add some abbrevs for ret and unreachable, shrinking kc++ from 2717360->2705388
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Module.h"
22 #include "llvm/ParameterAttributes.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/Support/MathExtras.h"
26 using namespace llvm;
27
28 /// These are manifest constants used by the bitcode writer. They do not need to
29 /// be kept in sync with the reader, but need to be consistent within this file.
30 enum {
31   CurVersion = 0,
32   
33   // VALUE_SYMTAB_BLOCK abbrev id's.
34   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
35   VST_ENTRY_7_ABBREV,
36   VST_ENTRY_6_ABBREV,
37   VST_BBENTRY_6_ABBREV,
38   
39   // CONSTANTS_BLOCK abbrev id's.
40   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   CONSTANTS_INTEGER_ABBREV,
42   CONSTANTS_CE_CAST_Abbrev,
43   CONSTANTS_NULL_Abbrev,
44   
45   // FUNCTION_BLOCK abbrev id's.
46   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   FUNCTION_INST_RET_VOID_ABBREV,
48   FUNCTION_INST_RET_VAL_ABBREV,
49   FUNCTION_INST_UNREACHABLE_ABBREV
50 };
51
52
53 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
54   switch (Opcode) {
55   default: assert(0 && "Unknown cast instruction!");
56   case Instruction::Trunc   : return bitc::CAST_TRUNC;
57   case Instruction::ZExt    : return bitc::CAST_ZEXT;
58   case Instruction::SExt    : return bitc::CAST_SEXT;
59   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
60   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
61   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
62   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
63   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
64   case Instruction::FPExt   : return bitc::CAST_FPEXT;
65   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
66   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
67   case Instruction::BitCast : return bitc::CAST_BITCAST;
68   }
69 }
70
71 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
72   switch (Opcode) {
73   default: assert(0 && "Unknown binary instruction!");
74   case Instruction::Add:  return bitc::BINOP_ADD;
75   case Instruction::Sub:  return bitc::BINOP_SUB;
76   case Instruction::Mul:  return bitc::BINOP_MUL;
77   case Instruction::UDiv: return bitc::BINOP_UDIV;
78   case Instruction::FDiv:
79   case Instruction::SDiv: return bitc::BINOP_SDIV;
80   case Instruction::URem: return bitc::BINOP_UREM;
81   case Instruction::FRem:
82   case Instruction::SRem: return bitc::BINOP_SREM;
83   case Instruction::Shl:  return bitc::BINOP_SHL;
84   case Instruction::LShr: return bitc::BINOP_LSHR;
85   case Instruction::AShr: return bitc::BINOP_ASHR;
86   case Instruction::And:  return bitc::BINOP_AND;
87   case Instruction::Or:   return bitc::BINOP_OR;
88   case Instruction::Xor:  return bitc::BINOP_XOR;
89   }
90 }
91
92
93
94 static void WriteStringRecord(unsigned Code, const std::string &Str, 
95                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
96   SmallVector<unsigned, 64> Vals;
97   
98   // Code: [strchar x N]
99   for (unsigned i = 0, e = Str.size(); i != e; ++i)
100     Vals.push_back(Str[i]);
101     
102   // Emit the finished record.
103   Stream.EmitRecord(Code, Vals, AbbrevToUse);
104 }
105
106 // Emit information about parameter attributes.
107 static void WriteParamAttrTable(const ValueEnumerator &VE, 
108                                 BitstreamWriter &Stream) {
109   const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
110   if (Attrs.empty()) return;
111   
112   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
113
114   SmallVector<uint64_t, 64> Record;
115   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
116     const ParamAttrsList *A = Attrs[i];
117     for (unsigned op = 0, e = A->size(); op != e; ++op) {
118       Record.push_back(A->getParamIndex(op));
119       Record.push_back(A->getParamAttrsAtIndex(op));
120     }
121     
122     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
123     Record.clear();
124   }
125   
126   Stream.ExitBlock();
127 }
128
129 /// WriteTypeTable - Write out the type table for a module.
130 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
131   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
132   
133   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
134   SmallVector<uint64_t, 64> TypeVals;
135   
136   // Abbrev for TYPE_CODE_POINTER.
137   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
138   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
139   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
140                             Log2_32_Ceil(VE.getTypes().size()+1)));
141   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
142   
143   // Abbrev for TYPE_CODE_FUNCTION.
144   Abbv = new BitCodeAbbrev();
145   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
146   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
147   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
148                             Log2_32_Ceil(VE.getParamAttrs().size()+1)));
149   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
150   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
151                             Log2_32_Ceil(VE.getTypes().size()+1)));
152   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
153   
154   // Abbrev for TYPE_CODE_STRUCT.
