922       Vals.push_back(VE.getValueID(I.getOperand(1)));
923       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
924       uint64_t Flags = GetOptimizationFlags(&I);
925       if (Flags != 0) {
926         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
927           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
928         Vals.push_back(Flags);
929       }
930     }
931     break;
932
933   case Instruction::GetElementPtr:
934     Code = bitc::FUNC_CODE_INST_GEP;
935     if (cast<GEPOperator>(&I)->isInBounds())
936       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
937     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
938       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
939     break;
940   case Instruction::ExtractValue: {
941     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
942     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
943     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
944     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
945       Vals.push_back(*i);
946     break;
947   }
948   case Instruction::InsertValue: {
949     Code = bitc::FUNC_CODE_INST_INSERTVAL;
950     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
951     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
952     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
953     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
954       Vals.push_back(*i);
955     break;
956   }
957   case Instruction::Select:
958     Code = bitc::FUNC_CODE_INST_VSELECT;
959     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
960     Vals.push_back(VE.getValueID(I.getOperand(2)));
961     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
962     break;
963   case Instruction::ExtractElement:
964     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
965     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
966     Vals.push_back(VE.getValueID(I.getOperand(1)));
967     break;
968   case Instruction::InsertElement:
969     Code = bitc::FUNC_CODE_INST_INSERTELT;
970     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
971     Vals.push_back(VE.getValueID(I.getOperand(1)));
972     Vals.push_back(VE.getValueID(I.getOperand(2)));
973     break;
974   case Instruction::ShuffleVector:
975     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
976     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
977     Vals.push_back(VE.getValueID(I.getOperand(1)));
978     Vals.push_back(VE.getValueID(I.getOperand(2)));
979     break;
980   case Instruction::ICmp:
981   case Instruction::FCmp:
982     // compare returning Int1Ty or vector of Int1Ty
983     Code = bitc::FUNC_CODE_INST_CMP2;
984     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
985     Vals.push_back(VE.getValueID(I.getOperand(1)));
986     Vals.push_back(cast<CmpInst>(I).getPredicate());
987     break;
988
989   case Instruction::Ret:
990     {
991       Code = bitc::FUNC_CODE_INST_RET;
992       unsigned NumOperands = I.getNumOperands();
993       if (NumOperands == 0)
994         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
995       else if (NumOperands == 1) {
996         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
997           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
998       } else {
999         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1000           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1001       }
1002     }
1003     break;
1004   case Instruction::Br:
1005     {
1006       Code = bitc::FUNC_CODE_INST_BR;
1007       BranchInst &II = cast<BranchInst>(I);
1008       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1009       if (II.isConditional()) {
1010         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1011         Vals.push_back(VE.getValueID(II.getCondition()));
1012       }
1013     }
1014     break;
1015   case Instruction::Switch:
1016     Code = bitc::FUNC_CODE_INST_SWITCH;
1017     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1018     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1019       Vals.push_back(VE.getValueID(I.getOperand(i)));
1020     break;
1021   case Instruction::IndirectBr:
1022     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1023     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1024     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1025       Vals.push_back(VE.getValueID(I.getOperand(i)));
1026     break;
1027       
1028   case Instruction::Invoke: {
1029     const InvokeInst *II = cast<InvokeInst>(&I);
1030     const Value *Callee(II->getCalledValue());
1031     const PointerType *PTy = cast<PointerType>(Callee->getType());
1032     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1033     Code = bitc::FUNC_CODE_INST_INVOKE;
1034
1035     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1036     Vals.push_back(II->getCallingConv());
1037     Vals.push_back(VE.getValueID(II->getNormalDest()));
1038     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1039     PushValueAndType(Callee, InstID, Vals, VE);
1040
1041     // Emit value #'s for the fixed parameters.
1042     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1043       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
1044
1045     // Emit type/value pairs for varargs params.
1046     if (FTy->isVarArg()) {
1047       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
1048            i != e; ++i)
1049         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1050     }
1051     break;
1052   }
1053   case Instruction::Unwind:
1054     Code = bitc::FUNC_CODE_INST_UNWIND;
1055     break;
1056   case Instruction::Unreachable:
1057     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1058     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1059     break;
1060
1061   case Instruction::PHI:
1062     Code = bitc::FUNC_CODE_INST_PHI;
1063     Vals.push_back(VE.getTypeID(I.getType()));
1064     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1065       Vals.push_back(VE.getValueID(I.getOperand(i)));
1066     break;
1067
1068   case Instruction::Alloca:
1069     Code = bitc::FUNC_CODE_INST_ALLOCA;
1070     Vals.push_back(VE.getTypeID(I.getType()));
1071     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1072     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1073     break;
1074
1075   case Instruction::Load:
1076     Code = bitc::FUNC_CODE_INST_LOAD;
1077     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1078       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1079
1080     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1081     Vals.push_back(cast<LoadInst>(I).isVolatile());
1082     break;
1083   case Instruction::Store:
1084     Code = bitc::FUNC_CODE_INST_STORE2;
1085     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1086     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1087     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1088     Vals.push_back(cast<StoreInst>(I).isVolatile());
1089     break;
1090   case Instruction::Call: {
1091     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1092     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1093
1094     Code = bitc::FUNC_CODE_INST_CALL;
1095
1096     const CallInst *CI = cast<CallInst>(&I);
1097     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1098     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1099     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1100
1101     // Emit value #'s for the fixed parameters.
