Make blockaddress(@func, null) be valid, and make 'deleting a basic
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Metadata.h"
24 #include "llvm/Module.h"
25 #include "llvm/Operator.h"
26 #include "llvm/TypeSymbolTable.h"
27 #include "llvm/ValueSymbolTable.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/System/Program.h"
32 using namespace llvm;
33
34 /// These are manifest constants used by the bitcode writer. They do not need to
35 /// be kept in sync with the reader, but need to be consistent within this file.
36 enum {
37   CurVersion = 0,
38
39   // VALUE_SYMTAB_BLOCK abbrev id's.
40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   VST_ENTRY_7_ABBREV,
42   VST_ENTRY_6_ABBREV,
43   VST_BBENTRY_6_ABBREV,
44
45   // CONSTANTS_BLOCK abbrev id's.
46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   CONSTANTS_INTEGER_ABBREV,
48   CONSTANTS_CE_CAST_Abbrev,
49   CONSTANTS_NULL_Abbrev,
50
51   // FUNCTION_BLOCK abbrev id's.
52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53   FUNCTION_INST_BINOP_ABBREV,
54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
55   FUNCTION_INST_CAST_ABBREV,
56   FUNCTION_INST_RET_VOID_ABBREV,
57   FUNCTION_INST_RET_VAL_ABBREV,
58   FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60
61
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   }
78 }
79
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81   switch (Opcode) {
82   default: llvm_unreachable("Unknown binary instruction!");
83   case Instruction::Add:
84   case Instruction::FAdd: return bitc::BINOP_ADD;
85   case Instruction::Sub:
86   case Instruction::FSub: return bitc::BINOP_SUB;
87   case Instruction::Mul:
88   case Instruction::FMul: return bitc::BINOP_MUL;
89   case Instruction::UDiv: return bitc::BINOP_UDIV;
90   case Instruction::FDiv:
91   case Instruction::SDiv: return bitc::BINOP_SDIV;
92   case Instruction::URem: return bitc::BINOP_UREM;
93   case Instruction::FRem:
94   case Instruction::SRem: return bitc::BINOP_SREM;
95   case Instruction::Shl:  return bitc::BINOP_SHL;
96   case Instruction::LShr: return bitc::BINOP_LSHR;
97   case Instruction::AShr: return bitc::BINOP_ASHR;
98   case Instruction::And:  return bitc::BINOP_AND;
99   case Instruction::Or:   return bitc::BINOP_OR;
100   case Instruction::Xor:  return bitc::BINOP_XOR;
101   }
102 }
103
104
105
106 static void WriteStringRecord(unsigned Code, const std::string &Str,
107                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
108   SmallVector<unsigned, 64> Vals;
109
110   // Code: [strchar x N]
111   for (unsigned i = 0, e = Str.size(); i != e; ++i)
112     Vals.push_back(Str[i]);
113
114   // Emit the finished record.
115   Stream.EmitRecord(Code, Vals, AbbrevToUse);
116 }
117
118 // Emit information about parameter attributes.
119 static void WriteAttributeTable(const ValueEnumerator &VE,
120                                 BitstreamWriter &Stream) {
121   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
122   if (Attrs.empty()) return;
123
124   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
125
126   SmallVector<uint64_t, 64> Record;
127   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
128     const AttrListPtr &A = Attrs[i];
129     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
130       const AttributeWithIndex &PAWI = A.getSlot(i);
131       Record.push_back(PAWI.Index);
132
133       // FIXME: remove in LLVM 3.0
134       // Store the alignment in the bitcode as a 16-bit raw value instead of a
135       // 5-bit log2 encoded value. Shift the bits above the alignment up by
136       // 11 bits.
137       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
138       if (PAWI.Attrs & Attribute::Alignment)
139         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
140       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
141
142       Record.push_back(FauxAttr);
143     }
144
145     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
146     Record.clear();
147   }
148
149   Stream.ExitBlock();
150 }
151
152 /// WriteTypeTable - Write out the type table for a module.
153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
154   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
155
156   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
157   SmallVector<uint64_t, 64> TypeVals;
158
159   // Abbrev for TYPE_CODE_POINTER.
160   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
161   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                             Log2_32_Ceil(VE.getTypes().size()+1)));
164   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
165   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
166
167   // Abbrev for TYPE_CODE_FUNCTION.
168   Abbv = new BitCodeAbbrev();
169   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
171   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
174                             Log2_32_Ceil(VE.getTypes().size()+1)));
175   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
176
177   // Abbrev for TYPE_CODE_STRUCT.
178   Abbv = new BitCodeAbbrev();
179   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
181   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
183                             Log2_32_Ceil(VE.getTypes().size()+1)));
184   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
185
186   // Abbrev for TYPE_CODE_ARRAY.
187   Abbv = new BitCodeAbbrev();
188   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
189   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
190   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
191                             Log2_32_Ceil(VE.getTypes().size()+1)));
192   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
193
194   // Emit an entry count so the reader can reserve space.
195   TypeVals.push_back(TypeList.size());
196   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
197   TypeVals.clear();
198
199   // Loop over all of the types, emitting each in turn.
200   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
201     const Type *T = TypeList[i].first;
202     int AbbrevToUse = 0;
203     unsigned Code = 0;
204
205     switch (T->getTypeID()) {
206     default: llvm_unreachable("Unknown type!");
207     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
208     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
209     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
210     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
211     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
212     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
213     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
214     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
215     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
216     case Type::IntegerTyID:
217       // INTEGER: [width]
218       Code = bitc::TYPE_CODE_INTEGER;
219       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
220       break;
221     case Type::PointerTyID: {
222       const PointerType *PTy = cast<PointerType>(T);
223       // POINTER: [pointee type, address space]
224       Code = bitc::TYPE_CODE_POINTER;
225       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
226       unsigned AddressSpace = PTy->getAddressSpace();
227       TypeVals.push_back(AddressSpace);
228       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
229       break;
230     }
231     case Type::FunctionTyID: {
232       const FunctionType *FT = cast<FunctionType>(T);
233       // FUNCTION: [isvararg, attrid, retty, paramty x N]
234       Code = bitc::TYPE_CODE_FUNCTION;
235       TypeVals.push_back(FT->isVarArg());
236       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
237       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
238       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
239         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
240       AbbrevToUse = FunctionAbbrev;
241       break;
242     }
243     case Type::StructTyID: {
244       const StructType *ST = cast<StructType>(T);
245       // STRUCT: [ispacked, eltty x N]
246       Code = bitc::TYPE_CODE_STRUCT;
247       TypeVals.push_back(ST->isPacked());
248       // Output all of the element types.