155   Abbv = new BitCodeAbbrev();
156   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
157   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
158   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
159   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
160                             Log2_32_Ceil(VE.getTypes().size()+1)));
161   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
162  
163   // Abbrev for TYPE_CODE_ARRAY.
164   Abbv = new BitCodeAbbrev();
165   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
166   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
167   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
168                             Log2_32_Ceil(VE.getTypes().size()+1)));
169   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
170   
171   // Emit an entry count so the reader can reserve space.
172   TypeVals.push_back(TypeList.size());
173   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
174   TypeVals.clear();
175   
176   // Loop over all of the types, emitting each in turn.
177   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
178     const Type *T = TypeList[i].first;
179     int AbbrevToUse = 0;
180     unsigned Code = 0;
181     
182     switch (T->getTypeID()) {
183     case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID.
184     default: assert(0 && "Unknown type!");
185     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
186     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
187     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
188     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
189     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
190     case Type::IntegerTyID:
191       // INTEGER: [width]
192       Code = bitc::TYPE_CODE_INTEGER;
193       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
194       break;
195     case Type::PointerTyID:
196       // POINTER: [pointee type]
197       Code = bitc::TYPE_CODE_POINTER;
198       TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
199       AbbrevToUse = PtrAbbrev;
200       break;
201
202     case Type::FunctionTyID: {
203       const FunctionType *FT = cast<FunctionType>(T);
204       // FUNCTION: [isvararg, attrid, retty, paramty x N]
205       Code = bitc::TYPE_CODE_FUNCTION;
206       TypeVals.push_back(FT->isVarArg());
207       TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs()));
208       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
209       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
210         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
211       AbbrevToUse = FunctionAbbrev;
212       break;
213     }
214     case Type::StructTyID: {
215       const StructType *ST = cast<StructType>(T);
216       // STRUCT: [ispacked, eltty x N]
217       Code = bitc::TYPE_CODE_STRUCT;
218       TypeVals.push_back(ST->isPacked());
219       // Output all of the element types.
220       for (StructType::element_iterator I = ST->element_begin(),
221            E = ST->element_end(); I != E; ++I)
222         TypeVals.push_back(VE.getTypeID(*I));
223       AbbrevToUse = StructAbbrev;
224       break;
225     }
226     case Type::ArrayTyID: {
227       const ArrayType *AT = cast<ArrayType>(T);
228       // ARRAY: [numelts, eltty]
229       Code = bitc::TYPE_CODE_ARRAY;
230       TypeVals.push_back(AT->getNumElements());
231       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
232       AbbrevToUse = ArrayAbbrev;
233       break;
234     }
235     case Type::VectorTyID: {
236       const VectorType *VT = cast<VectorType>(T);
237       // VECTOR [numelts, eltty]
238       Code = bitc::TYPE_CODE_VECTOR;
239       TypeVals.push_back(VT->getNumElements());
240       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
241       break;
242     }
243     }
244
245     // Emit the finished record.
246     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
247     TypeVals.clear();
248   }
249   
250   Stream.ExitBlock();
251 }
252
253 static unsigned getEncodedLinkage(const GlobalValue *GV) {
254   switch (GV->getLinkage()) {
255   default: assert(0 && "Invalid linkage!");
256   case GlobalValue::ExternalLinkage:     return 0;
257   case GlobalValue::WeakLinkage:         return 1;
258   case GlobalValue::AppendingLinkage:    return 2;
259   case GlobalValue::InternalLinkage:     return 3;
260   case GlobalValue::LinkOnceLinkage:     return 4;
261   case GlobalValue::DLLImportLinkage:    return 5;
262   case GlobalValue::DLLExportLinkage:    return 6;
263   case GlobalValue::ExternalWeakLinkage: return 7;
264   }
265 }
266
267 static unsigned getEncodedVisibility(const GlobalValue *GV) {
268   switch (GV->getVisibility()) {
269   default: assert(0 && "Invalid visibility!");
270   case GlobalValue::DefaultVisibility:   return 0;
271   case GlobalValue::HiddenVisibility:    return 1;
272   case GlobalValue::ProtectedVisibility: return 2;
273   }
274 }
275
276 // Emit top-level description of module, including target triple, inline asm,
277 // descriptors for global variables, and function prototype info.
278 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
279                             BitstreamWriter &Stream) {
280   // Emit the list of dependent libraries for the Module.
281   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
282     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
283
284   // Emit various pieces of data attached to a module.
285   if (!M->getTargetTriple().empty())
286     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
287                       0/*TODO*/, Stream);
288   if (!M->getDataLayout().empty())
289     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
290                       0/*TODO*/, Stream);
291   if (!M->getModuleInlineAsm().empty())
292     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
293                       0/*TODO*/, Stream);
294
295   // Emit information about sections, computing how many there are.  Also
296   // compute the maximum alignment value.