1102     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1103       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1104
1105     // Emit type/value pairs for varargs params.
1106     if (FTy->isVarArg()) {
1107       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1108       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1109            i != e; ++i)
1110         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1111     }
1112     break;
1113   }
1114   case Instruction::VAArg:
1115     Code = bitc::FUNC_CODE_INST_VAARG;
1116     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1117     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1118     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1119     break;
1120   }
1121
1122   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1123   Vals.clear();
1124 }
1125
1126 // Emit names for globals/functions etc.
1127 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1128                                   const ValueEnumerator &VE,
1129                                   BitstreamWriter &Stream) {
1130   if (VST.empty()) return;
1131   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1132
1133   // FIXME: Set up the abbrev, we know how many values there are!
1134   // FIXME: We know if the type names can use 7-bit ascii.
1135   SmallVector<unsigned, 64> NameVals;
1136
1137   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1138        SI != SE; ++SI) {
1139
1140     const ValueName &Name = *SI;
1141
1142     // Figure out the encoding to use for the name.
1143     bool is7Bit = true;
1144     bool isChar6 = true;
1145     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1146          C != E; ++C) {
1147       if (isChar6)
1148         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1149       if ((unsigned char)*C & 128) {
1150         is7Bit = false;
1151         break;  // don't bother scanning the rest.
1152       }
1153     }
1154
1155     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1156
1157     // VST_ENTRY:   [valueid, namechar x N]
1158     // VST_BBENTRY: [bbid, namechar x N]
1159     unsigned Code;
1160     if (isa<BasicBlock>(SI->getValue())) {
1161       Code = bitc::VST_CODE_BBENTRY;
1162       if (isChar6)
1163         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1164     } else {
1165       Code = bitc::VST_CODE_ENTRY;
1166       if (isChar6)
1167         AbbrevToUse = VST_ENTRY_6_ABBREV;
1168       else if (is7Bit)
1169         AbbrevToUse = VST_ENTRY_7_ABBREV;
1170     }
1171
1172     NameVals.push_back(VE.getValueID(SI->getValue()));
1173     for (const char *P = Name.getKeyData(),
1174          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1175       NameVals.push_back((unsigned char)*P);
1176
1177     // Emit the finished record.
1178     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1179     NameVals.clear();
1180   }
1181   Stream.ExitBlock();
1182 }
1183
1184 /// WriteFunction - Emit a function body to the module stream.
1185 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1186                           BitstreamWriter &Stream) {
1187   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1188   VE.incorporateFunction(F);
1189
1190   SmallVector<unsigned, 64> Vals;
1191
1192   // Emit the number of basic blocks, so the reader can create them ahead of
1193   // time.
1194   Vals.push_back(VE.getBasicBlocks().size());
1195   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1196   Vals.clear();
1197
1198   // If there are function-local constants, emit them now.
1199   unsigned CstStart, CstEnd;
1200   VE.getFunctionConstantRange(CstStart, CstEnd);
1201   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1202
1203   // Keep a running idea of what the instruction ID is.
1204   unsigned InstID = CstEnd;
1205
1206   // Finally, emit all the instructions, in order.
1207   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1208     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1209          I != E; ++I) {
1210       WriteInstruction(*I, InstID, VE, Stream, Vals);
1211       if (!I->getType()->isVoidTy())
1212         ++InstID;
1213     }
1214
1215   // Emit names for all the instructions etc.
1216   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1217
1218   WriteMetadataAttachment(F, VE, Stream);
1219   VE.purgeFunction();
1220   Stream.ExitBlock();
1221 }
1222
1223 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1224 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1225                                  const ValueEnumerator &VE,
1226                                  BitstreamWriter &Stream) {
1227   if (TST.empty()) return;
1228
1229   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1230
1231   // 7-bit fixed width VST_CODE_ENTRY strings.
