Add support for embedded metadata to LLVM. This introduces two new types of
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/Streams.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/System/Program.h"
29 using namespace llvm;
30
31 /// These are manifest constants used by the bitcode writer. They do not need to
32 /// be kept in sync with the reader, but need to be consistent within this file.
33 enum {
34   CurVersion = 0,
35   
36   // VALUE_SYMTAB_BLOCK abbrev id's.
37   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
38   VST_ENTRY_7_ABBREV,
39   VST_ENTRY_6_ABBREV,
40   VST_BBENTRY_6_ABBREV,
41   
42   // CONSTANTS_BLOCK abbrev id's.
43   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
44   CONSTANTS_INTEGER_ABBREV,
45   CONSTANTS_CE_CAST_Abbrev,
46   CONSTANTS_NULL_Abbrev,
47   
48   // FUNCTION_BLOCK abbrev id's.
49   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
50   FUNCTION_INST_BINOP_ABBREV,
51   FUNCTION_INST_CAST_ABBREV,
52   FUNCTION_INST_RET_VOID_ABBREV,
53   FUNCTION_INST_RET_VAL_ABBREV,
54   FUNCTION_INST_UNREACHABLE_ABBREV
55 };
56
57
58 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
59   switch (Opcode) {
60   default: assert(0 && "Unknown cast instruction!");
61   case Instruction::Trunc   : return bitc::CAST_TRUNC;
62   case Instruction::ZExt    : return bitc::CAST_ZEXT;
63   case Instruction::SExt    : return bitc::CAST_SEXT;
64   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
65   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
66   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
67   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
68   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
69   case Instruction::FPExt   : return bitc::CAST_FPEXT;
70   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
71   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
72   case Instruction::BitCast : return bitc::CAST_BITCAST;
73   }
74 }
75
76 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
77   switch (Opcode) {
78   default: assert(0 && "Unknown binary instruction!");
79   case Instruction::Add:  return bitc::BINOP_ADD;
80   case Instruction::Sub:  return bitc::BINOP_SUB;
81   case Instruction::Mul:  return bitc::BINOP_MUL;
82   case Instruction::UDiv: return bitc::BINOP_UDIV;
83   case Instruction::FDiv:
84   case Instruction::SDiv: return bitc::BINOP_SDIV;
85   case Instruction::URem: return bitc::BINOP_UREM;
86   case Instruction::FRem:
87   case Instruction::SRem: return bitc::BINOP_SREM;
88   case Instruction::Shl:  return bitc::BINOP_SHL;
89   case Instruction::LShr: return bitc::BINOP_LSHR;
90   case Instruction::AShr: return bitc::BINOP_ASHR;
91   case Instruction::And:  return bitc::BINOP_AND;
92   case Instruction::Or:   return bitc::BINOP_OR;
93   case Instruction::Xor:  return bitc::BINOP_XOR;
94   }
95 }
96
97
98
99 static void WriteStringRecord(unsigned Code, const std::string &Str, 
100                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
101   SmallVector<unsigned, 64> Vals;
102   
103   // Code: [strchar x N]
104   for (unsigned i = 0, e = Str.size(); i != e; ++i)
105     Vals.push_back(Str[i]);
106     
107   // Emit the finished record.
108   Stream.EmitRecord(Code, Vals, AbbrevToUse);
109 }
110
111 // Emit information about parameter attributes.
112 static void WriteAttributeTable(const ValueEnumerator &VE, 
113                                 BitstreamWriter &Stream) {
114   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
115   if (Attrs.empty()) return;
116   
117   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
118
119   SmallVector<uint64_t, 64> Record;
120   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
121     const AttrListPtr &A = Attrs[i];
122     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
123       const AttributeWithIndex &PAWI = A.getSlot(i);
124       Record.push_back(PAWI.Index);
125
126       // FIXME: remove in LLVM 3.0
127       // Store the alignment in the bitcode as a 16-bit raw value instead of a
128       // 5-bit log2 encoded value. Shift the bits above the alignment up by
129       // 11 bits.
130       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
131       if (PAWI.Attrs & Attribute::Alignment)
132         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
133       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
134
135       Record.push_back(FauxAttr);
136     }
137     
138     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
139     Record.clear();
140   }
141   
142   Stream.ExitBlock();
143 }
144
145 /// WriteTypeTable - Write out the type table for a module.
146 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
147   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
148   
149   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
150   SmallVector<uint64_t, 64> TypeVals;
151   
152   // Abbrev for TYPE_CODE_POINTER.
153   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
154   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
155   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
156                             Log2_32_Ceil(VE.getTypes().size()+1)));
157   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
158   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
159   
160   // Abbrev for TYPE_CODE_FUNCTION.
161   Abbv = new BitCodeAbbrev();
162   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
163   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
164   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
165   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
166   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
167                             Log2_32_Ceil(VE.getTypes().size()+1)));
168   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
169   
170   // Abbrev for TYPE_CODE_STRUCT.
171   Abbv = new BitCodeAbbrev();
172   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
174   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
175   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
176                             Log2_32_Ceil(VE.getTypes().size()+1)));
177   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
178  
179   // Abbrev for TYPE_CODE_ARRAY.
180   Abbv = new BitCodeAbbrev();
181   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
183   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
184                             Log2_32_Ceil(VE.getTypes().size()+1)));
185   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
186   
187   // Emit an entry count so the reader can reserve space.
188   TypeVals.push_back(TypeList.size());
189   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
190   TypeVals.clear();
191   
192   // Loop over all of the types, emitting each in turn.
