Derive MDNode from MetadataBase instead of Constant. Emit MDNodes into METADATA_BLOCK...
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/MDNode.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/ValueSymbolTable.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Streams.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/System/Program.h"
32 using namespace llvm;
33
34 /// These are manifest constants used by the bitcode writer. They do not need to
35 /// be kept in sync with the reader, but need to be consistent within this file.
36 enum {
37   CurVersion = 0,
38   
39   // VALUE_SYMTAB_BLOCK abbrev id's.
40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   VST_ENTRY_7_ABBREV,
42   VST_ENTRY_6_ABBREV,
43   VST_BBENTRY_6_ABBREV,
44   
45   // CONSTANTS_BLOCK abbrev id's.
46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   CONSTANTS_INTEGER_ABBREV,
48   CONSTANTS_CE_CAST_Abbrev,
49   CONSTANTS_NULL_Abbrev,
50   
51   // FUNCTION_BLOCK abbrev id's.
52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53   FUNCTION_INST_BINOP_ABBREV,
54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
55   FUNCTION_INST_CAST_ABBREV,
56   FUNCTION_INST_RET_VOID_ABBREV,
57   FUNCTION_INST_RET_VAL_ABBREV,
58   FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60
61
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   }
78 }
79
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81   switch (Opcode) {
82   default: llvm_unreachable("Unknown binary instruction!");
83   case Instruction::Add:
84   case Instruction::FAdd: return bitc::BINOP_ADD;
85   case Instruction::Sub:
86   case Instruction::FSub: return bitc::BINOP_SUB;
87   case Instruction::Mul:
88   case Instruction::FMul: return bitc::BINOP_MUL;
89   case Instruction::UDiv: return bitc::BINOP_UDIV;
90   case Instruction::FDiv:
91   case Instruction::SDiv: return bitc::BINOP_SDIV;
92   case Instruction::URem: return bitc::BINOP_UREM;
93   case Instruction::FRem:
94   case Instruction::SRem: return bitc::BINOP_SREM;
95   case Instruction::Shl:  return bitc::BINOP_SHL;
96   case Instruction::LShr: return bitc::BINOP_LSHR;
97   case Instruction::AShr: return bitc::BINOP_ASHR;
98   case Instruction::And:  return bitc::BINOP_AND;
99   case Instruction::Or:   return bitc::BINOP_OR;
100   case Instruction::Xor:  return bitc::BINOP_XOR;
101   }
102 }
103
104
105
106 static void WriteStringRecord(unsigned Code, const std::string &Str, 
107                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
108   SmallVector<unsigned, 64> Vals;
109   
110   // Code: [strchar x N]
111   for (unsigned i = 0, e = Str.size(); i != e; ++i)
112     Vals.push_back(Str[i]);
113     
114   // Emit the finished record.
115   Stream.EmitRecord(Code, Vals, AbbrevToUse);
116 }
117
118 // Emit information about parameter attributes.
119 static void WriteAttributeTable(const ValueEnumerator &VE, 
120                                 BitstreamWriter &Stream) {
121   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
122   if (Attrs.empty()) return;
123   
124   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
125
126   SmallVector<uint64_t, 64> Record;
127   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
128     const AttrListPtr &A = Attrs[i];
129     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
130       const AttributeWithIndex &PAWI = A.getSlot(i);
131       Record.push_back(PAWI.Index);
132
133       // FIXME: remove in LLVM 3.0
134       // Store the alignment in the bitcode as a 16-bit raw value instead of a
135       // 5-bit log2 encoded value. Shift the bits above the alignment up by
136       // 11 bits.
137       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
138       if (PAWI.Attrs & Attribute::Alignment)
139         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
140       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
141
142       Record.push_back(FauxAttr);
143     }
144     
145     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
146     Record.clear();
147   }
148   
149   Stream.ExitBlock();
150 }
151
152 /// WriteTypeTable - Write out the type table for a module.
153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
154   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
155   
156   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
157   SmallVector<uint64_t, 64> TypeVals;
158   
159   // Abbrev for TYPE_CODE_POINTER.
160   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
161   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                             Log2_32_Ceil(VE.getTypes().size()+1)));
164   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
165   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
166   
167   // Abbrev for TYPE_CODE_FUNCTION.
168   Abbv = new BitCodeAbbrev();
169   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
171   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
174                             Log2_32_Ceil(VE.getTypes().size()+1)));
175   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
176   
177   // Abbrev for TYPE_CODE_STRUCT.
178   Abbv = new BitCodeAbbrev();
179   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
181   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
183                             Log2_32_Ceil(VE.getTypes().size()+1)));
184   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
185  
186   // Abbrev for TYPE_CODE_ARRAY.
187   Abbv = new BitCodeAbbrev();
188   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
189   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
190   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
191                             Log2_32_Ceil(VE.getTypes().size()+1)));
192   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
193   
194   // Emit an entry count so the reader can reserve space.
195   TypeVals.push_back(TypeList.size());
196   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
197   TypeVals.clear();
198   
199   // Loop over all of the types, emitting each in turn.
