Fix internal representation of fp80 to be the
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/Streams.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/System/Program.h"
29 using namespace llvm;
30
31 /// These are manifest constants used by the bitcode writer. They do not need to
32 /// be kept in sync with the reader, but need to be consistent within this file.
33 enum {
34   CurVersion = 0,
35   
36   // VALUE_SYMTAB_BLOCK abbrev id's.
37   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
38   VST_ENTRY_7_ABBREV,
39   VST_ENTRY_6_ABBREV,
40   VST_BBENTRY_6_ABBREV,
41   
42   // CONSTANTS_BLOCK abbrev id's.
43   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
44   CONSTANTS_INTEGER_ABBREV,
45   CONSTANTS_CE_CAST_Abbrev,
46   CONSTANTS_NULL_Abbrev,
47   
48   // FUNCTION_BLOCK abbrev id's.
49   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
50   FUNCTION_INST_BINOP_ABBREV,
51   FUNCTION_INST_CAST_ABBREV,
52   FUNCTION_INST_RET_VOID_ABBREV,
53   FUNCTION_INST_RET_VAL_ABBREV,
54   FUNCTION_INST_UNREACHABLE_ABBREV
55 };
56
57
58 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
59   switch (Opcode) {
60   default: assert(0 && "Unknown cast instruction!");
61   case Instruction::Trunc   : return bitc::CAST_TRUNC;
62   case Instruction::ZExt    : return bitc::CAST_ZEXT;
63   case Instruction::SExt    : return bitc::CAST_SEXT;
64   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
65   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
66   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
67   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
68   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
69   case Instruction::FPExt   : return bitc::CAST_FPEXT;
70   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
71   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
72   case Instruction::BitCast : return bitc::CAST_BITCAST;
73   }
74 }
75
76 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
77   switch (Opcode) {
78   default: assert(0 && "Unknown binary instruction!");
79   case Instruction::Add:  return bitc::BINOP_ADD;
80   case Instruction::Sub:  return bitc::BINOP_SUB;
81   case Instruction::Mul:  return bitc::BINOP_MUL;
82   case Instruction::UDiv: return bitc::BINOP_UDIV;
83   case Instruction::FDiv:
84   case Instruction::SDiv: return bitc::BINOP_SDIV;
85   case Instruction::URem: return bitc::BINOP_UREM;
86   case Instruction::FRem:
87   case Instruction::SRem: return bitc::BINOP_SREM;
88   case Instruction::Shl:  return bitc::BINOP_SHL;
89   case Instruction::LShr: return bitc::BINOP_LSHR;
90   case Instruction::AShr: return bitc::BINOP_ASHR;
91   case Instruction::And:  return bitc::BINOP_AND;
92   case Instruction::Or:   return bitc::BINOP_OR;
93   case Instruction::Xor:  return bitc::BINOP_XOR;
94   }
95 }
96
97
98
99 static void WriteStringRecord(unsigned Code, const std::string &Str, 
100                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
101   SmallVector<unsigned, 64> Vals;
102   
103   // Code: [strchar x N]
104   for (unsigned i = 0, e = Str.size(); i != e; ++i)
105     Vals.push_back(Str[i]);
106     
107   // Emit the finished record.
108   Stream.EmitRecord(Code, Vals, AbbrevToUse);
109 }
110
111 // Emit information about parameter attributes.
112 static void WriteAttributeTable(const ValueEnumerator &VE, 
113                                 BitstreamWriter &Stream) {
114   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
115   if (Attrs.empty()) return;
116   
117   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
118
119   SmallVector<uint64_t, 64> Record;
120   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
121     const AttrListPtr &A = Attrs[i];
122     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
123       const AttributeWithIndex &PAWI = A.getSlot(i);
124       Record.push_back(PAWI.Index);
125
126       // FIXME: remove in LLVM 3.0
127       // Store the alignment in the bitcode as a 16-bit raw value instead of a
128       // 5-bit log2 encoded value. Shift the bits above the alignment up by
129       // 11 bits.
130       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
131       if (PAWI.Attrs & Attribute::Alignment)
132         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
133       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
134
135       Record.push_back(FauxAttr);
136     }
137     
138     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
139     Record.clear();
140   }
141   
142   Stream.ExitBlock();
143 }
144
145 /// WriteTypeTable - Write out the type table for a module.
146 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
147   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
148   
149   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
150   SmallVector<uint64_t, 64> TypeVals;
151   
152   // Abbrev for TYPE_CODE_POINTER.
153   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
154   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
155   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
156                             Log2_32_Ceil(VE.getTypes().size()+1)));
157   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
158   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
159   
160   // Abbrev for TYPE_CODE_FUNCTION.
161   Abbv = new BitCodeAbbrev();
162   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
163   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
164   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
165   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
166   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
167                             Log2_32_Ceil(VE.getTypes().size()+1)));
168   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
169   
170   // Abbrev for TYPE_CODE_STRUCT.
171   Abbv = new BitCodeAbbrev();
172   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
174   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
175   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
176                             Log2_32_Ceil(VE.getTypes().size()+1)));
177   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
178  
179   // Abbrev for TYPE_CODE_ARRAY.
180   Abbv = new BitCodeAbbrev();
181   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
183   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
184                             Log2_32_Ceil(VE.getTypes().size()+1)));
185   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
186   
187   // Emit an entry count so the reader can reserve space.
188   TypeVals.push_back(TypeList.size());
189   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
190   TypeVals.clear();
191   
192   // Loop over all of the types, emitting each in turn.
