Fix comment typo
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/System/Program.h"
30 using namespace llvm;
31
32 /// These are manifest constants used by the bitcode writer. They do not need to
33 /// be kept in sync with the reader, but need to be consistent within this file.
34 enum {
35   CurVersion = 0,
36
37   // VALUE_SYMTAB_BLOCK abbrev id's.
38   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
39   VST_ENTRY_7_ABBREV,
40   VST_ENTRY_6_ABBREV,
41   VST_BBENTRY_6_ABBREV,
42
43   // CONSTANTS_BLOCK abbrev id's.
44   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
45   CONSTANTS_INTEGER_ABBREV,
46   CONSTANTS_CE_CAST_Abbrev,
47   CONSTANTS_NULL_Abbrev,
48
49   // FUNCTION_BLOCK abbrev id's.
50   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
51   FUNCTION_INST_BINOP_ABBREV,
52   FUNCTION_INST_BINOP_FLAGS_ABBREV,
53   FUNCTION_INST_CAST_ABBREV,
54   FUNCTION_INST_RET_VOID_ABBREV,
55   FUNCTION_INST_RET_VAL_ABBREV,
56   FUNCTION_INST_UNREACHABLE_ABBREV
57 };
58
59
60 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
61   switch (Opcode) {
62   default: llvm_unreachable("Unknown cast instruction!");
63   case Instruction::Trunc   : return bitc::CAST_TRUNC;
64   case Instruction::ZExt    : return bitc::CAST_ZEXT;
65   case Instruction::SExt    : return bitc::CAST_SEXT;
66   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
67   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
68   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
69   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
70   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
71   case Instruction::FPExt   : return bitc::CAST_FPEXT;
72   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
73   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
74   case Instruction::BitCast : return bitc::CAST_BITCAST;
75   }
76 }
77
78 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
79   switch (Opcode) {
80   default: llvm_unreachable("Unknown binary instruction!");
81   case Instruction::Add:
82   case Instruction::FAdd: return bitc::BINOP_ADD;
83   case Instruction::Sub:
84   case Instruction::FSub: return bitc::BINOP_SUB;
85   case Instruction::Mul:
86   case Instruction::FMul: return bitc::BINOP_MUL;
87   case Instruction::UDiv: return bitc::BINOP_UDIV;
88   case Instruction::FDiv:
89   case Instruction::SDiv: return bitc::BINOP_SDIV;
90   case Instruction::URem: return bitc::BINOP_UREM;
91   case Instruction::FRem:
92   case Instruction::SRem: return bitc::BINOP_SREM;
93   case Instruction::Shl:  return bitc::BINOP_SHL;
94   case Instruction::LShr: return bitc::BINOP_LSHR;
95   case Instruction::AShr: return bitc::BINOP_ASHR;
96   case Instruction::And:  return bitc::BINOP_AND;
97   case Instruction::Or:   return bitc::BINOP_OR;
98   case Instruction::Xor:  return bitc::BINOP_XOR;
99   }
100 }
101
102
103
104 static void WriteStringRecord(unsigned Code, const std::string &Str,
105                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
106   SmallVector<unsigned, 64> Vals;
107
108   // Code: [strchar x N]
109   for (unsigned i = 0, e = Str.size(); i != e; ++i)
110     Vals.push_back(Str[i]);
111
112   // Emit the finished record.
113   Stream.EmitRecord(Code, Vals, AbbrevToUse);
114 }
115
116 // Emit information about parameter attributes.
117 static void WriteAttributeTable(const ValueEnumerator &VE,
118                                 BitstreamWriter &Stream) {
119   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
120   if (Attrs.empty()) return;
121
122   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
123
124   SmallVector<uint64_t, 64> Record;
125   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
126     const AttrListPtr &A = Attrs[i];
127     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
128       const AttributeWithIndex &PAWI = A.getSlot(i);
129       Record.push_back(PAWI.Index);
130
131       // FIXME: remove in LLVM 3.0
132       // Store the alignment in the bitcode as a 16-bit raw value instead of a
133       // 5-bit log2 encoded value. Shift the bits above the alignment up by
134       // 11 bits.
135       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
136       if (PAWI.Attrs & Attribute::Alignment)
137         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
138       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
139
140       Record.push_back(FauxAttr);
141     }
142
143     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
144     Record.clear();
145   }
146
147   Stream.ExitBlock();
148 }
149
150 /// WriteTypeTable - Write out the type table for a module.
151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
152   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
153
154   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
155   SmallVector<uint64_t, 64> TypeVals;
156
157   // Abbrev for TYPE_CODE_POINTER.
158   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
159   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
160   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
161                             Log2_32_Ceil(VE.getTypes().size()+1)));
162   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
163   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
164
165   // Abbrev for TYPE_CODE_FUNCTION.
166   Abbv = new BitCodeAbbrev();
167   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
168   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
169   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
171   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
172                             Log2_32_Ceil(VE.getTypes().size()+1)));
173   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
174
175   // Abbrev for TYPE_CODE_STRUCT.
176   Abbv = new BitCodeAbbrev();
177   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
178   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
179   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
181                             Log2_32_Ceil(VE.getTypes().size()+1)));
182   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
183
184   // Abbrev for TYPE_CODE_ARRAY.
185   Abbv = new BitCodeAbbrev();
186   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
187   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
188   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
189                             Log2_32_Ceil(VE.getTypes().size()+1)));
190   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
191
192   // Emit an entry count so the reader can reserve space.
193   TypeVals.push_back(TypeList.size());
194   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
195   TypeVals.clear();
196
197   // Loop over all of the types, emitting each in turn.