297   std::map<std::string, unsigned> SectionMap;
298   unsigned MaxAlignment = 0;
299   unsigned MaxGlobalType = 0;
300   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
301        GV != E; ++GV) {
302     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
303     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
304     
305     if (!GV->hasSection()) continue;
306     // Give section names unique ID's.
307     unsigned &Entry = SectionMap[GV->getSection()];
308     if (Entry != 0) continue;
309     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
310                       0/*TODO*/, Stream);
311     Entry = SectionMap.size();
312   }
313   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
314     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
315     if (!F->hasSection()) continue;
316     // Give section names unique ID's.
317     unsigned &Entry = SectionMap[F->getSection()];
318     if (Entry != 0) continue;
319     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
320                       0/*TODO*/, Stream);
321     Entry = SectionMap.size();
322   }
323   
324   // Emit abbrev for globals, now that we know # sections and max alignment.
325   unsigned SimpleGVarAbbrev = 0;
326   if (!M->global_empty()) { 
327     // Add an abbrev for common globals with no visibility or thread localness.
328     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
329     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
330     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
331                               Log2_32_Ceil(MaxGlobalType+1)));
332     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
333     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
334     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));      // Linkage.
335     if (MaxAlignment == 0)                                      // Alignment.
336       Abbv->Add(BitCodeAbbrevOp(0));
337     else {
338       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
339       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
340                                Log2_32_Ceil(MaxEncAlignment+1)));
341     }
342     if (SectionMap.empty())                                    // Section.
343       Abbv->Add(BitCodeAbbrevOp(0));
344     else
345       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
346                                Log2_32_Ceil(SectionMap.size()+1)));
347     // Don't bother emitting vis + thread local.
348     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
349   }
350   
351   // Emit the global variable information.
352   SmallVector<unsigned, 64> Vals;
353   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
354        GV != E; ++GV) {
355     unsigned AbbrevToUse = 0;
356
357     // GLOBALVAR: [type, isconst, initid, 
358     //             linkage, alignment, section, visibility, threadlocal]
359     Vals.push_back(VE.getTypeID(GV->getType()));
360     Vals.push_back(GV->isConstant());
361     Vals.push_back(GV->isDeclaration() ? 0 :
362                    (VE.getValueID(GV->getInitializer()) + 1));
363     Vals.push_back(getEncodedLinkage(GV));
364     Vals.push_back(Log2_32(GV->getAlignment())+1);
365     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
366     if (GV->isThreadLocal() || 
367         GV->getVisibility() != GlobalValue::DefaultVisibility) {
368       Vals.push_back(getEncodedVisibility(GV));
369       Vals.push_back(GV->isThreadLocal());
370     } else {
371       AbbrevToUse = SimpleGVarAbbrev;
372     }
373     
374     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
375     Vals.clear();
376   }
377
378   // Emit the function proto information.
379   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
380     // FUNCTION:  [type, callingconv, isproto, linkage, alignment, section,
381     //             visibility]
382     Vals.push_back(VE.getTypeID(F->getType()));
383     Vals.push_back(F->getCallingConv());
384     Vals.push_back(F->isDeclaration());
385     Vals.push_back(getEncodedLinkage(F));
386     Vals.push_back(Log2_32(F->getAlignment())+1);
387     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
388     Vals.push_back(getEncodedVisibility(F));
389     
390     unsigned AbbrevToUse = 0;
391     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
392     Vals.clear();
393   }
394   
395   
396   // Emit the alias information.
397   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
398        AI != E; ++AI) {
399     Vals.push_back(VE.getTypeID(AI->getType()));
400     Vals.push_back(VE.getValueID(AI->getAliasee()));
401     Vals.push_back(getEncodedLinkage(AI));
402     unsigned AbbrevToUse = 0;
403     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
404     Vals.clear();
405   }
406 }
407
408
409 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
410                            const ValueEnumerator &VE,
411                            BitstreamWriter &Stream, bool isGlobal) {
412   if (FirstVal == LastVal) return;
413   
414   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
415
416   unsigned AggregateAbbrev = 0;
417   unsigned String8Abbrev = 0;
418   unsigned CString7Abbrev = 0;
419   unsigned CString6Abbrev = 0;
420   // If this is a constant pool for the module, emit module-specific abbrevs.
421   if (isGlobal) {
422     // Abbrev for CST_CODE_AGGREGATE.
423     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
424     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
425     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
426     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
427     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
428
429     // Abbrev for CST_CODE_STRING.
430     Abbv = new BitCodeAbbrev();
431     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
432     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
433     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
434     String8Abbrev = Stream.EmitAbbrev(Abbv);
435     // Abbrev for CST_CODE_CSTRING.
