1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the parser class for .ll files.
12 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/IR/AutoUpgrade.h"
17 #include "llvm/IR/CallingConv.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/InlineAsm.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/ValueSymbolTable.h"
27 #include "llvm/Support/Dwarf.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/SaveAndRestore.h"
30 #include "llvm/Support/raw_ostream.h"
33 static std::string getTypeString(Type *T) {
35 raw_string_ostream Tmp(Result);
40 /// Run: module ::= toplevelentity*
41 bool LLParser::Run() {
45 return ParseTopLevelEntities() ||
46 ValidateEndOfModule();
49 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
51 bool LLParser::ValidateEndOfModule() {
52 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
53 UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
55 // Handle any function attribute group forward references.
56 for (std::map<Value*, std::vector<unsigned> >::iterator
57 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
60 std::vector<unsigned> &Vec = I->second;
63 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
65 B.merge(NumberedAttrBuilders[*VI]);
67 if (Function *Fn = dyn_cast<Function>(V)) {
68 AttributeSet AS = Fn->getAttributes();
69 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
70 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
71 AS.getFnAttributes());
75 // If the alignment was parsed as an attribute, move to the alignment
77 if (FnAttrs.hasAlignmentAttr()) {
78 Fn->setAlignment(FnAttrs.getAlignment());
79 FnAttrs.removeAttribute(Attribute::Alignment);
82 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
83 AttributeSet::get(Context,
84 AttributeSet::FunctionIndex,
86 Fn->setAttributes(AS);
87 } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
88 AttributeSet AS = CI->getAttributes();
89 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
90 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
91 AS.getFnAttributes());
93 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
94 AttributeSet::get(Context,
95 AttributeSet::FunctionIndex,
97 CI->setAttributes(AS);
98 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
99 AttributeSet AS = II->getAttributes();
100 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
101 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
102 AS.getFnAttributes());
104 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
105 AttributeSet::get(Context,
106 AttributeSet::FunctionIndex,
108 II->setAttributes(AS);
110 llvm_unreachable("invalid object with forward attribute group reference");
114 // If there are entries in ForwardRefBlockAddresses at this point, the
115 // function was never defined.
116 if (!ForwardRefBlockAddresses.empty())
117 return Error(ForwardRefBlockAddresses.begin()->first.Loc,
118 "expected function name in blockaddress");
120 for (const auto &NT : NumberedTypes)
121 if (NT.second.second.isValid())
122 return Error(NT.second.second,
123 "use of undefined type '%" + Twine(NT.first) + "'");
125 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
126 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
127 if (I->second.second.isValid())
128 return Error(I->second.second,
129 "use of undefined type named '" + I->getKey() + "'");
131 if (!ForwardRefComdats.empty())
132 return Error(ForwardRefComdats.begin()->second,
133 "use of undefined comdat '$" +
134 ForwardRefComdats.begin()->first + "'");
136 if (!ForwardRefVals.empty())
137 return Error(ForwardRefVals.begin()->second.second,
138 "use of undefined value '@" + ForwardRefVals.begin()->first +
141 if (!ForwardRefValIDs.empty())
142 return Error(ForwardRefValIDs.begin()->second.second,
143 "use of undefined value '@" +
144 Twine(ForwardRefValIDs.begin()->first) + "'");
146 if (!ForwardRefMDNodes.empty())
147 return Error(ForwardRefMDNodes.begin()->second.second,
148 "use of undefined metadata '!" +
149 Twine(ForwardRefMDNodes.begin()->first) + "'");
151 // Resolve metadata cycles.
152 for (auto &N : NumberedMetadata) {
153 if (N.second && !N.second->isResolved())
154 N.second->resolveCycles();
157 // Look for intrinsic functions and CallInst that need to be upgraded
158 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
159 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
161 UpgradeDebugInfo(*M);
166 //===----------------------------------------------------------------------===//
167 // Top-Level Entities
168 //===----------------------------------------------------------------------===//
170 bool LLParser::ParseTopLevelEntities() {
172 switch (Lex.getKind()) {
173 default: return TokError("expected top-level entity");
174 case lltok::Eof: return false;
175 case lltok::kw_declare: if (ParseDeclare()) return true; break;
176 case lltok::kw_define: if (ParseDefine()) return true; break;
177 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
178 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
179 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
180 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
181 case lltok::LocalVar: if (ParseNamedType()) return true; break;
182 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
183 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
184 case lltok::ComdatVar: if (parseComdat()) return true; break;
185 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
186 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
188 // The Global variable production with no name can have many different
189 // optional leading prefixes, the production is:
190 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
191 // OptionalThreadLocal OptionalAddrSpace OptionalUnNammedAddr
192 // ('constant'|'global') ...
193 case lltok::kw_private: // OptionalLinkage
194 case lltok::kw_internal: // OptionalLinkage
195 case lltok::kw_weak: // OptionalLinkage
196 case lltok::kw_weak_odr: // OptionalLinkage
197 case lltok::kw_linkonce: // OptionalLinkage
198 case lltok::kw_linkonce_odr: // OptionalLinkage
199 case lltok::kw_appending: // OptionalLinkage
200 case lltok::kw_common: // OptionalLinkage
201 case lltok::kw_extern_weak: // OptionalLinkage
202 case lltok::kw_external: // OptionalLinkage
203 case lltok::kw_default: // OptionalVisibility
204 case lltok::kw_hidden: // OptionalVisibility
205 case lltok::kw_protected: // OptionalVisibility
206 case lltok::kw_dllimport: // OptionalDLLStorageClass
207 case lltok::kw_dllexport: // OptionalDLLStorageClass
208 case lltok::kw_thread_local: // OptionalThreadLocal
209 case lltok::kw_addrspace: // OptionalAddrSpace
210 case lltok::kw_constant: // GlobalType
211 case lltok::kw_global: { // GlobalType
212 unsigned Linkage, Visibility, DLLStorageClass;
214 GlobalVariable::ThreadLocalMode TLM;
216 if (ParseOptionalLinkage(Linkage, HasLinkage) ||
217 ParseOptionalVisibility(Visibility) ||
218 ParseOptionalDLLStorageClass(DLLStorageClass) ||
219 ParseOptionalThreadLocal(TLM) ||
220 parseOptionalUnnamedAddr(UnnamedAddr) ||
221 ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility,
222 DLLStorageClass, TLM, UnnamedAddr))
227 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
228 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
229 case lltok::kw_uselistorder_bb:
230 if (ParseUseListOrderBB()) return true; break;
237 /// ::= 'module' 'asm' STRINGCONSTANT
238 bool LLParser::ParseModuleAsm() {
239 assert(Lex.getKind() == lltok::kw_module);
243 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
244 ParseStringConstant(AsmStr)) return true;
246 M->appendModuleInlineAsm(AsmStr);
251 /// ::= 'target' 'triple' '=' STRINGCONSTANT
252 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
253 bool LLParser::ParseTargetDefinition() {
254 assert(Lex.getKind() == lltok::kw_target);
257 default: return TokError("unknown target property");
258 case lltok::kw_triple:
260 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
261 ParseStringConstant(Str))
263 M->setTargetTriple(Str);
265 case lltok::kw_datalayout:
267 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
268 ParseStringConstant(Str))
270 M->setDataLayout(Str);
276 /// ::= 'deplibs' '=' '[' ']'
277 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
278 /// FIXME: Remove in 4.0. Currently parse, but ignore.
279 bool LLParser::ParseDepLibs() {
280 assert(Lex.getKind() == lltok::kw_deplibs);
282 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
283 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
286 if (EatIfPresent(lltok::rsquare))
291 if (ParseStringConstant(Str)) return true;
292 } while (EatIfPresent(lltok::comma));
294 return ParseToken(lltok::rsquare, "expected ']' at end of list");
297 /// ParseUnnamedType:
298 /// ::= LocalVarID '=' 'type' type
299 bool LLParser::ParseUnnamedType() {
300 LocTy TypeLoc = Lex.getLoc();
301 unsigned TypeID = Lex.getUIntVal();
302 Lex.Lex(); // eat LocalVarID;
304 if (ParseToken(lltok::equal, "expected '=' after name") ||
305 ParseToken(lltok::kw_type, "expected 'type' after '='"))
308 Type *Result = nullptr;
309 if (ParseStructDefinition(TypeLoc, "",
310 NumberedTypes[TypeID], Result)) return true;
312 if (!isa<StructType>(Result)) {
313 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
315 return Error(TypeLoc, "non-struct types may not be recursive");
316 Entry.first = Result;
317 Entry.second = SMLoc();
325 /// ::= LocalVar '=' 'type' type
326 bool LLParser::ParseNamedType() {
327 std::string Name = Lex.getStrVal();
328 LocTy NameLoc = Lex.getLoc();
329 Lex.Lex(); // eat LocalVar.
331 if (ParseToken(lltok::equal, "expected '=' after name") ||
332 ParseToken(lltok::kw_type, "expected 'type' after name"))
335 Type *Result = nullptr;
336 if (ParseStructDefinition(NameLoc, Name,
337 NamedTypes[Name], Result)) return true;
339 if (!isa<StructType>(Result)) {
340 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
342 return Error(NameLoc, "non-struct types may not be recursive");
343 Entry.first = Result;
344 Entry.second = SMLoc();
352 /// ::= 'declare' FunctionHeader
353 bool LLParser::ParseDeclare() {
354 assert(Lex.getKind() == lltok::kw_declare);
358 return ParseFunctionHeader(F, false);
362 /// ::= 'define' FunctionHeader '{' ...