193   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
194     const Type *T = TypeList[i].first;
195     int AbbrevToUse = 0;
196     unsigned Code = 0;
197     
198     switch (T->getTypeID()) {
199     default: assert(0 && "Unknown type!");
200     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
201     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
202     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
203     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
204     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
205     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
206     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
207     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
208     case Type::IntegerTyID:
209       // INTEGER: [width]
210       Code = bitc::TYPE_CODE_INTEGER;
211       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
212       break;
213     case Type::PointerTyID: {
214       const PointerType *PTy = cast<PointerType>(T);
215       // POINTER: [pointee type, address space]
216       Code = bitc::TYPE_CODE_POINTER;
217       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
218       unsigned AddressSpace = PTy->getAddressSpace();
219       TypeVals.push_back(AddressSpace);
220       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
221       break;
222     }
223     case Type::FunctionTyID: {
224       const FunctionType *FT = cast<FunctionType>(T);
225       // FUNCTION: [isvararg, attrid, retty, paramty x N]
226       Code = bitc::TYPE_CODE_FUNCTION;
227       TypeVals.push_back(FT->isVarArg());
228       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
229       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
230       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
231         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
232       AbbrevToUse = FunctionAbbrev;
233       break;
234     }
235     case Type::StructTyID: {
236       const StructType *ST = cast<StructType>(T);
237       // STRUCT: [ispacked, eltty x N]
238       Code = bitc::TYPE_CODE_STRUCT;
239       TypeVals.push_back(ST->isPacked());
240       // Output all of the element types.
241       for (StructType::element_iterator I = ST->element_begin(),
242            E = ST->element_end(); I != E; ++I)
243         TypeVals.push_back(VE.getTypeID(*I));
244       AbbrevToUse = StructAbbrev;
245       break;
246     }
247     case Type::ArrayTyID: {
248       const ArrayType *AT = cast<ArrayType>(T);
249       // ARRAY: [numelts, eltty]
250       Code = bitc::TYPE_CODE_ARRAY;
251       TypeVals.push_back(AT->getNumElements());
252       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
253       AbbrevToUse = ArrayAbbrev;
254       break;
255     }
256     case Type::VectorTyID: {
257       const VectorType *VT = cast<VectorType>(T);
258       // VECTOR [numelts, eltty]
259       Code = bitc::TYPE_CODE_VECTOR;
260       TypeVals.push_back(VT->getNumElements());
261       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
262       break;
263     }
264     }
265
266     // Emit the finished record.
267     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
268     TypeVals.clear();
269   }
270   
271   Stream.ExitBlock();
272 }
273
274 static unsigned getEncodedLinkage(const GlobalValue *GV) {
275   switch (GV->getLinkage()) {
276   default: assert(0 && "Invalid linkage!");
277   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
278   case GlobalValue::ExternalLinkage:     return 0;
279   case GlobalValue::WeakAnyLinkage:      return 1;
280   case GlobalValue::AppendingLinkage:    return 2;
281   case GlobalValue::InternalLinkage:     return 3;
282   case GlobalValue::LinkOnceAnyLinkage:  return 4;
283   case GlobalValue::DLLImportLinkage:    return 5;
284   case GlobalValue::DLLExportLinkage:    return 6;
285   case GlobalValue::ExternalWeakLinkage: return 7;
286   case GlobalValue::CommonLinkage:       return 8;
287   case GlobalValue::PrivateLinkage:      return 9;
288   case GlobalValue::WeakODRLinkage:      return 10;
289   case GlobalValue::LinkOnceODRLinkage:  return 11;
290   }
291 }
292
293 static unsigned getEncodedVisibility(const GlobalValue *GV) {
294   switch (GV->getVisibility()) {
295   default: assert(0 && "Invalid visibility!");
296   case GlobalValue::DefaultVisibility:   return 0;
297   case GlobalValue::HiddenVisibility:    return 1;
298   case GlobalValue::ProtectedVisibility: return 2;
299   }
300 }
301
302 // Emit top-level description of module, including target triple, inline asm,
303 // descriptors for global variables, and function prototype info.
304 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
305                             BitstreamWriter &Stream) {
306   // Emit the list of dependent libraries for the Module.
307   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
308     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
309
310   // Emit various pieces of data attached to a module.
311   if (!M->getTargetTriple().empty())
312     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
313                       0/*TODO*/, Stream);
314   if (!M->getDataLayout().empty())
315     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
316                       0/*TODO*/, Stream);
317   if (!M->getModuleInlineAsm().empty())
318     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
319                       0/*TODO*/, Stream);
320
321   // Emit information about sections and GC, computing how many there are. Also
322   // compute the maximum alignment value.
323   std::map<std::string, unsigned> SectionMap;
324   std::map<std::string, unsigned> GCMap;
325   unsigned MaxAlignment = 0;
326   unsigned MaxGlobalType = 0;
327   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
328        GV != E; ++GV) {
329     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
330     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
331     
332     if (!GV->hasSection()) continue;
333     // Give section names unique ID's.
334     unsigned &Entry = SectionMap[GV->getSection()];
335     if (Entry != 0) continue;
336     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
337                       0/*TODO*/, Stream);
338     Entry = SectionMap.size();
339   }
340   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
341     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
342     if (F->hasSection()) {
343       // Give section names unique ID's.
344       unsigned &Entry = SectionMap[F->getSection()];
345       if (!Entry) {
346         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
347                           0/*TODO*/, Stream);
348         Entry = SectionMap.size();
349       }
350     }
351     if (F->hasGC()) {
352       // Same for GC names.
353       unsigned &Entry = GCMap[F->getGC()];
354       if (!Entry) {
355         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
356                           0/*TODO*/, Stream);
357         Entry = GCMap.size();
358       }
359     }
360   }
361   
362   // Emit abbrev for globals, now that we know # sections and max alignment.
