eliminate the std::ostream forms of the bitcode writing APIs.
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/ValueSymbolTable.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/System/Program.h"
31 using namespace llvm;
32
33 /// These are manifest constants used by the bitcode writer. They do not need to
34 /// be kept in sync with the reader, but need to be consistent within this file.
35 enum {
36   CurVersion = 0,
37   
38   // VALUE_SYMTAB_BLOCK abbrev id's.
39   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
40   VST_ENTRY_7_ABBREV,
41   VST_ENTRY_6_ABBREV,
42   VST_BBENTRY_6_ABBREV,
43   
44   // CONSTANTS_BLOCK abbrev id's.
45   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46   CONSTANTS_INTEGER_ABBREV,
47   CONSTANTS_CE_CAST_Abbrev,
48   CONSTANTS_NULL_Abbrev,
49   
50   // FUNCTION_BLOCK abbrev id's.
51   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52   FUNCTION_INST_BINOP_ABBREV,
53   FUNCTION_INST_BINOP_FLAGS_ABBREV,
54   FUNCTION_INST_CAST_ABBREV,
55   FUNCTION_INST_RET_VOID_ABBREV,
56   FUNCTION_INST_RET_VAL_ABBREV,
57   FUNCTION_INST_UNREACHABLE_ABBREV
58 };
59
60
61 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
62   switch (Opcode) {
63   default: llvm_unreachable("Unknown cast instruction!");
64   case Instruction::Trunc   : return bitc::CAST_TRUNC;
65   case Instruction::ZExt    : return bitc::CAST_ZEXT;
66   case Instruction::SExt    : return bitc::CAST_SEXT;
67   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
68   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
69   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
70   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
71   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
72   case Instruction::FPExt   : return bitc::CAST_FPEXT;
73   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
74   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
75   case Instruction::BitCast : return bitc::CAST_BITCAST;
76   }
77 }
78
79 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
80   switch (Opcode) {
81   default: llvm_unreachable("Unknown binary instruction!");
82   case Instruction::Add:
83   case Instruction::FAdd: return bitc::BINOP_ADD;
84   case Instruction::Sub:
85   case Instruction::FSub: return bitc::BINOP_SUB;
86   case Instruction::Mul:
87   case Instruction::FMul: return bitc::BINOP_MUL;
88   case Instruction::UDiv: return bitc::BINOP_UDIV;
89   case Instruction::FDiv:
90   case Instruction::SDiv: return bitc::BINOP_SDIV;
91   case Instruction::URem: return bitc::BINOP_UREM;
92   case Instruction::FRem:
93   case Instruction::SRem: return bitc::BINOP_SREM;
94   case Instruction::Shl:  return bitc::BINOP_SHL;
95   case Instruction::LShr: return bitc::BINOP_LSHR;
96   case Instruction::AShr: return bitc::BINOP_ASHR;
97   case Instruction::And:  return bitc::BINOP_AND;
98   case Instruction::Or:   return bitc::BINOP_OR;
99   case Instruction::Xor:  return bitc::BINOP_XOR;
100   }
101 }
102
103
104
105 static void WriteStringRecord(unsigned Code, const std::string &Str, 
106                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
107   SmallVector<unsigned, 64> Vals;
108   
109   // Code: [strchar x N]
110   for (unsigned i = 0, e = Str.size(); i != e; ++i)
111     Vals.push_back(Str[i]);
112     
113   // Emit the finished record.
114   Stream.EmitRecord(Code, Vals, AbbrevToUse);
115 }
116
117 // Emit information about parameter attributes.
118 static void WriteAttributeTable(const ValueEnumerator &VE, 
119                                 BitstreamWriter &Stream) {
120   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
121   if (Attrs.empty()) return;
122   
123   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
124
125   SmallVector<uint64_t, 64> Record;
126   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
127     const AttrListPtr &A = Attrs[i];
128     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
129       const AttributeWithIndex &PAWI = A.getSlot(i);
130       Record.push_back(PAWI.Index);
131
132       // FIXME: remove in LLVM 3.0
133       // Store the alignment in the bitcode as a 16-bit raw value instead of a
134       // 5-bit log2 encoded value. Shift the bits above the alignment up by
135       // 11 bits.
136       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
137       if (PAWI.Attrs & Attribute::Alignment)
138         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
139       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
140
141       Record.push_back(FauxAttr);
142     }
143     
144     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
145     Record.clear();
146   }
147   
148   Stream.ExitBlock();
149 }
150
151 /// WriteTypeTable - Write out the type table for a module.
152 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
153   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
154   
155   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
156   SmallVector<uint64_t, 64> TypeVals;
157   
158   // Abbrev for TYPE_CODE_POINTER.
159   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
160   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
161   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
162                             Log2_32_Ceil(VE.getTypes().size()+1)));
163   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
164   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
165   
166   // Abbrev for TYPE_CODE_FUNCTION.
167   Abbv = new BitCodeAbbrev();
168   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
169   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
170   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
171   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
173                             Log2_32_Ceil(VE.getTypes().size()+1)));
174   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
175   
176   // Abbrev for TYPE_CODE_STRUCT.
177   Abbv = new BitCodeAbbrev();
178   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
179   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
181   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
182                             Log2_32_Ceil(VE.getTypes().size()+1)));
183   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
184  
185   // Abbrev for TYPE_CODE_ARRAY.
186   Abbv = new BitCodeAbbrev();
187   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
188   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
189   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
190                             Log2_32_Ceil(VE.getTypes().size()+1)));
191   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
192   
193   // Emit an entry count so the reader can reserve space.
194   TypeVals.push_back(TypeList.size());
195   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
196   TypeVals.clear();
197   
198   // Loop over all of the types, emitting each in turn.