193   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
194     const Type *T = TypeList[i].first;
195     int AbbrevToUse = 0;
196     unsigned Code = 0;
197     
198     switch (T->getTypeID()) {
199     default: assert(0 && "Unknown type!");
200     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
201     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
202     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
203     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
204     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
205     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
206     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
207     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
208     case Type::IntegerTyID:
209       // INTEGER: [width]
210       Code = bitc::TYPE_CODE_INTEGER;
211       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
212       break;
213     case Type::PointerTyID: {
214       const PointerType *PTy = cast<PointerType>(T);
215       // POINTER: [pointee type, address space]
216       Code = bitc::TYPE_CODE_POINTER;
217       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
218       unsigned AddressSpace = PTy->getAddressSpace();
219       TypeVals.push_back(AddressSpace);
220       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
221       break;
222     }
223     case Type::FunctionTyID: {
224       const FunctionType *FT = cast<FunctionType>(T);
225       // FUNCTION: [isvararg, attrid, retty, paramty x N]
226       Code = bitc::TYPE_CODE_FUNCTION;
227       TypeVals.push_back(FT->isVarArg());
228       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
229       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
230       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
231         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
232       AbbrevToUse = FunctionAbbrev;
233       break;
234     }
235     case Type::StructTyID: {
236       const StructType *ST = cast<StructType>(T);
237       // STRUCT: [ispacked, eltty x N]
238       Code = bitc::TYPE_CODE_STRUCT;
239       TypeVals.push_back(ST->isPacked());
240       // Output all of the element types.
241       for (StructType::element_iterator I = ST->element_begin(),
242            E = ST->element_end(); I != E; ++I)
243         TypeVals.push_back(VE.getTypeID(*I));
244       AbbrevToUse = StructAbbrev;
245       break;
246     }
247     case Type::ArrayTyID: {
248       const ArrayType *AT = cast<ArrayType>(T);
249       // ARRAY: [numelts, eltty]
250       Code = bitc::TYPE_CODE_ARRAY;
251       TypeVals.push_back(AT->getNumElements());
252       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
253       AbbrevToUse = ArrayAbbrev;
254       break;
255     }
256     case Type::VectorTyID: {
257       const VectorType *VT = cast<VectorType>(T);
258       // VECTOR [numelts, eltty]
259       Code = bitc::TYPE_CODE_VECTOR;
260       TypeVals.push_back(VT->getNumElements());
261       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
262       break;
263     }
264     }
265
266     // Emit the finished record.
267     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
268     TypeVals.clear();
269   }
270   
271   Stream.ExitBlock();
272 }
273
274 static unsigned getEncodedLinkage(const GlobalValue *GV) {
275   switch (GV->getLinkage()) {
276   default: assert(0 && "Invalid linkage!");
277   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
278   case GlobalValue::ExternalLinkage:     return 0;
279   case GlobalValue::WeakAnyLinkage:      return 1;
280   case GlobalValue::AppendingLinkage:    return 2;
281   case GlobalValue::InternalLinkage:     return 3;
282   case GlobalValue::LinkOnceAnyLinkage:  return 4;
283   case GlobalValue::DLLImportLinkage:    return 5;
284   case GlobalValue::DLLExportLinkage:    return 6;
285   case GlobalValue::ExternalWeakLinkage: return 7;
286   case GlobalValue::CommonLinkage:       return 8;
287   case GlobalValue::PrivateLinkage:      return 9;
288   case GlobalValue::WeakODRLinkage:      return 10;
289   case GlobalValue::LinkOnceODRLinkage:  return 11;
290   }
291 }
292
293 static unsigned getEncodedVisibility(const GlobalValue *GV) {
294   switch (GV->getVisibility()) {
295   default: assert(0 && "Invalid visibility!");
296   case GlobalValue::DefaultVisibility:   return 0;
297   case GlobalValue::HiddenVisibility:    return 1;
298   case GlobalValue::ProtectedVisibility: return 2;
299   }
300 }
301
302 // Emit top-level description of module, including target triple, inline asm,
303 // descriptors for global variables, and function prototype info.
304 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
305                             BitstreamWriter &Stream) {
306   // Emit the list of dependent libraries for the Module.
307   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
308     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
309
310   // Emit various pieces of data attached to a module.
311   if (!M->getTargetTriple().empty())
312     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
313                       0/*TODO*/, Stream);
314   if (!M->getDataLayout().empty())
315     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
316                       0/*TODO*/, Stream);
317   if (!M->getModuleInlineAsm().empty())
318     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
319                       0/*TODO*/, Stream);
320
321   // Emit information about sections and GC, computing how many there are. Also
322   // compute the maximum alignment value.
323   std::map<std::string, unsigned> SectionMap;
324   std::map<std::string, unsigned> GCMap;
325   unsigned MaxAlignment = 0;
326   unsigned MaxGlobalType = 0;
327   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
328        GV != E; ++GV) {
329     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
330     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
331     
332     if (!GV->hasSection()) continue;
333     // Give section names unique ID's.
334     unsigned &Entry = SectionMap[GV->getSection()];
335     if (Entry != 0) continue;
336     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
337                       0/*TODO*/, Stream);
338     Entry = SectionMap.size();
339   }
340   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
341     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
342     if (F->hasSection()) {
343       // Give section names unique ID's.
344       unsigned &Entry = SectionMap[F->getSection()];
345       if (!Entry) {
346         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
347                           0/*TODO*/, Stream);
348         Entry = SectionMap.size();
349       }
350     }
351     if (F->hasGC()) {
352       // Same for GC names.
353       unsigned &Entry = GCMap[F->getGC()];
354       if (!Entry) {
355         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
356                           0/*TODO*/, Stream);
357         Entry = GCMap.size();
358       }
359     }
360   }
361   
362   // Emit abbrev for globals, now that we know # sections and max alignment.
363   unsigned SimpleGVarAbbrev = 0;
364   if (!M->global_empty()) { 
365     // Add an abbrev for common globals with no visibility or thread localness.