363 bool LLParser::ParseDefine() {
364 assert(Lex.getKind() == lltok::kw_define);
368 return ParseFunctionHeader(F, true) ||
369 ParseFunctionBody(*F);
375 bool LLParser::ParseGlobalType(bool &IsConstant) {
376 if (Lex.getKind() == lltok::kw_constant)
378 else if (Lex.getKind() == lltok::kw_global)
382 return TokError("expected 'global' or 'constant'");
388 /// ParseUnnamedGlobal:
389 /// OptionalVisibility ALIAS ...
390 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass
391 /// ... -> global variable
392 /// GlobalID '=' OptionalVisibility ALIAS ...
393 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
394 /// ... -> global variable
395 bool LLParser::ParseUnnamedGlobal() {
396 unsigned VarID = NumberedVals.size();
398 LocTy NameLoc = Lex.getLoc();
400 // Handle the GlobalID form.
401 if (Lex.getKind() == lltok::GlobalID) {
402 if (Lex.getUIntVal() != VarID)
403 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
405 Lex.Lex(); // eat GlobalID;
407 if (ParseToken(lltok::equal, "expected '=' after name"))
412 unsigned Linkage, Visibility, DLLStorageClass;
413 GlobalVariable::ThreadLocalMode TLM;
415 if (ParseOptionalLinkage(Linkage, HasLinkage) ||
416 ParseOptionalVisibility(Visibility) ||
417 ParseOptionalDLLStorageClass(DLLStorageClass) ||
418 ParseOptionalThreadLocal(TLM) ||
419 parseOptionalUnnamedAddr(UnnamedAddr))
422 if (Lex.getKind() != lltok::kw_alias)
423 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
424 DLLStorageClass, TLM, UnnamedAddr);
425 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
429 /// ParseNamedGlobal:
430 /// GlobalVar '=' OptionalVisibility ALIAS ...
431 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
432 /// ... -> global variable
433 bool LLParser::ParseNamedGlobal() {
434 assert(Lex.getKind() == lltok::GlobalVar);
435 LocTy NameLoc = Lex.getLoc();
436 std::string Name = Lex.getStrVal();
440 unsigned Linkage, Visibility, DLLStorageClass;
441 GlobalVariable::ThreadLocalMode TLM;
443 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
444 ParseOptionalLinkage(Linkage, HasLinkage) ||
445 ParseOptionalVisibility(Visibility) ||
446 ParseOptionalDLLStorageClass(DLLStorageClass) ||
447 ParseOptionalThreadLocal(TLM) ||
448 parseOptionalUnnamedAddr(UnnamedAddr))
451 if (Lex.getKind() != lltok::kw_alias)
452 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
453 DLLStorageClass, TLM, UnnamedAddr);
455 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
459 bool LLParser::parseComdat() {
460 assert(Lex.getKind() == lltok::ComdatVar);
461 std::string Name = Lex.getStrVal();
462 LocTy NameLoc = Lex.getLoc();
465 if (ParseToken(lltok::equal, "expected '=' here"))
468 if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
469 return TokError("expected comdat type");
471 Comdat::SelectionKind SK;
472 switch (Lex.getKind()) {
474 return TokError("unknown selection kind");
478 case lltok::kw_exactmatch:
479 SK = Comdat::ExactMatch;
481 case lltok::kw_largest:
482 SK = Comdat::Largest;
484 case lltok::kw_noduplicates:
485 SK = Comdat::NoDuplicates;
487 case lltok::kw_samesize:
488 SK = Comdat::SameSize;
493 // See if the comdat was forward referenced, if so, use the comdat.
494 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
495 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
496 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
497 return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
500 if (I != ComdatSymTab.end())
503 C = M->getOrInsertComdat(Name);
504 C->setSelectionKind(SK);
510 // ::= '!' STRINGCONSTANT
511 bool LLParser::ParseMDString(MDString *&Result) {
513 if (ParseStringConstant(Str)) return true;
514 llvm::UpgradeMDStringConstant(Str);
515 Result = MDString::get(Context, Str);
520 // ::= '!' MDNodeNumber
521 bool LLParser::ParseMDNodeID(MDNode *&Result) {
522 // !{ ..., !42, ... }
524 if (ParseUInt32(MID))
527 // If not a forward reference, just return it now.
528 if (NumberedMetadata.count(MID)) {
529 Result = NumberedMetadata[MID];
533 // Otherwise, create MDNode forward reference.
534 auto &FwdRef = ForwardRefMDNodes[MID];
535 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc());
537 Result = FwdRef.first.get();
538 NumberedMetadata[MID].reset(Result);
542 /// ParseNamedMetadata:
543 /// !foo = !{ !1, !2 }
544 bool LLParser::ParseNamedMetadata() {
545 assert(Lex.getKind() == lltok::MetadataVar);
546 std::string Name = Lex.getStrVal();
549 if (ParseToken(lltok::equal, "expected '=' here") ||
550 ParseToken(lltok::exclaim, "Expected '!' here") ||
551 ParseToken(lltok::lbrace, "Expected '{' here"))
554 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
555 if (Lex.getKind() != lltok::rbrace)
557 if (ParseToken(lltok::exclaim, "Expected '!' here"))
561 if (ParseMDNodeID(N)) return true;
563 } while (EatIfPresent(lltok::comma));
565 if (ParseToken(lltok::rbrace, "expected end of metadata node"))
571 /// ParseStandaloneMetadata:
573 bool LLParser::ParseStandaloneMetadata() {
574 assert(Lex.getKind() == lltok::exclaim);
576 unsigned MetadataID = 0;
579 if (ParseUInt32(MetadataID) ||
580 ParseToken(lltok::equal, "expected '=' here"))
583 // Detect common error, from old metadata syntax.
584 if (Lex.getKind() == lltok::Type)
585 return TokError("unexpected type in metadata definition");
587 bool IsDistinct = EatIfPresent(lltok::kw_distinct);
588 if (Lex.getKind() == lltok::MetadataVar) {
589 if (ParseSpecializedMDNode(Init, IsDistinct))
591 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
592 ParseMDTuple(Init, IsDistinct))
595 // See if this was forward referenced, if so, handle it.
596 auto FI = ForwardRefMDNodes.find(MetadataID);
597 if (FI != ForwardRefMDNodes.end()) {
598 FI->second.first->replaceAllUsesWith(Init);
599 ForwardRefMDNodes.erase(FI);
601 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
603 if (NumberedMetadata.count(MetadataID))
604 return TokError("Metadata id is already used");
605 NumberedMetadata[MetadataID].reset(Init);
611 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
612 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
613 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
617 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility
618 /// OptionalDLLStorageClass OptionalThreadLocal
619 /// OptionalUnNammedAddr 'alias' Aliasee
624 /// Everything through OptionalUnNammedAddr has already been parsed.
626 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L,
627 unsigned Visibility, unsigned DLLStorageClass,
628 GlobalVariable::ThreadLocalMode TLM,
630 assert(Lex.getKind() == lltok::kw_alias);
633 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
635 if(!GlobalAlias::isValidLinkage(Linkage))
636 return Error(NameLoc, "invalid linkage type for alias");
638 if (!isValidVisibilityForLinkage(Visibility, L))
639 return Error(NameLoc,
640 "symbol with local linkage must have default visibility");
643 LocTy AliaseeLoc = Lex.getLoc();
644 if (Lex.getKind() != lltok::kw_bitcast &&
645 Lex.getKind() != lltok::kw_getelementptr &&
646 Lex.getKind() != lltok::kw_addrspacecast &&
647 Lex.getKind() != lltok::kw_inttoptr) {
648 if (ParseGlobalTypeAndValue(Aliasee))
651 // The bitcast dest type is not present, it is implied by the dest type.
655 if (ID.Kind != ValID::t_Constant)
656 return Error(AliaseeLoc, "invalid aliasee");
657 Aliasee = ID.ConstantVal;
660 Type *AliaseeType = Aliasee->getType();
661 auto *PTy = dyn_cast<PointerType>(AliaseeType);
663 return Error(AliaseeLoc, "An alias must have pointer type");
664 Type *Ty = PTy->getElementType();
665 unsigned AddrSpace = PTy->getAddressSpace();
667 // Okay, create the alias but do not insert it into the module yet.
668 std::unique_ptr<GlobalAlias> GA(
669 GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage,
670 Name, Aliasee, /*Parent*/ nullptr));
671 GA->setThreadLocalMode(TLM);
672 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
673 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
674 GA->setUnnamedAddr(UnnamedAddr);
676 // See if this value already exists in the symbol table. If so, it is either
677 // a redefinition or a definition of a forward reference.
678 if (GlobalValue *Val = M->getNamedValue(Name)) {
679 // See if this was a redefinition. If so, there is no entry in
681 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
682 I = ForwardRefVals.find(Name);
683 if (I == ForwardRefVals.end())
684 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
686 // Otherwise, this was a definition of forward ref. Verify that types
688 if (Val->getType() != GA->getType())
689 return Error(NameLoc,
690 "forward reference and definition of alias have different types");
692 // If they agree, just RAUW the old value with the alias and remove the
694 Val->replaceAllUsesWith(GA.get());
695 Val->eraseFromParent();
696 ForwardRefVals.erase(I);
699 // Insert into the module, we know its name won't collide now.