436     Abbv = new BitCodeAbbrev();
437     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
438     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
439     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
440     CString7Abbrev = Stream.EmitAbbrev(Abbv);
441     // Abbrev for CST_CODE_CSTRING.
442     Abbv = new BitCodeAbbrev();
443     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
444     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
445     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
446     CString6Abbrev = Stream.EmitAbbrev(Abbv);
447   }  
448   
449   // FIXME: Install and use abbrevs to reduce size.  Install them globally so
450   // they don't need to be reemitted for each function body.
451   
452   SmallVector<uint64_t, 64> Record;
453
454   const ValueEnumerator::ValueList &Vals = VE.getValues();
455   const Type *LastTy = 0;
456   for (unsigned i = FirstVal; i != LastVal; ++i) {
457     const Value *V = Vals[i].first;
458     // If we need to switch types, do so now.
459     if (V->getType() != LastTy) {
460       LastTy = V->getType();
461       Record.push_back(VE.getTypeID(LastTy));
462       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
463                         CONSTANTS_SETTYPE_ABBREV);
464       Record.clear();
465     }
466     
467     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
468       assert(0 && IA && "FIXME: Inline asm writing unimp!");
469       continue;
470     }
471     const Constant *C = cast<Constant>(V);
472     unsigned Code = -1U;
473     unsigned AbbrevToUse = 0;
474     if (C->isNullValue()) {
475       Code = bitc::CST_CODE_NULL;
476     } else if (isa<UndefValue>(C)) {
477       Code = bitc::CST_CODE_UNDEF;
478     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
479       if (IV->getBitWidth() <= 64) {
480         int64_t V = IV->getSExtValue();
481         if (V >= 0)
482           Record.push_back(V << 1);
483         else
484           Record.push_back((-V << 1) | 1);
485         Code = bitc::CST_CODE_INTEGER;
486         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
487       } else {                             // Wide integers, > 64 bits in size.
488         // We have an arbitrary precision integer value to write whose 
489         // bit width is > 64. However, in canonical unsigned integer 
490         // format it is likely that the high bits are going to be zero.
491         // So, we only write the number of active words.
492         unsigned NWords = IV->getValue().getActiveWords(); 
493         const uint64_t *RawWords = IV->getValue().getRawData();
494         for (unsigned i = 0; i != NWords; ++i) {
495           int64_t V = RawWords[i];
496           if (V >= 0)
497             Record.push_back(V << 1);
498           else
499             Record.push_back((-V << 1) | 1);
500         }
501         Code = bitc::CST_CODE_WIDE_INTEGER;
502       }
503     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
504       Code = bitc::CST_CODE_FLOAT;
505       if (CFP->getType() == Type::FloatTy) {
506         Record.push_back(FloatToBits((float)CFP->getValue()));
507       } else {
508         assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!");
509         Record.push_back(DoubleToBits((double)CFP->getValue()));
510       }
511     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
512       // Emit constant strings specially.
513       unsigned NumOps = C->getNumOperands();
514       // If this is a null-terminated string, use the denser CSTRING encoding.
515       if (C->getOperand(NumOps-1)->isNullValue()) {
516         Code = bitc::CST_CODE_CSTRING;
517         --NumOps;  // Don't encode the null, which isn't allowed by char6.
518       } else {
519         Code = bitc::CST_CODE_STRING;
520         AbbrevToUse = String8Abbrev;
521       }
522       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
523       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
524       for (unsigned i = 0; i != NumOps; ++i) {
525         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
526         Record.push_back(V);
527         isCStr7 &= (V & 128) == 0;
528         if (isCStrChar6) 
529           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
530       }
531       
532       if (isCStrChar6)
533         AbbrevToUse = CString6Abbrev;
534       else if (isCStr7)
535         AbbrevToUse = CString7Abbrev;
536     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
537                isa<ConstantVector>(V)) {
538       Code = bitc::CST_CODE_AGGREGATE;
539       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
540         Record.push_back(VE.getValueID(C->getOperand(i)));
541       AbbrevToUse = AggregateAbbrev;
542     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
543       switch (CE->getOpcode()) {
544       default:
545         if (Instruction::isCast(CE->getOpcode())) {
546           Code = bitc::CST_CODE_CE_CAST;
547           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
548           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
549           Record.push_back(VE.getValueID(C->getOperand(0)));
550           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
551         } else {
552           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
553           Code = bitc::CST_CODE_CE_BINOP;
554           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
555           Record.push_back(VE.getValueID(C->getOperand(0)));
556           Record.push_back(VE.getValueID(C->getOperand(1)));
557         }
558         break;
559       case Instruction::GetElementPtr:
560         Code = bitc::CST_CODE_CE_GEP;
561         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