198   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
199     const Type *T = TypeList[i].first;
200     int AbbrevToUse = 0;
201     unsigned Code = 0;
202
203     switch (T->getTypeID()) {
204     default: llvm_unreachable("Unknown type!");
205     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
206     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
207     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
208     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
209     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
210     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
211     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
212     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
213     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
214     case Type::IntegerTyID:
215       // INTEGER: [width]
216       Code = bitc::TYPE_CODE_INTEGER;
217       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
218       break;
219     case Type::PointerTyID: {
220       const PointerType *PTy = cast<PointerType>(T);
221       // POINTER: [pointee type, address space]
222       Code = bitc::TYPE_CODE_POINTER;
223       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
224       unsigned AddressSpace = PTy->getAddressSpace();
225       TypeVals.push_back(AddressSpace);
226       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
227       break;
228     }
229     case Type::FunctionTyID: {
230       const FunctionType *FT = cast<FunctionType>(T);
231       // FUNCTION: [isvararg, attrid, retty, paramty x N]
232       Code = bitc::TYPE_CODE_FUNCTION;
233       TypeVals.push_back(FT->isVarArg());
234       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
235       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
236       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
237         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
238       AbbrevToUse = FunctionAbbrev;
239       break;
240     }
241     case Type::StructTyID: {
242       const StructType *ST = cast<StructType>(T);
243       // STRUCT: [ispacked, eltty x N]
244       Code = bitc::TYPE_CODE_STRUCT;
245       TypeVals.push_back(ST->isPacked());
246       // Output all of the element types.
247       for (StructType::element_iterator I = ST->element_begin(),
248            E = ST->element_end(); I != E; ++I)
249         TypeVals.push_back(VE.getTypeID(*I));
250       AbbrevToUse = StructAbbrev;
251       break;
252     }
253     case Type::ArrayTyID: {
254       const ArrayType *AT = cast<ArrayType>(T);
255       // ARRAY: [numelts, eltty]
256       Code = bitc::TYPE_CODE_ARRAY;
257       TypeVals.push_back(AT->getNumElements());
258       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
259       AbbrevToUse = ArrayAbbrev;
260       break;
261     }
262     case Type::VectorTyID: {
263       const VectorType *VT = cast<VectorType>(T);
264       // VECTOR [numelts, eltty]
265       Code = bitc::TYPE_CODE_VECTOR;
266       TypeVals.push_back(VT->getNumElements());
267       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
268       break;
269     }
270     }
271
272     // Emit the finished record.
273     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
274     TypeVals.clear();
275   }
276
277   Stream.ExitBlock();
278 }
279
280 static unsigned getEncodedLinkage(const GlobalValue *GV) {
281   switch (GV->getLinkage()) {
282   default: llvm_unreachable("Invalid linkage!");
283   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
284   case GlobalValue::ExternalLinkage:            return 0;
285   case GlobalValue::WeakAnyLinkage:             return 1;
286   case GlobalValue::AppendingLinkage:           return 2;
287   case GlobalValue::InternalLinkage:            return 3;
288   case GlobalValue::LinkOnceAnyLinkage:         return 4;
289   case GlobalValue::DLLImportLinkage:           return 5;
290   case GlobalValue::DLLExportLinkage:           return 6;
291   case GlobalValue::ExternalWeakLinkage:        return 7;
292   case GlobalValue::CommonLinkage:              return 8;
293   case GlobalValue::PrivateLinkage:             return 9;
294   case GlobalValue::WeakODRLinkage:             return 10;
295   case GlobalValue::LinkOnceODRLinkage:         return 11;
296   case GlobalValue::AvailableExternallyLinkage: return 12;
297   case GlobalValue::LinkerPrivateLinkage:       return 13;
298   }
299 }
300
301 static unsigned getEncodedVisibility(const GlobalValue *GV) {
302   switch (GV->getVisibility()) {
303   default: llvm_unreachable("Invalid visibility!");
304   case GlobalValue::DefaultVisibility:   return 0;
305   case GlobalValue::HiddenVisibility:    return 1;
306   case GlobalValue::ProtectedVisibility: return 2;
307   }
308 }
309
310 // Emit top-level description of module, including target triple, inline asm,
311 // descriptors for global variables, and function prototype info.
312 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
313                             BitstreamWriter &Stream) {
314   // Emit the list of dependent libraries for the Module.
315   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
316     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
317
318   // Emit various pieces of data attached to a module.
319   if (!M->getTargetTriple().empty())
320     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
321                       0/*TODO*/, Stream);
322   if (!M->getDataLayout().empty())
323     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
324                       0/*TODO*/, Stream);
325   if (!M->getModuleInlineAsm().empty())
326     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
327                       0/*TODO*/, Stream);
328
329   // Emit information about sections and GC, computing how many there are. Also
330   // compute the maximum alignment value.
331   std::map<std::string, unsigned> SectionMap;
332   std::map<std::string, unsigned> GCMap;
333   unsigned MaxAlignment = 0;
334   unsigned MaxGlobalType = 0;
335   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
336        GV != E; ++GV) {
337     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
338     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
339
340     if (!GV->hasSection()) continue;
341     // Give section names unique ID's.
342     unsigned &Entry = SectionMap[GV->getSection()];
343     if (Entry != 0) continue;
344     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
345                       0/*TODO*/, Stream);
346     Entry = SectionMap.size();
347   }
348   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
349     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
350     if (F->hasSection()) {
351       // Give section names unique ID's.
352       unsigned &Entry = SectionMap[F->getSection()];
353       if (!Entry) {
354         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
355                           0/*TODO*/, Stream);
356         Entry = SectionMap.size();
357       }
358     }
359     if (F->hasGC()) {
360       // Same for GC names.
361       unsigned &Entry = GCMap[F->getGC()];
362       if (!Entry) {
363         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
364                           0/*TODO*/, Stream);
365         Entry = GCMap.size();
366       }
367     }
368   }
369
370   // Emit abbrev for globals, now that we know # sections and max alignment.
371   unsigned SimpleGVarAbbrev = 0;
372   if (!M->global_empty()) {
373     // Add an abbrev for common globals with no visibility or thread localness.
374     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
375     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
376     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
377                               Log2_32_Ceil(MaxGlobalType+1)));
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
379     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
381     if (MaxAlignment == 0)                                      // Alignment.
382       Abbv->Add(BitCodeAbbrevOp(0));
383     else {
384       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
385       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
386                                Log2_32_Ceil(MaxEncAlignment+1)));
387     }
388     if (SectionMap.empty())                                    // Section.
389       Abbv->Add(BitCodeAbbrevOp(0));
390     else
391       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
392                                Log2_32_Ceil(SectionMap.size()+1)));
393     // Don't bother emitting vis + thread local.
394     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
395   }
396
397   // Emit the global variable information.