249       for (StructType::element_iterator I = ST->element_begin(),
250            E = ST->element_end(); I != E; ++I)
251         TypeVals.push_back(VE.getTypeID(*I));
252       AbbrevToUse = StructAbbrev;
253       break;
254     }
255     case Type::ArrayTyID: {
256       const ArrayType *AT = cast<ArrayType>(T);
257       // ARRAY: [numelts, eltty]
258       Code = bitc::TYPE_CODE_ARRAY;
259       TypeVals.push_back(AT->getNumElements());
260       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
261       AbbrevToUse = ArrayAbbrev;
262       break;
263     }
264     case Type::VectorTyID: {
265       const VectorType *VT = cast<VectorType>(T);
266       // VECTOR [numelts, eltty]
267       Code = bitc::TYPE_CODE_VECTOR;
268       TypeVals.push_back(VT->getNumElements());
269       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
270       break;
271     }
272     }
273
274     // Emit the finished record.
275     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
276     TypeVals.clear();
277   }
278
279   Stream.ExitBlock();
280 }
281
282 static unsigned getEncodedLinkage(const GlobalValue *GV) {
283   switch (GV->getLinkage()) {
284   default: llvm_unreachable("Invalid linkage!");
285   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
286   case GlobalValue::ExternalLinkage:            return 0;
287   case GlobalValue::WeakAnyLinkage:             return 1;
288   case GlobalValue::AppendingLinkage:           return 2;
289   case GlobalValue::InternalLinkage:            return 3;
290   case GlobalValue::LinkOnceAnyLinkage:         return 4;
291   case GlobalValue::DLLImportLinkage:           return 5;
292   case GlobalValue::DLLExportLinkage:           return 6;
293   case GlobalValue::ExternalWeakLinkage:        return 7;
294   case GlobalValue::CommonLinkage:              return 8;
295   case GlobalValue::PrivateLinkage:             return 9;
296   case GlobalValue::WeakODRLinkage:             return 10;
297   case GlobalValue::LinkOnceODRLinkage:         return 11;
298   case GlobalValue::AvailableExternallyLinkage: return 12;
299   case GlobalValue::LinkerPrivateLinkage:       return 13;
300   }
301 }
302
303 static unsigned getEncodedVisibility(const GlobalValue *GV) {
304   switch (GV->getVisibility()) {
305   default: llvm_unreachable("Invalid visibility!");
306   case GlobalValue::DefaultVisibility:   return 0;
307   case GlobalValue::HiddenVisibility:    return 1;
308   case GlobalValue::ProtectedVisibility: return 2;
309   }
310 }
311
312 // Emit top-level description of module, including target triple, inline asm,
313 // descriptors for global variables, and function prototype info.
314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
315                             BitstreamWriter &Stream) {
316   // Emit the list of dependent libraries for the Module.
317   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
318     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
319
320   // Emit various pieces of data attached to a module.
321   if (!M->getTargetTriple().empty())
322     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
323                       0/*TODO*/, Stream);
324   if (!M->getDataLayout().empty())
325     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
326                       0/*TODO*/, Stream);
327   if (!M->getModuleInlineAsm().empty())
328     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
329                       0/*TODO*/, Stream);
330
331   // Emit information about sections and GC, computing how many there are. Also
332   // compute the maximum alignment value.
333   std::map<std::string, unsigned> SectionMap;
334   std::map<std::string, unsigned> GCMap;
335   unsigned MaxAlignment = 0;
336   unsigned MaxGlobalType = 0;
337   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
338        GV != E; ++GV) {
339     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
340     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
341
342     if (!GV->hasSection()) continue;
343     // Give section names unique ID's.
344     unsigned &Entry = SectionMap[GV->getSection()];
345     if (Entry != 0) continue;
346     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
347                       0/*TODO*/, Stream);
348     Entry = SectionMap.size();
349   }
350   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
351     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
352     if (F->hasSection()) {
353       // Give section names unique ID's.
354       unsigned &Entry = SectionMap[F->getSection()];
355       if (!Entry) {
356         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
357                           0/*TODO*/, Stream);
358         Entry = SectionMap.size();
359       }
360     }
361     if (F->hasGC()) {
362       // Same for GC names.
363       unsigned &Entry = GCMap[F->getGC()];
364       if (!Entry) {
365         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
366                           0/*TODO*/, Stream);
367         Entry = GCMap.size();
368       }
369     }
370   }
371
372   // Emit abbrev for globals, now that we know # sections and max alignment.
373   unsigned SimpleGVarAbbrev = 0;
374   if (!M->global_empty()) {
375     // Add an abbrev for common globals with no visibility or thread localness.
376     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
377     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
379                               Log2_32_Ceil(MaxGlobalType+1)));
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
383     if (MaxAlignment == 0)                                      // Alignment.
384       Abbv->Add(BitCodeAbbrevOp(0));
385     else {
386       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
387       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
388                                Log2_32_Ceil(MaxEncAlignment+1)));
389     }
390     if (SectionMap.empty())                                    // Section.
391       Abbv->Add(BitCodeAbbrevOp(0));
392     else
393       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
394                                Log2_32_Ceil(SectionMap.size()+1)));
395     // Don't bother emitting vis + thread local.
396     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
397   }
398
399   // Emit the global variable information.