200   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
201     const Type *T = TypeList[i].first;
202     int AbbrevToUse = 0;
203     unsigned Code = 0;
204     
205     switch (T->getTypeID()) {
206     default: llvm_unreachable("Unknown type!");
207     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
208     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
209     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
210     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
211     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
212     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
213     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
214     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
215     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
216     case Type::IntegerTyID:
217       // INTEGER: [width]
218       Code = bitc::TYPE_CODE_INTEGER;
219       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
220       break;
221     case Type::PointerTyID: {
222       const PointerType *PTy = cast<PointerType>(T);
223       // POINTER: [pointee type, address space]
224       Code = bitc::TYPE_CODE_POINTER;
225       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
226       unsigned AddressSpace = PTy->getAddressSpace();
227       TypeVals.push_back(AddressSpace);
228       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
229       break;
230     }
231     case Type::FunctionTyID: {
232       const FunctionType *FT = cast<FunctionType>(T);
233       // FUNCTION: [isvararg, attrid, retty, paramty x N]
234       Code = bitc::TYPE_CODE_FUNCTION;
235       TypeVals.push_back(FT->isVarArg());
236       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
237       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
238       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
239         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
240       AbbrevToUse = FunctionAbbrev;
241       break;
242     }
243     case Type::StructTyID: {
244       const StructType *ST = cast<StructType>(T);
245       // STRUCT: [ispacked, eltty x N]
246       Code = bitc::TYPE_CODE_STRUCT;
247       TypeVals.push_back(ST->isPacked());
248       // Output all of the element types.
249       for (StructType::element_iterator I = ST->element_begin(),
250            E = ST->element_end(); I != E; ++I)
251         TypeVals.push_back(VE.getTypeID(*I));
252       AbbrevToUse = StructAbbrev;
253       break;
254     }
255     case Type::ArrayTyID: {
256       const ArrayType *AT = cast<ArrayType>(T);
257       // ARRAY: [numelts, eltty]
258       Code = bitc::TYPE_CODE_ARRAY;
259       TypeVals.push_back(AT->getNumElements());
260       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
261       AbbrevToUse = ArrayAbbrev;
262       break;
263     }
264     case Type::VectorTyID: {
265       const VectorType *VT = cast<VectorType>(T);
266       // VECTOR [numelts, eltty]
267       Code = bitc::TYPE_CODE_VECTOR;
268       TypeVals.push_back(VT->getNumElements());
269       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
270       break;
271     }
272     }
273
274     // Emit the finished record.
275     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
276     TypeVals.clear();
277   }
278   
279   Stream.ExitBlock();
280 }
281
282 static unsigned getEncodedLinkage(const GlobalValue *GV) {
283   switch (GV->getLinkage()) {
284   default: llvm_unreachable("Invalid linkage!");
285   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
286   case GlobalValue::ExternalLinkage:            return 0;
287   case GlobalValue::WeakAnyLinkage:             return 1;
288   case GlobalValue::AppendingLinkage:           return 2;
289   case GlobalValue::InternalLinkage:            return 3;
290   case GlobalValue::LinkOnceAnyLinkage:         return 4;
291   case GlobalValue::DLLImportLinkage:           return 5;
292   case GlobalValue::DLLExportLinkage:           return 6;
293   case GlobalValue::ExternalWeakLinkage:        return 7;
294   case GlobalValue::CommonLinkage:              return 8;
295   case GlobalValue::PrivateLinkage:             return 9;
296   case GlobalValue::WeakODRLinkage:             return 10;
297   case GlobalValue::LinkOnceODRLinkage:         return 11;
298   case GlobalValue::AvailableExternallyLinkage: return 12;
299   case GlobalValue::LinkerPrivateLinkage:       return 13;
300   }
301 }
302
303 static unsigned getEncodedVisibility(const GlobalValue *GV) {
304   switch (GV->getVisibility()) {
305   default: llvm_unreachable("Invalid visibility!");
306   case GlobalValue::DefaultVisibility:   return 0;
307   case GlobalValue::HiddenVisibility:    return 1;
308   case GlobalValue::ProtectedVisibility: return 2;
309   }
310 }
311
312 // Emit top-level description of module, including target triple, inline asm,
313 // descriptors for global variables, and function prototype info.
314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
315                             BitstreamWriter &Stream) {
316   // Emit the list of dependent libraries for the Module.
317   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
318     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
319
320   // Emit various pieces of data attached to a module.
321   if (!M->getTargetTriple().empty())
322     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
323                       0/*TODO*/, Stream);
324   if (!M->getDataLayout().empty())
325     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
326                       0/*TODO*/, Stream);
327   if (!M->getModuleInlineAsm().empty())
328     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
329                       0/*TODO*/, Stream);
330
331   // Emit information about sections and GC, computing how many there are. Also
332   // compute the maximum alignment value.
333   std::map<std::string, unsigned> SectionMap;
334   std::map<std::string, unsigned> GCMap;
335   unsigned MaxAlignment = 0;
336   unsigned MaxGlobalType = 0;
337   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
338        GV != E; ++GV) {
339     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
340     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
341     
342     if (!GV->hasSection()) continue;
343     // Give section names unique ID's.
344     unsigned &Entry = SectionMap[GV->getSection()];
345     if (Entry != 0) continue;
346     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
347                       0/*TODO*/, Stream);
348     Entry = SectionMap.size();
349   }
350   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
351     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
352     if (F->hasSection()) {
353       // Give section names unique ID's.
354       unsigned &Entry = SectionMap[F->getSection()];
355       if (!Entry) {
356         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
357                           0/*TODO*/, Stream);
358         Entry = SectionMap.size();
359       }
360     }
361     if (F->hasGC()) {
362       // Same for GC names.
363       unsigned &Entry = GCMap[F->getGC()];
364       if (!Entry) {
365         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
366                           0/*TODO*/, Stream);
367         Entry = GCMap.size();
368       }
369     }
370   }
371   
372   // Emit abbrev for globals, now that we know # sections and max alignment.
373   unsigned SimpleGVarAbbrev = 0;
374   if (!M->global_empty()) { 
375     // Add an abbrev for common globals with no visibility or thread localness.
376     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
377     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
379                               Log2_32_Ceil(MaxGlobalType+1)));
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
383     if (MaxAlignment == 0)                                      // Alignment.
384       Abbv->Add(BitCodeAbbrevOp(0));
385     else {
386       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
387       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
388                                Log2_32_Ceil(MaxEncAlignment+1)));
389     }
390     if (SectionMap.empty())                                    // Section.