562           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
563           Record.push_back(VE.getValueID(C->getOperand(i)));
564         }
565         break;
566       case Instruction::Select:
567         Code = bitc::CST_CODE_CE_SELECT;
568         Record.push_back(VE.getValueID(C->getOperand(0)));
569         Record.push_back(VE.getValueID(C->getOperand(1)));
570         Record.push_back(VE.getValueID(C->getOperand(2)));
571         break;
572       case Instruction::ExtractElement:
573         Code = bitc::CST_CODE_CE_EXTRACTELT;
574         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
575         Record.push_back(VE.getValueID(C->getOperand(0)));
576         Record.push_back(VE.getValueID(C->getOperand(1)));
577         break;
578       case Instruction::InsertElement:
579         Code = bitc::CST_CODE_CE_INSERTELT;
580         Record.push_back(VE.getValueID(C->getOperand(0)));
581         Record.push_back(VE.getValueID(C->getOperand(1)));
582         Record.push_back(VE.getValueID(C->getOperand(2)));
583         break;
584       case Instruction::ShuffleVector:
585         Code = bitc::CST_CODE_CE_SHUFFLEVEC;
586         Record.push_back(VE.getValueID(C->getOperand(0)));
587         Record.push_back(VE.getValueID(C->getOperand(1)));
588         Record.push_back(VE.getValueID(C->getOperand(2)));
589         break;
590       case Instruction::ICmp:
591       case Instruction::FCmp:
592         Code = bitc::CST_CODE_CE_CMP;
593         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
594         Record.push_back(VE.getValueID(C->getOperand(0)));
595         Record.push_back(VE.getValueID(C->getOperand(1)));
596         Record.push_back(CE->getPredicate());
597         break;
598       }
599     } else {
600       assert(0 && "Unknown constant!");
601     }
602     Stream.EmitRecord(Code, Record, AbbrevToUse);
603     Record.clear();
604   }
605
606   Stream.ExitBlock();
607 }
608
609 static void WriteModuleConstants(const ValueEnumerator &VE,
610                                  BitstreamWriter &Stream) {
611   const ValueEnumerator::ValueList &Vals = VE.getValues();
612   
613   // Find the first constant to emit, which is the first non-globalvalue value.
614   // We know globalvalues have been emitted by WriteModuleInfo.
615   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
616     if (!isa<GlobalValue>(Vals[i].first)) {
617       WriteConstants(i, Vals.size(), VE, Stream, true);
618       return;
619     }
620   }
621 }
622
623 /// PushValueAndType - The file has to encode both the value and type id for
624 /// many values, because we need to know what type to create for forward
625 /// references.  However, most operands are not forward references, so this type
626 /// field is not needed.
627 ///
628 /// This function adds V's value ID to Vals.  If the value ID is higher than the
629 /// instruction ID, then it is a forward reference, and it also includes the
630 /// type ID.
631 static bool PushValueAndType(Value *V, unsigned InstID,
632                              SmallVector<unsigned, 64> &Vals, 
633                              ValueEnumerator &VE) {
634   unsigned ValID = VE.getValueID(V);
635   Vals.push_back(ValID);
636   if (ValID >= InstID) {
637     Vals.push_back(VE.getTypeID(V->getType()));
638     return true;
639   }
640   return false;
641 }
642
643 /// WriteInstruction - Emit an instruction to the specified stream.
644 static void WriteInstruction(const Instruction &I, unsigned InstID,
645                              ValueEnumerator &VE, BitstreamWriter &Stream,
646                              SmallVector<unsigned, 64> &Vals) {
647   unsigned Code = 0;
648   unsigned AbbrevToUse = 0;
649   switch (I.getOpcode()) {
650   default:
651     if (Instruction::isCast(I.getOpcode())) {
652       Code = bitc::FUNC_CODE_INST_CAST;
653       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
654       Vals.push_back(VE.getTypeID(I.getType()));
655       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
656     } else {
657       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
658       Code = bitc::FUNC_CODE_INST_BINOP;
659       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
660       Vals.push_back(VE.getValueID(I.getOperand(1)));
661       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
662     }
663     break;
664
665   case Instruction::GetElementPtr:
666     Code = bitc::FUNC_CODE_INST_GEP;
667     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
668       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
669     break;
670   case Instruction::Select:
671     Code = bitc::FUNC_CODE_INST_SELECT;
672     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
673     Vals.push_back(VE.getValueID(I.getOperand(2)));
674     Vals.push_back(VE.getValueID(I.getOperand(0)));
675     break;
676   case Instruction::ExtractElement:
677     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
678     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
679     Vals.push_back(VE.getValueID(I.getOperand(1)));
680     break;
681   case Instruction::InsertElement:
682     Code = bitc::FUNC_CODE_INST_INSERTELT;
683     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
684     Vals.push_back(VE.getValueID(I.getOperand(1)));
685     Vals.push_back(VE.getValueID(I.getOperand(2)));
686     break;
687   case Instruction::ShuffleVector:
688     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
689     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
690     Vals.push_back(VE.getValueID(I.getOperand(1)));
691     Vals.push_back(VE.getValueID(I.getOperand(2)));
692     break;
693   case Instruction::ICmp:
694   case Instruction::FCmp:
695     Code = bitc::FUNC_CODE_INST_CMP;