363   unsigned SimpleGVarAbbrev = 0;
364   if (!M->global_empty()) { 
365     // Add an abbrev for common globals with no visibility or thread localness.
366     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
367     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
368     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
369                               Log2_32_Ceil(MaxGlobalType+1)));
370     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
371     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
372     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
373     if (MaxAlignment == 0)                                      // Alignment.
374       Abbv->Add(BitCodeAbbrevOp(0));
375     else {
376       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
377       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
378                                Log2_32_Ceil(MaxEncAlignment+1)));
379     }
380     if (SectionMap.empty())                                    // Section.
381       Abbv->Add(BitCodeAbbrevOp(0));
382     else
383       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
384                                Log2_32_Ceil(SectionMap.size()+1)));
385     // Don't bother emitting vis + thread local.
386     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
387   }
388   
389   // Emit the global variable information.
390   SmallVector<unsigned, 64> Vals;
391   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
392        GV != E; ++GV) {
393     unsigned AbbrevToUse = 0;
394
395     // GLOBALVAR: [type, isconst, initid, 
396     //             linkage, alignment, section, visibility, threadlocal]
397     Vals.push_back(VE.getTypeID(GV->getType()));
398     Vals.push_back(GV->isConstant());
399     Vals.push_back(GV->isDeclaration() ? 0 :
400                    (VE.getValueID(GV->getInitializer()) + 1));
401     Vals.push_back(getEncodedLinkage(GV));
402     Vals.push_back(Log2_32(GV->getAlignment())+1);
403     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
404     if (GV->isThreadLocal() || 
405         GV->getVisibility() != GlobalValue::DefaultVisibility) {
406       Vals.push_back(getEncodedVisibility(GV));
407       Vals.push_back(GV->isThreadLocal());
408     } else {
409       AbbrevToUse = SimpleGVarAbbrev;
410     }
411     
412     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
413     Vals.clear();
414   }
415
416   // Emit the function proto information.
417   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
418     // FUNCTION:  [type, callingconv, isproto, paramattr,
419     //             linkage, alignment, section, visibility, gc]
420     Vals.push_back(VE.getTypeID(F->getType()));
421     Vals.push_back(F->getCallingConv());
422     Vals.push_back(F->isDeclaration());
423     Vals.push_back(getEncodedLinkage(F));
424     Vals.push_back(VE.getAttributeID(F->getAttributes()));
425     Vals.push_back(Log2_32(F->getAlignment())+1);
426     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
427     Vals.push_back(getEncodedVisibility(F));
428     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
429     
430     unsigned AbbrevToUse = 0;
431     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
432     Vals.clear();
433   }
434   
435   
436   // Emit the alias information.
437   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
438        AI != E; ++AI) {
439     Vals.push_back(VE.getTypeID(AI->getType()));
440     Vals.push_back(VE.getValueID(AI->getAliasee()));
441     Vals.push_back(getEncodedLinkage(AI));
442     Vals.push_back(getEncodedVisibility(AI));
443     unsigned AbbrevToUse = 0;
444     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
445     Vals.clear();
446   }
447 }
448
449
450 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
451                            const ValueEnumerator &VE,
452                            BitstreamWriter &Stream, bool isGlobal) {
453   if (FirstVal == LastVal) return;
454   
455   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
456
457   unsigned AggregateAbbrev = 0;
458   unsigned String8Abbrev = 0;
459   unsigned CString7Abbrev = 0;
460   unsigned CString6Abbrev = 0;
461   // If this is a constant pool for the module, emit module-specific abbrevs.
462   if (isGlobal) {
463     // Abbrev for CST_CODE_AGGREGATE.
464     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
465     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
466     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
467     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
468     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
469
470     // Abbrev for CST_CODE_STRING.
471     Abbv = new BitCodeAbbrev();
472     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
473     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
474     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
475     String8Abbrev = Stream.EmitAbbrev(Abbv);
476     // Abbrev for CST_CODE_CSTRING.
477     Abbv = new BitCodeAbbrev();
478     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
479     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
480     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
481     CString7Abbrev = Stream.EmitAbbrev(Abbv);
482     // Abbrev for CST_CODE_CSTRING.
483     Abbv = new BitCodeAbbrev();
484     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
485     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
486     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
487     CString6Abbrev = Stream.EmitAbbrev(Abbv);
488   }  
489   
490   SmallVector<uint64_t, 64> Record;
491
492   const ValueEnumerator::ValueList &Vals = VE.getValues();
493   const Type *LastTy = 0;
494   for (unsigned i = FirstVal; i != LastVal; ++i) {
495     const Value *V = Vals[i].first;
496     // If we need to switch types, do so now.
497     if (V->getType() != LastTy) {
498       LastTy = V->getType();
499       Record.push_back(VE.getTypeID(LastTy));
500       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
501                         CONSTANTS_SETTYPE_ABBREV);
502       Record.clear();
503     }
504     
505     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
506       Record.push_back(unsigned(IA->hasSideEffects()));
507       
508       // Add the asm string.
509       const std::string &AsmStr = IA->getAsmString();
510       Record.push_back(AsmStr.size());
511       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
512         Record.push_back(AsmStr[i]);
513       
514       // Add the constraint string.