398   SmallVector<unsigned, 64> Vals;
399   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
400        GV != E; ++GV) {
401     unsigned AbbrevToUse = 0;
402
403     // GLOBALVAR: [type, isconst, initid,
404     //             linkage, alignment, section, visibility, threadlocal]
405     Vals.push_back(VE.getTypeID(GV->getType()));
406     Vals.push_back(GV->isConstant());
407     Vals.push_back(GV->isDeclaration() ? 0 :
408                    (VE.getValueID(GV->getInitializer()) + 1));
409     Vals.push_back(getEncodedLinkage(GV));
410     Vals.push_back(Log2_32(GV->getAlignment())+1);
411     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
412     if (GV->isThreadLocal() ||
413         GV->getVisibility() != GlobalValue::DefaultVisibility) {
414       Vals.push_back(getEncodedVisibility(GV));
415       Vals.push_back(GV->isThreadLocal());
416     } else {
417       AbbrevToUse = SimpleGVarAbbrev;
418     }
419
420     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
421     Vals.clear();
422   }
423
424   // Emit the function proto information.
425   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
426     // FUNCTION:  [type, callingconv, isproto, paramattr,
427     //             linkage, alignment, section, visibility, gc]
428     Vals.push_back(VE.getTypeID(F->getType()));
429     Vals.push_back(F->getCallingConv());
430     Vals.push_back(F->isDeclaration());
431     Vals.push_back(getEncodedLinkage(F));
432     Vals.push_back(VE.getAttributeID(F->getAttributes()));
433     Vals.push_back(Log2_32(F->getAlignment())+1);
434     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
435     Vals.push_back(getEncodedVisibility(F));
436     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
437
438     unsigned AbbrevToUse = 0;
439     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
440     Vals.clear();
441   }
442
443
444   // Emit the alias information.
445   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
446        AI != E; ++AI) {
447     Vals.push_back(VE.getTypeID(AI->getType()));
448     Vals.push_back(VE.getValueID(AI->getAliasee()));
449     Vals.push_back(getEncodedLinkage(AI));
450     Vals.push_back(getEncodedVisibility(AI));
451     unsigned AbbrevToUse = 0;
452     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
453     Vals.clear();
454   }
455 }
456
457 static uint64_t GetOptimizationFlags(const Value *V) {
458   uint64_t Flags = 0;
459
460   if (const OverflowingBinaryOperator *OBO =
461         dyn_cast<OverflowingBinaryOperator>(V)) {
462     if (OBO->hasNoSignedWrap())
463       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
464     if (OBO->hasNoUnsignedWrap())
465       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
466   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
467     if (Div->isExact())
468       Flags |= 1 << bitc::SDIV_EXACT;
469   }
470
471   return Flags;
472 }
473
474 static void WriteMDNode(const MDNode *N,
475                         const ValueEnumerator &VE,
476                         BitstreamWriter &Stream,
477                         SmallVector<uint64_t, 64> &Record) {
478   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
479     if (N->getOperand(i)) {
480       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
481       Record.push_back(VE.getValueID(N->getOperand(i)));
482     } else {
483       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
484       Record.push_back(0);
485     }
486   }
487   unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
488                                            bitc::METADATA_NODE;
489   Stream.EmitRecord(MDCode, Record, 0);
490   Record.clear();
491 }
492
493 static void WriteModuleMetadata(const ValueEnumerator &VE,
494                                 BitstreamWriter &Stream) {
495   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
496   bool StartedMetadataBlock = false;
497   unsigned MDSAbbrev = 0;
498   SmallVector<uint64_t, 64> Record;
499   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
500
501     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
502       if (!N->isFunctionLocal()) {
503         if (!StartedMetadataBlock) {
504           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
505           StartedMetadataBlock = true;
506         }
507         WriteMDNode(N, VE, Stream, Record);
508       }
509     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
510       if (!StartedMetadataBlock)  {
511         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
512
513         // Abbrev for METADATA_STRING.
514         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
515         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
516         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
517         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
518         MDSAbbrev = Stream.EmitAbbrev(Abbv);
519         StartedMetadataBlock = true;
520       }
521
522       // Code: [strchar x N]
523       Record.append(MDS->begin(), MDS->end());
524
525       // Emit the finished record.
526       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
527       Record.clear();
528     } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
529       if (!StartedMetadataBlock)  {
530         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
531         StartedMetadataBlock = true;
532       }
533
534       // Write name.
535       StringRef Str = NMD->getName();
536       for (unsigned i = 0, e = Str.size(); i != e; ++i)
537         Record.push_back(Str[i]);
538       Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
539       Record.clear();
540
541       // Write named metadata operands.
542       for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
543         if (NMD->getOperand(i))
544           Record.push_back(VE.getValueID(NMD->getOperand(i)));
545         else
546           Record.push_back(~0U);
547       }
548       Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
549       Record.clear();
550     }
551   }
552
553   if (StartedMetadataBlock)
554     Stream.ExitBlock();
555 }
556
557 static void WriteFunctionLocalMetadata(const ValueEnumerator &VE,
558                                        BitstreamWriter &Stream) {
559   bool StartedMetadataBlock = false;
560   SmallVector<uint64_t, 64> Record;
561   ValueEnumerator::ValueList Vals = VE.getMDValues();
562   ValueEnumerator::ValueList::iterator it = Vals.begin();
563   ValueEnumerator::ValueList::iterator end = Vals.end();
564
565   while (it != end) {
566     if (const MDNode *N = dyn_cast<MDNode>((*it).first)) {
567       if (N->isFunctionLocal()) {
568         if (!StartedMetadataBlock) {
569           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
570           StartedMetadataBlock = true;
571         }
572         WriteMDNode(N, VE, Stream, Record);
573         // Remove function-local MD, since it is not used outside of function.
574         it = Vals.erase(it);
575         end = Vals.end();
576         continue;
577       }
578     }
579     ++it;
580   }
581
582   if (StartedMetadataBlock)
583     Stream.ExitBlock();
584 }
585
586 static void WriteMetadataAttachment(const Function &F,
587                                     const ValueEnumerator &VE,
588                                     BitstreamWriter &Stream) {
589   bool StartedMetadataBlock = false;
590   SmallVector<uint64_t, 64> Record;
591
592   // Write metadata attachments
593   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
594   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
595   
596   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
597     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
598          I != E; ++I) {
599       MDs.clear();
600       I->getAllMetadata(MDs);
601       
602       // If no metadata, ignore instruction.