696     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
697     Vals.push_back(VE.getValueID(I.getOperand(1)));
698     Vals.push_back(cast<CmpInst>(I).getPredicate());
699     break;
700
701   case Instruction::Ret:
702     Code = bitc::FUNC_CODE_INST_RET;
703     if (!I.getNumOperands())
704       AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
705     else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
706       AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
707     break;
708   case Instruction::Br:
709     Code = bitc::FUNC_CODE_INST_BR;
710     Vals.push_back(VE.getValueID(I.getOperand(0)));
711     if (cast<BranchInst>(I).isConditional()) {
712       Vals.push_back(VE.getValueID(I.getOperand(1)));
713       Vals.push_back(VE.getValueID(I.getOperand(2)));
714     }
715     break;
716   case Instruction::Switch:
717     Code = bitc::FUNC_CODE_INST_SWITCH;
718     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
719     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
720       Vals.push_back(VE.getValueID(I.getOperand(i)));
721     break;
722   case Instruction::Invoke: {
723     Code = bitc::FUNC_CODE_INST_INVOKE;
724     Vals.push_back(cast<InvokeInst>(I).getCallingConv());
725     Vals.push_back(VE.getValueID(I.getOperand(1)));      // normal dest
726     Vals.push_back(VE.getValueID(I.getOperand(2)));      // unwind dest
727     PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
728     
729     // Emit value #'s for the fixed parameters.
730     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
731     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
732     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
733       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
734
735     // Emit type/value pairs for varargs params.
736     if (FTy->isVarArg()) {
737       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
738            i != e; ++i)
739         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
740     }
741     break;
742   }
743   case Instruction::Unwind:
744     Code = bitc::FUNC_CODE_INST_UNWIND;
745     break;
746   case Instruction::Unreachable:
747     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
748     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
749     break;
750   
751   case Instruction::PHI:
752     Code = bitc::FUNC_CODE_INST_PHI;
753     Vals.push_back(VE.getTypeID(I.getType()));
754     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
755       Vals.push_back(VE.getValueID(I.getOperand(i)));
756     break;
757     
758   case Instruction::Malloc:
759     Code = bitc::FUNC_CODE_INST_MALLOC;
760     Vals.push_back(VE.getTypeID(I.getType()));
761     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
762     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
763     break;
764     
765   case Instruction::Free:
766     Code = bitc::FUNC_CODE_INST_FREE;
767     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
768     break;
769     
770   case Instruction::Alloca:
771     Code = bitc::FUNC_CODE_INST_ALLOCA;
772     Vals.push_back(VE.getTypeID(I.getType()));
773     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
774     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
775     break;
776     
777   case Instruction::Load:
778     Code = bitc::FUNC_CODE_INST_LOAD;
779     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
780       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
781       
782     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
783     Vals.push_back(cast<LoadInst>(I).isVolatile());
784     break;
785   case Instruction::Store:
786     Code = bitc::FUNC_CODE_INST_STORE;
787     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // val.
788     Vals.push_back(VE.getValueID(I.getOperand(1)));       // ptr.
789     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
790     Vals.push_back(cast<StoreInst>(I).isVolatile());
791     break;
792   case Instruction::Call: {
793     Code = bitc::FUNC_CODE_INST_CALL;
794     Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) |
795                    cast<CallInst>(I).isTailCall());
796     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // Callee
797     
798     // Emit value #'s for the fixed parameters.
799     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
800     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
801     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
802       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
803       
804     // Emit type/value pairs for varargs params.
805     if (FTy->isVarArg()) {
806       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
807       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
808            i != e; ++i)
809         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
810     }
811     break;
812   }
813   case Instruction::VAArg:
814     Code = bitc::FUNC_CODE_INST_VAARG;
815     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
816     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
817     Vals.push_back(VE.getTypeID(I.getType())); // restype.
818     break;
819   }
820   
821   Stream.EmitRecord(Code, Vals, AbbrevToUse);
822   Vals.clear();
823 }
824
825 // Emit names for globals/functions etc.
826 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
827                                   const ValueEnumerator &VE,
828                                   BitstreamWriter &Stream) {
829   if (VST.empty()) return;
830   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
831
832   // FIXME: Set up the abbrev, we know how many values there are!
833   // FIXME: We know if the type names can use 7-bit ascii.