515       const std::string &ConstraintStr = IA->getConstraintString();
516       Record.push_back(ConstraintStr.size());
517       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
518         Record.push_back(ConstraintStr[i]);
519       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
520       Record.clear();
521       continue;
522     }
523     const Constant *C = cast<Constant>(V);
524     unsigned Code = -1U;
525     unsigned AbbrevToUse = 0;
526     if (C->isNullValue()) {
527       Code = bitc::CST_CODE_NULL;
528     } else if (isa<UndefValue>(C)) {
529       Code = bitc::CST_CODE_UNDEF;
530     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
531       if (IV->getBitWidth() <= 64) {
532         int64_t V = IV->getSExtValue();
533         if (V >= 0)
534           Record.push_back(V << 1);
535         else
536           Record.push_back((-V << 1) | 1);
537         Code = bitc::CST_CODE_INTEGER;
538         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
539       } else {                             // Wide integers, > 64 bits in size.
540         // We have an arbitrary precision integer value to write whose 
541         // bit width is > 64. However, in canonical unsigned integer 
542         // format it is likely that the high bits are going to be zero.
543         // So, we only write the number of active words.
544         unsigned NWords = IV->getValue().getActiveWords(); 
545         const uint64_t *RawWords = IV->getValue().getRawData();
546         for (unsigned i = 0; i != NWords; ++i) {
547           int64_t V = RawWords[i];
548           if (V >= 0)
549             Record.push_back(V << 1);
550           else
551             Record.push_back((-V << 1) | 1);
552         }
553         Code = bitc::CST_CODE_WIDE_INTEGER;
554       }
555     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
556       Code = bitc::CST_CODE_FLOAT;
557       const Type *Ty = CFP->getType();
558       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
559         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
560       } else if (Ty == Type::X86_FP80Ty) {
561         // api needed to prevent premature destruction
562         // bits are not in the same order as a normal i80 APInt, compensate.
563         APInt api = CFP->getValueAPF().bitcastToAPInt();
564         const uint64_t *p = api.getRawData();
565         Record.push_back((p[1] << 48) | (p[0] >> 16));
566         Record.push_back(p[0] & 0xffffLL);
567       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
568         APInt api = CFP->getValueAPF().bitcastToAPInt();
569         const uint64_t *p = api.getRawData();
570         Record.push_back(p[0]);
571         Record.push_back(p[1]);
572       } else {
573         assert (0 && "Unknown FP type!");
574       }
575     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
576       // Emit constant strings specially.
577       unsigned NumOps = C->getNumOperands();
578       // If this is a null-terminated string, use the denser CSTRING encoding.
579       if (C->getOperand(NumOps-1)->isNullValue()) {
580         Code = bitc::CST_CODE_CSTRING;
581         --NumOps;  // Don't encode the null, which isn't allowed by char6.
582       } else {
583         Code = bitc::CST_CODE_STRING;
584         AbbrevToUse = String8Abbrev;
585       }
586       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
587       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
588       for (unsigned i = 0; i != NumOps; ++i) {
589         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
590         Record.push_back(V);
591         isCStr7 &= (V & 128) == 0;
592         if (isCStrChar6) 
593           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
594       }
595       
596       if (isCStrChar6)
597         AbbrevToUse = CString6Abbrev;
598       else if (isCStr7)
599         AbbrevToUse = CString7Abbrev;
600     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
601                isa<ConstantVector>(V)) {
602       Code = bitc::CST_CODE_AGGREGATE;
603       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
604         Record.push_back(VE.getValueID(C->getOperand(i)));
605       AbbrevToUse = AggregateAbbrev;
606     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
607       switch (CE->getOpcode()) {
608       default:
609         if (Instruction::isCast(CE->getOpcode())) {
610           Code = bitc::CST_CODE_CE_CAST;
611           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
612           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
613           Record.push_back(VE.getValueID(C->getOperand(0)));
614           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
615         } else {
616           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
617           Code = bitc::CST_CODE_CE_BINOP;
618           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
619           Record.push_back(VE.getValueID(C->getOperand(0)));
620           Record.push_back(VE.getValueID(C->getOperand(1)));
621         }
622         break;
623       case Instruction::GetElementPtr:
624         Code = bitc::CST_CODE_CE_GEP;
625         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
626           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
627           Record.push_back(VE.getValueID(C->getOperand(i)));
628         }
629         break;
630       case Instruction::Select:
631         Code = bitc::CST_CODE_CE_SELECT;
632         Record.push_back(VE.getValueID(C->getOperand(0)));
633         Record.push_back(VE.getValueID(C->getOperand(1)));
634         Record.push_back(VE.getValueID(C->getOperand(2)));
635         break;
636       case Instruction::ExtractElement:
637         Code = bitc::CST_CODE_CE_EXTRACTELT;
638         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
639         Record.push_back(VE.getValueID(C->getOperand(0)));
640         Record.push_back(VE.getValueID(C->getOperand(1)));
641         break;
642       case Instruction::InsertElement:
643         Code = bitc::CST_CODE_CE_INSERTELT;
644         Record.push_back(VE.getValueID(C->getOperand(0)));
645         Record.push_back(VE.getValueID(C->getOperand(1)));
646         Record.push_back(VE.getValueID(C->getOperand(2)));
647         break;
648       case Instruction::ShuffleVector:
649         // If the return type and argument types are the same, this is a
650         // standard shufflevector instruction.  If the types are different,
651         // then the shuffle is widening or truncating the input vectors, and
652         // the argument type must also be encoded.