391       Abbv->Add(BitCodeAbbrevOp(0));
392     else
393       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
394                                Log2_32_Ceil(SectionMap.size()+1)));
395     // Don't bother emitting vis + thread local.
396     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
397   }
398   
399   // Emit the global variable information.
400   SmallVector<unsigned, 64> Vals;
401   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
402        GV != E; ++GV) {
403     unsigned AbbrevToUse = 0;
404
405     // GLOBALVAR: [type, isconst, initid, 
406     //             linkage, alignment, section, visibility, threadlocal]
407     Vals.push_back(VE.getTypeID(GV->getType()));
408     Vals.push_back(GV->isConstant());
409     Vals.push_back(GV->isDeclaration() ? 0 :
410                    (VE.getValueID(GV->getInitializer()) + 1));
411     Vals.push_back(getEncodedLinkage(GV));
412     Vals.push_back(Log2_32(GV->getAlignment())+1);
413     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
414     if (GV->isThreadLocal() || 
415         GV->getVisibility() != GlobalValue::DefaultVisibility) {
416       Vals.push_back(getEncodedVisibility(GV));
417       Vals.push_back(GV->isThreadLocal());
418     } else {
419       AbbrevToUse = SimpleGVarAbbrev;
420     }
421     
422     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
423     Vals.clear();
424   }
425
426   // Emit the function proto information.
427   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
428     // FUNCTION:  [type, callingconv, isproto, paramattr,
429     //             linkage, alignment, section, visibility, gc]
430     Vals.push_back(VE.getTypeID(F->getType()));
431     Vals.push_back(F->getCallingConv());
432     Vals.push_back(F->isDeclaration());
433     Vals.push_back(getEncodedLinkage(F));
434     Vals.push_back(VE.getAttributeID(F->getAttributes()));
435     Vals.push_back(Log2_32(F->getAlignment())+1);
436     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
437     Vals.push_back(getEncodedVisibility(F));
438     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
439     
440     unsigned AbbrevToUse = 0;
441     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
442     Vals.clear();
443   }
444   
445   
446   // Emit the alias information.
447   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
448        AI != E; ++AI) {
449     Vals.push_back(VE.getTypeID(AI->getType()));
450     Vals.push_back(VE.getValueID(AI->getAliasee()));
451     Vals.push_back(getEncodedLinkage(AI));
452     Vals.push_back(getEncodedVisibility(AI));
453     unsigned AbbrevToUse = 0;
454     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
455     Vals.clear();
456   }
457 }
458
459 static uint64_t GetOptimizationFlags(const Value *V) {
460   uint64_t Flags = 0;
461
462   if (const OverflowingBinaryOperator *OBO =
463         dyn_cast<OverflowingBinaryOperator>(V)) {
464     if (OBO->hasNoSignedOverflow())
465       Flags |= 1 << bitc::OBO_NO_SIGNED_OVERFLOW;
466     if (OBO->hasNoUnsignedOverflow())
467       Flags |= 1 << bitc::OBO_NO_UNSIGNED_OVERFLOW;
468   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
469     if (Div->isExact())
470       Flags |= 1 << bitc::SDIV_EXACT;
471   }
472
473   return Flags;
474 }
475
476  static void WriteModuleMetadata(const ValueEnumerator &VE,
477                                  BitstreamWriter &Stream) {
478    const ValueEnumerator::ValueList &Vals = VE.getValues();
479    bool StartedMetadataBlock = false;
480    unsigned MDSAbbrev = 0;
481    SmallVector<uint64_t, 64> Record;
482    for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
483
484      if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
485        if (!StartedMetadataBlock) {
486          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
487          StartedMetadataBlock = true;
488        }
489       for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
490         if (N->getElement(i)) {
491           Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
492           Record.push_back(VE.getValueID(N->getElement(i)));
493         } else {
494           Record.push_back(VE.getTypeID(Type::VoidTy));
495           Record.push_back(0);
496         }
497       }
498       Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
499       Record.clear();
500      } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
501        if (!StartedMetadataBlock)  {
502         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
503
504         // Abbrev for METADATA_STRING.
505         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
506         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
507         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
508         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
509         MDSAbbrev = Stream.EmitAbbrev(Abbv);
510         StartedMetadataBlock = true;
511        }
512
513        // Code: [strchar x N]
514        const char *StrBegin = MDS->begin();
515        for (unsigned i = 0, e = MDS->size(); i != e; ++i)
516         Record.push_back(StrBegin[i]);
517     
518        // Emit the finished record.
519       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
520       Record.clear();
521      }
522    }
523
524    if (StartedMetadataBlock)
525      Stream.ExitBlock();    
526 }
527
528
529 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
530                            const ValueEnumerator &VE,
531                            BitstreamWriter &Stream, bool isGlobal) {
532   if (FirstVal == LastVal) return;
533   
534   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
535
536   unsigned AggregateAbbrev = 0;
537   unsigned String8Abbrev = 0;
538   unsigned CString7Abbrev = 0;
539   unsigned CString6Abbrev = 0;
540   // If this is a constant pool for the module, emit module-specific abbrevs.
541   if (isGlobal) {
542     // Abbrev for CST_CODE_AGGREGATE.
543     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
544     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
545     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
546     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
547     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
548
549     // Abbrev for CST_CODE_STRING.
550     Abbv = new BitCodeAbbrev();
551     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
552     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
553     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
554     String8Abbrev = Stream.EmitAbbrev(Abbv);
555     // Abbrev for CST_CODE_CSTRING.
556     Abbv = new BitCodeAbbrev();
557     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
558     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
559     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
560     CString7Abbrev = Stream.EmitAbbrev(Abbv);
561     // Abbrev for CST_CODE_CSTRING.