834   SmallVector<unsigned, 64> NameVals;
835   
836   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
837        SI != SE; ++SI) {
838     
839     const ValueName &Name = *SI;
840     
841     // Figure out the encoding to use for the name.
842     bool is7Bit = true;
843     bool isChar6 = true;
844     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
845          C != E; ++C) {
846       if (isChar6) 
847         isChar6 = BitCodeAbbrevOp::isChar6(*C);
848       if ((unsigned char)*C & 128) {
849         is7Bit = false;
850         break;  // don't bother scanning the rest.
851       }
852     }
853     
854     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
855     
856     // VST_ENTRY:   [valueid, namechar x N]
857     // VST_BBENTRY: [bbid, namechar x N]
858     unsigned Code;
859     if (isa<BasicBlock>(SI->getValue())) {
860       Code = bitc::VST_CODE_BBENTRY;
861       if (isChar6)
862         AbbrevToUse = VST_BBENTRY_6_ABBREV;
863     } else {
864       Code = bitc::VST_CODE_ENTRY;
865       if (isChar6)
866         AbbrevToUse = VST_ENTRY_6_ABBREV;
867       else if (is7Bit)
868         AbbrevToUse = VST_ENTRY_7_ABBREV;
869     }
870     
871     NameVals.push_back(VE.getValueID(SI->getValue()));
872     for (const char *P = Name.getKeyData(),
873          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
874       NameVals.push_back((unsigned char)*P);
875     
876     // Emit the finished record.
877     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
878     NameVals.clear();
879   }
880   Stream.ExitBlock();
881 }
882
883 /// WriteFunction - Emit a function body to the module stream.
884 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
885                           BitstreamWriter &Stream) {
886   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 3);
887   VE.incorporateFunction(F);
888
889   SmallVector<unsigned, 64> Vals;
890   
891   // Emit the number of basic blocks, so the reader can create them ahead of
892   // time.
893   Vals.push_back(VE.getBasicBlocks().size());
894   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
895   Vals.clear();
896   
897   // FIXME: Function attributes?
898   
899   // If there are function-local constants, emit them now.
900   unsigned CstStart, CstEnd;
901   VE.getFunctionConstantRange(CstStart, CstEnd);
902   WriteConstants(CstStart, CstEnd, VE, Stream, false);
903   
904   // Keep a running idea of what the instruction ID is. 
905   unsigned InstID = CstEnd;
906   
907   // Finally, emit all the instructions, in order.
908   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
909     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
910          I != E; ++I) {
911       WriteInstruction(*I, InstID, VE, Stream, Vals);
912       if (I->getType() != Type::VoidTy)
913         ++InstID;
914     }
915   
916   // Emit names for all the instructions etc.
917   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
918     
919   VE.purgeFunction();
920   Stream.ExitBlock();
921 }
922
923 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
924 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
925                                  const ValueEnumerator &VE,
926                                  BitstreamWriter &Stream) {
927   if (TST.empty()) return;
928   
929   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
930   
931   // 7-bit fixed width VST_CODE_ENTRY strings.
932   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
933   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
934   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
935                             Log2_32_Ceil(VE.getTypes().size()+1)));
936   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
937   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
938   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
939   
940   SmallVector<unsigned, 64> NameVals;
941   
942   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
943        TI != TE; ++TI) {
944     // TST_ENTRY: [typeid, namechar x N]
945     NameVals.push_back(VE.getTypeID(TI->second));
946     
947     const std::string &Str = TI->first;
948     bool is7Bit = true;
949     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
950       NameVals.push_back((unsigned char)Str[i]);
951       if (Str[i] & 128)
952         is7Bit = false;
953     }
954     
955     // Emit the finished record.
956     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
957     NameVals.clear();
958   }
959   
960   Stream.ExitBlock();
961 }
962
963 // Emit blockinfo, which defines the standard abbreviations etc.
964 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
965   // We only want to emit block info records for blocks that have multiple
966   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
967   // blocks can defined their abbrevs inline.
968   Stream.EnterBlockInfoBlock(2);
969   
970   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
971     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
972     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
973     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
974     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
975     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
976     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
977                                    Abbv) != VST_ENTRY_8_ABBREV)
978       assert(0 && "Unexpected abbrev ordering!");
979   }
980   
981   { // 7-bit fixed width VST_ENTRY strings.
982     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
983     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
984     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
985     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
986     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
987     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
988                                    Abbv) != VST_ENTRY_7_ABBREV)
989       assert(0 && "Unexpected abbrev ordering!");
990   }
991   { // 6-bit char6 VST_ENTRY strings.
992     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
993     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
994     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
995     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
996     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
997     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
998                                    Abbv) != VST_ENTRY_6_ABBREV)
999       assert(0 && "Unexpected abbrev ordering!");
1000   }
1001   { // 6-bit char6 VST_BBENTRY strings.