603       if (MDs.empty()) continue;
604
605       Record.push_back(VE.getInstructionID(I));
606       
607       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
608         Record.push_back(MDs[i].first);
609         Record.push_back(VE.getValueID(MDs[i].second));
610       }
611       if (!StartedMetadataBlock)  {
612         Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
613         StartedMetadataBlock = true;
614       }
615       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
616       Record.clear();
617     }
618
619   if (StartedMetadataBlock)
620     Stream.ExitBlock();
621 }
622
623 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
624   SmallVector<uint64_t, 64> Record;
625
626   // Write metadata kinds
627   // METADATA_KIND - [n x [id, name]]
628   SmallVector<StringRef, 4> Names;
629   M->getMDKindNames(Names);
630   
631   assert(Names[0] == "" && "MDKind #0 is invalid");
632   if (Names.size() == 1) return;
633
634   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
635   
636   for (unsigned MDKindID = 1, e = Names.size(); MDKindID != e; ++MDKindID) {
637     Record.push_back(MDKindID);
638     StringRef KName = Names[MDKindID];
639     Record.append(KName.begin(), KName.end());
640     
641     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
642     Record.clear();
643   }
644
645   Stream.ExitBlock();
646 }
647
648 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
649                            const ValueEnumerator &VE,
650                            BitstreamWriter &Stream, bool isGlobal) {
651   if (FirstVal == LastVal) return;
652
653   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
654
655   unsigned AggregateAbbrev = 0;
656   unsigned String8Abbrev = 0;
657   unsigned CString7Abbrev = 0;
658   unsigned CString6Abbrev = 0;
659   // If this is a constant pool for the module, emit module-specific abbrevs.
660   if (isGlobal) {
661     // Abbrev for CST_CODE_AGGREGATE.
662     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
663     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
664     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
665     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
666     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
667
668     // Abbrev for CST_CODE_STRING.
669     Abbv = new BitCodeAbbrev();
670     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
671     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
672     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
673     String8Abbrev = Stream.EmitAbbrev(Abbv);
674     // Abbrev for CST_CODE_CSTRING.
675     Abbv = new BitCodeAbbrev();
676     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
677     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
678     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
679     CString7Abbrev = Stream.EmitAbbrev(Abbv);
680     // Abbrev for CST_CODE_CSTRING.
681     Abbv = new BitCodeAbbrev();
682     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
683     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
684     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
685     CString6Abbrev = Stream.EmitAbbrev(Abbv);
686   }
687
688   SmallVector<uint64_t, 64> Record;
689
690   const ValueEnumerator::ValueList &Vals = VE.getValues();
691   const Type *LastTy = 0;
692   for (unsigned i = FirstVal; i != LastVal; ++i) {
693     const Value *V = Vals[i].first;
694     // If we need to switch types, do so now.
695     if (V->getType() != LastTy) {
696       LastTy = V->getType();
697       Record.push_back(VE.getTypeID(LastTy));
698       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
699                         CONSTANTS_SETTYPE_ABBREV);
700       Record.clear();
701     }
702
703     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
704       Record.push_back(unsigned(IA->hasSideEffects()) |
705                        unsigned(IA->isAlignStack()) << 1);
706
707       // Add the asm string.
708       const std::string &AsmStr = IA->getAsmString();
709       Record.push_back(AsmStr.size());
710       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
711         Record.push_back(AsmStr[i]);
712
713       // Add the constraint string.
714       const std::string &ConstraintStr = IA->getConstraintString();
715       Record.push_back(ConstraintStr.size());
716       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
717         Record.push_back(ConstraintStr[i]);
718       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
719       Record.clear();
720       continue;
721     }
722     const Constant *C = cast<Constant>(V);
723     unsigned Code = -1U;
724     unsigned AbbrevToUse = 0;
725     if (C->isNullValue()) {
726       Code = bitc::CST_CODE_NULL;
727     } else if (isa<UndefValue>(C)) {
728       Code = bitc::CST_CODE_UNDEF;
729     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
730       if (IV->getBitWidth() <= 64) {
731         int64_t V = IV->getSExtValue();
732         if (V >= 0)
733           Record.push_back(V << 1);
734         else
735           Record.push_back((-V << 1) | 1);
736         Code = bitc::CST_CODE_INTEGER;
737         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
738       } else {                             // Wide integers, > 64 bits in size.
739         // We have an arbitrary precision integer value to write whose
740         // bit width is > 64. However, in canonical unsigned integer
741         // format it is likely that the high bits are going to be zero.
742         // So, we only write the number of active words.
743         unsigned NWords = IV->getValue().getActiveWords();
744         const uint64_t *RawWords = IV->getValue().getRawData();
745         for (unsigned i = 0; i != NWords; ++i) {
746           int64_t V = RawWords[i];
747           if (V >= 0)
748             Record.push_back(V << 1);
749           else
750             Record.push_back((-V << 1) | 1);
751         }
752         Code = bitc::CST_CODE_WIDE_INTEGER;
753       }
754     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
755       Code = bitc::CST_CODE_FLOAT;
756       const Type *Ty = CFP->getType();
757       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
758         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
759       } else if (Ty->isX86_FP80Ty()) {
760         // api needed to prevent premature destruction
761         // bits are not in the same order as a normal i80 APInt, compensate.
762         APInt api = CFP->getValueAPF().bitcastToAPInt();
763         const uint64_t *p = api.getRawData();
764         Record.push_back((p[1] << 48) | (p[0] >> 16));
765         Record.push_back(p[0] & 0xffffLL);
766       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
767         APInt api = CFP->getValueAPF().bitcastToAPInt();
768         const uint64_t *p = api.getRawData();
769         Record.push_back(p[0]);
770         Record.push_back(p[1]);
771       } else {
772         assert (0 && "Unknown FP type!");
773       }
774     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
775       const ConstantArray *CA = cast<ConstantArray>(C);
776       // Emit constant strings specially.
777       unsigned NumOps = CA->getNumOperands();
778       // If this is a null-terminated string, use the denser CSTRING encoding.
779       if (CA->getOperand(NumOps-1)->isNullValue()) {
780         Code = bitc::CST_CODE_CSTRING;
781         --NumOps;  // Don't encode the null, which isn't allowed by char6.