562     Abbv = new BitCodeAbbrev();
563     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
564     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
565     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
566     CString6Abbrev = Stream.EmitAbbrev(Abbv);
567   }  
568   
569   SmallVector<uint64_t, 64> Record;
570
571   const ValueEnumerator::ValueList &Vals = VE.getValues();
572   const Type *LastTy = 0;
573   for (unsigned i = FirstVal; i != LastVal; ++i) {
574     const Value *V = Vals[i].first;
575     if (isa<MDString>(V) || isa<MDNode>(V))
576       continue;
577     // If we need to switch types, do so now.
578     if (V->getType() != LastTy) {
579       LastTy = V->getType();
580       Record.push_back(VE.getTypeID(LastTy));
581       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
582                         CONSTANTS_SETTYPE_ABBREV);
583       Record.clear();
584     }
585     
586     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
587       Record.push_back(unsigned(IA->hasSideEffects()));
588       
589       // Add the asm string.
590       const std::string &AsmStr = IA->getAsmString();
591       Record.push_back(AsmStr.size());
592       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
593         Record.push_back(AsmStr[i]);
594       
595       // Add the constraint string.
596       const std::string &ConstraintStr = IA->getConstraintString();
597       Record.push_back(ConstraintStr.size());
598       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
599         Record.push_back(ConstraintStr[i]);
600       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
601       Record.clear();
602       continue;
603     }
604     const Constant *C = cast<Constant>(V);
605     unsigned Code = -1U;
606     unsigned AbbrevToUse = 0;
607     if (C->isNullValue()) {
608       Code = bitc::CST_CODE_NULL;
609     } else if (isa<UndefValue>(C)) {
610       Code = bitc::CST_CODE_UNDEF;
611     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
612       if (IV->getBitWidth() <= 64) {
613         int64_t V = IV->getSExtValue();
614         if (V >= 0)
615           Record.push_back(V << 1);
616         else
617           Record.push_back((-V << 1) | 1);
618         Code = bitc::CST_CODE_INTEGER;
619         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
620       } else {                             // Wide integers, > 64 bits in size.
621         // We have an arbitrary precision integer value to write whose 
622         // bit width is > 64. However, in canonical unsigned integer 
623         // format it is likely that the high bits are going to be zero.
624         // So, we only write the number of active words.
625         unsigned NWords = IV->getValue().getActiveWords(); 
626         const uint64_t *RawWords = IV->getValue().getRawData();
627         for (unsigned i = 0; i != NWords; ++i) {
628           int64_t V = RawWords[i];
629           if (V >= 0)
630             Record.push_back(V << 1);
631           else
632             Record.push_back((-V << 1) | 1);
633         }
634         Code = bitc::CST_CODE_WIDE_INTEGER;
635       }
636     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
637       Code = bitc::CST_CODE_FLOAT;
638       const Type *Ty = CFP->getType();
639       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
640         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
641       } else if (Ty == Type::X86_FP80Ty) {
642         // api needed to prevent premature destruction
643         // bits are not in the same order as a normal i80 APInt, compensate.
644         APInt api = CFP->getValueAPF().bitcastToAPInt();
645         const uint64_t *p = api.getRawData();
646         Record.push_back((p[1] << 48) | (p[0] >> 16));
647         Record.push_back(p[0] & 0xffffLL);
648       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
649         APInt api = CFP->getValueAPF().bitcastToAPInt();
650         const uint64_t *p = api.getRawData();
651         Record.push_back(p[0]);
652         Record.push_back(p[1]);
653       } else {
654         assert (0 && "Unknown FP type!");
655       }
656     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
657       // Emit constant strings specially.
658       unsigned NumOps = C->getNumOperands();
659       // If this is a null-terminated string, use the denser CSTRING encoding.
660       if (C->getOperand(NumOps-1)->isNullValue()) {
661         Code = bitc::CST_CODE_CSTRING;
662         --NumOps;  // Don't encode the null, which isn't allowed by char6.
663       } else {
664         Code = bitc::CST_CODE_STRING;
665         AbbrevToUse = String8Abbrev;
666       }
667       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
668       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
669       for (unsigned i = 0; i != NumOps; ++i) {
670         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
671         Record.push_back(V);
672         isCStr7 &= (V & 128) == 0;
673         if (isCStrChar6) 
674           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
675       }
676       
677       if (isCStrChar6)
678         AbbrevToUse = CString6Abbrev;
679       else if (isCStr7)
680         AbbrevToUse = CString7Abbrev;
681     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
682                isa<ConstantVector>(V)) {
683       Code = bitc::CST_CODE_AGGREGATE;
684       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
685         Record.push_back(VE.getValueID(C->getOperand(i)));
686       AbbrevToUse = AggregateAbbrev;
687     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
688       switch (CE->getOpcode()) {
689       default:
690         if (Instruction::isCast(CE->getOpcode())) {
691           Code = bitc::CST_CODE_CE_CAST;
692           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
693           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
694           Record.push_back(VE.getValueID(C->getOperand(0)));
695           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
696         } else {
697           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
698           Code = bitc::CST_CODE_CE_BINOP;
699           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
700           Record.push_back(VE.getValueID(C->getOperand(0)));
701           Record.push_back(VE.getValueID(C->getOperand(1)));
702           uint64_t Flags = GetOptimizationFlags(CE);
703           if (Flags != 0)
704             Record.push_back(Flags);
705         }
706         break;
707       case Instruction::GetElementPtr:
708         Code = bitc::CST_CODE_CE_GEP;
709         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
710           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
711           Record.push_back(VE.getValueID(C->getOperand(i)));
712         }
713         break;
714       case Instruction::Select:
715         Code = bitc::CST_CODE_CE_SELECT;
716         Record.push_back(VE.getValueID(C->getOperand(0)));
717         Record.push_back(VE.getValueID(C->getOperand(1)));
718         Record.push_back(VE.getValueID(C->getOperand(2)));
719         break;
720       case Instruction::ExtractElement:
721         Code = bitc::CST_CODE_CE_EXTRACTELT;
722         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
723         Record.push_back(VE.getValueID(C->getOperand(0)));
724         Record.push_back(VE.getValueID(C->getOperand(1)));
725         break;
726       case Instruction::InsertElement:
727         Code = bitc::CST_CODE_CE_INSERTELT;
728         Record.push_back(VE.getValueID(C->getOperand(0)));
729         Record.push_back(VE.getValueID(C->getOperand(1)));
730         Record.push_back(VE.getValueID(C->getOperand(2)));
731         break;
732       case Instruction::ShuffleVector:
733         // If the return type and argument types are the same, this is a
734         // standard shufflevector instruction.  If the types are different,
735         // then the shuffle is widening or truncating the input vectors, and
736         // the argument type must also be encoded.