1232   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1233   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1234   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1235                             Log2_32_Ceil(VE.getTypes().size()+1)));
1236   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1237   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1238   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1239
1240   SmallVector<unsigned, 64> NameVals;
1241
1242   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1243        TI != TE; ++TI) {
1244     // TST_ENTRY: [typeid, namechar x N]
1245     NameVals.push_back(VE.getTypeID(TI->second));
1246
1247     const std::string &Str = TI->first;
1248     bool is7Bit = true;
1249     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1250       NameVals.push_back((unsigned char)Str[i]);
1251       if (Str[i] & 128)
1252         is7Bit = false;
1253     }
1254
1255     // Emit the finished record.
1256     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1257     NameVals.clear();
1258   }
1259
1260   Stream.ExitBlock();
1261 }
1262
1263 // Emit blockinfo, which defines the standard abbreviations etc.
1264 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1265   // We only want to emit block info records for blocks that have multiple
1266   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1267   // blocks can defined their abbrevs inline.
1268   Stream.EnterBlockInfoBlock(2);
1269
1270   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1271     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1272     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1273     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1274     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1275     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1276     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1277                                    Abbv) != VST_ENTRY_8_ABBREV)
1278       llvm_unreachable("Unexpected abbrev ordering!");
1279   }
1280
1281   { // 7-bit fixed width VST_ENTRY strings.
1282     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1283     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1284     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1285     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1286     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1287     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1288                                    Abbv) != VST_ENTRY_7_ABBREV)
1289       llvm_unreachable("Unexpected abbrev ordering!");
1290   }
1291   { // 6-bit char6 VST_ENTRY strings.
1292     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1293     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1294     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1295     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1296     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1297     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1298                                    Abbv) != VST_ENTRY_6_ABBREV)
1299       llvm_unreachable("Unexpected abbrev ordering!");
1300   }
1301   { // 6-bit char6 VST_BBENTRY strings.
1302     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1303     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1304     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1305     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1306     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1307     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1308                                    Abbv) != VST_BBENTRY_6_ABBREV)
1309       llvm_unreachable("Unexpected abbrev ordering!");
1310   }
1311
1312
1313
1314   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1315     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1316     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1317     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1318                               Log2_32_Ceil(VE.getTypes().size()+1)));
1319     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1320                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1321       llvm_unreachable("Unexpected abbrev ordering!");
1322   }
1323
1324   { // INTEGER abbrev for CONSTANTS_BLOCK.
1325     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1326     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1327     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1328     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1329                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1330       llvm_unreachable("Unexpected abbrev ordering!");
1331   }
1332
1333   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1334     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1335     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1336     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1337     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1338                               Log2_32_Ceil(VE.getTypes().size()+1)));
1339     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1340
1341     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1342                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1343       llvm_unreachable("Unexpected abbrev ordering!");
1344   }
1345   { // NULL abbrev for CONSTANTS_BLOCK.
1346     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1347     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1348     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1349                                    Abbv) != CONSTANTS_NULL_Abbrev)
1350       llvm_unreachable("Unexpected abbrev ordering!");
1351   }
1352
1353   // FIXME: This should only use space for first class types!
1354
1355   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1356     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1357     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1358     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1359     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1360     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1361     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1362                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1363       llvm_unreachable("Unexpected abbrev ordering!");
1364   }
1365   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1366     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1367     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1368     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1369     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1370     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1371     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1372                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1373       llvm_unreachable("Unexpected abbrev ordering!");
1374   }
1375   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1376     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1377     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1379     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1382     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1383                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1384       llvm_unreachable("Unexpected abbrev ordering!");
1385   }
1386   { // INST_CAST abbrev for FUNCTION_BLOCK.
1387     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1388     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1389     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1390     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1391                               Log2_32_Ceil(VE.getTypes().size()+1)));
1392     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1393     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1394                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1395       llvm_unreachable("Unexpected abbrev ordering!");
1396   }
1397
1398   { // INST_RET abbrev for FUNCTION_BLOCK.
1399     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1400     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1401     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1402                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1403       llvm_unreachable("Unexpected abbrev ordering!");
1404   }
1405   { // INST_RET abbrev for FUNCTION_BLOCK.
1406     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1407     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1408     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1409     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1410                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1411       llvm_unreachable("Unexpected abbrev ordering!");
1412   }
1413   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1414     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1415     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1416     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1417                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1418       llvm_unreachable("Unexpected abbrev ordering!");
1419   }
1420
1421   Stream.ExitBlock();
1422 }
1423
1424
1425 /// WriteModule - Emit the specified module to the bitstream.
1426 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1427   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1428
1429   // Emit the version number if it is non-zero.
1430   if (CurVersion) {
1431     SmallVector<unsigned, 1> Vals;
1432     Vals.push_back(CurVersion);
1433     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1434   }
1435
1436   // Analyze the module, enumerating globals, functions, etc.