199   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
200     const Type *T = TypeList[i].first;
201     int AbbrevToUse = 0;
202     unsigned Code = 0;
203     
204     switch (T->getTypeID()) {
205     default: llvm_unreachable("Unknown type!");
206     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
207     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
208     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
209     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
210     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
211     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
212     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
213     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
214     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
215     case Type::IntegerTyID:
216       // INTEGER: [width]
217       Code = bitc::TYPE_CODE_INTEGER;
218       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
219       break;
220     case Type::PointerTyID: {
221       const PointerType *PTy = cast<PointerType>(T);
222       // POINTER: [pointee type, address space]
223       Code = bitc::TYPE_CODE_POINTER;
224       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
225       unsigned AddressSpace = PTy->getAddressSpace();
226       TypeVals.push_back(AddressSpace);
227       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
228       break;
229     }
230     case Type::FunctionTyID: {
231       const FunctionType *FT = cast<FunctionType>(T);
232       // FUNCTION: [isvararg, attrid, retty, paramty x N]
233       Code = bitc::TYPE_CODE_FUNCTION;
234       TypeVals.push_back(FT->isVarArg());
235       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
236       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
237       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
238         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
239       AbbrevToUse = FunctionAbbrev;
240       break;
241     }
242     case Type::StructTyID: {
243       const StructType *ST = cast<StructType>(T);
244       // STRUCT: [ispacked, eltty x N]
245       Code = bitc::TYPE_CODE_STRUCT;
246       TypeVals.push_back(ST->isPacked());
247       // Output all of the element types.
248       for (StructType::element_iterator I = ST->element_begin(),
249            E = ST->element_end(); I != E; ++I)
250         TypeVals.push_back(VE.getTypeID(*I));
251       AbbrevToUse = StructAbbrev;
252       break;
253     }
254     case Type::ArrayTyID: {
255       const ArrayType *AT = cast<ArrayType>(T);
256       // ARRAY: [numelts, eltty]
257       Code = bitc::TYPE_CODE_ARRAY;
258       TypeVals.push_back(AT->getNumElements());
259       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
260       AbbrevToUse = ArrayAbbrev;
261       break;
262     }
263     case Type::VectorTyID: {
264       const VectorType *VT = cast<VectorType>(T);
265       // VECTOR [numelts, eltty]
266       Code = bitc::TYPE_CODE_VECTOR;
267       TypeVals.push_back(VT->getNumElements());
268       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
269       break;
270     }
271     }
272
273     // Emit the finished record.
274     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
275     TypeVals.clear();
276   }
277   
278   Stream.ExitBlock();
279 }
280
281 static unsigned getEncodedLinkage(const GlobalValue *GV) {
282   switch (GV->getLinkage()) {
283   default: llvm_unreachable("Invalid linkage!");
284   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
285   case GlobalValue::ExternalLinkage:            return 0;
286   case GlobalValue::WeakAnyLinkage:             return 1;
287   case GlobalValue::AppendingLinkage:           return 2;
288   case GlobalValue::InternalLinkage:            return 3;
289   case GlobalValue::LinkOnceAnyLinkage:         return 4;
290   case GlobalValue::DLLImportLinkage:           return 5;
291   case GlobalValue::DLLExportLinkage:           return 6;
292   case GlobalValue::ExternalWeakLinkage:        return 7;
293   case GlobalValue::CommonLinkage:              return 8;
294   case GlobalValue::PrivateLinkage:             return 9;
295   case GlobalValue::WeakODRLinkage:             return 10;
296   case GlobalValue::LinkOnceODRLinkage:         return 11;
297   case GlobalValue::AvailableExternallyLinkage: return 12;
298   case GlobalValue::LinkerPrivateLinkage:       return 13;
299   }
300 }
301
302 static unsigned getEncodedVisibility(const GlobalValue *GV) {
303   switch (GV->getVisibility()) {
304   default: llvm_unreachable("Invalid visibility!");
305   case GlobalValue::DefaultVisibility:   return 0;
306   case GlobalValue::HiddenVisibility:    return 1;
307   case GlobalValue::ProtectedVisibility: return 2;
308   }
309 }
310
311 // Emit top-level description of module, including target triple, inline asm,
312 // descriptors for global variables, and function prototype info.
313 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
314                             BitstreamWriter &Stream) {
315   // Emit the list of dependent libraries for the Module.
316   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
317     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
318
319   // Emit various pieces of data attached to a module.
320   if (!M->getTargetTriple().empty())
321     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
322                       0/*TODO*/, Stream);
323   if (!M->getDataLayout().empty())
324     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
325                       0/*TODO*/, Stream);
326   if (!M->getModuleInlineAsm().empty())
327     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
328                       0/*TODO*/, Stream);
329
330   // Emit information about sections and GC, computing how many there are. Also
331   // compute the maximum alignment value.
332   std::map<std::string, unsigned> SectionMap;
333   std::map<std::string, unsigned> GCMap;
334   unsigned MaxAlignment = 0;
335   unsigned MaxGlobalType = 0;
336   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
337        GV != E; ++GV) {
338     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
339     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
340     
341     if (!GV->hasSection()) continue;
342     // Give section names unique ID's.
343     unsigned &Entry = SectionMap[GV->getSection()];
344     if (Entry != 0) continue;
345     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
346                       0/*TODO*/, Stream);
347     Entry = SectionMap.size();
348   }
349   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
350     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
351     if (F->hasSection()) {
352       // Give section names unique ID's.
353       unsigned &Entry = SectionMap[F->getSection()];
354       if (!Entry) {
355         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
356                           0/*TODO*/, Stream);
357         Entry = SectionMap.size();
358       }
359     }
360     if (F->hasGC()) {
361       // Same for GC names.
362       unsigned &Entry = GCMap[F->getGC()];
363       if (!Entry) {
364         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
365                           0/*TODO*/, Stream);
366         Entry = GCMap.size();
367       }
368     }
369   }
370   
371   // Emit abbrev for globals, now that we know # sections and max alignment.
372   unsigned SimpleGVarAbbrev = 0;
373   if (!M->global_empty()) { 
374     // Add an abbrev for common globals with no visibility or thread localness.