782       } else {
783         Code = bitc::CST_CODE_STRING;
784         AbbrevToUse = String8Abbrev;
785       }
786       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
787       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
788       for (unsigned i = 0; i != NumOps; ++i) {
789         unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
790         Record.push_back(V);
791         isCStr7 &= (V & 128) == 0;
792         if (isCStrChar6)
793           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
794       }
795
796       if (isCStrChar6)
797         AbbrevToUse = CString6Abbrev;
798       else if (isCStr7)
799         AbbrevToUse = CString7Abbrev;
800     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
801                isa<ConstantVector>(V)) {
802       Code = bitc::CST_CODE_AGGREGATE;
803       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
804         Record.push_back(VE.getValueID(C->getOperand(i)));
805       AbbrevToUse = AggregateAbbrev;
806     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
807       switch (CE->getOpcode()) {
808       default:
809         if (Instruction::isCast(CE->getOpcode())) {
810           Code = bitc::CST_CODE_CE_CAST;
811           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
812           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
813           Record.push_back(VE.getValueID(C->getOperand(0)));
814           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
815         } else {
816           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
817           Code = bitc::CST_CODE_CE_BINOP;
818           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
819           Record.push_back(VE.getValueID(C->getOperand(0)));
820           Record.push_back(VE.getValueID(C->getOperand(1)));
821           uint64_t Flags = GetOptimizationFlags(CE);
822           if (Flags != 0)
823             Record.push_back(Flags);
824         }
825         break;
826       case Instruction::GetElementPtr:
827         Code = bitc::CST_CODE_CE_GEP;
828         if (cast<GEPOperator>(C)->isInBounds())
829           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
830         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
831           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
832           Record.push_back(VE.getValueID(C->getOperand(i)));
833         }
834         break;
835       case Instruction::Select:
836         Code = bitc::CST_CODE_CE_SELECT;
837         Record.push_back(VE.getValueID(C->getOperand(0)));
838         Record.push_back(VE.getValueID(C->getOperand(1)));
839         Record.push_back(VE.getValueID(C->getOperand(2)));
840         break;
841       case Instruction::ExtractElement:
842         Code = bitc::CST_CODE_CE_EXTRACTELT;
843         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
844         Record.push_back(VE.getValueID(C->getOperand(0)));
845         Record.push_back(VE.getValueID(C->getOperand(1)));
846         break;
847       case Instruction::InsertElement:
848         Code = bitc::CST_CODE_CE_INSERTELT;
849         Record.push_back(VE.getValueID(C->getOperand(0)));
850         Record.push_back(VE.getValueID(C->getOperand(1)));
851         Record.push_back(VE.getValueID(C->getOperand(2)));
852         break;
853       case Instruction::ShuffleVector:
854         // If the return type and argument types are the same, this is a
855         // standard shufflevector instruction.  If the types are different,
856         // then the shuffle is widening or truncating the input vectors, and
857         // the argument type must also be encoded.
858         if (C->getType() == C->getOperand(0)->getType()) {
859           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
860         } else {
861           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
862           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
863         }
864         Record.push_back(VE.getValueID(C->getOperand(0)));
865         Record.push_back(VE.getValueID(C->getOperand(1)));
866         Record.push_back(VE.getValueID(C->getOperand(2)));
867         break;
868       case Instruction::ICmp:
869       case Instruction::FCmp:
870         Code = bitc::CST_CODE_CE_CMP;
871         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
872         Record.push_back(VE.getValueID(C->getOperand(0)));
873         Record.push_back(VE.getValueID(C->getOperand(1)));
874         Record.push_back(CE->getPredicate());
875         break;
876       }
877     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
878       assert(BA->getFunction() == BA->getBasicBlock()->getParent() &&
879              "Malformed blockaddress");
880       Code = bitc::CST_CODE_BLOCKADDRESS;
881       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
882       Record.push_back(VE.getValueID(BA->getFunction()));
883       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
884     } else {
885       llvm_unreachable("Unknown constant!");
886     }
887     Stream.EmitRecord(Code, Record, AbbrevToUse);
888     Record.clear();
889   }
890
891   Stream.ExitBlock();
892 }
893
894 static void WriteModuleConstants(const ValueEnumerator &VE,
895                                  BitstreamWriter &Stream) {
896   const ValueEnumerator::ValueList &Vals = VE.getValues();
897
898   // Find the first constant to emit, which is the first non-globalvalue value.
899   // We know globalvalues have been emitted by WriteModuleInfo.
900   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
901     if (!isa<GlobalValue>(Vals[i].first)) {
902       WriteConstants(i, Vals.size(), VE, Stream, true);
903       return;
904     }
905   }
906 }
907
908 /// PushValueAndType - The file has to encode both the value and type id for
909 /// many values, because we need to know what type to create for forward
910 /// references.  However, most operands are not forward references, so this type
911 /// field is not needed.
912 ///
913 /// This function adds V's value ID to Vals.  If the value ID is higher than the
914 /// instruction ID, then it is a forward reference, and it also includes the
915 /// type ID.
916 static bool PushValueAndType(const Value *V, unsigned InstID,
917                              SmallVector<unsigned, 64> &Vals,
918                              ValueEnumerator &VE) {
919   unsigned ValID = VE.getValueID(V);
920   Vals.push_back(ValID);
921   if (ValID >= InstID) {
922     Vals.push_back(VE.getTypeID(V->getType()));
923     return true;
924   }
925   return false;
926 }
927
928 /// WriteInstruction - Emit an instruction to the specified stream.