366     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
367     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
368     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
369                               Log2_32_Ceil(MaxGlobalType+1)));
370     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
371     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
372     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
373     if (MaxAlignment == 0)                                      // Alignment.
374       Abbv->Add(BitCodeAbbrevOp(0));
375     else {
376       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
377       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
378                                Log2_32_Ceil(MaxEncAlignment+1)));
379     }
380     if (SectionMap.empty())                                    // Section.
381       Abbv->Add(BitCodeAbbrevOp(0));
382     else
383       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
384                                Log2_32_Ceil(SectionMap.size()+1)));
385     // Don't bother emitting vis + thread local.
386     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
387   }
388   
389   // Emit the global variable information.
390   SmallVector<unsigned, 64> Vals;
391   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
392        GV != E; ++GV) {
393     unsigned AbbrevToUse = 0;
394
395     // GLOBALVAR: [type, isconst, initid, 
396     //             linkage, alignment, section, visibility, threadlocal]
397     Vals.push_back(VE.getTypeID(GV->getType()));
398     Vals.push_back(GV->isConstant());
399     Vals.push_back(GV->isDeclaration() ? 0 :
400                    (VE.getValueID(GV->getInitializer()) + 1));
401     Vals.push_back(getEncodedLinkage(GV));
402     Vals.push_back(Log2_32(GV->getAlignment())+1);
403     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
404     if (GV->isThreadLocal() || 
405         GV->getVisibility() != GlobalValue::DefaultVisibility) {
406       Vals.push_back(getEncodedVisibility(GV));
407       Vals.push_back(GV->isThreadLocal());
408     } else {
409       AbbrevToUse = SimpleGVarAbbrev;
410     }
411     
412     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
413     Vals.clear();
414   }
415
416   // Emit the function proto information.
417   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
418     // FUNCTION:  [type, callingconv, isproto, paramattr,
419     //             linkage, alignment, section, visibility, gc]
420     Vals.push_back(VE.getTypeID(F->getType()));
421     Vals.push_back(F->getCallingConv());
422     Vals.push_back(F->isDeclaration());
423     Vals.push_back(getEncodedLinkage(F));
424     Vals.push_back(VE.getAttributeID(F->getAttributes()));
425     Vals.push_back(Log2_32(F->getAlignment())+1);
426     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
427     Vals.push_back(getEncodedVisibility(F));
428     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
429     
430     unsigned AbbrevToUse = 0;
431     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
432     Vals.clear();
433   }
434   
435   
436   // Emit the alias information.
437   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
438        AI != E; ++AI) {
439     Vals.push_back(VE.getTypeID(AI->getType()));
440     Vals.push_back(VE.getValueID(AI->getAliasee()));
441     Vals.push_back(getEncodedLinkage(AI));
442     Vals.push_back(getEncodedVisibility(AI));
443     unsigned AbbrevToUse = 0;
444     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
445     Vals.clear();
446   }
447 }
448
449
450 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
451                            const ValueEnumerator &VE,
452                            BitstreamWriter &Stream, bool isGlobal) {
453   if (FirstVal == LastVal) return;
454   
455   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
456
457   unsigned AggregateAbbrev = 0;
458   unsigned String8Abbrev = 0;
459   unsigned CString7Abbrev = 0;
460   unsigned CString6Abbrev = 0;
461   unsigned MDString8Abbrev = 0;
462   unsigned MDString6Abbrev = 0;
463   // If this is a constant pool for the module, emit module-specific abbrevs.
464   if (isGlobal) {
465     // Abbrev for CST_CODE_AGGREGATE.
466     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
467     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
468     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
469     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
470     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
471
472     // Abbrev for CST_CODE_STRING.
473     Abbv = new BitCodeAbbrev();
474     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
475     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
476     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
477     String8Abbrev = Stream.EmitAbbrev(Abbv);
478     // Abbrev for CST_CODE_CSTRING.
479     Abbv = new BitCodeAbbrev();
480     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
481     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
482     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
483     CString7Abbrev = Stream.EmitAbbrev(Abbv);
484     // Abbrev for CST_CODE_CSTRING.
485     Abbv = new BitCodeAbbrev();
486     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
487     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
488     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
489     CString6Abbrev = Stream.EmitAbbrev(Abbv);
490
491     // Abbrev for CST_CODE_MDSTRING.
492     Abbv = new BitCodeAbbrev();
493     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
494     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
495     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
496     MDString8Abbrev = Stream.EmitAbbrev(Abbv);
497     // Abbrev for CST_CODE_MDSTRING.
498     Abbv = new BitCodeAbbrev();
499     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
500     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
501     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
502     MDString6Abbrev = Stream.EmitAbbrev(Abbv);
503   }  
504   
505   SmallVector<uint64_t, 64> Record;
506
507   const ValueEnumerator::ValueList &Vals = VE.getValues();
508   const Type *LastTy = 0;
509   for (unsigned i = FirstVal; i != LastVal; ++i) {
510     const Value *V = Vals[i].first;
511     // If we need to switch types, do so now.
512     if (V->getType() != LastTy) {
513       LastTy = V->getType();
514       Record.push_back(VE.getTypeID(LastTy));
515       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
516                         CONSTANTS_SETTYPE_ABBREV);
517       Record.clear();
518     }
519     
520     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
521       Record.push_back(unsigned(IA->hasSideEffects()));
522       
523       // Add the asm string.
524       const std::string &AsmStr = IA->getAsmString();
525       Record.push_back(AsmStr.size());
526       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
527         Record.push_back(AsmStr[i]);
528       
529       // Add the constraint string.