400   SmallVector<unsigned, 64> Vals;
401   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
402        GV != E; ++GV) {
403     unsigned AbbrevToUse = 0;
404
405     // GLOBALVAR: [type, isconst, initid,
406     //             linkage, alignment, section, visibility, threadlocal]
407     Vals.push_back(VE.getTypeID(GV->getType()));
408     Vals.push_back(GV->isConstant());
409     Vals.push_back(GV->isDeclaration() ? 0 :
410                    (VE.getValueID(GV->getInitializer()) + 1));
411     Vals.push_back(getEncodedLinkage(GV));
412     Vals.push_back(Log2_32(GV->getAlignment())+1);
413     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
414     if (GV->isThreadLocal() ||
415         GV->getVisibility() != GlobalValue::DefaultVisibility) {
416       Vals.push_back(getEncodedVisibility(GV));
417       Vals.push_back(GV->isThreadLocal());
418     } else {
419       AbbrevToUse = SimpleGVarAbbrev;
420     }
421
422     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
423     Vals.clear();
424   }
425
426   // Emit the function proto information.
427   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
428     // FUNCTION:  [type, callingconv, isproto, paramattr,
429     //             linkage, alignment, section, visibility, gc]
430     Vals.push_back(VE.getTypeID(F->getType()));
431     Vals.push_back(F->getCallingConv());
432     Vals.push_back(F->isDeclaration());
433     Vals.push_back(getEncodedLinkage(F));
434     Vals.push_back(VE.getAttributeID(F->getAttributes()));
435     Vals.push_back(Log2_32(F->getAlignment())+1);
436     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
437     Vals.push_back(getEncodedVisibility(F));
438     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
439
440     unsigned AbbrevToUse = 0;
441     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
442     Vals.clear();
443   }
444
445
446   // Emit the alias information.
447   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
448        AI != E; ++AI) {
449     Vals.push_back(VE.getTypeID(AI->getType()));
450     Vals.push_back(VE.getValueID(AI->getAliasee()));
451     Vals.push_back(getEncodedLinkage(AI));
452     Vals.push_back(getEncodedVisibility(AI));
453     unsigned AbbrevToUse = 0;
454     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
455     Vals.clear();
456   }
457 }
458
459 static uint64_t GetOptimizationFlags(const Value *V) {
460   uint64_t Flags = 0;
461
462   if (const OverflowingBinaryOperator *OBO =
463         dyn_cast<OverflowingBinaryOperator>(V)) {
464     if (OBO->hasNoSignedWrap())
465       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
466     if (OBO->hasNoUnsignedWrap())
467       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
468   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
469     if (Div->isExact())
470       Flags |= 1 << bitc::SDIV_EXACT;
471   }
472
473   return Flags;
474 }
475
476 static void WriteMDNode(const MDNode *N,
477                         const ValueEnumerator &VE,
478                         BitstreamWriter &Stream,
479                         SmallVector<uint64_t, 64> &Record) {
480   for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
481     if (N->getElement(i)) {
482       Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
483       Record.push_back(VE.getValueID(N->getElement(i)));
484     } else {
485       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
486       Record.push_back(0);
487     }
488   }
489   Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
490   Record.clear();
491 }
492
493 static void WriteModuleMetadata(const ValueEnumerator &VE,
494                                 BitstreamWriter &Stream) {
495   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
496   bool StartedMetadataBlock = false;
497   unsigned MDSAbbrev = 0;
498   SmallVector<uint64_t, 64> Record;
499   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
500
501     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
502       if (!StartedMetadataBlock) {
503         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
504         StartedMetadataBlock = true;
505       }
506       WriteMDNode(N, VE, Stream, Record);
507     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
508       if (!StartedMetadataBlock)  {
509         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
510
511         // Abbrev for METADATA_STRING.
512         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
513         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
514         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
515         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
516         MDSAbbrev = Stream.EmitAbbrev(Abbv);
517         StartedMetadataBlock = true;
518       }
519
520       // Code: [strchar x N]
521       Record.append(MDS->begin(), MDS->end());
522
523       // Emit the finished record.
524       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
525       Record.clear();
526     } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
527       if (!StartedMetadataBlock)  {
528         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
529         StartedMetadataBlock = true;
530       }
531
532       // Write name.
533       std::string Str = NMD->getNameStr();
534       const char *StrBegin = Str.c_str();
535       for (unsigned i = 0, e = Str.length(); i != e; ++i)
536         Record.push_back(StrBegin[i]);
537       Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
538       Record.clear();
539
540       // Write named metadata elements.
541       for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
542         if (NMD->getElement(i))
543           Record.push_back(VE.getValueID(NMD->getElement(i)));
544         else
545           Record.push_back(0);
546       }
547       Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
548       Record.clear();
549     }
550   }
551
552   if (StartedMetadataBlock)
553     Stream.ExitBlock();
554 }
555
556 static void WriteMetadataAttachment(const Function &F,
557                                     const ValueEnumerator &VE,
558                                     BitstreamWriter &Stream) {
559   bool StartedMetadataBlock = false;
560   SmallVector<uint64_t, 64> Record;
561
562   // Write metadata attachments
563   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
564   MetadataContext &TheMetadata = F.getContext().getMetadata();
565   typedef SmallVector<std::pair<unsigned, TrackingVH<MDNode> >, 2> MDMapTy;
566   MDMapTy MDs;
567   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
568     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
569          I != E; ++I) {
570       MDs.clear();
571       TheMetadata.getMDs(I, MDs);
572       bool RecordedInstruction = false;
573       for (MDMapTy::const_iterator PI = MDs.begin(), PE = MDs.end();
574              PI != PE; ++PI) {
575         if (RecordedInstruction == false) {
576           Record.push_back(VE.getInstructionID(I));
577           RecordedInstruction = true;
578         }
579         Record.push_back(PI->first);
580         Record.push_back(VE.getValueID(PI->second));
581       }
582       if (!Record.empty()) {
583         if (!StartedMetadataBlock)  {
584           Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
585           StartedMetadataBlock = true;
586         }
587         Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
588         Record.clear();
589       }
590     }
591
592   if (StartedMetadataBlock)
593     Stream.ExitBlock();
594 }
595
596 static void WriteModuleMetadataStore(const Module *M,
597                                      const ValueEnumerator &VE,
598                                      BitstreamWriter &Stream) {
599
600   bool StartedMetadataBlock = false;
601   SmallVector<uint64_t, 64> Record;
602
603   // Write metadata kinds
604   // METADATA_KIND - [n x [id, name]]
605   MetadataContext &TheMetadata = M->getContext().getMetadata();
606   SmallVector<std::pair<unsigned, StringRef>, 4> Names;
607   TheMetadata.getHandlerNames(Names);
608   for (SmallVector<std::pair<unsigned, StringRef>, 4>::iterator 
609          I = Names.begin(),
610          E = Names.end(); I != E; ++I) {
611     Record.push_back(I->first);
612     StringRef KName = I->second;
613     for (unsigned i = 0, e = KName.size(); i != e; ++i)
614       Record.push_back(KName[i]);
615     if (!StartedMetadataBlock)  {
616       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
617       StartedMetadataBlock = true;
618     }
619     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
620     Record.clear();
621   }
622
623   if (StartedMetadataBlock)
624     Stream.ExitBlock();
625 }
626
627 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
628                            const ValueEnumerator &VE,
629                            BitstreamWriter &Stream, bool isGlobal) {
630   if (FirstVal == LastVal) return;
631
632   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
633
634   unsigned AggregateAbbrev = 0;
635   unsigned String8Abbrev = 0;
636   unsigned CString7Abbrev = 0;
637   unsigned CString6Abbrev = 0;
638   // If this is a constant pool for the module, emit module-specific abbrevs.