929 static void WriteInstruction(const Instruction &I, unsigned InstID,
930                              ValueEnumerator &VE, BitstreamWriter &Stream,
931                              SmallVector<unsigned, 64> &Vals) {
932   unsigned Code = 0;
933   unsigned AbbrevToUse = 0;
934   VE.setInstructionID(&I);
935   switch (I.getOpcode()) {
936   default:
937     if (Instruction::isCast(I.getOpcode())) {
938       Code = bitc::FUNC_CODE_INST_CAST;
939       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
940         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
941       Vals.push_back(VE.getTypeID(I.getType()));
942       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
943     } else {
944       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
945       Code = bitc::FUNC_CODE_INST_BINOP;
946       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
947         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
948       Vals.push_back(VE.getValueID(I.getOperand(1)));
949       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
950       uint64_t Flags = GetOptimizationFlags(&I);
951       if (Flags != 0) {
952         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
953           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
954         Vals.push_back(Flags);
955       }
956     }
957     break;
958
959   case Instruction::GetElementPtr:
960     Code = bitc::FUNC_CODE_INST_GEP;
961     if (cast<GEPOperator>(&I)->isInBounds())
962       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
963     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
964       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
965     break;
966   case Instruction::ExtractValue: {
967     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
968     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
969     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
970     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
971       Vals.push_back(*i);
972     break;
973   }
974   case Instruction::InsertValue: {
975     Code = bitc::FUNC_CODE_INST_INSERTVAL;
976     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
977     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
978     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
979     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
980       Vals.push_back(*i);
981     break;
982   }
983   case Instruction::Select:
984     Code = bitc::FUNC_CODE_INST_VSELECT;
985     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
986     Vals.push_back(VE.getValueID(I.getOperand(2)));
987     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
988     break;
989   case Instruction::ExtractElement:
990     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
991     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
992     Vals.push_back(VE.getValueID(I.getOperand(1)));
993     break;
994   case Instruction::InsertElement:
995     Code = bitc::FUNC_CODE_INST_INSERTELT;
996     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
997     Vals.push_back(VE.getValueID(I.getOperand(1)));
998     Vals.push_back(VE.getValueID(I.getOperand(2)));
999     break;
1000   case Instruction::ShuffleVector:
1001     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1002     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1003     Vals.push_back(VE.getValueID(I.getOperand(1)));
1004     Vals.push_back(VE.getValueID(I.getOperand(2)));
1005     break;
1006   case Instruction::ICmp:
1007   case Instruction::FCmp:
1008     // compare returning Int1Ty or vector of Int1Ty
1009     Code = bitc::FUNC_CODE_INST_CMP2;
1010     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1011     Vals.push_back(VE.getValueID(I.getOperand(1)));
1012     Vals.push_back(cast<CmpInst>(I).getPredicate());
1013     break;
1014
1015   case Instruction::Ret:
1016     {
1017       Code = bitc::FUNC_CODE_INST_RET;
1018       unsigned NumOperands = I.getNumOperands();
1019       if (NumOperands == 0)
1020         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1021       else if (NumOperands == 1) {
1022         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1023           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1024       } else {
1025         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1026           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1027       }
1028     }
1029     break;
1030   case Instruction::Br:
1031     {
1032       Code = bitc::FUNC_CODE_INST_BR;
1033       BranchInst &II = cast<BranchInst>(I);
1034       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1035       if (II.isConditional()) {
1036         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1037         Vals.push_back(VE.getValueID(II.getCondition()));
1038       }
1039     }
1040     break;
1041   case Instruction::Switch:
1042     Code = bitc::FUNC_CODE_INST_SWITCH;
1043     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1044     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1045       Vals.push_back(VE.getValueID(I.getOperand(i)));
1046     break;
1047   case Instruction::IndirectBr:
1048     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1049     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1050     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1051       Vals.push_back(VE.getValueID(I.getOperand(i)));
1052     break;
1053       
1054   case Instruction::Invoke: {
1055     const InvokeInst *II = cast<InvokeInst>(&I);
1056     const Value *Callee(II->getCalledValue());
1057     const PointerType *PTy = cast<PointerType>(Callee->getType());
1058     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1059     Code = bitc::FUNC_CODE_INST_INVOKE;
1060
1061     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1062     Vals.push_back(II->getCallingConv());
1063     Vals.push_back(VE.getValueID(II->getNormalDest()));
1064     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1065     PushValueAndType(Callee, InstID, Vals, VE);
1066
1067     // Emit value #'s for the fixed parameters.
1068     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1069       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
1070
1071     // Emit type/value pairs for varargs params.
1072     if (FTy->isVarArg()) {
1073       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
1074            i != e; ++i)
1075         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1076     }
1077     break;
1078   }
1079   case Instruction::Unwind:
1080     Code = bitc::FUNC_CODE_INST_UNWIND;
1081     break;
1082   case Instruction::Unreachable:
1083     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1084     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1085     break;
1086
1087   case Instruction::PHI:
1088     Code = bitc::FUNC_CODE_INST_PHI;
1089     Vals.push_back(VE.getTypeID(I.getType()));
1090     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1091       Vals.push_back(VE.getValueID(I.getOperand(i)));
1092     break;
1093
1094   case Instruction::Alloca:
1095     Code = bitc::FUNC_CODE_INST_ALLOCA;
1096     Vals.push_back(VE.getTypeID(I.getType()));
1097     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1098     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1099     break;
1100
1101   case Instruction::Load:
1102     Code = bitc::FUNC_CODE_INST_LOAD;
1103     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1104       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1105
1106     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1107     Vals.push_back(cast<LoadInst>(I).isVolatile());
1108     break;
1109   case Instruction::Store:
1110     Code = bitc::FUNC_CODE_INST_STORE2;
1111     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1112     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1113     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1114     Vals.push_back(cast<StoreInst>(I).isVolatile());
1115     break;
1116   case Instruction::Call: {
1117     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1118     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1119
1120     Code = bitc::FUNC_CODE_INST_CALL;
1121
1122     const CallInst *CI = cast<CallInst>(&I);
1123     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1124     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1125     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1126
1127     // Emit value #'s for the fixed parameters.
1128     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1129       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1130
1131     // Emit type/value pairs for varargs params.
1132     if (FTy->isVarArg()) {
1133       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1134       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1135            i != e; ++i)
1136         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1137     }
1138     break;
1139   }
1140   case Instruction::VAArg:
1141     Code = bitc::FUNC_CODE_INST_VAARG;
1142     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1143     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1144     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1145     break;
1146   }
1147
1148   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1149   Vals.clear();
1150 }
1151
1152 // Emit names for globals/functions etc.
1153 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1154                                   const ValueEnumerator &VE,
1155                                   BitstreamWriter &Stream) {
1156   if (VST.empty()) return;
1157   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1158
1159   // FIXME: Set up the abbrev, we know how many values there are!
1160   // FIXME: We know if the type names can use 7-bit ascii.
1161   SmallVector<unsigned, 64> NameVals;
1162
1163   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1164        SI != SE; ++SI) {
1165
1166     const ValueName &Name = *SI;
1167
1168     // Figure out the encoding to use for the name.