530       const std::string &ConstraintStr = IA->getConstraintString();
531       Record.push_back(ConstraintStr.size());
532       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
533         Record.push_back(ConstraintStr[i]);
534       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
535       Record.clear();
536       continue;
537     }
538     const Constant *C = cast<Constant>(V);
539     unsigned Code = -1U;
540     unsigned AbbrevToUse = 0;
541     if (C->isNullValue()) {
542       Code = bitc::CST_CODE_NULL;
543     } else if (isa<UndefValue>(C)) {
544       Code = bitc::CST_CODE_UNDEF;
545     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
546       if (IV->getBitWidth() <= 64) {
547         int64_t V = IV->getSExtValue();
548         if (V >= 0)
549           Record.push_back(V << 1);
550         else
551           Record.push_back((-V << 1) | 1);
552         Code = bitc::CST_CODE_INTEGER;
553         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
554       } else {                             // Wide integers, > 64 bits in size.
555         // We have an arbitrary precision integer value to write whose 
556         // bit width is > 64. However, in canonical unsigned integer 
557         // format it is likely that the high bits are going to be zero.
558         // So, we only write the number of active words.
559         unsigned NWords = IV->getValue().getActiveWords(); 
560         const uint64_t *RawWords = IV->getValue().getRawData();
561         for (unsigned i = 0; i != NWords; ++i) {
562           int64_t V = RawWords[i];
563           if (V >= 0)
564             Record.push_back(V << 1);
565           else
566             Record.push_back((-V << 1) | 1);
567         }
568         Code = bitc::CST_CODE_WIDE_INTEGER;
569       }
570     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
571       Code = bitc::CST_CODE_FLOAT;
572       const Type *Ty = CFP->getType();
573       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
574         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
575       } else if (Ty == Type::X86_FP80Ty) {
576         // api needed to prevent premature destruction
577         // bits are not in the same order as a normal i80 APInt, compensate.
578         APInt api = CFP->getValueAPF().bitcastToAPInt();
579         const uint64_t *p = api.getRawData();
580         Record.push_back((p[1] << 48) | (p[0] >> 16));
581         Record.push_back(p[0] & 0xffffLL);
582       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
583         APInt api = CFP->getValueAPF().bitcastToAPInt();
584         const uint64_t *p = api.getRawData();
585         Record.push_back(p[0]);
586         Record.push_back(p[1]);
587       } else {
588         assert (0 && "Unknown FP type!");
589       }
590     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
591       // Emit constant strings specially.
592       unsigned NumOps = C->getNumOperands();
593       // If this is a null-terminated string, use the denser CSTRING encoding.
594       if (C->getOperand(NumOps-1)->isNullValue()) {
595         Code = bitc::CST_CODE_CSTRING;
596         --NumOps;  // Don't encode the null, which isn't allowed by char6.
597       } else {
598         Code = bitc::CST_CODE_STRING;
599         AbbrevToUse = String8Abbrev;
600       }
601       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
602       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
603       for (unsigned i = 0; i != NumOps; ++i) {
604         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
605         Record.push_back(V);
606         isCStr7 &= (V & 128) == 0;
607         if (isCStrChar6) 
608           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
609       }
610       
611       if (isCStrChar6)
612         AbbrevToUse = CString6Abbrev;
613       else if (isCStr7)
614         AbbrevToUse = CString7Abbrev;
615     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
616                isa<ConstantVector>(V)) {
617       Code = bitc::CST_CODE_AGGREGATE;
618       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
619         Record.push_back(VE.getValueID(C->getOperand(i)));
620       AbbrevToUse = AggregateAbbrev;
621     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
622       switch (CE->getOpcode()) {
623       default:
624         if (Instruction::isCast(CE->getOpcode())) {
625           Code = bitc::CST_CODE_CE_CAST;
626           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
627           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
628           Record.push_back(VE.getValueID(C->getOperand(0)));
629           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
630         } else {
631           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
632           Code = bitc::CST_CODE_CE_BINOP;
633           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
634           Record.push_back(VE.getValueID(C->getOperand(0)));
635           Record.push_back(VE.getValueID(C->getOperand(1)));
636         }
637         break;
638       case Instruction::GetElementPtr:
639         Code = bitc::CST_CODE_CE_GEP;
640         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
641           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
642           Record.push_back(VE.getValueID(C->getOperand(i)));
643         }
644         break;
645       case Instruction::Select:
646         Code = bitc::CST_CODE_CE_SELECT;
647         Record.push_back(VE.getValueID(C->getOperand(0)));
648         Record.push_back(VE.getValueID(C->getOperand(1)));
649         Record.push_back(VE.getValueID(C->getOperand(2)));
650         break;
651       case Instruction::ExtractElement:
652         Code = bitc::CST_CODE_CE_EXTRACTELT;
653         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
654         Record.push_back(VE.getValueID(C->getOperand(0)));
655         Record.push_back(VE.getValueID(C->getOperand(1)));
656         break;
657       case Instruction::InsertElement:
658         Code = bitc::CST_CODE_CE_INSERTELT;
659         Record.push_back(VE.getValueID(C->getOperand(0)));
660         Record.push_back(VE.getValueID(C->getOperand(1)));
661         Record.push_back(VE.getValueID(C->getOperand(2)));
662         break;
663       case Instruction::ShuffleVector:
664         // If the return type and argument types are the same, this is a
665         // standard shufflevector instruction.  If the types are different,
666         // then the shuffle is widening or truncating the input vectors, and
667         // the argument type must also be encoded.