639   if (isGlobal) {
640     // Abbrev for CST_CODE_AGGREGATE.
641     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
642     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
643     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
644     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
645     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
646
647     // Abbrev for CST_CODE_STRING.
648     Abbv = new BitCodeAbbrev();
649     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
650     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
651     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
652     String8Abbrev = Stream.EmitAbbrev(Abbv);
653     // Abbrev for CST_CODE_CSTRING.
654     Abbv = new BitCodeAbbrev();
655     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
656     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
657     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
658     CString7Abbrev = Stream.EmitAbbrev(Abbv);
659     // Abbrev for CST_CODE_CSTRING.
660     Abbv = new BitCodeAbbrev();
661     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
662     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
663     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
664     CString6Abbrev = Stream.EmitAbbrev(Abbv);
665   }
666
667   SmallVector<uint64_t, 64> Record;
668
669   const ValueEnumerator::ValueList &Vals = VE.getValues();
670   const Type *LastTy = 0;
671   for (unsigned i = FirstVal; i != LastVal; ++i) {
672     const Value *V = Vals[i].first;
673     // If we need to switch types, do so now.
674     if (V->getType() != LastTy) {
675       LastTy = V->getType();
676       Record.push_back(VE.getTypeID(LastTy));
677       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
678                         CONSTANTS_SETTYPE_ABBREV);
679       Record.clear();
680     }
681
682     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
683       Record.push_back(unsigned(IA->hasSideEffects()) |
684                        unsigned(IA->isAlignStack()) << 1);
685
686       // Add the asm string.
687       const std::string &AsmStr = IA->getAsmString();
688       Record.push_back(AsmStr.size());
689       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
690         Record.push_back(AsmStr[i]);
691
692       // Add the constraint string.
693       const std::string &ConstraintStr = IA->getConstraintString();
694       Record.push_back(ConstraintStr.size());
695       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
696         Record.push_back(ConstraintStr[i]);
697       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
698       Record.clear();
699       continue;
700     }
701     const Constant *C = cast<Constant>(V);
702     unsigned Code = -1U;
703     unsigned AbbrevToUse = 0;
704     if (C->isNullValue()) {
705       Code = bitc::CST_CODE_NULL;
706     } else if (isa<UndefValue>(C)) {
707       Code = bitc::CST_CODE_UNDEF;
708     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
709       if (IV->getBitWidth() <= 64) {
710         int64_t V = IV->getSExtValue();
711         if (V >= 0)
712           Record.push_back(V << 1);
713         else
714           Record.push_back((-V << 1) | 1);
715         Code = bitc::CST_CODE_INTEGER;
716         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
717       } else {                             // Wide integers, > 64 bits in size.
718         // We have an arbitrary precision integer value to write whose
719         // bit width is > 64. However, in canonical unsigned integer
720         // format it is likely that the high bits are going to be zero.
721         // So, we only write the number of active words.
722         unsigned NWords = IV->getValue().getActiveWords();
723         const uint64_t *RawWords = IV->getValue().getRawData();
724         for (unsigned i = 0; i != NWords; ++i) {
725           int64_t V = RawWords[i];
726           if (V >= 0)
727             Record.push_back(V << 1);
728           else
729             Record.push_back((-V << 1) | 1);
730         }
731         Code = bitc::CST_CODE_WIDE_INTEGER;
732       }
733     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
734       Code = bitc::CST_CODE_FLOAT;
735       const Type *Ty = CFP->getType();
736       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
737         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
738       } else if (Ty->isX86_FP80Ty()) {
739         // api needed to prevent premature destruction
740         // bits are not in the same order as a normal i80 APInt, compensate.
741         APInt api = CFP->getValueAPF().bitcastToAPInt();
742         const uint64_t *p = api.getRawData();
743         Record.push_back((p[1] << 48) | (p[0] >> 16));
744         Record.push_back(p[0] & 0xffffLL);
745       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
746         APInt api = CFP->getValueAPF().bitcastToAPInt();
747         const uint64_t *p = api.getRawData();
748         Record.push_back(p[0]);
749         Record.push_back(p[1]);
750       } else {
751         assert (0 && "Unknown FP type!");
752       }
753     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
754       const ConstantArray *CA = cast<ConstantArray>(C);
755       // Emit constant strings specially.
756       unsigned NumOps = CA->getNumOperands();
757       // If this is a null-terminated string, use the denser CSTRING encoding.
758       if (CA->getOperand(NumOps-1)->isNullValue()) {
759         Code = bitc::CST_CODE_CSTRING;
760         --NumOps;  // Don't encode the null, which isn't allowed by char6.