1002     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1003     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1004     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1005     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1006     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1007     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1008                                    Abbv) != VST_BBENTRY_6_ABBREV)
1009       assert(0 && "Unexpected abbrev ordering!");
1010   }
1011   
1012   
1013   
1014   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1015     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1016     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1017     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1018                               Log2_32_Ceil(VE.getTypes().size()+1)));
1019     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1020                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1021       assert(0 && "Unexpected abbrev ordering!");
1022   }
1023   
1024   { // INTEGER abbrev for CONSTANTS_BLOCK.
1025     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1026     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1027     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1028     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1029                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1030       assert(0 && "Unexpected abbrev ordering!");
1031   }
1032   
1033   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1034     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1035     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1036     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1037     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1038                               Log2_32_Ceil(VE.getTypes().size()+1)));
1039     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1040
1041     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1042                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1043       assert(0 && "Unexpected abbrev ordering!");
1044   }
1045   { // NULL abbrev for CONSTANTS_BLOCK.
1046     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1047     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1048     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1049                                    Abbv) != CONSTANTS_NULL_Abbrev)
1050       assert(0 && "Unexpected abbrev ordering!");
1051   }
1052   
1053   // FIXME: This should only use space for first class types!
1054  
1055   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1056     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1057     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1058     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1059     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1060     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1061     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1062                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1063       assert(0 && "Unexpected abbrev ordering!");
1064   }
1065   { // INST_RET abbrev for FUNCTION_BLOCK.
1066     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1067     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1068     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1069                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1070       assert(0 && "Unexpected abbrev ordering!");
1071   }
1072   { // INST_RET abbrev for FUNCTION_BLOCK.
1073     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1074     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1075     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1076     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1077                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1078       assert(0 && "Unexpected abbrev ordering!");
1079   }
1080   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1081     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1082     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1083     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1084                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1085       assert(0 && "Unexpected abbrev ordering!");
1086   }
1087   
1088   Stream.ExitBlock();
1089 }
1090
1091
1092 /// WriteModule - Emit the specified module to the bitstream.
1093 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1094   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1095   
1096   // Emit the version number if it is non-zero.
1097   if (CurVersion) {
1098     SmallVector<unsigned, 1> Vals;
1099     Vals.push_back(CurVersion);
1100     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1101   }
1102   
1103   // Analyze the module, enumerating globals, functions, etc.
1104   ValueEnumerator VE(M);
1105
1106   // Emit blockinfo, which defines the standard abbreviations etc.
1107   WriteBlockInfo(VE, Stream);
1108   
1109   // Emit information about parameter attributes.
1110   WriteParamAttrTable(VE, Stream);
1111   
1112   // Emit information describing all of the types in the module.
1113   WriteTypeTable(VE, Stream);
1114   
1115   // Emit top-level description of module, including target triple, inline asm,
1116   // descriptors for global variables, and function prototype info.
1117   WriteModuleInfo(M, VE, Stream);
1118   
1119   // Emit constants.
1120   WriteModuleConstants(VE, Stream);
1121   
1122   // If we have any aggregate values in the value table, purge them - these can
1123   // only be used to initialize global variables.  Doing so makes the value
1124   // namespace smaller for code in functions.
1125   int NumNonAggregates = VE.PurgeAggregateValues();
1126   if (NumNonAggregates != -1) {
1127     SmallVector<unsigned, 1> Vals;
1128     Vals.push_back(NumNonAggregates);
1129     Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1130   }
1131   
1132   // Emit function bodies.
1133   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1134     if (!I->isDeclaration())
1135       WriteFunction(*I, VE, Stream);
1136   
1137   // Emit the type symbol table information.
1138   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1139   
1140   // Emit names for globals/functions etc.
1141   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1142   
1143   Stream.ExitBlock();
1144 }
1145
1146
1147 /// WriteBitcodeToFile - Write the specified module to the specified output
1148 /// stream.
1149 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1150   std::vector<unsigned char> Buffer;
1151   BitstreamWriter Stream(Buffer);
1152   
1153   Buffer.reserve(256*1024);
1154   
1155   // Emit the file header.
1156   Stream.Emit((unsigned)'B', 8);
1157   Stream.Emit((unsigned)'C', 8);
1158   Stream.Emit(0x0, 4);
1159   Stream.Emit(0xC, 4);
1160   Stream.Emit(0xE, 4);
1161   Stream.Emit(0xD, 4);
1162
1163   // Emit the module.
1164   WriteModule(M, Stream);
1165   
1166   // Write the generated bitstream to "Out".
1167   Out.write((char*)&Buffer.front(), Buffer.size());
1168 }