668         if (C->getType() == C->getOperand(0)->getType()) {
669           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
670         } else {
671           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
672           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
673         }
674         Record.push_back(VE.getValueID(C->getOperand(0)));
675         Record.push_back(VE.getValueID(C->getOperand(1)));
676         Record.push_back(VE.getValueID(C->getOperand(2)));
677         break;
678       case Instruction::ICmp:
679       case Instruction::FCmp:
680       case Instruction::VICmp:
681       case Instruction::VFCmp:
682         if (isa<VectorType>(C->getOperand(0)->getType())
683             && (CE->getOpcode() == Instruction::ICmp
684                 || CE->getOpcode() == Instruction::FCmp)) {
685           // compare returning vector of Int1Ty
686           assert(0 && "Unsupported constant!");
687         } else {
688           Code = bitc::CST_CODE_CE_CMP;
689         }
690         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
691         Record.push_back(VE.getValueID(C->getOperand(0)));
692         Record.push_back(VE.getValueID(C->getOperand(1)));
693         Record.push_back(CE->getPredicate());
694         break;
695       }
696     } else if (const MDString *S = dyn_cast<MDString>(C)) {
697       Code = bitc::CST_CODE_MDSTRING;
698       AbbrevToUse = MDString6Abbrev;
699       for (unsigned i = 0, e = S->size(); i != e; ++i) {
700         char V = S->begin()[i];
701         Record.push_back(V);
702
703         if (!BitCodeAbbrevOp::isChar6(V))
704           AbbrevToUse = MDString8Abbrev;
705       }
706     } else if (const MDNode *N = dyn_cast<MDNode>(C)) {
707       Code = bitc::CST_CODE_MDNODE;
708       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
709         Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
710         Record.push_back(VE.getValueID(N->getOperand(i)));
711       }
712     } else {
713       assert(0 && "Unknown constant!");
714     }
715     Stream.EmitRecord(Code, Record, AbbrevToUse);
716     Record.clear();
717   }
718
719   Stream.ExitBlock();
720 }
721
722 static void WriteModuleConstants(const ValueEnumerator &VE,
723                                  BitstreamWriter &Stream) {
724   const ValueEnumerator::ValueList &Vals = VE.getValues();
725   
726   // Find the first constant to emit, which is the first non-globalvalue value.
727   // We know globalvalues have been emitted by WriteModuleInfo.
728   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
729     if (!isa<GlobalValue>(Vals[i].first)) {
730       WriteConstants(i, Vals.size(), VE, Stream, true);
731       return;
732     }
733   }
734 }
735
736 /// PushValueAndType - The file has to encode both the value and type id for
737 /// many values, because we need to know what type to create for forward
738 /// references.  However, most operands are not forward references, so this type
739 /// field is not needed.
740 ///
741 /// This function adds V's value ID to Vals.  If the value ID is higher than the
742 /// instruction ID, then it is a forward reference, and it also includes the
743 /// type ID.
744 static bool PushValueAndType(const Value *V, unsigned InstID,
745                              SmallVector<unsigned, 64> &Vals, 
746                              ValueEnumerator &VE) {
747   unsigned ValID = VE.getValueID(V);
748   Vals.push_back(ValID);
749   if (ValID >= InstID) {
750     Vals.push_back(VE.getTypeID(V->getType()));
751     return true;
752   }
753   return false;
754 }
755
756 /// WriteInstruction - Emit an instruction to the specified stream.
757 static void WriteInstruction(const Instruction &I, unsigned InstID,
758                              ValueEnumerator &VE, BitstreamWriter &Stream,
759                              SmallVector<unsigned, 64> &Vals) {
760   unsigned Code = 0;
761   unsigned AbbrevToUse = 0;
762   switch (I.getOpcode()) {
763   default:
764     if (Instruction::isCast(I.getOpcode())) {
765       Code = bitc::FUNC_CODE_INST_CAST;
766       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
767         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
768       Vals.push_back(VE.getTypeID(I.getType()));
769       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
770     } else {
771       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
772       Code = bitc::FUNC_CODE_INST_BINOP;
773       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
774         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
775       Vals.push_back(VE.getValueID(I.getOperand(1)));
776       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
777     }
778     break;
779
780   case Instruction::GetElementPtr:
781     Code = bitc::FUNC_CODE_INST_GEP;
782     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
783       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
784     break;
785   case Instruction::ExtractValue: {
786     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
787     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
788     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
789     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
790       Vals.push_back(*i);
791     break;
792   }
793   case Instruction::InsertValue: {
794     Code = bitc::FUNC_CODE_INST_INSERTVAL;
795     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
796     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
797     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
798     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
799       Vals.push_back(*i);
800     break;
801   }
802   case Instruction::Select:
803     Code = bitc::FUNC_CODE_INST_VSELECT;
804     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
805     Vals.push_back(VE.getValueID(I.getOperand(2)));
806     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
807     break;
808   case Instruction::ExtractElement:
809     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
810     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
811     Vals.push_back(VE.getValueID(I.getOperand(1)));
812     break;
813   case Instruction::InsertElement:
814     Code = bitc::FUNC_CODE_INST_INSERTELT;
815     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
816     Vals.push_back(VE.getValueID(I.getOperand(1)));
817     Vals.push_back(VE.getValueID(I.getOperand(2)));
818     break;
819   case Instruction::ShuffleVector:
820     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
821     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
822     Vals.push_back(VE.getValueID(I.getOperand(1)));
823     Vals.push_back(VE.getValueID(I.getOperand(2)));
824     break;
825   case Instruction::ICmp:
826   case Instruction::FCmp:
827   case Instruction::VICmp:
828   case Instruction::VFCmp:
829     if (I.getOpcode() == Instruction::ICmp
830         || I.getOpcode() == Instruction::FCmp) {
831       // compare returning Int1Ty or vector of Int1Ty
832       Code = bitc::FUNC_CODE_INST_CMP2;
833     } else {
834       Code = bitc::FUNC_CODE_INST_CMP;
835     }
836     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
837     Vals.push_back(VE.getValueID(I.getOperand(1)));
838     Vals.push_back(cast<CmpInst>(I).getPredicate());
839     break;
840
841   case Instruction::Ret: 
842     {
843       Code = bitc::FUNC_CODE_INST_RET;
844       unsigned NumOperands = I.getNumOperands();
845       if (NumOperands == 0)
846         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
847       else if (NumOperands == 1) {
848         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
849           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
850       } else {
851         for (unsigned i = 0, e = NumOperands; i != e; ++i)
852           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
853       }
854     }
855     break;
856   case Instruction::Br:
857     {
858       Code = bitc::FUNC_CODE_INST_BR;
859       BranchInst &II(cast<BranchInst>(I));
860       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
861       if (II.isConditional()) {
862         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
863         Vals.push_back(VE.getValueID(II.getCondition()));
864       }
865     }
866     break;
867   case Instruction::Switch:
868     Code = bitc::FUNC_CODE_INST_SWITCH;
869     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
870     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
871       Vals.push_back(VE.getValueID(I.getOperand(i)));
872     break;
873   case Instruction::Invoke: {
874     const InvokeInst *II = cast<InvokeInst>(&I);
875     const Value *Callee(II->getCalledValue());
876     const PointerType *PTy = cast<PointerType>(Callee->getType());
877     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
878     Code = bitc::FUNC_CODE_INST_INVOKE;
879     
880     Vals.push_back(VE.getAttributeID(II->getAttributes()));
881     Vals.push_back(II->getCallingConv());
882     Vals.push_back(VE.getValueID(II->getNormalDest()));
883     Vals.push_back(VE.getValueID(II->getUnwindDest()));
884     PushValueAndType(Callee, InstID, Vals, VE);
885     
886     // Emit value #'s for the fixed parameters.