700 M->getAliasList().push_back(GA.get());
701 assert(GA->getName() == Name && "Should not be a name conflict!");
703 // The module owns this now
710 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
711 /// OptionalThreadLocal OptionalUnNammedAddr OptionalAddrSpace
712 /// OptionalExternallyInitialized GlobalType Type Const
713 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
714 /// OptionalThreadLocal OptionalUnNammedAddr OptionalAddrSpace
715 /// OptionalExternallyInitialized GlobalType Type Const
717 /// Everything up to and including OptionalUnNammedAddr has been parsed
720 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
721 unsigned Linkage, bool HasLinkage,
722 unsigned Visibility, unsigned DLLStorageClass,
723 GlobalVariable::ThreadLocalMode TLM,
725 if (!isValidVisibilityForLinkage(Visibility, Linkage))
726 return Error(NameLoc,
727 "symbol with local linkage must have default visibility");
730 bool IsConstant, IsExternallyInitialized;
731 LocTy IsExternallyInitializedLoc;
735 if (ParseOptionalAddrSpace(AddrSpace) ||
736 ParseOptionalToken(lltok::kw_externally_initialized,
737 IsExternallyInitialized,
738 &IsExternallyInitializedLoc) ||
739 ParseGlobalType(IsConstant) ||
740 ParseType(Ty, TyLoc))
743 // If the linkage is specified and is external, then no initializer is
745 Constant *Init = nullptr;
746 if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage &&
747 Linkage != GlobalValue::ExternalLinkage)) {
748 if (ParseGlobalValue(Ty, Init))
752 if (Ty->isFunctionTy() || Ty->isLabelTy())
753 return Error(TyLoc, "invalid type for global variable");
755 GlobalValue *GVal = nullptr;
757 // See if the global was forward referenced, if so, use the global.
759 GVal = M->getNamedValue(Name);
761 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
762 return Error(NameLoc, "redefinition of global '@" + Name + "'");
765 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
766 I = ForwardRefValIDs.find(NumberedVals.size());
767 if (I != ForwardRefValIDs.end()) {
768 GVal = I->second.first;
769 ForwardRefValIDs.erase(I);
775 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
776 Name, nullptr, GlobalVariable::NotThreadLocal,
779 if (GVal->getType()->getElementType() != Ty)
781 "forward reference and definition of global have different types");
783 GV = cast<GlobalVariable>(GVal);
785 // Move the forward-reference to the correct spot in the module.
786 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
790 NumberedVals.push_back(GV);
792 // Set the parsed properties on the global.
794 GV->setInitializer(Init);
795 GV->setConstant(IsConstant);
796 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
797 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
798 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
799 GV->setExternallyInitialized(IsExternallyInitialized);
800 GV->setThreadLocalMode(TLM);
801 GV->setUnnamedAddr(UnnamedAddr);
803 // Parse attributes on the global.
804 while (Lex.getKind() == lltok::comma) {
807 if (Lex.getKind() == lltok::kw_section) {
809 GV->setSection(Lex.getStrVal());
810 if (ParseToken(lltok::StringConstant, "expected global section string"))
812 } else if (Lex.getKind() == lltok::kw_align) {
814 if (ParseOptionalAlignment(Alignment)) return true;
815 GV->setAlignment(Alignment);
818 if (parseOptionalComdat(Name, C))
823 return TokError("unknown global variable property!");
830 /// ParseUnnamedAttrGrp
831 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
832 bool LLParser::ParseUnnamedAttrGrp() {
833 assert(Lex.getKind() == lltok::kw_attributes);
834 LocTy AttrGrpLoc = Lex.getLoc();
837 if (Lex.getKind() != lltok::AttrGrpID)
838 return TokError("expected attribute group id");
840 unsigned VarID = Lex.getUIntVal();
841 std::vector<unsigned> unused;
845 if (ParseToken(lltok::equal, "expected '=' here") ||
846 ParseToken(lltok::lbrace, "expected '{' here") ||
847 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
849 ParseToken(lltok::rbrace, "expected end of attribute group"))
852 if (!NumberedAttrBuilders[VarID].hasAttributes())
853 return Error(AttrGrpLoc, "attribute group has no attributes");
858 /// ParseFnAttributeValuePairs
859 /// ::= <attr> | <attr> '=' <value>
860 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
861 std::vector<unsigned> &FwdRefAttrGrps,
862 bool inAttrGrp, LocTy &BuiltinLoc) {
863 bool HaveError = false;
868 lltok::Kind Token = Lex.getKind();
869 if (Token == lltok::kw_builtin)
870 BuiltinLoc = Lex.getLoc();
873 if (!inAttrGrp) return HaveError;
874 return Error(Lex.getLoc(), "unterminated attribute group");
879 case lltok::AttrGrpID: {
880 // Allow a function to reference an attribute group:
882 // define void @foo() #1 { ... }
886 "cannot have an attribute group reference in an attribute group");
888 unsigned AttrGrpNum = Lex.getUIntVal();
889 if (inAttrGrp) break;
891 // Save the reference to the attribute group. We'll fill it in later.
892 FwdRefAttrGrps.push_back(AttrGrpNum);
895 // Target-dependent attributes:
896 case lltok::StringConstant: {
897 std::string Attr = Lex.getStrVal();
900 if (EatIfPresent(lltok::equal) &&
901 ParseStringConstant(Val))
904 B.addAttribute(Attr, Val);
908 // Target-independent attributes:
909 case lltok::kw_align: {
910 // As a hack, we allow function alignment to be initially parsed as an
911 // attribute on a function declaration/definition or added to an attribute
912 // group and later moved to the alignment field.
916 if (ParseToken(lltok::equal, "expected '=' here") ||
917 ParseUInt32(Alignment))
920 if (ParseOptionalAlignment(Alignment))
923 B.addAlignmentAttr(Alignment);
926 case lltok::kw_alignstack: {
930 if (ParseToken(lltok::equal, "expected '=' here") ||
931 ParseUInt32(Alignment))
934 if (ParseOptionalStackAlignment(Alignment))
937 B.addStackAlignmentAttr(Alignment);
940 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
941 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
942 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
943 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
944 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
945 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
946 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
947 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
948 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
949 case lltok::kw_noimplicitfloat: B.addAttribute(Attribute::NoImplicitFloat); break;
950 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
951 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
952 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
953 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
954 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
955 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
956 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
957 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
958 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
959 case lltok::kw_returns_twice: B.addAttribute(Attribute::ReturnsTwice); break;
960 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
961 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
962 case lltok::kw_sspstrong: B.addAttribute(Attribute::StackProtectStrong); break;
963 case lltok::kw_sanitize_address: B.addAttribute(Attribute::SanitizeAddress); break;
964 case lltok::kw_sanitize_thread: B.addAttribute(Attribute::SanitizeThread); break;
965 case lltok::kw_sanitize_memory: B.addAttribute(Attribute::SanitizeMemory); break;
966 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
969 case lltok::kw_inreg:
970 case lltok::kw_signext:
971 case lltok::kw_zeroext:
974 "invalid use of attribute on a function");
976 case lltok::kw_byval:
977 case lltok::kw_dereferenceable:
978 case lltok::kw_inalloca:
980 case lltok::kw_noalias:
981 case lltok::kw_nocapture:
982 case lltok::kw_nonnull:
983 case lltok::kw_returned:
987 "invalid use of parameter-only attribute on a function");
995 //===----------------------------------------------------------------------===//
996 // GlobalValue Reference/Resolution Routines.
997 //===----------------------------------------------------------------------===//
999 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1000 /// forward reference record if needed. This can return null if the value
1001 /// exists but does not have the right type.
1002 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1004 PointerType *PTy = dyn_cast<PointerType>(Ty);
1006 Error(Loc, "global variable reference must have pointer type");
1010 // Look this name up in the normal function symbol table.
1012 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1014 // If this is a forward reference for the value, see if we already created a
1015 // forward ref record.
1017 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
1018 I = ForwardRefVals.find(Name);
1019 if (I != ForwardRefVals.end())
1020 Val = I->second.first;
1023 // If we have the value in the symbol table or fwd-ref table, return it.
1025 if (Val->getType() == Ty) return Val;
1026 Error(Loc, "'@" + Name + "' defined with type '" +
1027 getTypeString(Val->getType()) + "'");
1031 // Otherwise, create a new forward reference for this value and remember it.
1032 GlobalValue *FwdVal;
1033 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1034 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1036 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1037 GlobalValue::ExternalWeakLinkage, nullptr, Name,
1038 nullptr, GlobalVariable::NotThreadLocal,
1039 PTy->getAddressSpace());
1041 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1045 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1046 PointerType *PTy = dyn_cast<PointerType>(Ty);
1048 Error(Loc, "global variable reference must have pointer type");
1052 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1054 // If this is a forward reference for the value, see if we already created a
1055 // forward ref record.
1057 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
1058 I = ForwardRefValIDs.find(ID);
1059 if (I != ForwardRefValIDs.end())
1060 Val = I->second.first;
1063 // If we have the value in the symbol table or fwd-ref table, return it.
1065 if (Val->getType() == Ty) return Val;
1066 Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1067 getTypeString(Val->getType()) + "'");
1071 // Otherwise, create a new forward reference for this value and remember it.
1072 GlobalValue *FwdVal;
1073 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1074 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
1076 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1077 GlobalValue::ExternalWeakLinkage, nullptr, "");
1079 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1084 //===----------------------------------------------------------------------===//
1085 // Comdat Reference/Resolution Routines.
1086 //===----------------------------------------------------------------------===//
1088 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1089 // Look this name up in the comdat symbol table.
1090 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1091 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1092 if (I != ComdatSymTab.end())
1095 // Otherwise, create a new forward reference for this value and remember it.
1096 Comdat *C = M->getOrInsertComdat(Name);
1097 ForwardRefComdats[Name] = Loc;
1102 //===----------------------------------------------------------------------===//
1104 //===----------------------------------------------------------------------===//
1106 /// ParseToken - If the current token has the specified kind, eat it and return
1107 /// success. Otherwise, emit the specified error and return failure.