761       } else {
762         Code = bitc::CST_CODE_STRING;
763         AbbrevToUse = String8Abbrev;
764       }
765       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
766       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
767       for (unsigned i = 0; i != NumOps; ++i) {
768         unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
769         Record.push_back(V);
770         isCStr7 &= (V & 128) == 0;
771         if (isCStrChar6)
772           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
773       }
774
775       if (isCStrChar6)
776         AbbrevToUse = CString6Abbrev;
777       else if (isCStr7)
778         AbbrevToUse = CString7Abbrev;
779     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
780                isa<ConstantVector>(V)) {
781       Code = bitc::CST_CODE_AGGREGATE;
782       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
783         Record.push_back(VE.getValueID(C->getOperand(i)));
784       AbbrevToUse = AggregateAbbrev;
785     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
786       switch (CE->getOpcode()) {
787       default:
788         if (Instruction::isCast(CE->getOpcode())) {
789           Code = bitc::CST_CODE_CE_CAST;
790           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
791           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
792           Record.push_back(VE.getValueID(C->getOperand(0)));
793           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
794         } else {
795           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
796           Code = bitc::CST_CODE_CE_BINOP;
797           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
798           Record.push_back(VE.getValueID(C->getOperand(0)));
799           Record.push_back(VE.getValueID(C->getOperand(1)));
800           uint64_t Flags = GetOptimizationFlags(CE);
801           if (Flags != 0)
802             Record.push_back(Flags);
803         }
804         break;
805       case Instruction::GetElementPtr:
806         Code = bitc::CST_CODE_CE_GEP;
807         if (cast<GEPOperator>(C)->isInBounds())
808           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
809         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
810           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
811           Record.push_back(VE.getValueID(C->getOperand(i)));
812         }
813         break;
814       case Instruction::Select:
815         Code = bitc::CST_CODE_CE_SELECT;
816         Record.push_back(VE.getValueID(C->getOperand(0)));
817         Record.push_back(VE.getValueID(C->getOperand(1)));
818         Record.push_back(VE.getValueID(C->getOperand(2)));
819         break;
820       case Instruction::ExtractElement:
821         Code = bitc::CST_CODE_CE_EXTRACTELT;
822         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
823         Record.push_back(VE.getValueID(C->getOperand(0)));
824         Record.push_back(VE.getValueID(C->getOperand(1)));
825         break;
826       case Instruction::InsertElement:
827         Code = bitc::CST_CODE_CE_INSERTELT;
828         Record.push_back(VE.getValueID(C->getOperand(0)));
829         Record.push_back(VE.getValueID(C->getOperand(1)));
830         Record.push_back(VE.getValueID(C->getOperand(2)));
831         break;
832       case Instruction::ShuffleVector:
833         // If the return type and argument types are the same, this is a
834         // standard shufflevector instruction.  If the types are different,
835         // then the shuffle is widening or truncating the input vectors, and
836         // the argument type must also be encoded.
837         if (C->getType() == C->getOperand(0)->getType()) {
838           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
839         } else {
840           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
841           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
842         }
843         Record.push_back(VE.getValueID(C->getOperand(0)));
844         Record.push_back(VE.getValueID(C->getOperand(1)));
845         Record.push_back(VE.getValueID(C->getOperand(2)));
846         break;
847       case Instruction::ICmp:
848       case Instruction::FCmp:
849         Code = bitc::CST_CODE_CE_CMP;
850         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
851         Record.push_back(VE.getValueID(C->getOperand(0)));
852         Record.push_back(VE.getValueID(C->getOperand(1)));
853         Record.push_back(CE->getPredicate());
854         break;
855       }
856     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
857       assert((!BA->getBasicBlock() ||
858               BA->getFunction() == BA->getBasicBlock()->getParent()) &&
859              "Malformed blockaddress");
860       Code = bitc::CST_CODE_BLOCKADDRESS;
861       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
862       Record.push_back(VE.getValueID(BA->getFunction()));
863       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
864     } else {
865       llvm_unreachable("Unknown constant!");
866     }
867     Stream.EmitRecord(Code, Record, AbbrevToUse);
868     Record.clear();
869   }
870
871   Stream.ExitBlock();
872 }
873
874 static void WriteModuleConstants(const ValueEnumerator &VE,
875                                  BitstreamWriter &Stream) {
876   const ValueEnumerator::ValueList &Vals = VE.getValues();
877
878   // Find the first constant to emit, which is the first non-globalvalue value.
879   // We know globalvalues have been emitted by WriteModuleInfo.
880   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
881     if (!isa<GlobalValue>(Vals[i].first)) {
882       WriteConstants(i, Vals.size(), VE, Stream, true);
883       return;
884     }
885   }
886 }
887
888 /// PushValueAndType - The file has to encode both the value and type id for
889 /// many values, because we need to know what type to create for forward
890 /// references.  However, most operands are not forward references, so this type
891 /// field is not needed.
892 ///
893 /// This function adds V's value ID to Vals.  If the value ID is higher than the
894 /// instruction ID, then it is a forward reference, and it also includes the
895 /// type ID.
896 static bool PushValueAndType(const Value *V, unsigned InstID,
897                              SmallVector<unsigned, 64> &Vals,
898                              ValueEnumerator &VE) {
899   unsigned ValID = VE.getValueID(V);
900   Vals.push_back(ValID);
901   if (ValID >= InstID) {
902     Vals.push_back(VE.getTypeID(V->getType()));
903     return true;
904   }
905   return false;
906 }
907
908 /// WriteInstruction - Emit an instruction to the specified stream.