887     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
888       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
889
890     // Emit type/value pairs for varargs params.
891     if (FTy->isVarArg()) {
892       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
893            i != e; ++i)
894         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
895     }
896     break;
897   }
898   case Instruction::Unwind:
899     Code = bitc::FUNC_CODE_INST_UNWIND;
900     break;
901   case Instruction::Unreachable:
902     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
903     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
904     break;
905   
906   case Instruction::PHI:
907     Code = bitc::FUNC_CODE_INST_PHI;
908     Vals.push_back(VE.getTypeID(I.getType()));
909     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
910       Vals.push_back(VE.getValueID(I.getOperand(i)));
911     break;
912     
913   case Instruction::Malloc:
914     Code = bitc::FUNC_CODE_INST_MALLOC;
915     Vals.push_back(VE.getTypeID(I.getType()));
916     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
917     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
918     break;
919     
920   case Instruction::Free:
921     Code = bitc::FUNC_CODE_INST_FREE;
922     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
923     break;
924     
925   case Instruction::Alloca:
926     Code = bitc::FUNC_CODE_INST_ALLOCA;
927     Vals.push_back(VE.getTypeID(I.getType()));
928     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
929     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
930     break;
931     
932   case Instruction::Load:
933     Code = bitc::FUNC_CODE_INST_LOAD;
934     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
935       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
936       
937     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
938     Vals.push_back(cast<LoadInst>(I).isVolatile());
939     break;
940   case Instruction::Store:
941     Code = bitc::FUNC_CODE_INST_STORE2;
942     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
943     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
944     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
945     Vals.push_back(cast<StoreInst>(I).isVolatile());
946     break;
947   case Instruction::Call: {
948     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
949     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
950
951     Code = bitc::FUNC_CODE_INST_CALL;
952     
953     const CallInst *CI = cast<CallInst>(&I);
954     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
955     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
956     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
957     
958     // Emit value #'s for the fixed parameters.
959     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
960       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
961       
962     // Emit type/value pairs for varargs params.
963     if (FTy->isVarArg()) {
964       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
965       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
966            i != e; ++i)
967         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
968     }
969     break;
970   }
971   case Instruction::VAArg:
972     Code = bitc::FUNC_CODE_INST_VAARG;
973     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
974     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
975     Vals.push_back(VE.getTypeID(I.getType())); // restype.
976     break;
977   }
978   
979   Stream.EmitRecord(Code, Vals, AbbrevToUse);
980   Vals.clear();
981 }
982
983 // Emit names for globals/functions etc.
984 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
985                                   const ValueEnumerator &VE,
986                                   BitstreamWriter &Stream) {
987   if (VST.empty()) return;
988   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
989
990   // FIXME: Set up the abbrev, we know how many values there are!
991   // FIXME: We know if the type names can use 7-bit ascii.
992   SmallVector<unsigned, 64> NameVals;
993   
994   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
995        SI != SE; ++SI) {
996     
997     const ValueName &Name = *SI;
998     
999     // Figure out the encoding to use for the name.
1000     bool is7Bit = true;
1001     bool isChar6 = true;
1002     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1003          C != E; ++C) {
1004       if (isChar6) 
1005         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1006       if ((unsigned char)*C & 128) {
1007         is7Bit = false;
1008         break;  // don't bother scanning the rest.
1009       }
1010     }
1011     
1012     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1013     
1014     // VST_ENTRY:   [valueid, namechar x N]
1015     // VST_BBENTRY: [bbid, namechar x N]
1016     unsigned Code;
1017     if (isa<BasicBlock>(SI->getValue())) {
1018       Code = bitc::VST_CODE_BBENTRY;
1019       if (isChar6)
1020         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1021     } else {
1022       Code = bitc::VST_CODE_ENTRY;
1023       if (isChar6)
1024         AbbrevToUse = VST_ENTRY_6_ABBREV;
1025       else if (is7Bit)
1026         AbbrevToUse = VST_ENTRY_7_ABBREV;
1027     }
1028     
1029     NameVals.push_back(VE.getValueID(SI->getValue()));
1030     for (const char *P = Name.getKeyData(),
1031          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1032       NameVals.push_back((unsigned char)*P);
1033     
1034     // Emit the finished record.