653         if (C->getType() == C->getOperand(0)->getType()) {
654           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
655         } else {
656           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
657           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
658         }
659         Record.push_back(VE.getValueID(C->getOperand(0)));
660         Record.push_back(VE.getValueID(C->getOperand(1)));
661         Record.push_back(VE.getValueID(C->getOperand(2)));
662         break;
663       case Instruction::ICmp:
664       case Instruction::FCmp:
665       case Instruction::VICmp:
666       case Instruction::VFCmp:
667         if (isa<VectorType>(C->getOperand(0)->getType())
668             && (CE->getOpcode() == Instruction::ICmp
669                 || CE->getOpcode() == Instruction::FCmp)) {
670           // compare returning vector of Int1Ty
671           assert(0 && "Unsupported constant!");
672         } else {
673           Code = bitc::CST_CODE_CE_CMP;
674         }
675         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
676         Record.push_back(VE.getValueID(C->getOperand(0)));
677         Record.push_back(VE.getValueID(C->getOperand(1)));
678         Record.push_back(CE->getPredicate());
679         break;
680       }
681     } else {
682       assert(0 && "Unknown constant!");
683     }
684     Stream.EmitRecord(Code, Record, AbbrevToUse);
685     Record.clear();
686   }
687
688   Stream.ExitBlock();
689 }
690
691 static void WriteModuleConstants(const ValueEnumerator &VE,
692                                  BitstreamWriter &Stream) {
693   const ValueEnumerator::ValueList &Vals = VE.getValues();
694   
695   // Find the first constant to emit, which is the first non-globalvalue value.
696   // We know globalvalues have been emitted by WriteModuleInfo.
697   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
698     if (!isa<GlobalValue>(Vals[i].first)) {
699       WriteConstants(i, Vals.size(), VE, Stream, true);
700       return;
701     }
702   }
703 }
704
705 /// PushValueAndType - The file has to encode both the value and type id for
706 /// many values, because we need to know what type to create for forward
707 /// references.  However, most operands are not forward references, so this type
708 /// field is not needed.
709 ///
710 /// This function adds V's value ID to Vals.  If the value ID is higher than the
711 /// instruction ID, then it is a forward reference, and it also includes the
712 /// type ID.
713 static bool PushValueAndType(const Value *V, unsigned InstID,
714                              SmallVector<unsigned, 64> &Vals, 
715                              ValueEnumerator &VE) {
716   unsigned ValID = VE.getValueID(V);
717   Vals.push_back(ValID);
718   if (ValID >= InstID) {
719     Vals.push_back(VE.getTypeID(V->getType()));
720     return true;
721   }
722   return false;
723 }
724
725 /// WriteInstruction - Emit an instruction to the specified stream.
726 static void WriteInstruction(const Instruction &I, unsigned InstID,
727                              ValueEnumerator &VE, BitstreamWriter &Stream,
728                              SmallVector<unsigned, 64> &Vals) {
729   unsigned Code = 0;
730   unsigned AbbrevToUse = 0;
731   switch (I.getOpcode()) {
732   default:
733     if (Instruction::isCast(I.getOpcode())) {
734       Code = bitc::FUNC_CODE_INST_CAST;
735       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
736         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
737       Vals.push_back(VE.getTypeID(I.getType()));
738       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
739     } else {
740       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
741       Code = bitc::FUNC_CODE_INST_BINOP;
742       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
743         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
744       Vals.push_back(VE.getValueID(I.getOperand(1)));
745       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
746     }
747     break;
748
749   case Instruction::GetElementPtr:
750     Code = bitc::FUNC_CODE_INST_GEP;
751     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
752       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
753     break;
754   case Instruction::ExtractValue: {
755     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
756     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
757     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
758     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
759       Vals.push_back(*i);
760     break;
761   }
762   case Instruction::InsertValue: {
763     Code = bitc::FUNC_CODE_INST_INSERTVAL;
764     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
765     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
766     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
767     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
768       Vals.push_back(*i);
769     break;
770   }
771   case Instruction::Select:
772     Code = bitc::FUNC_CODE_INST_VSELECT;
773     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
774     Vals.push_back(VE.getValueID(I.getOperand(2)));
775     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
776     break;
777   case Instruction::ExtractElement:
778     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
779     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
780     Vals.push_back(VE.getValueID(I.getOperand(1)));
781     break;
782   case Instruction::InsertElement:
783     Code = bitc::FUNC_CODE_INST_INSERTELT;
784     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
785     Vals.push_back(VE.getValueID(I.getOperand(1)));
786     Vals.push_back(VE.getValueID(I.getOperand(2)));
787     break;
788   case Instruction::ShuffleVector:
789     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
790     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
791     Vals.push_back(VE.getValueID(I.getOperand(1)));
792     Vals.push_back(VE.getValueID(I.getOperand(2)));
793     break;
794   case Instruction::ICmp:
795   case Instruction::FCmp:
796   case Instruction::VICmp:
797   case Instruction::VFCmp:
798     if (I.getOpcode() == Instruction::ICmp
799         || I.getOpcode() == Instruction::FCmp) {
800       // compare returning Int1Ty or vector of Int1Ty
801       Code = bitc::FUNC_CODE_INST_CMP2;
802     } else {
803       Code = bitc::FUNC_CODE_INST_CMP;
804     }
805     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
806     Vals.push_back(VE.getValueID(I.getOperand(1)));
807     Vals.push_back(cast<CmpInst>(I).getPredicate());
808     break;
809
810   case Instruction::Ret: 
811     {
812       Code = bitc::FUNC_CODE_INST_RET;
813       unsigned NumOperands = I.getNumOperands();
814       if (NumOperands == 0)
815         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
816       else if (NumOperands == 1) {
817         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
818           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
819       } else {
820         for (unsigned i = 0, e = NumOperands; i != e; ++i)
821           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
822       }
823     }
824     break;
825   case Instruction::Br:
826     {
827       Code = bitc::FUNC_CODE_INST_BR;
828       BranchInst &II(cast<BranchInst>(I));
829       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
830       if (II.isConditional()) {
831         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
832         Vals.push_back(VE.getValueID(II.getCondition()));
833       }
834     }
835     break;
836   case Instruction::Switch:
837     Code = bitc::FUNC_CODE_INST_SWITCH;
838     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
839     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
840       Vals.push_back(VE.getValueID(I.getOperand(i)));
841     break;
842   case Instruction::Invoke: {
843     const InvokeInst *II = cast<InvokeInst>(&I);
844     const Value *Callee(II->getCalledValue());
845     const PointerType *PTy = cast<PointerType>(Callee->getType());
846     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
847     Code = bitc::FUNC_CODE_INST_INVOKE;
848     
849     Vals.push_back(VE.getAttributeID(II->getAttributes()));
850     Vals.push_back(II->getCallingConv());
851     Vals.push_back(VE.getValueID(II->getNormalDest()));
852     Vals.push_back(VE.getValueID(II->getUnwindDest()));
853     PushValueAndType(Callee, InstID, Vals, VE);
854     
855     // Emit value #'s for the fixed parameters.