375     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
376     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
377     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
378                               Log2_32_Ceil(MaxGlobalType+1)));
379     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
382     if (MaxAlignment == 0)                                      // Alignment.
383       Abbv->Add(BitCodeAbbrevOp(0));
384     else {
385       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
386       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
387                                Log2_32_Ceil(MaxEncAlignment+1)));
388     }
389     if (SectionMap.empty())                                    // Section.
390       Abbv->Add(BitCodeAbbrevOp(0));
391     else
392       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
393                                Log2_32_Ceil(SectionMap.size()+1)));
394     // Don't bother emitting vis + thread local.
395     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
396   }
397   
398   // Emit the global variable information.
399   SmallVector<unsigned, 64> Vals;
400   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
401        GV != E; ++GV) {
402     unsigned AbbrevToUse = 0;
403
404     // GLOBALVAR: [type, isconst, initid, 
405     //             linkage, alignment, section, visibility, threadlocal]
406     Vals.push_back(VE.getTypeID(GV->getType()));
407     Vals.push_back(GV->isConstant());
408     Vals.push_back(GV->isDeclaration() ? 0 :
409                    (VE.getValueID(GV->getInitializer()) + 1));
410     Vals.push_back(getEncodedLinkage(GV));
411     Vals.push_back(Log2_32(GV->getAlignment())+1);
412     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
413     if (GV->isThreadLocal() || 
414         GV->getVisibility() != GlobalValue::DefaultVisibility) {
415       Vals.push_back(getEncodedVisibility(GV));
416       Vals.push_back(GV->isThreadLocal());
417     } else {
418       AbbrevToUse = SimpleGVarAbbrev;
419     }
420     
421     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
422     Vals.clear();
423   }
424
425   // Emit the function proto information.
426   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
427     // FUNCTION:  [type, callingconv, isproto, paramattr,
428     //             linkage, alignment, section, visibility, gc]
429     Vals.push_back(VE.getTypeID(F->getType()));
430     Vals.push_back(F->getCallingConv());
431     Vals.push_back(F->isDeclaration());
432     Vals.push_back(getEncodedLinkage(F));
433     Vals.push_back(VE.getAttributeID(F->getAttributes()));
434     Vals.push_back(Log2_32(F->getAlignment())+1);
435     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
436     Vals.push_back(getEncodedVisibility(F));
437     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
438     
439     unsigned AbbrevToUse = 0;
440     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
441     Vals.clear();
442   }
443   
444   
445   // Emit the alias information.
446   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
447        AI != E; ++AI) {
448     Vals.push_back(VE.getTypeID(AI->getType()));
449     Vals.push_back(VE.getValueID(AI->getAliasee()));
450     Vals.push_back(getEncodedLinkage(AI));
451     Vals.push_back(getEncodedVisibility(AI));
452     unsigned AbbrevToUse = 0;
453     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
454     Vals.clear();
455   }
456 }
457
458 static uint64_t GetOptimizationFlags(const Value *V) {
459   uint64_t Flags = 0;
460
461   if (const OverflowingBinaryOperator *OBO =
462         dyn_cast<OverflowingBinaryOperator>(V)) {
463     if (OBO->hasNoSignedWrap())
464       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
465     if (OBO->hasNoUnsignedWrap())
466       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
467   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
468     if (Div->isExact())
469       Flags |= 1 << bitc::SDIV_EXACT;
470   }
471
472   return Flags;
473 }
474
475 static void WriteMDNode(const MDNode *N,
476                         const ValueEnumerator &VE,
477                         BitstreamWriter &Stream,
478                         SmallVector<uint64_t, 64> &Record) {
479   for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
480     if (N->getElement(i)) {
481       Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
482       Record.push_back(VE.getValueID(N->getElement(i)));
483     } else {
484       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
485       Record.push_back(0);
486     }
487   }
488   Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
489   Record.clear();
490 }
491
492 static void WriteModuleMetadata(const ValueEnumerator &VE,
493                                 BitstreamWriter &Stream) {
494   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
495   bool StartedMetadataBlock = false;
496   unsigned MDSAbbrev = 0;
497   SmallVector<uint64_t, 64> Record;
498   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
499     
500     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
501       if (!StartedMetadataBlock) {
502         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
503         StartedMetadataBlock = true;
504       }
505       WriteMDNode(N, VE, Stream, Record);
506     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
507       if (!StartedMetadataBlock)  {
508         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
509         
510         // Abbrev for METADATA_STRING.
511         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
512         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
513         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
514         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
515         MDSAbbrev = Stream.EmitAbbrev(Abbv);
516         StartedMetadataBlock = true;
517       }
518       
519       // Code: [strchar x N]
520       const char *StrBegin = MDS->begin();
521       for (unsigned i = 0, e = MDS->length(); i != e; ++i)
522         Record.push_back(StrBegin[i]);
523       
524       // Emit the finished record.
525       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
526       Record.clear();
527     } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
528       if (!StartedMetadataBlock)  {
529         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
530         StartedMetadataBlock = true;
531       }
532
533       // Write name.
534       std::string Str = NMD->getNameStr();
535       const char *StrBegin = Str.c_str();
536       for (unsigned i = 0, e = Str.length(); i != e; ++i)
537         Record.push_back(StrBegin[i]);
538       Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
539       Record.clear();
540
541       // Write named metadata elements.
542       for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
543         if (NMD->getElement(i)) 
544           Record.push_back(VE.getValueID(NMD->getElement(i)));
545         else 
546           Record.push_back(0);
547       }
548       Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
549       Record.clear();
550     }
551   }
552   
553   if (StartedMetadataBlock)
554     Stream.ExitBlock();    
555 }
556
557 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
558                            const ValueEnumerator &VE,
559                            BitstreamWriter &Stream, bool isGlobal) {
560   if (FirstVal == LastVal) return;
561   
562   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
563
564   unsigned AggregateAbbrev = 0;
565   unsigned String8Abbrev = 0;
566   unsigned CString7Abbrev = 0;
567   unsigned CString6Abbrev = 0;
568   // If this is a constant pool for the module, emit module-specific abbrevs.