1437   ValueEnumerator VE(M);
1438
1439   // Emit blockinfo, which defines the standard abbreviations etc.
1440   WriteBlockInfo(VE, Stream);
1441
1442   // Emit information about parameter attributes.
1443   WriteAttributeTable(VE, Stream);
1444
1445   // Emit information describing all of the types in the module.
1446   WriteTypeTable(VE, Stream);
1447
1448   // Emit top-level description of module, including target triple, inline asm,
1449   // descriptors for global variables, and function prototype info.
1450   WriteModuleInfo(M, VE, Stream);
1451
1452   // Emit constants.
1453   WriteModuleConstants(VE, Stream);
1454
1455   // Emit metadata.
1456   WriteModuleMetadata(VE, Stream);
1457
1458   // Emit function bodies.
1459   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1460     if (!I->isDeclaration())
1461       WriteFunction(*I, VE, Stream);
1462
1463   // Emit metadata.
1464   WriteModuleMetadataStore(M, Stream);
1465
1466   // Emit the type symbol table information.
1467   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1468
1469   // Emit names for globals/functions etc.
1470   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1471
1472   Stream.ExitBlock();
1473 }
1474
1475 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1476 /// header and trailer to make it compatible with the system archiver.  To do
1477 /// this we emit the following header, and then emit a trailer that pads the
1478 /// file out to be a multiple of 16 bytes.
1479 ///
1480 /// struct bc_header {
1481 ///   uint32_t Magic;         // 0x0B17C0DE
1482 ///   uint32_t Version;       // Version, currently always 0.
1483 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1484 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1485 ///   uint32_t CPUType;       // CPU specifier.
1486 ///   ... potentially more later ...
1487 /// };
1488 enum {
1489   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1490   DarwinBCHeaderSize = 5*4
1491 };
1492
1493 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1494                                const std::string &TT) {
1495   unsigned CPUType = ~0U;
1496
1497   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1498   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1499   // specific constants here because they are implicitly part of the Darwin ABI.
1500   enum {
1501     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1502     DARWIN_CPU_TYPE_X86        = 7,
1503     DARWIN_CPU_TYPE_POWERPC    = 18
1504   };
1505
1506   if (TT.find("x86_64-") == 0)
1507     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1508   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1509            TT[4] == '-' && TT[1] - '3' < 6)
1510     CPUType = DARWIN_CPU_TYPE_X86;
1511   else if (TT.find("powerpc-") == 0)
1512     CPUType = DARWIN_CPU_TYPE_POWERPC;
1513   else if (TT.find("powerpc64-") == 0)
1514     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1515
1516   // Traditional Bitcode starts after header.
1517   unsigned BCOffset = DarwinBCHeaderSize;
1518
1519   Stream.Emit(0x0B17C0DE, 32);
1520   Stream.Emit(0         , 32);  // Version.
1521   Stream.Emit(BCOffset  , 32);
1522   Stream.Emit(0         , 32);  // Filled in later.
1523   Stream.Emit(CPUType   , 32);
1524 }
1525
1526 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1527 /// finalize the header.
1528 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1529   // Update the size field in the header.
1530   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1531
1532   // If the file is not a multiple of 16 bytes, insert dummy padding.
1533   while (BufferSize & 15) {
1534     Stream.Emit(0, 8);
1535     ++BufferSize;
1536   }
1537 }
1538
1539
1540 /// WriteBitcodeToFile - Write the specified module to the specified output
1541 /// stream.
1542 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1543   std::vector<unsigned char> Buffer;
1544   BitstreamWriter Stream(Buffer);
1545
1546   Buffer.reserve(256*1024);
1547
1548   WriteBitcodeToStream( M, Stream );
1549
1550   // If writing to stdout, set binary mode.
1551   if (&llvm::outs() == &Out)
1552     sys::Program::ChangeStdoutToBinary();
1553
1554   // Write the generated bitstream to "Out".
1555   Out.write((char*)&Buffer.front(), Buffer.size());
1556
1557   // Make sure it hits disk now.
1558   Out.flush();
1559 }
1560
1561 /// WriteBitcodeToStream - Write the specified module to the specified output
1562 /// stream.
1563 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1564   // If this is darwin, emit a file header and trailer if needed.
1565   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1566   if (isDarwin)
1567     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1568
1569   // Emit the file header.
1570   Stream.Emit((unsigned)'B', 8);
1571   Stream.Emit((unsigned)'C', 8);
1572   Stream.Emit(0x0, 4);
1573   Stream.Emit(0xC, 4);
1574   Stream.Emit(0xE, 4);
1575   Stream.Emit(0xD, 4);
1576
1577   // Emit the module.
1578   WriteModule(M, Stream);
1579
1580   if (isDarwin)
1581     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1582 }