1169     bool is7Bit = true;
1170     bool isChar6 = true;
1171     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1172          C != E; ++C) {
1173       if (isChar6)
1174         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1175       if ((unsigned char)*C & 128) {
1176         is7Bit = false;
1177         break;  // don't bother scanning the rest.
1178       }
1179     }
1180
1181     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1182
1183     // VST_ENTRY:   [valueid, namechar x N]
1184     // VST_BBENTRY: [bbid, namechar x N]
1185     unsigned Code;
1186     if (isa<BasicBlock>(SI->getValue())) {
1187       Code = bitc::VST_CODE_BBENTRY;
1188       if (isChar6)
1189         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1190     } else {
1191       Code = bitc::VST_CODE_ENTRY;
1192       if (isChar6)
1193         AbbrevToUse = VST_ENTRY_6_ABBREV;
1194       else if (is7Bit)
1195         AbbrevToUse = VST_ENTRY_7_ABBREV;
1196     }
1197
1198     NameVals.push_back(VE.getValueID(SI->getValue()));
1199     for (const char *P = Name.getKeyData(),
1200          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1201       NameVals.push_back((unsigned char)*P);
1202
1203     // Emit the finished record.
1204     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1205     NameVals.clear();
1206   }
1207   Stream.ExitBlock();
1208 }
1209
1210 /// WriteFunction - Emit a function body to the module stream.
1211 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1212                           BitstreamWriter &Stream) {
1213   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1214   VE.incorporateFunction(F);
1215
1216   SmallVector<unsigned, 64> Vals;
1217
1218   // Emit the number of basic blocks, so the reader can create them ahead of
1219   // time.
1220   Vals.push_back(VE.getBasicBlocks().size());
1221   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1222   Vals.clear();
1223
1224   // If there are function-local constants, emit them now.
1225   unsigned CstStart, CstEnd;
1226   VE.getFunctionConstantRange(CstStart, CstEnd);
1227   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1228
1229   // Keep a running idea of what the instruction ID is.
1230   unsigned InstID = CstEnd;
1231
1232   // Finally, emit all the instructions, in order.
1233   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1234     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1235          I != E; ++I) {
1236       WriteInstruction(*I, InstID, VE, Stream, Vals);
1237       if (!I->getType()->isVoidTy())
1238         ++InstID;
1239     }
1240
1241   // Emit names for all the instructions etc.
1242   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1243
1244   WriteFunctionLocalMetadata(VE, Stream);
1245   WriteMetadataAttachment(F, VE, Stream);
1246   VE.purgeFunction();
1247   Stream.ExitBlock();
1248 }
1249
1250 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1251 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1252                                  const ValueEnumerator &VE,
1253                                  BitstreamWriter &Stream) {
1254   if (TST.empty()) return;
1255
1256   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1257
1258   // 7-bit fixed width VST_CODE_ENTRY strings.
1259   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1260   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1261   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1262                             Log2_32_Ceil(VE.getTypes().size()+1)));
1263   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1264   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1265   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1266
1267   SmallVector<unsigned, 64> NameVals;
1268
1269   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1270        TI != TE; ++TI) {
1271     // TST_ENTRY: [typeid, namechar x N]
1272     NameVals.push_back(VE.getTypeID(TI->second));
1273
1274     const std::string &Str = TI->first;
1275     bool is7Bit = true;
1276     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1277       NameVals.push_back((unsigned char)Str[i]);
1278       if (Str[i] & 128)
1279         is7Bit = false;
1280     }
1281
1282     // Emit the finished record.
1283     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1284     NameVals.clear();
1285   }
1286
1287   Stream.ExitBlock();
1288 }
1289
1290 // Emit blockinfo, which defines the standard abbreviations etc.
1291 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1292   // We only want to emit block info records for blocks that have multiple
1293   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1294   // blocks can defined their abbrevs inline.
1295   Stream.EnterBlockInfoBlock(2);
1296
1297   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1298     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1299     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1300     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1301     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1302     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1303     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1304                                    Abbv) != VST_ENTRY_8_ABBREV)
1305       llvm_unreachable("Unexpected abbrev ordering!");
1306   }
1307
1308   { // 7-bit fixed width VST_ENTRY strings.
1309     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1310     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1311     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1312     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1313     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1314     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1315                                    Abbv) != VST_ENTRY_7_ABBREV)
1316       llvm_unreachable("Unexpected abbrev ordering!");
1317   }
1318   { // 6-bit char6 VST_ENTRY strings.
1319     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1320     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1321     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1322     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1323     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1324     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1325                                    Abbv) != VST_ENTRY_6_ABBREV)
1326       llvm_unreachable("Unexpected abbrev ordering!");
1327   }
1328   { // 6-bit char6 VST_BBENTRY strings.
1329     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1330     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1331     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1332     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1333     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1334     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1335                                    Abbv) != VST_BBENTRY_6_ABBREV)
1336       llvm_unreachable("Unexpected abbrev ordering!");
1337   }
1338
1339
1340
1341   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1342     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1343     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1344     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1345                               Log2_32_Ceil(VE.getTypes().size()+1)));
1346     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1347                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1348       llvm_unreachable("Unexpected abbrev ordering!");
1349   }
1350
1351   { // INTEGER abbrev for CONSTANTS_BLOCK.
1352     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1353     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1354     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1355     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1356                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1357       llvm_unreachable("Unexpected abbrev ordering!");
1358   }
1359
1360   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1361     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1362     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1363     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1364     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1365                               Log2_32_Ceil(VE.getTypes().size()+1)));
1366     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1367
1368     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1369                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1370       llvm_unreachable("Unexpected abbrev ordering!");
1371   }
1372   { // NULL abbrev for CONSTANTS_BLOCK.
1373     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1374     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1375     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1376                                    Abbv) != CONSTANTS_NULL_Abbrev)
1377       llvm_unreachable("Unexpected abbrev ordering!");
1378   }
1379
1380   // FIXME: This should only use space for first class types!