737         if (C->getType() == C->getOperand(0)->getType()) {
738           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
739         } else {
740           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
741           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
742         }
743         Record.push_back(VE.getValueID(C->getOperand(0)));
744         Record.push_back(VE.getValueID(C->getOperand(1)));
745         Record.push_back(VE.getValueID(C->getOperand(2)));
746         break;
747       case Instruction::ICmp:
748       case Instruction::FCmp:
749         Code = bitc::CST_CODE_CE_CMP;
750         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
751         Record.push_back(VE.getValueID(C->getOperand(0)));
752         Record.push_back(VE.getValueID(C->getOperand(1)));
753         Record.push_back(CE->getPredicate());
754         break;
755       }
756     } else {
757       llvm_unreachable("Unknown constant!");
758     }
759     Stream.EmitRecord(Code, Record, AbbrevToUse);
760     Record.clear();
761   }
762
763   Stream.ExitBlock();
764 }
765
766 static void WriteModuleConstants(const ValueEnumerator &VE,
767                                  BitstreamWriter &Stream) {
768   const ValueEnumerator::ValueList &Vals = VE.getValues();
769   
770   // Find the first constant to emit, which is the first non-globalvalue value.
771   // We know globalvalues have been emitted by WriteModuleInfo.
772   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
773     if (!isa<GlobalValue>(Vals[i].first)) {
774       WriteConstants(i, Vals.size(), VE, Stream, true);
775       return;
776     }
777   }
778 }
779
780 /// PushValueAndType - The file has to encode both the value and type id for
781 /// many values, because we need to know what type to create for forward
782 /// references.  However, most operands are not forward references, so this type
783 /// field is not needed.
784 ///
785 /// This function adds V's value ID to Vals.  If the value ID is higher than the
786 /// instruction ID, then it is a forward reference, and it also includes the
787 /// type ID.
788 static bool PushValueAndType(const Value *V, unsigned InstID,
789                              SmallVector<unsigned, 64> &Vals, 
790                              ValueEnumerator &VE) {
791   unsigned ValID = VE.getValueID(V);
792   Vals.push_back(ValID);
793   if (ValID >= InstID) {
794     Vals.push_back(VE.getTypeID(V->getType()));
795     return true;
796   }
797   return false;
798 }
799
800 /// WriteInstruction - Emit an instruction to the specified stream.
801 static void WriteInstruction(const Instruction &I, unsigned InstID,
802                              ValueEnumerator &VE, BitstreamWriter &Stream,
803                              SmallVector<unsigned, 64> &Vals) {
804   unsigned Code = 0;
805   unsigned AbbrevToUse = 0;
806   switch (I.getOpcode()) {
807   default:
808     if (Instruction::isCast(I.getOpcode())) {
809       Code = bitc::FUNC_CODE_INST_CAST;
810       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
811         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
812       Vals.push_back(VE.getTypeID(I.getType()));
813       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
814     } else {
815       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
816       Code = bitc::FUNC_CODE_INST_BINOP;
817       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
818         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
819       Vals.push_back(VE.getValueID(I.getOperand(1)));
820       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
821       uint64_t Flags = GetOptimizationFlags(&I);
822       if (Flags != 0) {
823         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
824           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
825         Vals.push_back(Flags);
826       }
827     }
828     break;
829
830   case Instruction::GetElementPtr:
831     Code = bitc::FUNC_CODE_INST_GEP;
832     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
833       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
834     break;
835   case Instruction::ExtractValue: {
836     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
837     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
838     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
839     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
840       Vals.push_back(*i);
841     break;
842   }
843   case Instruction::InsertValue: {
844     Code = bitc::FUNC_CODE_INST_INSERTVAL;
845     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
846     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
847     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
848     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
849       Vals.push_back(*i);
850     break;
851   }
852   case Instruction::Select:
853     Code = bitc::FUNC_CODE_INST_VSELECT;
854     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
855     Vals.push_back(VE.getValueID(I.getOperand(2)));
856     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
857     break;
858   case Instruction::ExtractElement:
859     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
860     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
861     Vals.push_back(VE.getValueID(I.getOperand(1)));
862     break;
863   case Instruction::InsertElement:
864     Code = bitc::FUNC_CODE_INST_INSERTELT;
865     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
866     Vals.push_back(VE.getValueID(I.getOperand(1)));
867     Vals.push_back(VE.getValueID(I.getOperand(2)));
868     break;
869   case Instruction::ShuffleVector:
870     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
871     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
872     Vals.push_back(VE.getValueID(I.getOperand(1)));
873     Vals.push_back(VE.getValueID(I.getOperand(2)));
874     break;
875   case Instruction::ICmp:
876   case Instruction::FCmp:
877     // compare returning Int1Ty or vector of Int1Ty
878     Code = bitc::FUNC_CODE_INST_CMP2;
879     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
880     Vals.push_back(VE.getValueID(I.getOperand(1)));
881     Vals.push_back(cast<CmpInst>(I).getPredicate());
882     break;
883
884   case Instruction::Ret: 
885     {
886       Code = bitc::FUNC_CODE_INST_RET;
887       unsigned NumOperands = I.getNumOperands();
888       if (NumOperands == 0)
889         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
890       else if (NumOperands == 1) {
891         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
892           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
893       } else {
894         for (unsigned i = 0, e = NumOperands; i != e; ++i)
895           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
896       }
897     }
898     break;
899   case Instruction::Br:
900     {
901       Code = bitc::FUNC_CODE_INST_BR;
902       BranchInst &II(cast<BranchInst>(I));
903       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
904       if (II.isConditional()) {
905         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
906         Vals.push_back(VE.getValueID(II.getCondition()));
907       }
908     }
909     break;
910   case Instruction::Switch:
911     Code = bitc::FUNC_CODE_INST_SWITCH;
912     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
913     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
914       Vals.push_back(VE.getValueID(I.getOperand(i)));
915     break;
916   case Instruction::Invoke: {
917     const InvokeInst *II = cast<InvokeInst>(&I);
918     const Value *Callee(II->getCalledValue());
919     const PointerType *PTy = cast<PointerType>(Callee->getType());
920     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
921     Code = bitc::FUNC_CODE_INST_INVOKE;
922     
923     Vals.push_back(VE.getAttributeID(II->getAttributes()));
924     Vals.push_back(II->getCallingConv());
925     Vals.push_back(VE.getValueID(II->getNormalDest()));
926     Vals.push_back(VE.getValueID(II->getUnwindDest()));
927     PushValueAndType(Callee, InstID, Vals, VE);
928     
929     // Emit value #'s for the fixed parameters.