856     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
857       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
858
859     // Emit type/value pairs for varargs params.
860     if (FTy->isVarArg()) {
861       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
862            i != e; ++i)
863         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
864     }
865     break;
866   }
867   case Instruction::Unwind:
868     Code = bitc::FUNC_CODE_INST_UNWIND;
869     break;
870   case Instruction::Unreachable:
871     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
872     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
873     break;
874   
875   case Instruction::PHI:
876     Code = bitc::FUNC_CODE_INST_PHI;
877     Vals.push_back(VE.getTypeID(I.getType()));
878     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
879       Vals.push_back(VE.getValueID(I.getOperand(i)));
880     break;
881     
882   case Instruction::Malloc:
883     Code = bitc::FUNC_CODE_INST_MALLOC;
884     Vals.push_back(VE.getTypeID(I.getType()));
885     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
886     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
887     break;
888     
889   case Instruction::Free:
890     Code = bitc::FUNC_CODE_INST_FREE;
891     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
892     break;
893     
894   case Instruction::Alloca:
895     Code = bitc::FUNC_CODE_INST_ALLOCA;
896     Vals.push_back(VE.getTypeID(I.getType()));
897     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
898     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
899     break;
900     
901   case Instruction::Load:
902     Code = bitc::FUNC_CODE_INST_LOAD;
903     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
904       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
905       
906     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
907     Vals.push_back(cast<LoadInst>(I).isVolatile());
908     break;
909   case Instruction::Store:
910     Code = bitc::FUNC_CODE_INST_STORE2;
911     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
912     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
913     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
914     Vals.push_back(cast<StoreInst>(I).isVolatile());
915     break;
916   case Instruction::Call: {
917     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
918     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
919
920     Code = bitc::FUNC_CODE_INST_CALL;
921     
922     const CallInst *CI = cast<CallInst>(&I);
923     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
924     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
925     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
926     
927     // Emit value #'s for the fixed parameters.
928     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
929       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
930       
931     // Emit type/value pairs for varargs params.
932     if (FTy->isVarArg()) {
933       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
934       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
935            i != e; ++i)
936         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
937     }
938     break;
939   }
940   case Instruction::VAArg:
941     Code = bitc::FUNC_CODE_INST_VAARG;
942     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
943     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
944     Vals.push_back(VE.getTypeID(I.getType())); // restype.
945     break;
946   }
947   
948   Stream.EmitRecord(Code, Vals, AbbrevToUse);
949   Vals.clear();
950 }
951
952 // Emit names for globals/functions etc.
953 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
954                                   const ValueEnumerator &VE,
955                                   BitstreamWriter &Stream) {
956   if (VST.empty()) return;
957   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
958
959   // FIXME: Set up the abbrev, we know how many values there are!
960   // FIXME: We know if the type names can use 7-bit ascii.
961   SmallVector<unsigned, 64> NameVals;
962   
963   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
964        SI != SE; ++SI) {
965     
966     const ValueName &Name = *SI;
967     
968     // Figure out the encoding to use for the name.
969     bool is7Bit = true;
970     bool isChar6 = true;
971     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
972          C != E; ++C) {
973       if (isChar6) 
974         isChar6 = BitCodeAbbrevOp::isChar6(*C);
975       if ((unsigned char)*C & 128) {
976         is7Bit = false;
977         break;  // don't bother scanning the rest.
978       }
979     }
980     
981     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
982     
983     // VST_ENTRY:   [valueid, namechar x N]
984     // VST_BBENTRY: [bbid, namechar x N]
985     unsigned Code;
986     if (isa<BasicBlock>(SI->getValue())) {
987       Code = bitc::VST_CODE_BBENTRY;
988       if (isChar6)
989         AbbrevToUse = VST_BBENTRY_6_ABBREV;
990     } else {
991       Code = bitc::VST_CODE_ENTRY;
992       if (isChar6)
993         AbbrevToUse = VST_ENTRY_6_ABBREV;
994       else if (is7Bit)
995         AbbrevToUse = VST_ENTRY_7_ABBREV;
996     }
997     
998     NameVals.push_back(VE.getValueID(SI->getValue()));
999     for (const char *P = Name.getKeyData(),
1000          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1001       NameVals.push_back((unsigned char)*P);
1002     
1003     // Emit the finished record.
1004     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1005     NameVals.clear();
1006   }
1007   Stream.ExitBlock();
1008 }
1009
1010 /// WriteFunction - Emit a function body to the module stream.
1011 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
1012                           BitstreamWriter &Stream) {
1013   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1014   VE.incorporateFunction(F);
1015
1016   SmallVector<unsigned, 64> Vals;
1017   
1018   // Emit the number of basic blocks, so the reader can create them ahead of
1019   // time.