1108 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1109 if (Lex.getKind() != T)
1110 return TokError(ErrMsg);
1115 /// ParseStringConstant
1116 /// ::= StringConstant
1117 bool LLParser::ParseStringConstant(std::string &Result) {
1118 if (Lex.getKind() != lltok::StringConstant)
1119 return TokError("expected string constant");
1120 Result = Lex.getStrVal();
1127 bool LLParser::ParseUInt32(unsigned &Val) {
1128 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1129 return TokError("expected integer");
1130 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1131 if (Val64 != unsigned(Val64))
1132 return TokError("expected 32-bit integer (too large)");
1140 bool LLParser::ParseUInt64(uint64_t &Val) {
1141 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1142 return TokError("expected integer");
1143 Val = Lex.getAPSIntVal().getLimitedValue();
1149 /// := 'localdynamic'
1150 /// := 'initialexec'
1152 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1153 switch (Lex.getKind()) {
1155 return TokError("expected localdynamic, initialexec or localexec");
1156 case lltok::kw_localdynamic:
1157 TLM = GlobalVariable::LocalDynamicTLSModel;
1159 case lltok::kw_initialexec:
1160 TLM = GlobalVariable::InitialExecTLSModel;
1162 case lltok::kw_localexec:
1163 TLM = GlobalVariable::LocalExecTLSModel;
1171 /// ParseOptionalThreadLocal
1173 /// := 'thread_local'
1174 /// := 'thread_local' '(' tlsmodel ')'
1175 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1176 TLM = GlobalVariable::NotThreadLocal;
1177 if (!EatIfPresent(lltok::kw_thread_local))
1180 TLM = GlobalVariable::GeneralDynamicTLSModel;
1181 if (Lex.getKind() == lltok::lparen) {
1183 return ParseTLSModel(TLM) ||
1184 ParseToken(lltok::rparen, "expected ')' after thread local model");
1189 /// ParseOptionalAddrSpace
1191 /// := 'addrspace' '(' uint32 ')'
1192 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1194 if (!EatIfPresent(lltok::kw_addrspace))
1196 return ParseToken(lltok::lparen, "expected '(' in address space") ||
1197 ParseUInt32(AddrSpace) ||
1198 ParseToken(lltok::rparen, "expected ')' in address space");
1201 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1202 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1203 bool HaveError = false;
1208 lltok::Kind Token = Lex.getKind();
1210 default: // End of attributes.
1212 case lltok::kw_align: {
1214 if (ParseOptionalAlignment(Alignment))
1216 B.addAlignmentAttr(Alignment);
1219 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break;
1220 case lltok::kw_dereferenceable: {
1222 if (ParseOptionalDereferenceableBytes(Bytes))
1224 B.addDereferenceableAttr(Bytes);
1227 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
1228 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1229 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1230 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1231 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1232 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1233 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1234 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1235 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1236 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1237 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1238 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1240 case lltok::kw_alignstack:
1241 case lltok::kw_alwaysinline:
1242 case lltok::kw_builtin:
1243 case lltok::kw_inlinehint:
1244 case lltok::kw_jumptable:
1245 case lltok::kw_minsize:
1246 case lltok::kw_naked:
1247 case lltok::kw_nobuiltin:
1248 case lltok::kw_noduplicate:
1249 case lltok::kw_noimplicitfloat:
1250 case lltok::kw_noinline:
1251 case lltok::kw_nonlazybind:
1252 case lltok::kw_noredzone:
1253 case lltok::kw_noreturn:
1254 case lltok::kw_nounwind:
1255 case lltok::kw_optnone:
1256 case lltok::kw_optsize:
1257 case lltok::kw_returns_twice:
1258 case lltok::kw_sanitize_address:
1259 case lltok::kw_sanitize_memory:
1260 case lltok::kw_sanitize_thread:
1262 case lltok::kw_sspreq:
1263 case lltok::kw_sspstrong:
1264 case lltok::kw_uwtable:
1265 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1273 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1274 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1275 bool HaveError = false;
1280 lltok::Kind Token = Lex.getKind();
1282 default: // End of attributes.
1284 case lltok::kw_dereferenceable: {
1286 if (ParseOptionalDereferenceableBytes(Bytes))
1288 B.addDereferenceableAttr(Bytes);
1291 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1292 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1293 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1294 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1295 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1298 case lltok::kw_align:
1299 case lltok::kw_byval:
1300 case lltok::kw_inalloca:
1301 case lltok::kw_nest:
1302 case lltok::kw_nocapture:
1303 case lltok::kw_returned:
1304 case lltok::kw_sret:
1305 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1308 case lltok::kw_alignstack:
1309 case lltok::kw_alwaysinline:
1310 case lltok::kw_builtin:
1311 case lltok::kw_cold:
1312 case lltok::kw_inlinehint:
1313 case lltok::kw_jumptable:
1314 case lltok::kw_minsize:
1315 case lltok::kw_naked:
1316 case lltok::kw_nobuiltin:
1317 case lltok::kw_noduplicate:
1318 case lltok::kw_noimplicitfloat:
1319 case lltok::kw_noinline:
1320 case lltok::kw_nonlazybind:
1321 case lltok::kw_noredzone:
1322 case lltok::kw_noreturn:
1323 case lltok::kw_nounwind:
1324 case lltok::kw_optnone:
1325 case lltok::kw_optsize:
1326 case lltok::kw_returns_twice:
1327 case lltok::kw_sanitize_address:
1328 case lltok::kw_sanitize_memory:
1329 case lltok::kw_sanitize_thread:
1331 case lltok::kw_sspreq:
1332 case lltok::kw_sspstrong:
1333 case lltok::kw_uwtable:
1334 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1337 case lltok::kw_readnone:
1338 case lltok::kw_readonly:
1339 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1346 /// ParseOptionalLinkage
1353 /// ::= 'linkonce_odr'
1354 /// ::= 'available_externally'
1357 /// ::= 'extern_weak'
1359 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1361 switch (Lex.getKind()) {
1362 default: Res=GlobalValue::ExternalLinkage; return false;
1363 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
1364 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
1365 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
1366 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
1367 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
1368 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
1369 case lltok::kw_available_externally:
1370 Res = GlobalValue::AvailableExternallyLinkage;
1372 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
1373 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
1374 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
1375 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
1382 /// ParseOptionalVisibility
1388 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1389 switch (Lex.getKind()) {
1390 default: Res = GlobalValue::DefaultVisibility; return false;
1391 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
1392 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
1393 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1399 /// ParseOptionalDLLStorageClass
1404 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1405 switch (Lex.getKind()) {
1406 default: Res = GlobalValue::DefaultStorageClass; return false;
1407 case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break;
1408 case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break;
1414 /// ParseOptionalCallingConv
1418 /// ::= 'intel_ocl_bicc'
1420 /// ::= 'x86_stdcallcc'
1421 /// ::= 'x86_fastcallcc'
1422 /// ::= 'x86_thiscallcc'
1423 /// ::= 'x86_vectorcallcc'
1424 /// ::= 'arm_apcscc'
1425 /// ::= 'arm_aapcscc'
1426 /// ::= 'arm_aapcs_vfpcc'
1427 /// ::= 'msp430_intrcc'
1428 /// ::= 'ptx_kernel'
1429 /// ::= 'ptx_device'
1431 /// ::= 'spir_kernel'
1432 /// ::= 'x86_64_sysvcc'
1433 /// ::= 'x86_64_win64cc'
1434 /// ::= 'webkit_jscc'
1436 /// ::= 'preserve_mostcc'
1437 /// ::= 'preserve_allcc'
1441 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1442 switch (Lex.getKind()) {
1443 default: CC = CallingConv::C; return false;
1444 case lltok::kw_ccc: CC = CallingConv::C; break;
1445 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1446 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1447 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1448 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1449 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1450 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1451 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1452 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1453 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1454 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1455 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1456 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1457 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
1458 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1459 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1460 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
1461 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1462 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break;
1463 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1464 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1465 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1466 case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1467 case lltok::kw_cc: {
1469 return ParseUInt32(CC);
1477 /// ParseInstructionMetadata
1478 /// ::= !dbg !42 (',' !dbg !57)*
1479 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1480 PerFunctionState *PFS) {
1482 if (Lex.getKind() != lltok::MetadataVar)
1483 return TokError("expected metadata after comma");
1485 std::string Name = Lex.getStrVal();
1486 unsigned MDK = M->getMDKindID(Name);
1493 Inst->setMetadata(MDK, N);
1494 if (MDK == LLVMContext::MD_tbaa)
1495 InstsWithTBAATag.push_back(Inst);
1497 // If this is the end of the list, we're done.
1498 } while (EatIfPresent(lltok::comma));
1502 /// ParseOptionalAlignment
1505 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1507 if (!EatIfPresent(lltok::kw_align))
1509 LocTy AlignLoc = Lex.getLoc();
1510 if (ParseUInt32(Alignment)) return true;
1511 if (!isPowerOf2_32(Alignment))
1512 return Error(AlignLoc, "alignment is not a power of two");
1513 if (Alignment > Value::MaximumAlignment)
1514 return Error(AlignLoc, "huge alignments are not supported yet");
1518 /// ParseOptionalDereferenceableBytes
1520 /// ::= 'dereferenceable' '(' 4 ')'
1521 bool LLParser::ParseOptionalDereferenceableBytes(uint64_t &Bytes) {
1523 if (!EatIfPresent(lltok::kw_dereferenceable))
1525 LocTy ParenLoc = Lex.getLoc();
1526 if (!EatIfPresent(lltok::lparen))
1527 return Error(ParenLoc, "expected '('");
1528 LocTy DerefLoc = Lex.getLoc();
1529 if (ParseUInt64(Bytes)) return true;
1530 ParenLoc = Lex.getLoc();
1531 if (!EatIfPresent(lltok::rparen))
1532 return Error(ParenLoc, "expected ')'");
1534 return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1538 /// ParseOptionalCommaAlign
1542 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1544 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1545 bool &AteExtraComma) {
1546 AteExtraComma = false;
1547 while (EatIfPresent(lltok::comma)) {
1548 // Metadata at the end is an early exit.