930     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
931       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
932
933     // Emit type/value pairs for varargs params.
934     if (FTy->isVarArg()) {
935       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
936            i != e; ++i)
937         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
938     }
939     break;
940   }
941   case Instruction::Unwind:
942     Code = bitc::FUNC_CODE_INST_UNWIND;
943     break;
944   case Instruction::Unreachable:
945     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
946     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
947     break;
948   
949   case Instruction::PHI:
950     Code = bitc::FUNC_CODE_INST_PHI;
951     Vals.push_back(VE.getTypeID(I.getType()));
952     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
953       Vals.push_back(VE.getValueID(I.getOperand(i)));
954     break;
955     
956   case Instruction::Malloc:
957     Code = bitc::FUNC_CODE_INST_MALLOC;
958     Vals.push_back(VE.getTypeID(I.getType()));
959     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
960     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
961     break;
962     
963   case Instruction::Free:
964     Code = bitc::FUNC_CODE_INST_FREE;
965     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
966     break;
967     
968   case Instruction::Alloca:
969     Code = bitc::FUNC_CODE_INST_ALLOCA;
970     Vals.push_back(VE.getTypeID(I.getType()));
971     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
972     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
973     break;
974     
975   case Instruction::Load:
976     Code = bitc::FUNC_CODE_INST_LOAD;
977     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
978       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
979       
980     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
981     Vals.push_back(cast<LoadInst>(I).isVolatile());
982     break;
983   case Instruction::Store:
984     Code = bitc::FUNC_CODE_INST_STORE2;
985     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
986     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
987     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
988     Vals.push_back(cast<StoreInst>(I).isVolatile());
989     break;
990   case Instruction::Call: {
991     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
992     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
993
994     Code = bitc::FUNC_CODE_INST_CALL;
995     
996     const CallInst *CI = cast<CallInst>(&I);
997     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
998     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
999     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1000     
1001     // Emit value #'s for the fixed parameters.
1002     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1003       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1004       
1005     // Emit type/value pairs for varargs params.
1006     if (FTy->isVarArg()) {
1007       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1008       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1009            i != e; ++i)
1010         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1011     }
1012     break;
1013   }
1014   case Instruction::VAArg:
1015     Code = bitc::FUNC_CODE_INST_VAARG;
1016     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1017     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1018     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1019     break;
1020   }
1021   
1022   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1023   Vals.clear();
1024 }
1025
1026 // Emit names for globals/functions etc.
1027 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1028                                   const ValueEnumerator &VE,
1029                                   BitstreamWriter &Stream) {
1030   if (VST.empty()) return;
1031   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1032
1033   // FIXME: Set up the abbrev, we know how many values there are!
1034   // FIXME: We know if the type names can use 7-bit ascii.
1035   SmallVector<unsigned, 64> NameVals;
1036   
1037   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1038        SI != SE; ++SI) {
1039     
1040     const ValueName &Name = *SI;
1041     
1042     // Figure out the encoding to use for the name.
1043     bool is7Bit = true;
1044     bool isChar6 = true;
1045     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1046          C != E; ++C) {
1047       if (isChar6) 
1048         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1049       if ((unsigned char)*C & 128) {
1050         is7Bit = false;
1051         break;  // don't bother scanning the rest.
1052       }
1053     }
1054     
1055     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1056     
1057     // VST_ENTRY:   [valueid, namechar x N]
1058     // VST_BBENTRY: [bbid, namechar x N]
1059     unsigned Code;
1060     if (isa<BasicBlock>(SI->getValue())) {
1061       Code = bitc::VST_CODE_BBENTRY;
1062       if (isChar6)
1063         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1064     } else {
1065       Code = bitc::VST_CODE_ENTRY;
1066       if (isChar6)
1067         AbbrevToUse = VST_ENTRY_6_ABBREV;
1068       else if (is7Bit)
1069         AbbrevToUse = VST_ENTRY_7_ABBREV;
1070     }
1071     
1072     NameVals.push_back(VE.getValueID(SI->getValue()));
1073     for (const char *P = Name.getKeyData(),
1074          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1075       NameVals.push_back((unsigned char)*P);
1076     
1077     // Emit the finished record.