1381
1382   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1383     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1384     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1385     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1386     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1387     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1388     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1389                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1390       llvm_unreachable("Unexpected abbrev ordering!");
1391   }
1392   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1393     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1394     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1395     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1396     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1397     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1398     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1399                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1400       llvm_unreachable("Unexpected abbrev ordering!");
1401   }
1402   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1403     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1404     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1405     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1406     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1407     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1408     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1409     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1410                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1411       llvm_unreachable("Unexpected abbrev ordering!");
1412   }
1413   { // INST_CAST abbrev for FUNCTION_BLOCK.
1414     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1415     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1416     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1417     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1418                               Log2_32_Ceil(VE.getTypes().size()+1)));
1419     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1420     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1421                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1422       llvm_unreachable("Unexpected abbrev ordering!");
1423   }
1424
1425   { // INST_RET abbrev for FUNCTION_BLOCK.
1426     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1427     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1428     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1429                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1430       llvm_unreachable("Unexpected abbrev ordering!");
1431   }
1432   { // INST_RET abbrev for FUNCTION_BLOCK.
1433     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1434     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1435     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1436     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1437                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1438       llvm_unreachable("Unexpected abbrev ordering!");
1439   }
1440   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1441     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1442     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1443     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1444                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1445       llvm_unreachable("Unexpected abbrev ordering!");
1446   }
1447
1448   Stream.ExitBlock();
1449 }
1450
1451
1452 /// WriteModule - Emit the specified module to the bitstream.
1453 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1454   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1455
1456   // Emit the version number if it is non-zero.
1457   if (CurVersion) {
1458     SmallVector<unsigned, 1> Vals;
1459     Vals.push_back(CurVersion);
1460     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1461   }
1462
1463   // Analyze the module, enumerating globals, functions, etc.
1464   ValueEnumerator VE(M);
1465
1466   // Emit blockinfo, which defines the standard abbreviations etc.
1467   WriteBlockInfo(VE, Stream);
1468
1469   // Emit information about parameter attributes.
1470   WriteAttributeTable(VE, Stream);
1471
1472   // Emit information describing all of the types in the module.
1473   WriteTypeTable(VE, Stream);
1474
1475   // Emit top-level description of module, including target triple, inline asm,
1476   // descriptors for global variables, and function prototype info.
1477   WriteModuleInfo(M, VE, Stream);
1478
1479   // Emit constants.
1480   WriteModuleConstants(VE, Stream);
1481
1482   // Emit metadata.
1483   WriteModuleMetadata(VE, Stream);
1484
1485   // Emit function bodies.
1486   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1487     if (!I->isDeclaration())
1488       WriteFunction(*I, VE, Stream);
1489
1490   // Emit metadata.
1491   WriteModuleMetadataStore(M, Stream);
1492
1493   // Emit the type symbol table information.
1494   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1495
1496   // Emit names for globals/functions etc.
1497   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1498
1499   Stream.ExitBlock();
1500 }
1501
1502 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1503 /// header and trailer to make it compatible with the system archiver.  To do
1504 /// this we emit the following header, and then emit a trailer that pads the
1505 /// file out to be a multiple of 16 bytes.
1506 ///
1507 /// struct bc_header {
1508 ///   uint32_t Magic;         // 0x0B17C0DE
1509 ///   uint32_t Version;       // Version, currently always 0.
1510 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1511 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1512 ///   uint32_t CPUType;       // CPU specifier.
1513 ///   ... potentially more later ...
1514 /// };
1515 enum {
1516   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1517   DarwinBCHeaderSize = 5*4
1518 };
1519
1520 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1521                                const std::string &TT) {
1522   unsigned CPUType = ~0U;
1523
1524   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1525   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1526   // specific constants here because they are implicitly part of the Darwin ABI.
1527   enum {
1528     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1529     DARWIN_CPU_TYPE_X86        = 7,
1530     DARWIN_CPU_TYPE_POWERPC    = 18
1531   };
1532
1533   if (TT.find("x86_64-") == 0)
1534     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1535   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1536            TT[4] == '-' && TT[1] - '3' < 6)
1537     CPUType = DARWIN_CPU_TYPE_X86;
1538   else if (TT.find("powerpc-") == 0)
1539     CPUType = DARWIN_CPU_TYPE_POWERPC;
1540   else if (TT.find("powerpc64-") == 0)
1541     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1542
1543   // Traditional Bitcode starts after header.
1544   unsigned BCOffset = DarwinBCHeaderSize;
1545
1546   Stream.Emit(0x0B17C0DE, 32);
1547   Stream.Emit(0         , 32);  // Version.
1548   Stream.Emit(BCOffset  , 32);
1549   Stream.Emit(0         , 32);  // Filled in later.
1550   Stream.Emit(CPUType   , 32);
1551 }
1552
1553 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1554 /// finalize the header.
1555 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1556   // Update the size field in the header.
1557   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1558
1559   // If the file is not a multiple of 16 bytes, insert dummy padding.
1560   while (BufferSize & 15) {
1561     Stream.Emit(0, 8);
1562     ++BufferSize;
1563   }
1564 }
1565
1566
1567 /// WriteBitcodeToFile - Write the specified module to the specified output
1568 /// stream.
1569 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1570   std::vector<unsigned char> Buffer;
1571   BitstreamWriter Stream(Buffer);
1572
1573   Buffer.reserve(256*1024);
1574
1575   WriteBitcodeToStream( M, Stream );
1576
1577   // If writing to stdout, set binary mode.
1578   if (&llvm::outs() == &Out)
1579     sys::Program::ChangeStdoutToBinary();
1580
1581   // Write the generated bitstream to "Out".
1582   Out.write((char*)&Buffer.front(), Buffer.size());
1583
1584   // Make sure it hits disk now.
1585   Out.flush();
1586 }
1587
1588 /// WriteBitcodeToStream - Write the specified module to the specified output
1589 /// stream.
1590 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1591   // If this is darwin, emit a file header and trailer if needed.
1592   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1593   if (isDarwin)
1594     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1595
1596   // Emit the file header.
1597   Stream.Emit((unsigned)'B', 8);
1598   Stream.Emit((unsigned)'C', 8);
1599   Stream.Emit(0x0, 4);
1600   Stream.Emit(0xC, 4);
1601   Stream.Emit(0xE, 4);
1602   Stream.Emit(0xD, 4);
1603
1604   // Emit the module.
1605   WriteModule(M, Stream);
1606
1607   if (isDarwin)
1608     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1609 }