569   if (isGlobal) {
570     // Abbrev for CST_CODE_AGGREGATE.
571     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
572     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
573     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
574     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
575     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
576
577     // Abbrev for CST_CODE_STRING.
578     Abbv = new BitCodeAbbrev();
579     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
580     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
581     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
582     String8Abbrev = Stream.EmitAbbrev(Abbv);
583     // Abbrev for CST_CODE_CSTRING.
584     Abbv = new BitCodeAbbrev();
585     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
586     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
587     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
588     CString7Abbrev = Stream.EmitAbbrev(Abbv);
589     // Abbrev for CST_CODE_CSTRING.
590     Abbv = new BitCodeAbbrev();
591     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
592     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
593     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
594     CString6Abbrev = Stream.EmitAbbrev(Abbv);
595   }  
596   
597   SmallVector<uint64_t, 64> Record;
598
599   const ValueEnumerator::ValueList &Vals = VE.getValues();
600   const Type *LastTy = 0;
601   for (unsigned i = FirstVal; i != LastVal; ++i) {
602     const Value *V = Vals[i].first;
603     // If we need to switch types, do so now.
604     if (V->getType() != LastTy) {
605       LastTy = V->getType();
606       Record.push_back(VE.getTypeID(LastTy));
607       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
608                         CONSTANTS_SETTYPE_ABBREV);
609       Record.clear();
610     }
611     
612     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
613       Record.push_back(unsigned(IA->hasSideEffects()));
614       
615       // Add the asm string.
616       const std::string &AsmStr = IA->getAsmString();
617       Record.push_back(AsmStr.size());
618       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
619         Record.push_back(AsmStr[i]);
620       
621       // Add the constraint string.
622       const std::string &ConstraintStr = IA->getConstraintString();
623       Record.push_back(ConstraintStr.size());
624       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
625         Record.push_back(ConstraintStr[i]);
626       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
627       Record.clear();
628       continue;
629     }
630     const Constant *C = cast<Constant>(V);
631     unsigned Code = -1U;
632     unsigned AbbrevToUse = 0;
633     if (C->isNullValue()) {
634       Code = bitc::CST_CODE_NULL;
635     } else if (isa<UndefValue>(C)) {
636       Code = bitc::CST_CODE_UNDEF;
637     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
638       if (IV->getBitWidth() <= 64) {
639         int64_t V = IV->getSExtValue();
640         if (V >= 0)
641           Record.push_back(V << 1);
642         else
643           Record.push_back((-V << 1) | 1);
644         Code = bitc::CST_CODE_INTEGER;
645         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
646       } else {                             // Wide integers, > 64 bits in size.
647         // We have an arbitrary precision integer value to write whose 
648         // bit width is > 64. However, in canonical unsigned integer 
649         // format it is likely that the high bits are going to be zero.
650         // So, we only write the number of active words.
651         unsigned NWords = IV->getValue().getActiveWords(); 
652         const uint64_t *RawWords = IV->getValue().getRawData();
653         for (unsigned i = 0; i != NWords; ++i) {
654           int64_t V = RawWords[i];
655           if (V >= 0)
656             Record.push_back(V << 1);
657           else
658             Record.push_back((-V << 1) | 1);
659         }
660         Code = bitc::CST_CODE_WIDE_INTEGER;
661       }
662     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
663       Code = bitc::CST_CODE_FLOAT;
664       const Type *Ty = CFP->getType();
665       if (Ty == Type::getFloatTy(Ty->getContext()) ||
666           Ty == Type::getDoubleTy(Ty->getContext())) {
667         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
668       } else if (Ty == Type::getX86_FP80Ty(Ty->getContext())) {
669         // api needed to prevent premature destruction
670         // bits are not in the same order as a normal i80 APInt, compensate.
671         APInt api = CFP->getValueAPF().bitcastToAPInt();
672         const uint64_t *p = api.getRawData();
673         Record.push_back((p[1] << 48) | (p[0] >> 16));
674         Record.push_back(p[0] & 0xffffLL);
675       } else if (Ty == Type::getFP128Ty(Ty->getContext()) ||
676                  Ty == Type::getPPC_FP128Ty(Ty->getContext())) {
677         APInt api = CFP->getValueAPF().bitcastToAPInt();
678         const uint64_t *p = api.getRawData();
679         Record.push_back(p[0]);
680         Record.push_back(p[1]);
681       } else {
682         assert (0 && "Unknown FP type!");
683       }
684     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
685       // Emit constant strings specially.
686       unsigned NumOps = C->getNumOperands();
687       // If this is a null-terminated string, use the denser CSTRING encoding.
688       if (C->getOperand(NumOps-1)->isNullValue()) {
689         Code = bitc::CST_CODE_CSTRING;
690         --NumOps;  // Don't encode the null, which isn't allowed by char6.