1078     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1079     NameVals.clear();
1080   }
1081   Stream.ExitBlock();
1082 }
1083
1084 /// WriteFunction - Emit a function body to the module stream.
1085 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
1086                           BitstreamWriter &Stream) {
1087   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1088   VE.incorporateFunction(F);
1089
1090   SmallVector<unsigned, 64> Vals;
1091   
1092   // Emit the number of basic blocks, so the reader can create them ahead of
1093   // time.
1094   Vals.push_back(VE.getBasicBlocks().size());
1095   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1096   Vals.clear();
1097   
1098   // If there are function-local constants, emit them now.
1099   unsigned CstStart, CstEnd;
1100   VE.getFunctionConstantRange(CstStart, CstEnd);
1101   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1102   
1103   // Keep a running idea of what the instruction ID is. 
1104   unsigned InstID = CstEnd;
1105   
1106   // Finally, emit all the instructions, in order.
1107   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1108     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1109          I != E; ++I) {
1110       WriteInstruction(*I, InstID, VE, Stream, Vals);
1111       if (I->getType() != Type::VoidTy)
1112         ++InstID;
1113     }
1114   
1115   // Emit names for all the instructions etc.
1116   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1117     
1118   VE.purgeFunction();
1119   Stream.ExitBlock();
1120 }
1121
1122 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1123 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1124                                  const ValueEnumerator &VE,
1125                                  BitstreamWriter &Stream) {
1126   if (TST.empty()) return;
1127   
1128   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1129   
1130   // 7-bit fixed width VST_CODE_ENTRY strings.
1131   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1132   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1133   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1134                             Log2_32_Ceil(VE.getTypes().size()+1)));
1135   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1136   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1137   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1138   
1139   SmallVector<unsigned, 64> NameVals;
1140   
1141   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
1142        TI != TE; ++TI) {
1143     // TST_ENTRY: [typeid, namechar x N]
1144     NameVals.push_back(VE.getTypeID(TI->second));
1145     
1146     const std::string &Str = TI->first;
1147     bool is7Bit = true;
1148     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1149       NameVals.push_back((unsigned char)Str[i]);
1150       if (Str[i] & 128)
1151         is7Bit = false;
1152     }
1153     
1154     // Emit the finished record.
1155     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1156     NameVals.clear();
1157   }
1158   
1159   Stream.ExitBlock();
1160 }
1161
1162 // Emit blockinfo, which defines the standard abbreviations etc.
1163 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1164   // We only want to emit block info records for blocks that have multiple
1165   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1166   // blocks can defined their abbrevs inline.
1167   Stream.EnterBlockInfoBlock(2);
1168   
1169   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1170     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1171     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1172     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1173     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1174     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1175     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1176                                    Abbv) != VST_ENTRY_8_ABBREV)
1177       llvm_unreachable("Unexpected abbrev ordering!");
1178   }
1179   
1180   { // 7-bit fixed width VST_ENTRY strings.
1181     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1182     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1183     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1184     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1185     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1186     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1187                                    Abbv) != VST_ENTRY_7_ABBREV)
1188       llvm_unreachable("Unexpected abbrev ordering!");
1189   }
1190   { // 6-bit char6 VST_ENTRY strings.
1191     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1192     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1193     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1194     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1195     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1196     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1197                                    Abbv) != VST_ENTRY_6_ABBREV)
1198       llvm_unreachable("Unexpected abbrev ordering!");
1199   }
1200   { // 6-bit char6 VST_BBENTRY strings.
1201     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1202     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1203     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1204     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1205     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1206     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1207                                    Abbv) != VST_BBENTRY_6_ABBREV)
1208       llvm_unreachable("Unexpected abbrev ordering!");
1209   }
1210   
1211   
1212   
1213   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1214     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1215     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1216     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1217                               Log2_32_Ceil(VE.getTypes().size()+1)));
1218     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1219                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1220       llvm_unreachable("Unexpected abbrev ordering!");
1221   }
1222   
1223   { // INTEGER abbrev for CONSTANTS_BLOCK.
1224     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1225     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1226     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1227     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1228                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1229       llvm_unreachable("Unexpected abbrev ordering!");
1230   }
1231   
1232   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1233     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1234     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1235     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1236     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1237                               Log2_32_Ceil(VE.getTypes().size()+1)));
1238     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1239
1240     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1241                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1242       llvm_unreachable("Unexpected abbrev ordering!");
1243   }
1244   { // NULL abbrev for CONSTANTS_BLOCK.
1245     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1246     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1247     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1248                                    Abbv) != CONSTANTS_NULL_Abbrev)
1249       llvm_unreachable("Unexpected abbrev ordering!");
1250   }
1251   
1252   // FIXME: This should only use space for first class types!
1253  
1254   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1255     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1256     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1257     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1258     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1259     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1260     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1261                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1262       llvm_unreachable("Unexpected abbrev ordering!");
1263   }
1264   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1265     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1266     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1267     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1268     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1269     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1270     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1271                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1272       llvm_unreachable("Unexpected abbrev ordering!");
1273   }
1274   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1275     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1276     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1277     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1278     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1279     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1280     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1281     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1282                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1283       llvm_unreachable("Unexpected abbrev ordering!");
1284   }
1285   { // INST_CAST abbrev for FUNCTION_BLOCK.
1286     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1287     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1288     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1289     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1290                               Log2_32_Ceil(VE.getTypes().size()+1)));
1291     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1292     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1293                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1294       llvm_unreachable("Unexpected abbrev ordering!");
1295   }
1296   
1297   { // INST_RET abbrev for FUNCTION_BLOCK.
1298     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1299     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1300     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1301                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1302       llvm_unreachable("Unexpected abbrev ordering!");
1303   }
1304   { // INST_RET abbrev for FUNCTION_BLOCK.