1549 if (Lex.getKind() == lltok::MetadataVar) {
1550 AteExtraComma = true;
1554 if (Lex.getKind() != lltok::kw_align)
1555 return Error(Lex.getLoc(), "expected metadata or 'align'");
1557 if (ParseOptionalAlignment(Alignment)) return true;
1563 /// ParseScopeAndOrdering
1564 /// if isAtomic: ::= 'singlethread'? AtomicOrdering
1567 /// This sets Scope and Ordering to the parsed values.
1568 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1569 AtomicOrdering &Ordering) {
1573 Scope = CrossThread;
1574 if (EatIfPresent(lltok::kw_singlethread))
1575 Scope = SingleThread;
1577 return ParseOrdering(Ordering);
1581 /// ::= AtomicOrdering
1583 /// This sets Ordering to the parsed value.
1584 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1585 switch (Lex.getKind()) {
1586 default: return TokError("Expected ordering on atomic instruction");
1587 case lltok::kw_unordered: Ordering = Unordered; break;
1588 case lltok::kw_monotonic: Ordering = Monotonic; break;
1589 case lltok::kw_acquire: Ordering = Acquire; break;
1590 case lltok::kw_release: Ordering = Release; break;
1591 case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1592 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1598 /// ParseOptionalStackAlignment
1600 /// ::= 'alignstack' '(' 4 ')'
1601 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1603 if (!EatIfPresent(lltok::kw_alignstack))
1605 LocTy ParenLoc = Lex.getLoc();
1606 if (!EatIfPresent(lltok::lparen))
1607 return Error(ParenLoc, "expected '('");
1608 LocTy AlignLoc = Lex.getLoc();
1609 if (ParseUInt32(Alignment)) return true;
1610 ParenLoc = Lex.getLoc();
1611 if (!EatIfPresent(lltok::rparen))
1612 return Error(ParenLoc, "expected ')'");
1613 if (!isPowerOf2_32(Alignment))
1614 return Error(AlignLoc, "stack alignment is not a power of two");
1618 /// ParseIndexList - This parses the index list for an insert/extractvalue
1619 /// instruction. This sets AteExtraComma in the case where we eat an extra
1620 /// comma at the end of the line and find that it is followed by metadata.
1621 /// Clients that don't allow metadata can call the version of this function that
1622 /// only takes one argument.
1625 /// ::= (',' uint32)+
1627 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1628 bool &AteExtraComma) {
1629 AteExtraComma = false;
1631 if (Lex.getKind() != lltok::comma)
1632 return TokError("expected ',' as start of index list");
1634 while (EatIfPresent(lltok::comma)) {
1635 if (Lex.getKind() == lltok::MetadataVar) {
1636 AteExtraComma = true;
1640 if (ParseUInt32(Idx)) return true;
1641 Indices.push_back(Idx);
1647 //===----------------------------------------------------------------------===//
1649 //===----------------------------------------------------------------------===//
1651 /// ParseType - Parse a type.
1652 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
1653 SMLoc TypeLoc = Lex.getLoc();
1654 switch (Lex.getKind()) {
1656 return TokError(Msg);
1658 // Type ::= 'float' | 'void' (etc)
1659 Result = Lex.getTyVal();
1663 // Type ::= StructType
1664 if (ParseAnonStructType(Result, false))
1667 case lltok::lsquare:
1668 // Type ::= '[' ... ']'
1669 Lex.Lex(); // eat the lsquare.
1670 if (ParseArrayVectorType(Result, false))
1673 case lltok::less: // Either vector or packed struct.
1674 // Type ::= '<' ... '>'
1676 if (Lex.getKind() == lltok::lbrace) {
1677 if (ParseAnonStructType(Result, true) ||
1678 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1680 } else if (ParseArrayVectorType(Result, true))
1683 case lltok::LocalVar: {
1685 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1687 // If the type hasn't been defined yet, create a forward definition and
1688 // remember where that forward def'n was seen (in case it never is defined).
1690 Entry.first = StructType::create(Context, Lex.getStrVal());
1691 Entry.second = Lex.getLoc();
1693 Result = Entry.first;
1698 case lltok::LocalVarID: {
1700 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1702 // If the type hasn't been defined yet, create a forward definition and
1703 // remember where that forward def'n was seen (in case it never is defined).
1705 Entry.first = StructType::create(Context);
1706 Entry.second = Lex.getLoc();
1708 Result = Entry.first;
1714 // Parse the type suffixes.
1716 switch (Lex.getKind()) {
1719 if (!AllowVoid && Result->isVoidTy())
1720 return Error(TypeLoc, "void type only allowed for function results");
1723 // Type ::= Type '*'
1725 if (Result->isLabelTy())
1726 return TokError("basic block pointers are invalid");
1727 if (Result->isVoidTy())
1728 return TokError("pointers to void are invalid - use i8* instead");
1729 if (!PointerType::isValidElementType(Result))
1730 return TokError("pointer to this type is invalid");
1731 Result = PointerType::getUnqual(Result);
1735 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1736 case lltok::kw_addrspace: {
1737 if (Result->isLabelTy())
1738 return TokError("basic block pointers are invalid");
1739 if (Result->isVoidTy())
1740 return TokError("pointers to void are invalid; use i8* instead");
1741 if (!PointerType::isValidElementType(Result))
1742 return TokError("pointer to this type is invalid");
1744 if (ParseOptionalAddrSpace(AddrSpace) ||
1745 ParseToken(lltok::star, "expected '*' in address space"))
1748 Result = PointerType::get(Result, AddrSpace);
1752 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1754 if (ParseFunctionType(Result))
1761 /// ParseParameterList
1763 /// ::= '(' Arg (',' Arg)* ')'
1765 /// ::= Type OptionalAttributes Value OptionalAttributes
1766 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1767 PerFunctionState &PFS, bool IsMustTailCall,
1768 bool InVarArgsFunc) {
1769 if (ParseToken(lltok::lparen, "expected '(' in call"))
1772 unsigned AttrIndex = 1;
1773 while (Lex.getKind() != lltok::rparen) {
1774 // If this isn't the first argument, we need a comma.
1775 if (!ArgList.empty() &&
1776 ParseToken(lltok::comma, "expected ',' in argument list"))
1779 // Parse an ellipsis if this is a musttail call in a variadic function.
1780 if (Lex.getKind() == lltok::dotdotdot) {
1781 const char *Msg = "unexpected ellipsis in argument list for ";
1782 if (!IsMustTailCall)
1783 return TokError(Twine(Msg) + "non-musttail call");
1785 return TokError(Twine(Msg) + "musttail call in non-varargs function");
1786 Lex.Lex(); // Lex the '...', it is purely for readability.
1787 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1790 // Parse the argument.
1792 Type *ArgTy = nullptr;
1793 AttrBuilder ArgAttrs;
1795 if (ParseType(ArgTy, ArgLoc))
1798 if (ArgTy->isMetadataTy()) {
1799 if (ParseMetadataAsValue(V, PFS))
1802 // Otherwise, handle normal operands.
1803 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1806 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1811 if (IsMustTailCall && InVarArgsFunc)
1812 return TokError("expected '...' at end of argument list for musttail call "
1813 "in varargs function");
1815 Lex.Lex(); // Lex the ')'.
1821 /// ParseArgumentList - Parse the argument list for a function type or function
1823 /// ::= '(' ArgTypeListI ')'
1827 /// ::= ArgTypeList ',' '...'
1828 /// ::= ArgType (',' ArgType)*
1830 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1833 assert(Lex.getKind() == lltok::lparen);
1834 Lex.Lex(); // eat the (.
1836 if (Lex.getKind() == lltok::rparen) {
1838 } else if (Lex.getKind() == lltok::dotdotdot) {
1842 LocTy TypeLoc = Lex.getLoc();
1843 Type *ArgTy = nullptr;
1847 if (ParseType(ArgTy) ||
1848 ParseOptionalParamAttrs(Attrs)) return true;
1850 if (ArgTy->isVoidTy())
1851 return Error(TypeLoc, "argument can not have void type");
1853 if (Lex.getKind() == lltok::LocalVar) {
1854 Name = Lex.getStrVal();
1858 if (!FunctionType::isValidArgumentType(ArgTy))
1859 return Error(TypeLoc, "invalid type for function argument");
1861 unsigned AttrIndex = 1;
1862 ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1863 AttributeSet::get(ArgTy->getContext(),
1864 AttrIndex++, Attrs), Name));
1866 while (EatIfPresent(lltok::comma)) {
1867 // Handle ... at end of arg list.
1868 if (EatIfPresent(lltok::dotdotdot)) {
1873 // Otherwise must be an argument type.
1874 TypeLoc = Lex.getLoc();
1875 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
1877 if (ArgTy->isVoidTy())
1878 return Error(TypeLoc, "argument can not have void type");
1880 if (Lex.getKind() == lltok::LocalVar) {
1881 Name = Lex.getStrVal();
1887 if (!ArgTy->isFirstClassType())
1888 return Error(TypeLoc, "invalid type for function argument");
1890 ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1891 AttributeSet::get(ArgTy->getContext(),
1892 AttrIndex++, Attrs),
1897 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1900 /// ParseFunctionType
1901 /// ::= Type ArgumentList OptionalAttrs
1902 bool LLParser::ParseFunctionType(Type *&Result) {
1903 assert(Lex.getKind() == lltok::lparen);
1905 if (!FunctionType::isValidReturnType(Result))
1906 return TokError("invalid function return type");
1908 SmallVector<ArgInfo, 8> ArgList;
1910 if (ParseArgumentList(ArgList, isVarArg))
1913 // Reject names on the arguments lists.