691       } else {
692         Code = bitc::CST_CODE_STRING;
693         AbbrevToUse = String8Abbrev;
694       }
695       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
696       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
697       for (unsigned i = 0; i != NumOps; ++i) {
698         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
699         Record.push_back(V);
700         isCStr7 &= (V & 128) == 0;
701         if (isCStrChar6) 
702           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
703       }
704       
705       if (isCStrChar6)
706         AbbrevToUse = CString6Abbrev;
707       else if (isCStr7)
708         AbbrevToUse = CString7Abbrev;
709     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
710                isa<ConstantVector>(V)) {
711       Code = bitc::CST_CODE_AGGREGATE;
712       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
713         Record.push_back(VE.getValueID(C->getOperand(i)));
714       AbbrevToUse = AggregateAbbrev;
715     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
716       switch (CE->getOpcode()) {
717       default:
718         if (Instruction::isCast(CE->getOpcode())) {
719           Code = bitc::CST_CODE_CE_CAST;
720           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
721           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
722           Record.push_back(VE.getValueID(C->getOperand(0)));
723           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
724         } else {
725           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
726           Code = bitc::CST_CODE_CE_BINOP;
727           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
728           Record.push_back(VE.getValueID(C->getOperand(0)));
729           Record.push_back(VE.getValueID(C->getOperand(1)));
730           uint64_t Flags = GetOptimizationFlags(CE);
731           if (Flags != 0)
732             Record.push_back(Flags);
733         }
734         break;
735       case Instruction::GetElementPtr:
736         Code = bitc::CST_CODE_CE_GEP;
737         if (cast<GEPOperator>(C)->isInBounds())
738           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
739         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
740           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
741           Record.push_back(VE.getValueID(C->getOperand(i)));
742         }
743         break;
744       case Instruction::Select:
745         Code = bitc::CST_CODE_CE_SELECT;
746         Record.push_back(VE.getValueID(C->getOperand(0)));
747         Record.push_back(VE.getValueID(C->getOperand(1)));
748         Record.push_back(VE.getValueID(C->getOperand(2)));
749         break;
750       case Instruction::ExtractElement:
751         Code = bitc::CST_CODE_CE_EXTRACTELT;
752         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
753         Record.push_back(VE.getValueID(C->getOperand(0)));
754         Record.push_back(VE.getValueID(C->getOperand(1)));
755         break;
756       case Instruction::InsertElement:
757         Code = bitc::CST_CODE_CE_INSERTELT;
758         Record.push_back(VE.getValueID(C->getOperand(0)));
759         Record.push_back(VE.getValueID(C->getOperand(1)));
760         Record.push_back(VE.getValueID(C->getOperand(2)));
761         break;
762       case Instruction::ShuffleVector:
763         // If the return type and argument types are the same, this is a
764         // standard shufflevector instruction.  If the types are different,
765         // then the shuffle is widening or truncating the input vectors, and
766         // the argument type must also be encoded.
767         if (C->getType() == C->getOperand(0)->getType()) {
768           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
769         } else {
770           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
771           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
772         }
773         Record.push_back(VE.getValueID(C->getOperand(0)));
774         Record.push_back(VE.getValueID(C->getOperand(1)));
775         Record.push_back(VE.getValueID(C->getOperand(2)));
776         break;
777       case Instruction::ICmp:
778       case Instruction::FCmp:
779         Code = bitc::CST_CODE_CE_CMP;
780         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
781         Record.push_back(VE.getValueID(C->getOperand(0)));
782         Record.push_back(VE.getValueID(C->getOperand(1)));
783         Record.push_back(CE->getPredicate());
784         break;
785       }
786     } else {
787       llvm_unreachable("Unknown constant!");
788     }
789     Stream.EmitRecord(Code, Record, AbbrevToUse);
790     Record.clear();
791   }
792
793   Stream.ExitBlock();
794 }
795
796 static void WriteModuleConstants(const ValueEnumerator &VE,
797                                  BitstreamWriter &Stream) {
798   const ValueEnumerator::ValueList &Vals = VE.getValues();
799   
800   // Find the first constant to emit, which is the first non-globalvalue value.
801   // We know globalvalues have been emitted by WriteModuleInfo.
802   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
803     if (!isa<GlobalValue>(Vals[i].first)) {
804       WriteConstants(i, Vals.size(), VE, Stream, true);
805       return;
806     }
807   }
808 }
809
810 /// PushValueAndType - The file has to encode both the value and type id for
811 /// many values, because we need to know what type to create for forward
812 /// references.  However, most operands are not forward references, so this type
813 /// field is not needed.
814 ///
815 /// This function adds V's value ID to Vals.  If the value ID is higher than the
816 /// instruction ID, then it is a forward reference, and it also includes the
817 /// type ID.
818 static bool PushValueAndType(const Value *V, unsigned InstID,
819                              SmallVector<unsigned, 64> &Vals, 
820                              ValueEnumerator &VE) {
821   unsigned ValID = VE.getValueID(V);
822   Vals.push_back(ValID);
823   if (ValID >= InstID) {
824     Vals.push_back(VE.getTypeID(V->getType()));
825     return true;
826   }
827   return false;
828 }
829
830 /// WriteInstruction - Emit an instruction to the specified stream.
831 static void WriteInstruction(const Instruction &I, unsigned InstID,
832                              ValueEnumerator &VE, BitstreamWriter &Stream,
833                              SmallVector<unsigned, 64> &Vals) {
834   unsigned Code = 0;
835   unsigned AbbrevToUse = 0;
836   switch (I.getOpcode()) {
837   default:
838     if (Instruction::isCast(I.getOpcode())) {
839       Code = bitc::FUNC_CODE_INST_CAST;
840       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
841         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
842       Vals.push_back(VE.getTypeID(I.getType()));
843       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
844     } else {
845       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
846       Code = bitc::FUNC_CODE_INST_BINOP;
847       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
848         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
849       Vals.push_back(VE.getValueID(I.getOperand(1)));
850       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
851       uint64_t Flags = GetOptimizationFlags(&I);
852       if (Flags != 0) {
853         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
854           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
855         Vals.push_back(Flags);
856       }
857     }
858     break;
859
860   case Instruction::GetElementPtr:
861     Code = bitc::FUNC_CODE_INST_GEP;
862     if (cast<GEPOperator>(&I)->isInBounds())
863       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
864     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
865       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
866     break;
867   case Instruction::ExtractValue: {
868     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
869     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
870     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
871     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
872       Vals.push_back(*i);
873     break;
874   }
875   case Instruction::InsertValue: {
876     Code = bitc::FUNC_CODE_INST_INSERTVAL;
877     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