909 static void WriteInstruction(const Instruction &I, unsigned InstID,
910                              ValueEnumerator &VE, BitstreamWriter &Stream,
911                              SmallVector<unsigned, 64> &Vals) {
912   unsigned Code = 0;
913   unsigned AbbrevToUse = 0;
914   VE.setInstructionID(&I);
915   switch (I.getOpcode()) {
916   default:
917     if (Instruction::isCast(I.getOpcode())) {
918       Code = bitc::FUNC_CODE_INST_CAST;
919       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
920         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
921       Vals.push_back(VE.getTypeID(I.getType()));
922       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
923     } else {
924       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
925       Code = bitc::FUNC_CODE_INST_BINOP;
926       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
927         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
928       Vals.push_back(VE.getValueID(I.getOperand(1)));
929       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
930       uint64_t Flags = GetOptimizationFlags(&I);
931       if (Flags != 0) {
932         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
933           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
934         Vals.push_back(Flags);
935       }
936     }
937     break;
938
939   case Instruction::GetElementPtr:
940     Code = bitc::FUNC_CODE_INST_GEP;
941     if (cast<GEPOperator>(&I)->isInBounds())
942       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
943     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
944       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
945     break;
946   case Instruction::ExtractValue: {
947     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
948     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
949     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
950     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
951       Vals.push_back(*i);
952     break;
953   }
954   case Instruction::InsertValue: {
955     Code = bitc::FUNC_CODE_INST_INSERTVAL;
956     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
957     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
958     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
959     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
960       Vals.push_back(*i);
961     break;
962   }
963   case Instruction::Select:
964     Code = bitc::FUNC_CODE_INST_VSELECT;
965     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
966     Vals.push_back(VE.getValueID(I.getOperand(2)));
967     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
968     break;
969   case Instruction::ExtractElement:
970     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
971     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
972     Vals.push_back(VE.getValueID(I.getOperand(1)));
973     break;
974   case Instruction::InsertElement:
975     Code = bitc::FUNC_CODE_INST_INSERTELT;
976     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
977     Vals.push_back(VE.getValueID(I.getOperand(1)));
978     Vals.push_back(VE.getValueID(I.getOperand(2)));
979     break;
980   case Instruction::ShuffleVector:
981     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
982     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
983     Vals.push_back(VE.getValueID(I.getOperand(1)));
984     Vals.push_back(VE.getValueID(I.getOperand(2)));
985     break;
986   case Instruction::ICmp:
987   case Instruction::FCmp:
988     // compare returning Int1Ty or vector of Int1Ty
989     Code = bitc::FUNC_CODE_INST_CMP2;
990     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
991     Vals.push_back(VE.getValueID(I.getOperand(1)));
992     Vals.push_back(cast<CmpInst>(I).getPredicate());
993     break;
994
995   case Instruction::Ret:
996     {
997       Code = bitc::FUNC_CODE_INST_RET;
998       unsigned NumOperands = I.getNumOperands();
999       if (NumOperands == 0)
1000         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1001       else if (NumOperands == 1) {
1002         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1003           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1004       } else {
1005         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1006           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1007       }
1008     }
1009     break;
1010   case Instruction::Br:
1011     {
1012       Code = bitc::FUNC_CODE_INST_BR;
1013       BranchInst &II = cast<BranchInst>(I);
1014       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1015       if (II.isConditional()) {
1016         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1017         Vals.push_back(VE.getValueID(II.getCondition()));
1018       }
1019     }
1020     break;
1021   case Instruction::Switch:
1022     Code = bitc::FUNC_CODE_INST_SWITCH;
1023     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1024     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1025       Vals.push_back(VE.getValueID(I.getOperand(i)));
1026     break;
1027   case Instruction::IndirectBr:
1028     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1029     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1030     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1031       Vals.push_back(VE.getValueID(I.getOperand(i)));
1032     break;
1033       
1034   case Instruction::Invoke: {
1035     const InvokeInst *II = cast<InvokeInst>(&I);
1036     const Value *Callee(II->getCalledValue());
1037     const PointerType *PTy = cast<PointerType>(Callee->getType());
1038     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1039     Code = bitc::FUNC_CODE_INST_INVOKE;
1040
1041     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1042     Vals.push_back(II->getCallingConv());
1043     Vals.push_back(VE.getValueID(II->getNormalDest()));
1044     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1045     PushValueAndType(Callee, InstID, Vals, VE);
1046
1047     // Emit value #'s for the fixed parameters.
1048     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1049       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
1050
1051     // Emit type/value pairs for varargs params.
1052     if (FTy->isVarArg()) {
1053       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
1054            i != e; ++i)
1055         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1056     }
1057     break;
1058   }
1059   case Instruction::Unwind:
1060     Code = bitc::FUNC_CODE_INST_UNWIND;
1061     break;
1062   case Instruction::Unreachable:
1063     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1064     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1065     break;
1066
1067   case Instruction::PHI:
1068     Code = bitc::FUNC_CODE_INST_PHI;
1069     Vals.push_back(VE.getTypeID(I.getType()));
1070     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1071       Vals.push_back(VE.getValueID(I.getOperand(i)));
1072     break;
1073
1074   case Instruction::Alloca:
1075     Code = bitc::FUNC_CODE_INST_ALLOCA;
1076     Vals.push_back(VE.getTypeID(I.getType()));
1077     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1078     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1079     break;
1080
1081   case Instruction::Load:
1082     Code = bitc::FUNC_CODE_INST_LOAD;
1083     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1084       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1085
1086     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1087     Vals.push_back(cast<LoadInst>(I).isVolatile());
1088     break;
1089   case Instruction::Store:
1090     Code = bitc::FUNC_CODE_INST_STORE2;
1091     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1092     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1093     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1094     Vals.push_back(cast<StoreInst>(I).isVolatile());
1095     break;
1096   case Instruction::Call: {
1097     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1098     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1099
1100     Code = bitc::FUNC_CODE_INST_CALL;
1101
1102     const CallInst *CI = cast<CallInst>(&I);
1103     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1104     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1105     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1106
1107     // Emit value #'s for the fixed parameters.
1108     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1109       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1110
1111     // Emit type/value pairs for varargs params.
1112     if (FTy->isVarArg()) {
1113       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1114       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1115            i != e; ++i)
1116         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1117     }
1118     break;
1119   }
1120   case Instruction::VAArg:
1121     Code = bitc::FUNC_CODE_INST_VAARG;
1122     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1123     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1124     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1125     break;
1126   }
1127
1128   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1129   Vals.clear();
1130 }
1131
1132 // Emit names for globals/functions etc.
1133 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1134                                   const ValueEnumerator &VE,
1135                                   BitstreamWriter &Stream) {
1136   if (VST.empty()) return;
1137   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1138
1139   // FIXME: Set up the abbrev, we know how many values there are!
1140   // FIXME: We know if the type names can use 7-bit ascii.
1141   SmallVector<unsigned, 64> NameVals;
1142
1143   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1144        SI != SE; ++SI) {
1145
1146     const ValueName &Name = *SI;
1147
1148     // Figure out the encoding to use for the name.