1914 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1915 if (!ArgList[i].Name.empty())
1916 return Error(ArgList[i].Loc, "argument name invalid in function type");
1917 if (ArgList[i].Attrs.hasAttributes(i + 1))
1918 return Error(ArgList[i].Loc,
1919 "argument attributes invalid in function type");
1922 SmallVector<Type*, 16> ArgListTy;
1923 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1924 ArgListTy.push_back(ArgList[i].Ty);
1926 Result = FunctionType::get(Result, ArgListTy, isVarArg);
1930 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1932 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1933 SmallVector<Type*, 8> Elts;
1934 if (ParseStructBody(Elts)) return true;
1936 Result = StructType::get(Context, Elts, Packed);
1940 /// ParseStructDefinition - Parse a struct in a 'type' definition.
1941 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1942 std::pair<Type*, LocTy> &Entry,
1944 // If the type was already defined, diagnose the redefinition.
1945 if (Entry.first && !Entry.second.isValid())
1946 return Error(TypeLoc, "redefinition of type");
1948 // If we have opaque, just return without filling in the definition for the
1949 // struct. This counts as a definition as far as the .ll file goes.
1950 if (EatIfPresent(lltok::kw_opaque)) {
1951 // This type is being defined, so clear the location to indicate this.
1952 Entry.second = SMLoc();
1954 // If this type number has never been uttered, create it.
1956 Entry.first = StructType::create(Context, Name);
1957 ResultTy = Entry.first;
1961 // If the type starts with '<', then it is either a packed struct or a vector.
1962 bool isPacked = EatIfPresent(lltok::less);
1964 // If we don't have a struct, then we have a random type alias, which we
1965 // accept for compatibility with old files. These types are not allowed to be
1966 // forward referenced and not allowed to be recursive.
1967 if (Lex.getKind() != lltok::lbrace) {
1969 return Error(TypeLoc, "forward references to non-struct type");
1973 return ParseArrayVectorType(ResultTy, true);
1974 return ParseType(ResultTy);
1977 // This type is being defined, so clear the location to indicate this.
1978 Entry.second = SMLoc();
1980 // If this type number has never been uttered, create it.
1982 Entry.first = StructType::create(Context, Name);
1984 StructType *STy = cast<StructType>(Entry.first);
1986 SmallVector<Type*, 8> Body;
1987 if (ParseStructBody(Body) ||
1988 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1991 STy->setBody(Body, isPacked);
1997 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2000 /// ::= '{' Type (',' Type)* '}'
2001 /// ::= '<' '{' '}' '>'
2002 /// ::= '<' '{' Type (',' Type)* '}' '>'
2003 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2004 assert(Lex.getKind() == lltok::lbrace);
2005 Lex.Lex(); // Consume the '{'
2007 // Handle the empty struct.
2008 if (EatIfPresent(lltok::rbrace))
2011 LocTy EltTyLoc = Lex.getLoc();
2013 if (ParseType(Ty)) return true;
2016 if (!StructType::isValidElementType(Ty))
2017 return Error(EltTyLoc, "invalid element type for struct");
2019 while (EatIfPresent(lltok::comma)) {
2020 EltTyLoc = Lex.getLoc();
2021 if (ParseType(Ty)) return true;
2023 if (!StructType::isValidElementType(Ty))
2024 return Error(EltTyLoc, "invalid element type for struct");
2029 return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2032 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2033 /// token has already been consumed.
2035 /// ::= '[' APSINTVAL 'x' Types ']'
2036 /// ::= '<' APSINTVAL 'x' Types '>'
2037 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2038 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2039 Lex.getAPSIntVal().getBitWidth() > 64)
2040 return TokError("expected number in address space");
2042 LocTy SizeLoc = Lex.getLoc();
2043 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2046 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2049 LocTy TypeLoc = Lex.getLoc();
2050 Type *EltTy = nullptr;
2051 if (ParseType(EltTy)) return true;
2053 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2054 "expected end of sequential type"))
2059 return Error(SizeLoc, "zero element vector is illegal");
2060 if ((unsigned)Size != Size)
2061 return Error(SizeLoc, "size too large for vector");
2062 if (!VectorType::isValidElementType(EltTy))
2063 return Error(TypeLoc, "invalid vector element type");
2064 Result = VectorType::get(EltTy, unsigned(Size));
2066 if (!ArrayType::isValidElementType(EltTy))
2067 return Error(TypeLoc, "invalid array element type");
2068 Result = ArrayType::get(EltTy, Size);
2073 //===----------------------------------------------------------------------===//
2074 // Function Semantic Analysis.
2075 //===----------------------------------------------------------------------===//
2077 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2079 : P(p), F(f), FunctionNumber(functionNumber) {
2081 // Insert unnamed arguments into the NumberedVals list.
2082 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
2085 NumberedVals.push_back(AI);
2088 LLParser::PerFunctionState::~PerFunctionState() {
2089 // If there were any forward referenced non-basicblock values, delete them.
2090 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
2091 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
2092 if (!isa<BasicBlock>(I->second.first)) {
2093 I->second.first->replaceAllUsesWith(
2094 UndefValue::get(I->second.first->getType()));
2095 delete I->second.first;
2096 I->second.first = nullptr;
2099 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2100 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
2101 if (!isa<BasicBlock>(I->second.first)) {
2102 I->second.first->replaceAllUsesWith(
2103 UndefValue::get(I->second.first->getType()));
2104 delete I->second.first;
2105 I->second.first = nullptr;
2109 bool LLParser::PerFunctionState::FinishFunction() {
2110 if (!ForwardRefVals.empty())
2111 return P.Error(ForwardRefVals.begin()->second.second,
2112 "use of undefined value '%" + ForwardRefVals.begin()->first +
2114 if (!ForwardRefValIDs.empty())
2115 return P.Error(ForwardRefValIDs.begin()->second.second,
2116 "use of undefined value '%" +
2117 Twine(ForwardRefValIDs.begin()->first) + "'");
2122 /// GetVal - Get a value with the specified name or ID, creating a
2123 /// forward reference record if needed. This can return null if the value
2124 /// exists but does not have the right type.
2125 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
2126 Type *Ty, LocTy Loc) {
2127 // Look this name up in the normal function symbol table.
2128 Value *Val = F.getValueSymbolTable().lookup(Name);
2130 // If this is a forward reference for the value, see if we already created a
2131 // forward ref record.
2133 std::map<std::string, std::pair<Value*, LocTy> >::iterator
2134 I = ForwardRefVals.find(Name);
2135 if (I != ForwardRefVals.end())
2136 Val = I->second.first;
2139 // If we have the value in the symbol table or fwd-ref table, return it.
2141 if (Val->getType() == Ty) return Val;
2142 if (Ty->isLabelTy())
2143 P.Error(Loc, "'%" + Name + "' is not a basic block");
2145 P.Error(Loc, "'%" + Name + "' defined with type '" +
2146 getTypeString(Val->getType()) + "'");
2150 // Don't make placeholders with invalid type.
2151 if (!Ty->isFirstClassType()) {
2152 P.Error(Loc, "invalid use of a non-first-class type");
2156 // Otherwise, create a new forward reference for this value and remember it.
2158 if (Ty->isLabelTy())
2159 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2161 FwdVal = new Argument(Ty, Name);
2163 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2167 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
2169 // Look this name up in the normal function symbol table.
2170 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2172 // If this is a forward reference for the value, see if we already created a
2173 // forward ref record.
2175 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2176 I = ForwardRefValIDs.find(ID);
2177 if (I != ForwardRefValIDs.end())
2178 Val = I->second.first;
2181 // If we have the value in the symbol table or fwd-ref table, return it.
2183 if (Val->getType() == Ty) return Val;
2184 if (Ty->isLabelTy())
2185 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2187 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2188 getTypeString(Val->getType()) + "'");
2192 if (!Ty->isFirstClassType()) {
2193 P.Error(Loc, "invalid use of a non-first-class type");
2197 // Otherwise, create a new forward reference for this value and remember it.
2199 if (Ty->isLabelTy())
2200 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2202 FwdVal = new Argument(Ty);
2204 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2208 /// SetInstName - After an instruction is parsed and inserted into its
2209 /// basic block, this installs its name.
2210 bool LLParser::PerFunctionState::SetInstName(int NameID,
2211 const std::string &NameStr,
2212 LocTy NameLoc, Instruction *Inst) {
2213 // If this instruction has void type, it cannot have a name or ID specified.
2214 if (Inst->getType()->isVoidTy()) {
2215 if (NameID != -1 || !NameStr.empty())
2216 return P.Error(NameLoc, "instructions returning void cannot have a name");
2220 // If this was a numbered instruction, verify that the instruction is the
2221 // expected value and resolve any forward references.
2222 if (NameStr.empty()) {
2223 // If neither a name nor an ID was specified, just use the next ID.
2225 NameID = NumberedVals.size();
2227 if (unsigned(NameID) != NumberedVals.size())
2228 return P.Error(NameLoc, "instruction expected to be numbered '%" +
2229 Twine(NumberedVals.size()) + "'");
2231 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
2232 ForwardRefValIDs.find(NameID);
2233 if (FI != ForwardRefValIDs.end()) {
2234 if (FI->second.first->getType() != Inst->getType())
2235 return P.Error(NameLoc, "instruction forward referenced with type '" +
2236 getTypeString(FI->second.first->getType()) + "'");
2237 FI->second.first->replaceAllUsesWith(Inst);
2238 delete FI->second.first;
2239 ForwardRefValIDs.erase(FI);
2242 NumberedVals.push_back(Inst);
2246 // Otherwise, the instruction had a name. Resolve forward refs and set it.