878     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
879     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
880     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
881       Vals.push_back(*i);
882     break;
883   }
884   case Instruction::Select:
885     Code = bitc::FUNC_CODE_INST_VSELECT;
886     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
887     Vals.push_back(VE.getValueID(I.getOperand(2)));
888     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
889     break;
890   case Instruction::ExtractElement:
891     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
892     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
893     Vals.push_back(VE.getValueID(I.getOperand(1)));
894     break;
895   case Instruction::InsertElement:
896     Code = bitc::FUNC_CODE_INST_INSERTELT;
897     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
898     Vals.push_back(VE.getValueID(I.getOperand(1)));
899     Vals.push_back(VE.getValueID(I.getOperand(2)));
900     break;
901   case Instruction::ShuffleVector:
902     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
903     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
904     Vals.push_back(VE.getValueID(I.getOperand(1)));
905     Vals.push_back(VE.getValueID(I.getOperand(2)));
906     break;
907   case Instruction::ICmp:
908   case Instruction::FCmp:
909     // compare returning Int1Ty or vector of Int1Ty
910     Code = bitc::FUNC_CODE_INST_CMP2;
911     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
912     Vals.push_back(VE.getValueID(I.getOperand(1)));
913     Vals.push_back(cast<CmpInst>(I).getPredicate());
914     break;
915
916   case Instruction::Ret: 
917     {
918       Code = bitc::FUNC_CODE_INST_RET;
919       unsigned NumOperands = I.getNumOperands();
920       if (NumOperands == 0)
921         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
922       else if (NumOperands == 1) {
923         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
924           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
925       } else {
926         for (unsigned i = 0, e = NumOperands; i != e; ++i)
927           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
928       }
929     }
930     break;
931   case Instruction::Br:
932     {
933       Code = bitc::FUNC_CODE_INST_BR;
934       BranchInst &II(cast<BranchInst>(I));
935       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
936       if (II.isConditional()) {
937         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
938         Vals.push_back(VE.getValueID(II.getCondition()));
939       }
940     }
941     break;
942   case Instruction::Switch:
943     Code = bitc::FUNC_CODE_INST_SWITCH;
944     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
945     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
946       Vals.push_back(VE.getValueID(I.getOperand(i)));
947     break;
948   case Instruction::Invoke: {
949     const InvokeInst *II = cast<InvokeInst>(&I);
950     const Value *Callee(II->getCalledValue());
951     const PointerType *PTy = cast<PointerType>(Callee->getType());
952     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
953     Code = bitc::FUNC_CODE_INST_INVOKE;
954     
955     Vals.push_back(VE.getAttributeID(II->getAttributes()));
956     Vals.push_back(II->getCallingConv());
957     Vals.push_back(VE.getValueID(II->getNormalDest()));
958     Vals.push_back(VE.getValueID(II->getUnwindDest()));
959     PushValueAndType(Callee, InstID, Vals, VE);
960     
961     // Emit value #'s for the fixed parameters.
962     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
963       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
964
965     // Emit type/value pairs for varargs params.
966     if (FTy->isVarArg()) {
967       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
968            i != e; ++i)
969         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
970     }
971     break;
972   }
973   case Instruction::Unwind:
974     Code = bitc::FUNC_CODE_INST_UNWIND;
975     break;
976   case Instruction::Unreachable:
977     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
978     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
979     break;
980   
981   case Instruction::PHI:
982     Code = bitc::FUNC_CODE_INST_PHI;
983     Vals.push_back(VE.getTypeID(I.getType()));
984     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
985       Vals.push_back(VE.getValueID(I.getOperand(i)));
986     break;
987     
988   case Instruction::Malloc:
989     Code = bitc::FUNC_CODE_INST_MALLOC;
990     Vals.push_back(VE.getTypeID(I.getType()));
991     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
992     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
993     break;
994     
995   case Instruction::Free:
996     Code = bitc::FUNC_CODE_INST_FREE;
997     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
998     break;
999     
1000   case Instruction::Alloca:
1001     Code = bitc::FUNC_CODE_INST_ALLOCA;
1002     Vals.push_back(VE.getTypeID(I.getType()));
1003     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1004     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1005     break;
1006     
1007   case Instruction::Load:
1008     Code = bitc::FUNC_CODE_INST_LOAD;
1009     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1010       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1011       
1012     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1013     Vals.push_back(cast<LoadInst>(I).isVolatile());
1014     break;
1015   case Instruction::Store:
1016     Code = bitc::FUNC_CODE_INST_STORE2;
1017     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1018     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1019     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1020     Vals.push_back(cast<StoreInst>(I).isVolatile());
1021     break;
1022   case Instruction::Call: {
1023     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1024     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1025
1026     Code = bitc::FUNC_CODE_INST_CALL;
1027     
1028     const CallInst *CI = cast<CallInst>(&I);
1029     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1030     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1031     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1032     
1033     // Emit value #'s for the fixed parameters.
1034     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1035       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1036       
1037     // Emit type/value pairs for varargs params.
1038     if (FTy->isVarArg()) {
1039       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1040       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1041            i != e; ++i)
1042         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1043     }
1044     break;
1045   }
1046   case Instruction::VAArg:
1047     Code = bitc::FUNC_CODE_INST_VAARG;
1048     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1049     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1050     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1051     break;
1052   }
1053   
1054   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1055   Vals.clear();
1056 }
1057
1058 // Emit names for globals/functions etc.
1059 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1060                                   const ValueEnumerator &VE,
1061                                   BitstreamWriter &Stream) {
1062   if (VST.empty()) return;
1063   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1064
1065   // FIXME: Set up the abbrev, we know how many values there are!
1066   // FIXME: We know if the type names can use 7-bit ascii.
1067   SmallVector<unsigned, 64> NameVals;
1068   
1069   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1070        SI != SE; ++SI) {
1071     
1072     const ValueName &Name = *SI;
1073     
1074     // Figure out the encoding to use for the name.
1075     bool is7Bit = true;
1076     bool isChar6 = true;
1077     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1078          C != E; ++C) {
1079       if (isChar6) 
1080         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1081       if ((unsigned char)*C & 128) {
1082         is7Bit = false;
1083         break;  // don't bother scanning the rest.