1020   Vals.push_back(VE.getBasicBlocks().size());
1021   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1022   Vals.clear();
1023   
1024   // If there are function-local constants, emit them now.
1025   unsigned CstStart, CstEnd;
1026   VE.getFunctionConstantRange(CstStart, CstEnd);
1027   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1028   
1029   // Keep a running idea of what the instruction ID is. 
1030   unsigned InstID = CstEnd;
1031   
1032   // Finally, emit all the instructions, in order.
1033   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1034     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1035          I != E; ++I) {
1036       WriteInstruction(*I, InstID, VE, Stream, Vals);
1037       if (I->getType() != Type::VoidTy)
1038         ++InstID;
1039     }
1040   
1041   // Emit names for all the instructions etc.
1042   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1043     
1044   VE.purgeFunction();
1045   Stream.ExitBlock();
1046 }
1047
1048 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1049 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1050                                  const ValueEnumerator &VE,
1051                                  BitstreamWriter &Stream) {
1052   if (TST.empty()) return;
1053   
1054   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1055   
1056   // 7-bit fixed width VST_CODE_ENTRY strings.
1057   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1058   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1059   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1060                             Log2_32_Ceil(VE.getTypes().size()+1)));
1061   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1062   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1063   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1064   
1065   SmallVector<unsigned, 64> NameVals;
1066   
1067   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
1068        TI != TE; ++TI) {
1069     // TST_ENTRY: [typeid, namechar x N]
1070     NameVals.push_back(VE.getTypeID(TI->second));
1071     
1072     const std::string &Str = TI->first;
1073     bool is7Bit = true;
1074     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1075       NameVals.push_back((unsigned char)Str[i]);
1076       if (Str[i] & 128)
1077         is7Bit = false;
1078     }
1079     
1080     // Emit the finished record.
1081     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1082     NameVals.clear();
1083   }
1084   
1085   Stream.ExitBlock();
1086 }
1087
1088 // Emit blockinfo, which defines the standard abbreviations etc.
1089 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1090   // We only want to emit block info records for blocks that have multiple
1091   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1092   // blocks can defined their abbrevs inline.
1093   Stream.EnterBlockInfoBlock(2);
1094   
1095   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1096     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1097     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1098     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1099     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1100     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1101     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1102                                    Abbv) != VST_ENTRY_8_ABBREV)
1103       assert(0 && "Unexpected abbrev ordering!");
1104   }
1105   
1106   { // 7-bit fixed width VST_ENTRY strings.
1107     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1108     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1109     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1110     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1111     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1112     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1113                                    Abbv) != VST_ENTRY_7_ABBREV)
1114       assert(0 && "Unexpected abbrev ordering!");
1115   }
1116   { // 6-bit char6 VST_ENTRY strings.
1117     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1118     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1119     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1120     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1121     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1122     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1123                                    Abbv) != VST_ENTRY_6_ABBREV)
1124       assert(0 && "Unexpected abbrev ordering!");
1125   }
1126   { // 6-bit char6 VST_BBENTRY strings.
1127     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1128     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1129     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1130     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1131     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1132     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1133                                    Abbv) != VST_BBENTRY_6_ABBREV)
1134       assert(0 && "Unexpected abbrev ordering!");
1135   }
1136   
1137   
1138   
1139   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1140     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1141     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1142     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1143                               Log2_32_Ceil(VE.getTypes().size()+1)));
1144     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1145                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1146       assert(0 && "Unexpected abbrev ordering!");
1147   }
1148   
1149   { // INTEGER abbrev for CONSTANTS_BLOCK.
1150     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1151     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1152     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1153     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1154                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1155       assert(0 && "Unexpected abbrev ordering!");
1156   }
1157   
1158   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1159     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1160     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1161     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1162     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1163                               Log2_32_Ceil(VE.getTypes().size()+1)));
1164     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1165
1166     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1167                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1168       assert(0 && "Unexpected abbrev ordering!");
1169   }
1170   { // NULL abbrev for CONSTANTS_BLOCK.
1171     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1172     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1173     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1174                                    Abbv) != CONSTANTS_NULL_Abbrev)
1175       assert(0 && "Unexpected abbrev ordering!");
1176   }
1177   
1178   // FIXME: This should only use space for first class types!
1179  
1180   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1181     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1182     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1183     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1184     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1185     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1186     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1187                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1188       assert(0 && "Unexpected abbrev ordering!");
1189   }
1190   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1191     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1192     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1193     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1194     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1195     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1196     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1197                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1198       assert(0 && "Unexpected abbrev ordering!");
1199   }
1200   { // INST_CAST abbrev for FUNCTION_BLOCK.
1201     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1202     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1203     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1204     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1205                               Log2_32_Ceil(VE.getTypes().size()+1)));
1206     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1207     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1208                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1209       assert(0 && "Unexpected abbrev ordering!");
1210   }
1211   
1212   { // INST_RET abbrev for FUNCTION_BLOCK.
1213     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1214     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1215     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1216                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1217       assert(0 && "Unexpected abbrev ordering!");
1218   }
1219   { // INST_RET abbrev for FUNCTION_BLOCK.
1220     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1221     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1222     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1223     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1224                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1225       assert(0 && "Unexpected abbrev ordering!");
1226   }
1227   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1228     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1229     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1230     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1231                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1232       assert(0 && "Unexpected abbrev ordering!");
1233   }
1234   
1235   Stream.ExitBlock();
1236 }
1237
1238
1239 /// WriteModule - Emit the specified module to the bitstream.
1240 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1241   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1242   
1243   // Emit the version number if it is non-zero.