1035     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1036     NameVals.clear();
1037   }
1038   Stream.ExitBlock();
1039 }
1040
1041 /// WriteFunction - Emit a function body to the module stream.
1042 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
1043                           BitstreamWriter &Stream) {
1044   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1045   VE.incorporateFunction(F);
1046
1047   SmallVector<unsigned, 64> Vals;
1048   
1049   // Emit the number of basic blocks, so the reader can create them ahead of
1050   // time.
1051   Vals.push_back(VE.getBasicBlocks().size());
1052   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1053   Vals.clear();
1054   
1055   // If there are function-local constants, emit them now.
1056   unsigned CstStart, CstEnd;
1057   VE.getFunctionConstantRange(CstStart, CstEnd);
1058   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1059   
1060   // Keep a running idea of what the instruction ID is. 
1061   unsigned InstID = CstEnd;
1062   
1063   // Finally, emit all the instructions, in order.
1064   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1065     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1066          I != E; ++I) {
1067       WriteInstruction(*I, InstID, VE, Stream, Vals);
1068       if (I->getType() != Type::VoidTy)
1069         ++InstID;
1070     }
1071   
1072   // Emit names for all the instructions etc.
1073   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1074     
1075   VE.purgeFunction();
1076   Stream.ExitBlock();
1077 }
1078
1079 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1080 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1081                                  const ValueEnumerator &VE,
1082                                  BitstreamWriter &Stream) {
1083   if (TST.empty()) return;
1084   
1085   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1086   
1087   // 7-bit fixed width VST_CODE_ENTRY strings.
1088   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1089   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1090   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1091                             Log2_32_Ceil(VE.getTypes().size()+1)));
1092   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1093   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1094   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1095   
1096   SmallVector<unsigned, 64> NameVals;
1097   
1098   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
1099        TI != TE; ++TI) {
1100     // TST_ENTRY: [typeid, namechar x N]
1101     NameVals.push_back(VE.getTypeID(TI->second));
1102     
1103     const std::string &Str = TI->first;
1104     bool is7Bit = true;
1105     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1106       NameVals.push_back((unsigned char)Str[i]);
1107       if (Str[i] & 128)
1108         is7Bit = false;
1109     }
1110     
1111     // Emit the finished record.
1112     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1113     NameVals.clear();
1114   }
1115   
1116   Stream.ExitBlock();
1117 }
1118
1119 // Emit blockinfo, which defines the standard abbreviations etc.
1120 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1121   // We only want to emit block info records for blocks that have multiple
1122   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1123   // blocks can defined their abbrevs inline.
1124   Stream.EnterBlockInfoBlock(2);
1125   
1126   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1127     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1128     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1129     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1130     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1131     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1132     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1133                                    Abbv) != VST_ENTRY_8_ABBREV)
1134       assert(0 && "Unexpected abbrev ordering!");
1135   }
1136   
1137   { // 7-bit fixed width VST_ENTRY strings.
1138     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1139     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1140     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1141     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1142     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1143     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1144                                    Abbv) != VST_ENTRY_7_ABBREV)
1145       assert(0 && "Unexpected abbrev ordering!");
1146   }
1147   { // 6-bit char6 VST_ENTRY strings.
1148     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1149     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1150     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1151     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1152     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1153     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1154                                    Abbv) != VST_ENTRY_6_ABBREV)
1155       assert(0 && "Unexpected abbrev ordering!");
1156   }
1157   { // 6-bit char6 VST_BBENTRY strings.
1158     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1159     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1160     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1161     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1162     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1163     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1164                                    Abbv) != VST_BBENTRY_6_ABBREV)
1165       assert(0 && "Unexpected abbrev ordering!");
1166   }
1167   
1168   
1169   
1170   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1171     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1172     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1173     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1174                               Log2_32_Ceil(VE.getTypes().size()+1)));
1175     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1176                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1177       assert(0 && "Unexpected abbrev ordering!");
1178   }
1179   
1180   { // INTEGER abbrev for CONSTANTS_BLOCK.
1181     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1182     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1183     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1184     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1185                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1186       assert(0 && "Unexpected abbrev ordering!");
1187   }
1188   
1189   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1190     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1191     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1192     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1193     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1194                               Log2_32_Ceil(VE.getTypes().size()+1)));
1195     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1196
1197     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1198                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1199       assert(0 && "Unexpected abbrev ordering!");
1200   }
1201   { // NULL abbrev for CONSTANTS_BLOCK.
1202     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1203     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1204     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1205                                    Abbv) != CONSTANTS_NULL_Abbrev)
1206       assert(0 && "Unexpected abbrev ordering!");
1207   }
1208   
1209   // FIXME: This should only use space for first class types!
1210  
1211   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1212     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1213     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1214     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1215     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1216     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1217     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1218                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1219       assert(0 && "Unexpected abbrev ordering!");
1220   }
1221   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1222     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1223     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1224     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1225     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1226     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1227     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1228                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1229       assert(0 && "Unexpected abbrev ordering!");
1230   }
1231   { // INST_CAST abbrev for FUNCTION_BLOCK.
1232     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1233     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1234     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1235     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1236                               Log2_32_Ceil(VE.getTypes().size()+1)));
1237     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1238     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1239                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1240       assert(0 && "Unexpected abbrev ordering!");
1241   }
1242   
1243   { // INST_RET abbrev for FUNCTION_BLOCK.
1244     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1245     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1246     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1247                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1248       assert(0 && "Unexpected abbrev ordering!");
1249   }
1250   { // INST_RET abbrev for FUNCTION_BLOCK.
1251     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1252     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1253     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1254     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1255                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1256       assert(0 && "Unexpected abbrev ordering!");
1257   }
1258   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1259     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1260     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1261     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1262                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1263       assert(0 && "Unexpected abbrev ordering!");
1264   }
1265   
1266   Stream.ExitBlock();
1267 }
1268
1269
1270 /// WriteModule - Emit the specified module to the bitstream.