1084       }
1085     }
1086     
1087     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1088     
1089     // VST_ENTRY:   [valueid, namechar x N]
1090     // VST_BBENTRY: [bbid, namechar x N]
1091     unsigned Code;
1092     if (isa<BasicBlock>(SI->getValue())) {
1093       Code = bitc::VST_CODE_BBENTRY;
1094       if (isChar6)
1095         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1096     } else {
1097       Code = bitc::VST_CODE_ENTRY;
1098       if (isChar6)
1099         AbbrevToUse = VST_ENTRY_6_ABBREV;
1100       else if (is7Bit)
1101         AbbrevToUse = VST_ENTRY_7_ABBREV;
1102     }
1103     
1104     NameVals.push_back(VE.getValueID(SI->getValue()));
1105     for (const char *P = Name.getKeyData(),
1106          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1107       NameVals.push_back((unsigned char)*P);
1108     
1109     // Emit the finished record.
1110     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1111     NameVals.clear();
1112   }
1113   Stream.ExitBlock();
1114 }
1115
1116 /// WriteFunction - Emit a function body to the module stream.
1117 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
1118                           BitstreamWriter &Stream) {
1119   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1120   VE.incorporateFunction(F);
1121
1122   SmallVector<unsigned, 64> Vals;
1123   
1124   // Emit the number of basic blocks, so the reader can create them ahead of
1125   // time.
1126   Vals.push_back(VE.getBasicBlocks().size());
1127   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1128   Vals.clear();
1129   
1130   // If there are function-local constants, emit them now.
1131   unsigned CstStart, CstEnd;
1132   VE.getFunctionConstantRange(CstStart, CstEnd);
1133   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1134   
1135   // Keep a running idea of what the instruction ID is. 
1136   unsigned InstID = CstEnd;
1137   
1138   // Finally, emit all the instructions, in order.
1139   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1140     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1141          I != E; ++I) {
1142       WriteInstruction(*I, InstID, VE, Stream, Vals);
1143       if (I->getType() != Type::getVoidTy(F.getContext()))
1144         ++InstID;
1145     }
1146   
1147   // Emit names for all the instructions etc.
1148   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1149     
1150   VE.purgeFunction();
1151   Stream.ExitBlock();
1152 }
1153
1154 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1155 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1156                                  const ValueEnumerator &VE,
1157                                  BitstreamWriter &Stream) {
1158   if (TST.empty()) return;
1159   
1160   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1161   
1162   // 7-bit fixed width VST_CODE_ENTRY strings.
1163   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1164   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1165   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1166                             Log2_32_Ceil(VE.getTypes().size()+1)));
1167   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1168   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1169   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1170   
1171   SmallVector<unsigned, 64> NameVals;
1172   
1173   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
1174        TI != TE; ++TI) {
1175     // TST_ENTRY: [typeid, namechar x N]
1176     NameVals.push_back(VE.getTypeID(TI->second));
1177     
1178     const std::string &Str = TI->first;
1179     bool is7Bit = true;
1180     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1181       NameVals.push_back((unsigned char)Str[i]);
1182       if (Str[i] & 128)
1183         is7Bit = false;
1184     }
1185     
1186     // Emit the finished record.
1187     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1188     NameVals.clear();
1189   }
1190   
1191   Stream.ExitBlock();
1192 }
1193
1194 // Emit blockinfo, which defines the standard abbreviations etc.
1195 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1196   // We only want to emit block info records for blocks that have multiple
1197   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1198   // blocks can defined their abbrevs inline.
1199   Stream.EnterBlockInfoBlock(2);
1200   
1201   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1202     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1203     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1204     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1205     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1206     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1207     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1208                                    Abbv) != VST_ENTRY_8_ABBREV)
1209       llvm_unreachable("Unexpected abbrev ordering!");
1210   }
1211   
1212   { // 7-bit fixed width VST_ENTRY strings.
1213     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1214     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1215     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1216     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1217     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1218     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1219                                    Abbv) != VST_ENTRY_7_ABBREV)
1220       llvm_unreachable("Unexpected abbrev ordering!");
1221   }
1222   { // 6-bit char6 VST_ENTRY strings.
1223     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1224     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1225     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1226     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1227     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1228     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1229                                    Abbv) != VST_ENTRY_6_ABBREV)
1230       llvm_unreachable("Unexpected abbrev ordering!");
1231   }
1232   { // 6-bit char6 VST_BBENTRY strings.
1233     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1234     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1235     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1236     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1237     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1238     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1239                                    Abbv) != VST_BBENTRY_6_ABBREV)
1240       llvm_unreachable("Unexpected abbrev ordering!");
1241   }
1242   
1243   
1244   
1245   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1246     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1247     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1248     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1249                               Log2_32_Ceil(VE.getTypes().size()+1)));
1250     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1251                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1252       llvm_unreachable("Unexpected abbrev ordering!");
1253   }
1254   
1255   { // INTEGER abbrev for CONSTANTS_BLOCK.
1256     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1257     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1258     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1259     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1260                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1261       llvm_unreachable("Unexpected abbrev ordering!");
1262   }
1263   
1264   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1265     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1266     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1267     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1268     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1269                               Log2_32_Ceil(VE.getTypes().size()+1)));
1270     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1271
1272     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1273                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1274       llvm_unreachable("Unexpected abbrev ordering!");
1275   }
1276   { // NULL abbrev for CONSTANTS_BLOCK.
1277     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1278     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1279     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1280                                    Abbv) != CONSTANTS_NULL_Abbrev)
1281       llvm_unreachable("Unexpected abbrev ordering!");
1282   }
1283   
1284   // FIXME: This should only use space for first class types!
1285  
1286   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1287     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1288     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1289     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1290     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1291     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1292     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1293                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1294       llvm_unreachable("Unexpected abbrev ordering!");
1295   }
1296   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1297     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1298     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1299     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1300     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1301     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1302     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1303                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1304       llvm_unreachable("Unexpected abbrev ordering!");
1305   }
1306   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1307     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1308     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1309     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1310     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1311     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1312     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1313     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1314                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1315       llvm_unreachable("Unexpected abbrev ordering!");
1316   }
1317   { // INST_CAST abbrev for FUNCTION_BLOCK.