1305     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1306     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1307     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1308     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1309                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1310       llvm_unreachable("Unexpected abbrev ordering!");
1311   }
1312   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1313     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1314     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1315     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1316                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1317       llvm_unreachable("Unexpected abbrev ordering!");
1318   }
1319   
1320   Stream.ExitBlock();
1321 }
1322
1323
1324 /// WriteModule - Emit the specified module to the bitstream.
1325 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1326   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1327   
1328   // Emit the version number if it is non-zero.
1329   if (CurVersion) {
1330     SmallVector<unsigned, 1> Vals;
1331     Vals.push_back(CurVersion);
1332     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1333   }
1334   
1335   // Analyze the module, enumerating globals, functions, etc.
1336   ValueEnumerator VE(M);
1337
1338   // Emit blockinfo, which defines the standard abbreviations etc.
1339   WriteBlockInfo(VE, Stream);
1340   
1341   // Emit information about parameter attributes.
1342   WriteAttributeTable(VE, Stream);
1343   
1344   // Emit information describing all of the types in the module.
1345   WriteTypeTable(VE, Stream);
1346   
1347   // Emit top-level description of module, including target triple, inline asm,
1348   // descriptors for global variables, and function prototype info.
1349   WriteModuleInfo(M, VE, Stream);
1350
1351   // Emit constants.
1352   WriteModuleConstants(VE, Stream);
1353
1354   // Emit metadata.
1355   WriteModuleMetadata(VE, Stream);
1356
1357   // Emit function bodies.
1358   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1359     if (!I->isDeclaration())
1360       WriteFunction(*I, VE, Stream);
1361   
1362   // Emit the type symbol table information.
1363   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1364   
1365   // Emit names for globals/functions etc.
1366   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1367   
1368   Stream.ExitBlock();
1369 }
1370
1371 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1372 /// header and trailer to make it compatible with the system archiver.  To do
1373 /// this we emit the following header, and then emit a trailer that pads the
1374 /// file out to be a multiple of 16 bytes.
1375 /// 
1376 /// struct bc_header {
1377 ///   uint32_t Magic;         // 0x0B17C0DE
1378 ///   uint32_t Version;       // Version, currently always 0.
1379 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1380 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1381 ///   uint32_t CPUType;       // CPU specifier.
1382 ///   ... potentially more later ...
1383 /// };
1384 enum {
1385   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1386   DarwinBCHeaderSize = 5*4
1387 };
1388
1389 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1390                                const std::string &TT) {
1391   unsigned CPUType = ~0U;
1392   
1393   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1394   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1395   // specific constants here because they are implicitly part of the Darwin ABI.
1396   enum {
1397     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1398     DARWIN_CPU_TYPE_X86        = 7,
1399     DARWIN_CPU_TYPE_POWERPC    = 18
1400   };
1401   
1402   if (TT.find("x86_64-") == 0)
1403     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1404   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1405            TT[4] == '-' && TT[1] - '3' < 6)
1406     CPUType = DARWIN_CPU_TYPE_X86;
1407   else if (TT.find("powerpc-") == 0)
1408     CPUType = DARWIN_CPU_TYPE_POWERPC;
1409   else if (TT.find("powerpc64-") == 0)
1410     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1411   
1412   // Traditional Bitcode starts after header.
1413   unsigned BCOffset = DarwinBCHeaderSize;
1414   
1415   Stream.Emit(0x0B17C0DE, 32);
1416   Stream.Emit(0         , 32);  // Version.
1417   Stream.Emit(BCOffset  , 32);
1418   Stream.Emit(0         , 32);  // Filled in later.
1419   Stream.Emit(CPUType   , 32);
1420 }
1421
1422 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1423 /// finalize the header.
1424 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1425   // Update the size field in the header.
1426   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1427   
1428   // If the file is not a multiple of 16 bytes, insert dummy padding.
1429   while (BufferSize & 15) {
1430     Stream.Emit(0, 8);
1431     ++BufferSize;
1432   }
1433 }
1434
1435
1436 /// WriteBitcodeToFile - Write the specified module to the specified output
1437 /// stream.
1438 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1439   raw_os_ostream RawOut(Out);
1440   // If writing to stdout, set binary mode.
1441   if (llvm::cout == Out)
1442     sys::Program::ChangeStdoutToBinary();
1443   WriteBitcodeToFile(M, RawOut);
1444 }
1445
1446 /// WriteBitcodeToFile - Write the specified module to the specified output
1447 /// stream.
1448 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1449   std::vector<unsigned char> Buffer;
1450   BitstreamWriter Stream(Buffer);
1451   
1452   Buffer.reserve(256*1024);
1453
1454   WriteBitcodeToStream( M, Stream );
1455   
1456   // If writing to stdout, set binary mode.
1457   if (&llvm::outs() == &Out)
1458     sys::Program::ChangeStdoutToBinary();
1459
1460   // Write the generated bitstream to "Out".
1461   Out.write((char*)&Buffer.front(), Buffer.size());
1462   
1463   // Make sure it hits disk now.
1464   Out.flush();
1465 }
1466
1467 /// WriteBitcodeToStream - Write the specified module to the specified output
1468 /// stream.
1469 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1470   // If this is darwin, emit a file header and trailer if needed.
1471   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1472   if (isDarwin)
1473     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1474   
1475   // Emit the file header.
1476   Stream.Emit((unsigned)'B', 8);
1477   Stream.Emit((unsigned)'C', 8);
1478   Stream.Emit(0x0, 4);
1479   Stream.Emit(0xC, 4);
1480   Stream.Emit(0xE, 4);
1481   Stream.Emit(0xD, 4);
1482
1483   // Emit the module.
1484   WriteModule(M, Stream);
1485
1486   if (isDarwin)
1487     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1488 }