2247 std::map<std::string, std::pair<Value*, LocTy> >::iterator
2248 FI = ForwardRefVals.find(NameStr);
2249 if (FI != ForwardRefVals.end()) {
2250 if (FI->second.first->getType() != Inst->getType())
2251 return P.Error(NameLoc, "instruction forward referenced with type '" +
2252 getTypeString(FI->second.first->getType()) + "'");
2253 FI->second.first->replaceAllUsesWith(Inst);
2254 delete FI->second.first;
2255 ForwardRefVals.erase(FI);
2258 // Set the name on the instruction.
2259 Inst->setName(NameStr);
2261 if (Inst->getName() != NameStr)
2262 return P.Error(NameLoc, "multiple definition of local value named '" +
2267 /// GetBB - Get a basic block with the specified name or ID, creating a
2268 /// forward reference record if needed.
2269 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2271 return cast_or_null<BasicBlock>(GetVal(Name,
2272 Type::getLabelTy(F.getContext()), Loc));
2275 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2276 return cast_or_null<BasicBlock>(GetVal(ID,
2277 Type::getLabelTy(F.getContext()), Loc));
2280 /// DefineBB - Define the specified basic block, which is either named or
2281 /// unnamed. If there is an error, this returns null otherwise it returns
2282 /// the block being defined.
2283 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2287 BB = GetBB(NumberedVals.size(), Loc);
2289 BB = GetBB(Name, Loc);
2290 if (!BB) return nullptr; // Already diagnosed error.
2292 // Move the block to the end of the function. Forward ref'd blocks are
2293 // inserted wherever they happen to be referenced.
2294 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2296 // Remove the block from forward ref sets.
2298 ForwardRefValIDs.erase(NumberedVals.size());
2299 NumberedVals.push_back(BB);
2301 // BB forward references are already in the function symbol table.
2302 ForwardRefVals.erase(Name);
2308 //===----------------------------------------------------------------------===//
2310 //===----------------------------------------------------------------------===//
2312 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2313 /// type implied. For example, if we parse "4" we don't know what integer type
2314 /// it has. The value will later be combined with its type and checked for
2315 /// sanity. PFS is used to convert function-local operands of metadata (since
2316 /// metadata operands are not just parsed here but also converted to values).
2317 /// PFS can be null when we are not parsing metadata values inside a function.
2318 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2319 ID.Loc = Lex.getLoc();
2320 switch (Lex.getKind()) {
2321 default: return TokError("expected value token");
2322 case lltok::GlobalID: // @42
2323 ID.UIntVal = Lex.getUIntVal();
2324 ID.Kind = ValID::t_GlobalID;
2326 case lltok::GlobalVar: // @foo
2327 ID.StrVal = Lex.getStrVal();
2328 ID.Kind = ValID::t_GlobalName;
2330 case lltok::LocalVarID: // %42
2331 ID.UIntVal = Lex.getUIntVal();
2332 ID.Kind = ValID::t_LocalID;
2334 case lltok::LocalVar: // %foo
2335 ID.StrVal = Lex.getStrVal();
2336 ID.Kind = ValID::t_LocalName;
2339 ID.APSIntVal = Lex.getAPSIntVal();
2340 ID.Kind = ValID::t_APSInt;
2342 case lltok::APFloat:
2343 ID.APFloatVal = Lex.getAPFloatVal();
2344 ID.Kind = ValID::t_APFloat;
2346 case lltok::kw_true:
2347 ID.ConstantVal = ConstantInt::getTrue(Context);
2348 ID.Kind = ValID::t_Constant;
2350 case lltok::kw_false:
2351 ID.ConstantVal = ConstantInt::getFalse(Context);
2352 ID.Kind = ValID::t_Constant;
2354 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2355 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2356 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2358 case lltok::lbrace: {
2359 // ValID ::= '{' ConstVector '}'
2361 SmallVector<Constant*, 16> Elts;
2362 if (ParseGlobalValueVector(Elts) ||
2363 ParseToken(lltok::rbrace, "expected end of struct constant"))
2366 ID.ConstantStructElts = new Constant*[Elts.size()];
2367 ID.UIntVal = Elts.size();
2368 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2369 ID.Kind = ValID::t_ConstantStruct;
2373 // ValID ::= '<' ConstVector '>' --> Vector.
2374 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2376 bool isPackedStruct = EatIfPresent(lltok::lbrace);
2378 SmallVector<Constant*, 16> Elts;
2379 LocTy FirstEltLoc = Lex.getLoc();
2380 if (ParseGlobalValueVector(Elts) ||
2382 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2383 ParseToken(lltok::greater, "expected end of constant"))
2386 if (isPackedStruct) {
2387 ID.ConstantStructElts = new Constant*[Elts.size()];
2388 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2389 ID.UIntVal = Elts.size();
2390 ID.Kind = ValID::t_PackedConstantStruct;
2395 return Error(ID.Loc, "constant vector must not be empty");
2397 if (!Elts[0]->getType()->isIntegerTy() &&
2398 !Elts[0]->getType()->isFloatingPointTy() &&
2399 !Elts[0]->getType()->isPointerTy())
2400 return Error(FirstEltLoc,
2401 "vector elements must have integer, pointer or floating point type");
2403 // Verify that all the vector elements have the same type.
2404 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2405 if (Elts[i]->getType() != Elts[0]->getType())
2406 return Error(FirstEltLoc,
2407 "vector element #" + Twine(i) +
2408 " is not of type '" + getTypeString(Elts[0]->getType()));
2410 ID.ConstantVal = ConstantVector::get(Elts);
2411 ID.Kind = ValID::t_Constant;
2414 case lltok::lsquare: { // Array Constant
2416 SmallVector<Constant*, 16> Elts;
2417 LocTy FirstEltLoc = Lex.getLoc();
2418 if (ParseGlobalValueVector(Elts) ||
2419 ParseToken(lltok::rsquare, "expected end of array constant"))
2422 // Handle empty element.
2424 // Use undef instead of an array because it's inconvenient to determine
2425 // the element type at this point, there being no elements to examine.
2426 ID.Kind = ValID::t_EmptyArray;
2430 if (!Elts[0]->getType()->isFirstClassType())
2431 return Error(FirstEltLoc, "invalid array element type: " +
2432 getTypeString(Elts[0]->getType()));
2434 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2436 // Verify all elements are correct type!
2437 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2438 if (Elts[i]->getType() != Elts[0]->getType())
2439 return Error(FirstEltLoc,
2440 "array element #" + Twine(i) +
2441 " is not of type '" + getTypeString(Elts[0]->getType()));
2444 ID.ConstantVal = ConstantArray::get(ATy, Elts);
2445 ID.Kind = ValID::t_Constant;
2448 case lltok::kw_c: // c "foo"
2450 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2452 if (ParseToken(lltok::StringConstant, "expected string")) return true;
2453 ID.Kind = ValID::t_Constant;
2456 case lltok::kw_asm: {
2457 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2459 bool HasSideEffect, AlignStack, AsmDialect;
2461 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2462 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2463 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2464 ParseStringConstant(ID.StrVal) ||
2465 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2466 ParseToken(lltok::StringConstant, "expected constraint string"))
2468 ID.StrVal2 = Lex.getStrVal();
2469 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2470 (unsigned(AsmDialect)<<2);
2471 ID.Kind = ValID::t_InlineAsm;
2475 case lltok::kw_blockaddress: {
2476 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2481 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2483 ParseToken(lltok::comma, "expected comma in block address expression")||
2484 ParseValID(Label) ||
2485 ParseToken(lltok::rparen, "expected ')' in block address expression"))
2488 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2489 return Error(Fn.Loc, "expected function name in blockaddress");
2490 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2491 return Error(Label.Loc, "expected basic block name in blockaddress");
2493 // Try to find the function (but skip it if it's forward-referenced).
2494 GlobalValue *GV = nullptr;
2495 if (Fn.Kind == ValID::t_GlobalID) {
2496 if (Fn.UIntVal < NumberedVals.size())
2497 GV = NumberedVals[Fn.UIntVal];
2498 } else if (!ForwardRefVals.count(Fn.StrVal)) {
2499 GV = M->getNamedValue(Fn.StrVal);
2501 Function *F = nullptr;
2503 // Confirm that it's actually a function with a definition.
2504 if (!isa<Function>(GV))
2505 return Error(Fn.Loc, "expected function name in blockaddress");
2506 F = cast<Function>(GV);
2507 if (F->isDeclaration())
2508 return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2512 // Make a global variable as a placeholder for this reference.
2513 GlobalValue *&FwdRef = ForwardRefBlockAddresses[Fn][Label];
2515 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2516 GlobalValue::InternalLinkage, nullptr, "");
2517 ID.ConstantVal = FwdRef;
2518 ID.Kind = ValID::t_Constant;
2522 // We found the function; now find the basic block. Don't use PFS, since we
2523 // might be inside a constant expression.