1244   if (CurVersion) {
1245     SmallVector<unsigned, 1> Vals;
1246     Vals.push_back(CurVersion);
1247     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1248   }
1249   
1250   // Analyze the module, enumerating globals, functions, etc.
1251   ValueEnumerator VE(M);
1252
1253   // Emit blockinfo, which defines the standard abbreviations etc.
1254   WriteBlockInfo(VE, Stream);
1255   
1256   // Emit information about parameter attributes.
1257   WriteAttributeTable(VE, Stream);
1258   
1259   // Emit information describing all of the types in the module.
1260   WriteTypeTable(VE, Stream);
1261   
1262   // Emit top-level description of module, including target triple, inline asm,
1263   // descriptors for global variables, and function prototype info.
1264   WriteModuleInfo(M, VE, Stream);
1265   
1266   // Emit constants.
1267   WriteModuleConstants(VE, Stream);
1268   
1269   // If we have any aggregate values in the value table, purge them - these can
1270   // only be used to initialize global variables.  Doing so makes the value
1271   // namespace smaller for code in functions.
1272   int NumNonAggregates = VE.PurgeAggregateValues();
1273   if (NumNonAggregates != -1) {
1274     SmallVector<unsigned, 1> Vals;
1275     Vals.push_back(NumNonAggregates);
1276     Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1277   }
1278   
1279   // Emit function bodies.
1280   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1281     if (!I->isDeclaration())
1282       WriteFunction(*I, VE, Stream);
1283   
1284   // Emit the type symbol table information.
1285   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1286   
1287   // Emit names for globals/functions etc.
1288   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1289   
1290   Stream.ExitBlock();
1291 }
1292
1293 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1294 /// header and trailer to make it compatible with the system archiver.  To do
1295 /// this we emit the following header, and then emit a trailer that pads the
1296 /// file out to be a multiple of 16 bytes.
1297 /// 
1298 /// struct bc_header {
1299 ///   uint32_t Magic;         // 0x0B17C0DE
1300 ///   uint32_t Version;       // Version, currently always 0.
1301 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1302 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1303 ///   uint32_t CPUType;       // CPU specifier.
1304 ///   ... potentially more later ...
1305 /// };
1306 enum {
1307   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1308   DarwinBCHeaderSize = 5*4
1309 };
1310
1311 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1312                                const std::string &TT) {
1313   unsigned CPUType = ~0U;
1314   
1315   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1316   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1317   // specific constants here because they are implicitly part of the Darwin ABI.
1318   enum {
1319     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1320     DARWIN_CPU_TYPE_X86        = 7,
1321     DARWIN_CPU_TYPE_POWERPC    = 18
1322   };
1323   
1324   if (TT.find("x86_64-") == 0)
1325     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1326   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1327            TT[4] == '-' && TT[1] - '3' < 6)
1328     CPUType = DARWIN_CPU_TYPE_X86;
1329   else if (TT.find("powerpc-") == 0)
1330     CPUType = DARWIN_CPU_TYPE_POWERPC;
1331   else if (TT.find("powerpc64-") == 0)
1332     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1333   
1334   // Traditional Bitcode starts after header.
1335   unsigned BCOffset = DarwinBCHeaderSize;
1336   
1337   Stream.Emit(0x0B17C0DE, 32);
1338   Stream.Emit(0         , 32);  // Version.
1339   Stream.Emit(BCOffset  , 32);
1340   Stream.Emit(0         , 32);  // Filled in later.
1341   Stream.Emit(CPUType   , 32);
1342 }
1343
1344 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1345 /// finalize the header.
1346 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1347   // Update the size field in the header.
1348   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1349   
1350   // If the file is not a multiple of 16 bytes, insert dummy padding.
1351   while (BufferSize & 15) {
1352     Stream.Emit(0, 8);
1353     ++BufferSize;
1354   }
1355 }
1356
1357
1358 /// WriteBitcodeToFile - Write the specified module to the specified output
1359 /// stream.
1360 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1361   raw_os_ostream RawOut(Out);
1362   // If writing to stdout, set binary mode.
1363   if (llvm::cout == Out)
1364     sys::Program::ChangeStdoutToBinary();
1365   WriteBitcodeToFile(M, RawOut);
1366 }
1367
1368 /// WriteBitcodeToFile - Write the specified module to the specified output
1369 /// stream.
1370 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1371   std::vector<unsigned char> Buffer;
1372   BitstreamWriter Stream(Buffer);
1373   
1374   Buffer.reserve(256*1024);
1375
1376   WriteBitcodeToStream( M, Stream );
1377   
1378   // If writing to stdout, set binary mode.
1379   if (&llvm::outs() == &Out)
1380     sys::Program::ChangeStdoutToBinary();
1381
1382   // Write the generated bitstream to "Out".
1383   Out.write((char*)&Buffer.front(), Buffer.size());
1384   
1385   // Make sure it hits disk now.
1386   Out.flush();
1387 }
1388
1389 /// WriteBitcodeToStream - Write the specified module to the specified output
1390 /// stream.
1391 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1392   // If this is darwin, emit a file header and trailer if needed.
1393   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1394   if (isDarwin)
1395     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1396   
1397   // Emit the file header.
1398   Stream.Emit((unsigned)'B', 8);
1399   Stream.Emit((unsigned)'C', 8);
1400   Stream.Emit(0x0, 4);
1401   Stream.Emit(0xC, 4);
1402   Stream.Emit(0xE, 4);
1403   Stream.Emit(0xD, 4);
1404
1405   // Emit the module.
1406   WriteModule(M, Stream);
1407
1408   if (isDarwin)
1409     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1410 }