1271 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1272   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1273   
1274   // Emit the version number if it is non-zero.
1275   if (CurVersion) {
1276     SmallVector<unsigned, 1> Vals;
1277     Vals.push_back(CurVersion);
1278     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1279   }
1280   
1281   // Analyze the module, enumerating globals, functions, etc.
1282   ValueEnumerator VE(M);
1283
1284   // Emit blockinfo, which defines the standard abbreviations etc.
1285   WriteBlockInfo(VE, Stream);
1286   
1287   // Emit information about parameter attributes.
1288   WriteAttributeTable(VE, Stream);
1289   
1290   // Emit information describing all of the types in the module.
1291   WriteTypeTable(VE, Stream);
1292   
1293   // Emit top-level description of module, including target triple, inline asm,
1294   // descriptors for global variables, and function prototype info.
1295   WriteModuleInfo(M, VE, Stream);
1296   
1297   // Emit constants.
1298   WriteModuleConstants(VE, Stream);
1299   
1300   // If we have any aggregate values in the value table, purge them - these can
1301   // only be used to initialize global variables.  Doing so makes the value
1302   // namespace smaller for code in functions.
1303   int NumNonAggregates = VE.PurgeAggregateValues();
1304   if (NumNonAggregates != -1) {
1305     SmallVector<unsigned, 1> Vals;
1306     Vals.push_back(NumNonAggregates);
1307     Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1308   }
1309   
1310   // Emit function bodies.
1311   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1312     if (!I->isDeclaration())
1313       WriteFunction(*I, VE, Stream);
1314   
1315   // Emit the type symbol table information.
1316   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1317   
1318   // Emit names for globals/functions etc.
1319   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1320   
1321   Stream.ExitBlock();
1322 }
1323
1324 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1325 /// header and trailer to make it compatible with the system archiver.  To do
1326 /// this we emit the following header, and then emit a trailer that pads the
1327 /// file out to be a multiple of 16 bytes.
1328 /// 
1329 /// struct bc_header {
1330 ///   uint32_t Magic;         // 0x0B17C0DE
1331 ///   uint32_t Version;       // Version, currently always 0.
1332 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1333 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1334 ///   uint32_t CPUType;       // CPU specifier.
1335 ///   ... potentially more later ...
1336 /// };
1337 enum {
1338   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1339   DarwinBCHeaderSize = 5*4
1340 };
1341
1342 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1343                                const std::string &TT) {
1344   unsigned CPUType = ~0U;
1345   
1346   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1347   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1348   // specific constants here because they are implicitly part of the Darwin ABI.
1349   enum {
1350     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1351     DARWIN_CPU_TYPE_X86        = 7,
1352     DARWIN_CPU_TYPE_POWERPC    = 18
1353   };
1354   
1355   if (TT.find("x86_64-") == 0)
1356     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1357   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1358            TT[4] == '-' && TT[1] - '3' < 6)
1359     CPUType = DARWIN_CPU_TYPE_X86;
1360   else if (TT.find("powerpc-") == 0)
1361     CPUType = DARWIN_CPU_TYPE_POWERPC;
1362   else if (TT.find("powerpc64-") == 0)
1363     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1364   
1365   // Traditional Bitcode starts after header.
1366   unsigned BCOffset = DarwinBCHeaderSize;
1367   
1368   Stream.Emit(0x0B17C0DE, 32);
1369   Stream.Emit(0         , 32);  // Version.
1370   Stream.Emit(BCOffset  , 32);
1371   Stream.Emit(0         , 32);  // Filled in later.
1372   Stream.Emit(CPUType   , 32);
1373 }
1374
1375 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1376 /// finalize the header.
1377 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1378   // Update the size field in the header.
1379   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1380   
1381   // If the file is not a multiple of 16 bytes, insert dummy padding.
1382   while (BufferSize & 15) {
1383     Stream.Emit(0, 8);
1384     ++BufferSize;
1385   }
1386 }
1387
1388
1389 /// WriteBitcodeToFile - Write the specified module to the specified output
1390 /// stream.
1391 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1392   raw_os_ostream RawOut(Out);
1393   // If writing to stdout, set binary mode.
1394   if (llvm::cout == Out)
1395     sys::Program::ChangeStdoutToBinary();
1396   WriteBitcodeToFile(M, RawOut);
1397 }
1398
1399 /// WriteBitcodeToFile - Write the specified module to the specified output
1400 /// stream.
1401 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1402   std::vector<unsigned char> Buffer;
1403   BitstreamWriter Stream(Buffer);
1404   
1405   Buffer.reserve(256*1024);
1406
1407   WriteBitcodeToStream( M, Stream );
1408   
1409   // If writing to stdout, set binary mode.
1410   if (&llvm::outs() == &Out)
1411     sys::Program::ChangeStdoutToBinary();
1412
1413   // Write the generated bitstream to "Out".
1414   Out.write((char*)&Buffer.front(), Buffer.size());
1415   
1416   // Make sure it hits disk now.
1417   Out.flush();
1418 }
1419
1420 /// WriteBitcodeToStream - Write the specified module to the specified output
1421 /// stream.
1422 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1423   // If this is darwin, emit a file header and trailer if needed.
1424   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1425   if (isDarwin)
1426     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1427   
1428   // Emit the file header.
1429   Stream.Emit((unsigned)'B', 8);
1430   Stream.Emit((unsigned)'C', 8);
1431   Stream.Emit(0x0, 4);
1432   Stream.Emit(0xC, 4);
1433   Stream.Emit(0xE, 4);
1434   Stream.Emit(0xD, 4);
1435
1436   // Emit the module.
1437   WriteModule(M, Stream);
1438
1439   if (isDarwin)
1440     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1441 }