1318     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1319     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1320     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1321     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1322                               Log2_32_Ceil(VE.getTypes().size()+1)));
1323     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1324     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1325                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1326       llvm_unreachable("Unexpected abbrev ordering!");
1327   }
1328   
1329   { // INST_RET abbrev for FUNCTION_BLOCK.
1330     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1331     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1332     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1333                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1334       llvm_unreachable("Unexpected abbrev ordering!");
1335   }
1336   { // INST_RET abbrev for FUNCTION_BLOCK.
1337     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1338     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1339     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1340     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1341                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1342       llvm_unreachable("Unexpected abbrev ordering!");
1343   }
1344   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1345     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1346     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1347     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1348                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1349       llvm_unreachable("Unexpected abbrev ordering!");
1350   }
1351   
1352   Stream.ExitBlock();
1353 }
1354
1355
1356 /// WriteModule - Emit the specified module to the bitstream.
1357 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1358   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1359   
1360   // Emit the version number if it is non-zero.
1361   if (CurVersion) {
1362     SmallVector<unsigned, 1> Vals;
1363     Vals.push_back(CurVersion);
1364     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1365   }
1366   
1367   // Analyze the module, enumerating globals, functions, etc.
1368   ValueEnumerator VE(M);
1369
1370   // Emit blockinfo, which defines the standard abbreviations etc.
1371   WriteBlockInfo(VE, Stream);
1372   
1373   // Emit information about parameter attributes.
1374   WriteAttributeTable(VE, Stream);
1375   
1376   // Emit information describing all of the types in the module.
1377   WriteTypeTable(VE, Stream);
1378   
1379   // Emit top-level description of module, including target triple, inline asm,
1380   // descriptors for global variables, and function prototype info.
1381   WriteModuleInfo(M, VE, Stream);
1382
1383   // Emit constants.
1384   WriteModuleConstants(VE, Stream);
1385
1386   // Emit metadata.
1387   WriteModuleMetadata(VE, Stream);
1388
1389   // Emit function bodies.
1390   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1391     if (!I->isDeclaration())
1392       WriteFunction(*I, VE, Stream);
1393   
1394   // Emit the type symbol table information.
1395   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1396   
1397   // Emit names for globals/functions etc.
1398   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1399   
1400   Stream.ExitBlock();
1401 }
1402
1403 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1404 /// header and trailer to make it compatible with the system archiver.  To do
1405 /// this we emit the following header, and then emit a trailer that pads the
1406 /// file out to be a multiple of 16 bytes.
1407 /// 
1408 /// struct bc_header {
1409 ///   uint32_t Magic;         // 0x0B17C0DE
1410 ///   uint32_t Version;       // Version, currently always 0.
1411 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1412 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1413 ///   uint32_t CPUType;       // CPU specifier.
1414 ///   ... potentially more later ...
1415 /// };
1416 enum {
1417   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1418   DarwinBCHeaderSize = 5*4
1419 };
1420
1421 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1422                                const std::string &TT) {
1423   unsigned CPUType = ~0U;
1424   
1425   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1426   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1427   // specific constants here because they are implicitly part of the Darwin ABI.
1428   enum {
1429     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1430     DARWIN_CPU_TYPE_X86        = 7,
1431     DARWIN_CPU_TYPE_POWERPC    = 18
1432   };
1433   
1434   if (TT.find("x86_64-") == 0)
1435     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1436   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1437            TT[4] == '-' && TT[1] - '3' < 6)
1438     CPUType = DARWIN_CPU_TYPE_X86;
1439   else if (TT.find("powerpc-") == 0)
1440     CPUType = DARWIN_CPU_TYPE_POWERPC;
1441   else if (TT.find("powerpc64-") == 0)
1442     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1443   
1444   // Traditional Bitcode starts after header.
1445   unsigned BCOffset = DarwinBCHeaderSize;
1446   
1447   Stream.Emit(0x0B17C0DE, 32);
1448   Stream.Emit(0         , 32);  // Version.
1449   Stream.Emit(BCOffset  , 32);
1450   Stream.Emit(0         , 32);  // Filled in later.
1451   Stream.Emit(CPUType   , 32);
1452 }
1453
1454 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1455 /// finalize the header.
1456 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1457   // Update the size field in the header.
1458   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1459   
1460   // If the file is not a multiple of 16 bytes, insert dummy padding.
1461   while (BufferSize & 15) {
1462     Stream.Emit(0, 8);
1463     ++BufferSize;
1464   }
1465 }
1466
1467
1468 /// WriteBitcodeToFile - Write the specified module to the specified output
1469 /// stream.
1470 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1471   std::vector<unsigned char> Buffer;
1472   BitstreamWriter Stream(Buffer);
1473   
1474   Buffer.reserve(256*1024);
1475
1476   WriteBitcodeToStream( M, Stream );
1477   
1478   // If writing to stdout, set binary mode.
1479   if (&llvm::outs() == &Out)
1480     sys::Program::ChangeStdoutToBinary();
1481
1482   // Write the generated bitstream to "Out".
1483   Out.write((char*)&Buffer.front(), Buffer.size());
1484   
1485   // Make sure it hits disk now.
1486   Out.flush();
1487 }
1488
1489 /// WriteBitcodeToStream - Write the specified module to the specified output
1490 /// stream.
1491 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1492   // If this is darwin, emit a file header and trailer if needed.
1493   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1494   if (isDarwin)
1495     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1496   
1497   // Emit the file header.
1498   Stream.Emit((unsigned)'B', 8);
1499   Stream.Emit((unsigned)'C', 8);
1500   Stream.Emit(0x0, 4);
1501   Stream.Emit(0xC, 4);
1502   Stream.Emit(0xE, 4);
1503   Stream.Emit(0xD, 4);
1504
1505   // Emit the module.
1506   WriteModule(M, Stream);
1507
1508   if (isDarwin)
1509     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1510 }