1149     bool is7Bit = true;
1150     bool isChar6 = true;
1151     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1152          C != E; ++C) {
1153       if (isChar6)
1154         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1155       if ((unsigned char)*C & 128) {
1156         is7Bit = false;
1157         break;  // don't bother scanning the rest.
1158       }
1159     }
1160
1161     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1162
1163     // VST_ENTRY:   [valueid, namechar x N]
1164     // VST_BBENTRY: [bbid, namechar x N]
1165     unsigned Code;
1166     if (isa<BasicBlock>(SI->getValue())) {
1167       Code = bitc::VST_CODE_BBENTRY;
1168       if (isChar6)
1169         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1170     } else {
1171       Code = bitc::VST_CODE_ENTRY;
1172       if (isChar6)
1173         AbbrevToUse = VST_ENTRY_6_ABBREV;
1174       else if (is7Bit)
1175         AbbrevToUse = VST_ENTRY_7_ABBREV;
1176     }
1177
1178     NameVals.push_back(VE.getValueID(SI->getValue()));
1179     for (const char *P = Name.getKeyData(),
1180          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1181       NameVals.push_back((unsigned char)*P);
1182
1183     // Emit the finished record.
1184     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1185     NameVals.clear();
1186   }
1187   Stream.ExitBlock();
1188 }
1189
1190 /// WriteFunction - Emit a function body to the module stream.
1191 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1192                           BitstreamWriter &Stream) {
1193   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1194   VE.incorporateFunction(F);
1195
1196   SmallVector<unsigned, 64> Vals;
1197
1198   // Emit the number of basic blocks, so the reader can create them ahead of
1199   // time.
1200   Vals.push_back(VE.getBasicBlocks().size());
1201   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1202   Vals.clear();
1203
1204   // If there are function-local constants, emit them now.
1205   unsigned CstStart, CstEnd;
1206   VE.getFunctionConstantRange(CstStart, CstEnd);
1207   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1208
1209   // Keep a running idea of what the instruction ID is.
1210   unsigned InstID = CstEnd;
1211
1212   // Finally, emit all the instructions, in order.
1213   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1214     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1215          I != E; ++I) {
1216       WriteInstruction(*I, InstID, VE, Stream, Vals);
1217       if (I->getType() != Type::getVoidTy(F.getContext()))
1218         ++InstID;
1219     }
1220
1221   // Emit names for all the instructions etc.
1222   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1223
1224   WriteMetadataAttachment(F, VE, Stream);
1225   VE.purgeFunction();
1226   Stream.ExitBlock();
1227 }
1228
1229 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1230 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1231                                  const ValueEnumerator &VE,
1232                                  BitstreamWriter &Stream) {
1233   if (TST.empty()) return;
1234
1235   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1236
1237   // 7-bit fixed width VST_CODE_ENTRY strings.
1238   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1239   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1240   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1241                             Log2_32_Ceil(VE.getTypes().size()+1)));
1242   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1243   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1244   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1245
1246   SmallVector<unsigned, 64> NameVals;
1247
1248   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1249        TI != TE; ++TI) {
1250     // TST_ENTRY: [typeid, namechar x N]
1251     NameVals.push_back(VE.getTypeID(TI->second));
1252
1253     const std::string &Str = TI->first;
1254     bool is7Bit = true;
1255     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1256       NameVals.push_back((unsigned char)Str[i]);
1257       if (Str[i] & 128)
1258         is7Bit = false;
1259     }
1260
1261     // Emit the finished record.
1262     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1263     NameVals.clear();
1264   }
1265
1266   Stream.ExitBlock();
1267 }
1268
1269 // Emit blockinfo, which defines the standard abbreviations etc.
1270 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1271   // We only want to emit block info records for blocks that have multiple
1272   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1273   // blocks can defined their abbrevs inline.
1274   Stream.EnterBlockInfoBlock(2);
1275
1276   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1277     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1278     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1279     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1280     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1281     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1282     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1283                                    Abbv) != VST_ENTRY_8_ABBREV)
1284       llvm_unreachable("Unexpected abbrev ordering!");
1285   }
1286
1287   { // 7-bit fixed width VST_ENTRY strings.
1288     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1289     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1290     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1291     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1292     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1293     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1294                                    Abbv) != VST_ENTRY_7_ABBREV)
1295       llvm_unreachable("Unexpected abbrev ordering!");
1296   }
1297   { // 6-bit char6 VST_ENTRY strings.
1298     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1299     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1300     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1301     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1302     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1303     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1304                                    Abbv) != VST_ENTRY_6_ABBREV)
1305       llvm_unreachable("Unexpected abbrev ordering!");
1306   }
1307   { // 6-bit char6 VST_BBENTRY strings.
1308     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1309     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1310     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1311     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1312     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1313     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1314                                    Abbv) != VST_BBENTRY_6_ABBREV)
1315       llvm_unreachable("Unexpected abbrev ordering!");
1316   }
1317
1318
1319
1320   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1321     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1322     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1323     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1324                               Log2_32_Ceil(VE.getTypes().size()+1)));
1325     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1326                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1327       llvm_unreachable("Unexpected abbrev ordering!");
1328   }
1329
1330   { // INTEGER abbrev for CONSTANTS_BLOCK.
1331     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1332     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1333     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1334     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1335                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1336       llvm_unreachable("Unexpected abbrev ordering!");
1337   }
1338
1339   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1340     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1341     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1342     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1343     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1344                               Log2_32_Ceil(VE.getTypes().size()+1)));
1345     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1346
1347     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1348                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1349       llvm_unreachable("Unexpected abbrev ordering!");
1350   }
1351   { // NULL abbrev for CONSTANTS_BLOCK.
1352     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1353     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1354     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1355                                    Abbv) != CONSTANTS_NULL_Abbrev)
1356       llvm_unreachable("Unexpected abbrev ordering!");
1357   }
1358
1359   // FIXME: This should only use space for first class types!
1360
1361   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1362     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1363     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1364     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1365     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1366     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1367     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1368                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1369       llvm_unreachable("Unexpected abbrev ordering!");
1370   }
1371   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1372     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1373     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1374     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1375     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1376     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1377     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1378                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1379       llvm_unreachable("Unexpected abbrev ordering!");
1380   }
1381   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1382     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1383     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1384     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1385     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1386     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1387     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1388     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1389                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1390       llvm_unreachable("Unexpected abbrev ordering!");
1391   }
1392   { // INST_CAST abbrev for FUNCTION_BLOCK.
1393     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1394     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1395     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1396     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1397                               Log2_32_Ceil(VE.getTypes().size()+1)));
1398     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1399     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1400                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1401       llvm_unreachable("Unexpected abbrev ordering!");
1402   }
1403
1404   { // INST_RET abbrev for FUNCTION_BLOCK.
1405     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1406     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1407     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1408                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1409       llvm_unreachable("Unexpected abbrev ordering!");
1410   }
1411   { // INST_RET abbrev for FUNCTION_BLOCK.
1412     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1413     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1414     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1415     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1416                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1417       llvm_unreachable("Unexpected abbrev ordering!");
1418   }
1419   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1420     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1421     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1422     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1423                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1424       llvm_unreachable("Unexpected abbrev ordering!");
1425   }
1426
1427   Stream.ExitBlock();
1428 }
1429
1430
1431 /// WriteModule - Emit the specified module to the bitstream.
1432 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1433   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1434
1435   // Emit the version number if it is non-zero.
1436   if (CurVersion) {
1437     SmallVector<unsigned, 1> Vals;
1438     Vals.push_back(CurVersion);
1439     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1440   }
1441
1442   // Analyze the module, enumerating globals, functions, etc.
1443   ValueEnumerator VE(M);
1444
1445   // Emit blockinfo, which defines the standard abbreviations etc.
1446   WriteBlockInfo(VE, Stream);
1447
1448   // Emit information about parameter attributes.
1449   WriteAttributeTable(VE, Stream);
1450
1451   // Emit information describing all of the types in the module.
1452   WriteTypeTable(VE, Stream);
1453
1454   // Emit top-level description of module, including target triple, inline asm,
1455   // descriptors for global variables, and function prototype info.
1456   WriteModuleInfo(M, VE, Stream);
1457
1458   // Emit constants.
1459   WriteModuleConstants(VE, Stream);
1460
1461   // Emit metadata.
1462   WriteModuleMetadata(VE, Stream);
1463
1464   // Emit function bodies.
1465   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1466     if (!I->isDeclaration())
1467       WriteFunction(*I, VE, Stream);
1468
1469   // Emit metadata.
1470   WriteModuleMetadataStore(M, VE, Stream);
1471
1472   // Emit the type symbol table information.
1473   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1474
1475   // Emit names for globals/functions etc.
1476   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1477
1478   Stream.ExitBlock();
1479 }
1480
1481 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1482 /// header and trailer to make it compatible with the system archiver.  To do
1483 /// this we emit the following header, and then emit a trailer that pads the
1484 /// file out to be a multiple of 16 bytes.
1485 ///
1486 /// struct bc_header {
1487 ///   uint32_t Magic;         // 0x0B17C0DE
1488 ///   uint32_t Version;       // Version, currently always 0.
1489 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1490 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1491 ///   uint32_t CPUType;       // CPU specifier.
1492 ///   ... potentially more later ...
1493 /// };
1494 enum {
1495   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1496   DarwinBCHeaderSize = 5*4
1497 };
1498
1499 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1500                                const std::string &TT) {
1501   unsigned CPUType = ~0U;
1502
1503   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1504   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1505   // specific constants here because they are implicitly part of the Darwin ABI.
1506   enum {
1507     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1508     DARWIN_CPU_TYPE_X86        = 7,
1509     DARWIN_CPU_TYPE_POWERPC    = 18
1510   };
1511
1512   if (TT.find("x86_64-") == 0)
1513     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1514   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1515            TT[4] == '-' && TT[1] - '3' < 6)
1516     CPUType = DARWIN_CPU_TYPE_X86;
1517   else if (TT.find("powerpc-") == 0)
1518     CPUType = DARWIN_CPU_TYPE_POWERPC;
1519   else if (TT.find("powerpc64-") == 0)
1520     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1521
1522   // Traditional Bitcode starts after header.
1523   unsigned BCOffset = DarwinBCHeaderSize;
1524
1525   Stream.Emit(0x0B17C0DE, 32);
1526   Stream.Emit(0         , 32);  // Version.
1527   Stream.Emit(BCOffset  , 32);
1528   Stream.Emit(0         , 32);  // Filled in later.
1529   Stream.Emit(CPUType   , 32);
1530 }
1531
1532 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1533 /// finalize the header.
1534 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1535   // Update the size field in the header.
1536   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1537
1538   // If the file is not a multiple of 16 bytes, insert dummy padding.
1539   while (BufferSize & 15) {
1540     Stream.Emit(0, 8);
1541     ++BufferSize;
1542   }
1543 }
1544
1545
1546 /// WriteBitcodeToFile - Write the specified module to the specified output
1547 /// stream.
1548 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1549   std::vector<unsigned char> Buffer;
1550   BitstreamWriter Stream(Buffer);
1551
1552   Buffer.reserve(256*1024);
1553
1554   WriteBitcodeToStream( M, Stream );
1555
1556   // If writing to stdout, set binary mode.
1557   if (&llvm::outs() == &Out)
1558     sys::Program::ChangeStdoutToBinary();
1559
1560   // Write the generated bitstream to "Out".
1561   Out.write((char*)&Buffer.front(), Buffer.size());
1562
1563   // Make sure it hits disk now.
1564   Out.flush();
1565 }
1566
1567 /// WriteBitcodeToStream - Write the specified module to the specified output
1568 /// stream.
1569 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1570   // If this is darwin, emit a file header and trailer if needed.
1571   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1572   if (isDarwin)
1573     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1574
1575   // Emit the file header.
1576   Stream.Emit((unsigned)'B', 8);
1577   Stream.Emit((unsigned)'C', 8);
1578   Stream.Emit(0x0, 4);
1579   Stream.Emit(0xC, 4);
1580   Stream.Emit(0xE, 4);
1581   Stream.Emit(0xD, 4);
1582
1583   // Emit the module.
1584   WriteModule(M, Stream);
1585
1586   if (isDarwin)
1587     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1588 }