2525 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2526 if (Label.Kind == ValID::t_LocalID)
2527 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2529 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2531 return Error(Label.Loc, "referenced value is not a basic block");
2533 if (Label.Kind == ValID::t_LocalID)
2534 return Error(Label.Loc, "cannot take address of numeric label after "
2535 "the function is defined");
2536 BB = dyn_cast_or_null<BasicBlock>(
2537 F->getValueSymbolTable().lookup(Label.StrVal));
2539 return Error(Label.Loc, "referenced value is not a basic block");
2542 ID.ConstantVal = BlockAddress::get(F, BB);
2543 ID.Kind = ValID::t_Constant;
2547 case lltok::kw_trunc:
2548 case lltok::kw_zext:
2549 case lltok::kw_sext:
2550 case lltok::kw_fptrunc:
2551 case lltok::kw_fpext:
2552 case lltok::kw_bitcast:
2553 case lltok::kw_addrspacecast:
2554 case lltok::kw_uitofp:
2555 case lltok::kw_sitofp:
2556 case lltok::kw_fptoui:
2557 case lltok::kw_fptosi:
2558 case lltok::kw_inttoptr:
2559 case lltok::kw_ptrtoint: {
2560 unsigned Opc = Lex.getUIntVal();
2561 Type *DestTy = nullptr;
2564 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2565 ParseGlobalTypeAndValue(SrcVal) ||
2566 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2567 ParseType(DestTy) ||
2568 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2570 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2571 return Error(ID.Loc, "invalid cast opcode for cast from '" +
2572 getTypeString(SrcVal->getType()) + "' to '" +
2573 getTypeString(DestTy) + "'");
2574 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2576 ID.Kind = ValID::t_Constant;
2579 case lltok::kw_extractvalue: {
2582 SmallVector<unsigned, 4> Indices;
2583 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2584 ParseGlobalTypeAndValue(Val) ||
2585 ParseIndexList(Indices) ||
2586 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2589 if (!Val->getType()->isAggregateType())
2590 return Error(ID.Loc, "extractvalue operand must be aggregate type");
2591 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2592 return Error(ID.Loc, "invalid indices for extractvalue");
2593 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2594 ID.Kind = ValID::t_Constant;
2597 case lltok::kw_insertvalue: {
2599 Constant *Val0, *Val1;
2600 SmallVector<unsigned, 4> Indices;
2601 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2602 ParseGlobalTypeAndValue(Val0) ||
2603 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2604 ParseGlobalTypeAndValue(Val1) ||
2605 ParseIndexList(Indices) ||
2606 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2608 if (!Val0->getType()->isAggregateType())
2609 return Error(ID.Loc, "insertvalue operand must be aggregate type");
2610 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2611 return Error(ID.Loc, "invalid indices for insertvalue");
2612 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2613 ID.Kind = ValID::t_Constant;
2616 case lltok::kw_icmp:
2617 case lltok::kw_fcmp: {
2618 unsigned PredVal, Opc = Lex.getUIntVal();
2619 Constant *Val0, *Val1;
2621 if (ParseCmpPredicate(PredVal, Opc) ||
2622 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2623 ParseGlobalTypeAndValue(Val0) ||
2624 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2625 ParseGlobalTypeAndValue(Val1) ||
2626 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2629 if (Val0->getType() != Val1->getType())
2630 return Error(ID.Loc, "compare operands must have the same type");
2632 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2634 if (Opc == Instruction::FCmp) {
2635 if (!Val0->getType()->isFPOrFPVectorTy())
2636 return Error(ID.Loc, "fcmp requires floating point operands");
2637 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2639 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2640 if (!Val0->getType()->isIntOrIntVectorTy() &&
2641 !Val0->getType()->getScalarType()->isPointerTy())
2642 return Error(ID.Loc, "icmp requires pointer or integer operands");
2643 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2645 ID.Kind = ValID::t_Constant;
2649 // Binary Operators.
2651 case lltok::kw_fadd:
2653 case lltok::kw_fsub:
2655 case lltok::kw_fmul:
2656 case lltok::kw_udiv:
2657 case lltok::kw_sdiv:
2658 case lltok::kw_fdiv:
2659 case lltok::kw_urem:
2660 case lltok::kw_srem:
2661 case lltok::kw_frem:
2663 case lltok::kw_lshr:
2664 case lltok::kw_ashr: {
2668 unsigned Opc = Lex.getUIntVal();
2669 Constant *Val0, *Val1;
2671 LocTy ModifierLoc = Lex.getLoc();
2672 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2673 Opc == Instruction::Mul || Opc == Instruction::Shl) {
2674 if (EatIfPresent(lltok::kw_nuw))
2676 if (EatIfPresent(lltok::kw_nsw)) {
2678 if (EatIfPresent(lltok::kw_nuw))
2681 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2682 Opc == Instruction::LShr || Opc == Instruction::AShr) {
2683 if (EatIfPresent(lltok::kw_exact))
2686 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2687 ParseGlobalTypeAndValue(Val0) ||
2688 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2689 ParseGlobalTypeAndValue(Val1) ||
2690 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2692 if (Val0->getType() != Val1->getType())
2693 return Error(ID.Loc, "operands of constexpr must have same type");
2694 if (!Val0->getType()->isIntOrIntVectorTy()) {
2696 return Error(ModifierLoc, "nuw only applies to integer operations");
2698 return Error(ModifierLoc, "nsw only applies to integer operations");
2700 // Check that the type is valid for the operator.
2702 case Instruction::Add:
2703 case Instruction::Sub:
2704 case Instruction::Mul:
2705 case Instruction::UDiv:
2706 case Instruction::SDiv:
2707 case Instruction::URem:
2708 case Instruction::SRem:
2709 case Instruction::Shl:
2710 case Instruction::AShr:
2711 case Instruction::LShr:
2712 if (!Val0->getType()->isIntOrIntVectorTy())
2713 return Error(ID.Loc, "constexpr requires integer operands");
2715 case Instruction::FAdd:
2716 case Instruction::FSub:
2717 case Instruction::FMul:
2718 case Instruction::FDiv:
2719 case Instruction::FRem:
2720 if (!Val0->getType()->isFPOrFPVectorTy())
2721 return Error(ID.Loc, "constexpr requires fp operands");
2723 default: llvm_unreachable("Unknown binary operator!");
2726 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2727 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
2728 if (Exact) Flags |= PossiblyExactOperator::IsExact;
2729 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2731 ID.Kind = ValID::t_Constant;
2735 // Logical Operations
2738 case lltok::kw_xor: {
2739 unsigned Opc = Lex.getUIntVal();
2740 Constant *Val0, *Val1;
2742 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2743 ParseGlobalTypeAndValue(Val0) ||
2744 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2745 ParseGlobalTypeAndValue(Val1) ||
2746 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2748 if (Val0->getType() != Val1->getType())
2749 return Error(ID.Loc, "operands of constexpr must have same type");
2750 if (!Val0->getType()->isIntOrIntVectorTy())
2751 return Error(ID.Loc,
2752 "constexpr requires integer or integer vector operands");
2753 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2754 ID.Kind = ValID::t_Constant;
2758 case lltok::kw_getelementptr:
2759 case lltok::kw_shufflevector:
2760 case lltok::kw_insertelement:
2761 case lltok::kw_extractelement:
2762 case lltok::kw_select: {
2763 unsigned Opc = Lex.getUIntVal();
2764 SmallVector<Constant*, 16> Elts;
2765 bool InBounds = false;
2767 if (Opc == Instruction::GetElementPtr)
2768 InBounds = EatIfPresent(lltok::kw_inbounds);
2769 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2770 ParseGlobalValueVector(Elts) ||
2771 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2774 if (Opc == Instruction::GetElementPtr) {
2775 if (Elts.size() == 0 ||
2776 !Elts[0]->getType()->getScalarType()->isPointerTy())
2777 return Error(ID.Loc, "getelementptr requires pointer operand");
2779 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2780 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2781 return Error(ID.Loc, "invalid indices for getelementptr");
2782 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2784 } else if (Opc == Instruction::Select) {
2785 if (Elts.size() != 3)
2786 return Error(ID.Loc, "expected three operands to select");
2787 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2789 return Error(ID.Loc, Reason);
2790 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2791 } else if (Opc == Instruction::ShuffleVector) {
2792 if (Elts.size() != 3)
2793 return Error(ID.Loc, "expected three operands to shufflevector");
2794 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2795 return Error(ID.Loc, "invalid operands to shufflevector");
2797 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2798 } else if (Opc == Instruction::ExtractElement) {
2799 if (Elts.size() != 2)
2800 return Error(ID.Loc, "expected two operands to extractelement");
2801 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2802 return Error(ID.Loc, "invalid extractelement operands");
2803 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2805 assert(Opc == Instruction::InsertElement && "Unknown opcode");
2806 if (Elts.size() != 3)
2807 return Error(ID.Loc, "expected three operands to insertelement");
2808 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2809 return Error(ID.Loc, "invalid insertelement operands");
2811 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2814 ID.Kind = ValID::t_Constant;
2823 /// ParseGlobalValue - Parse a global value with the specified type.
2824 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2828 bool Parsed = ParseValID(ID) ||
2829 ConvertValIDToValue(Ty, ID, V, nullptr);
2830 if (V && !(C = dyn_cast<Constant>(V)))
2831 return Error(ID.Loc, "global values must be constants");
2835 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2837 return ParseType(Ty) ||
2838 ParseGlobalValue(Ty, V);
2841 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
2844 LocTy KwLoc = Lex.getLoc();
2845 if (!EatIfPresent(lltok::kw_comdat))
2848 if (EatIfPresent(lltok::lparen)) {
2849 if (Lex.getKind() != lltok::ComdatVar)
2850 return TokError("expected comdat variable");
2851 C = getComdat(Lex.getStrVal(), Lex.getLoc());
2853 if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
2856 if (GlobalName.empty())
2857 return TokError("comdat cannot be unnamed");
2858 C = getComdat(GlobalName, KwLoc);
2864 /// ParseGlobalValueVector
2866 /// ::= TypeAndValue (',' TypeAndValue)*
2867 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
2869 if (Lex.getKind() == lltok::rbrace ||
2870 Lex.getKind() == lltok::rsquare ||
2871 Lex.getKind() == lltok::greater ||
2872 Lex.getKind() == lltok::rparen)
2876 if (ParseGlobalTypeAndValue(C)) return true;
2879 while (EatIfPresent(lltok::comma)) {
2880 if (ParseGlobalTypeAndValue(C)) return true;
2887 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
2888 SmallVector<Metadata *, 16> Elts;
2889 if (ParseMDNodeVector(Elts))
2892 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
2899 /// ::= !MDLocation(...)
2900 bool LLParser::ParseMDNode(MDNode *&N) {
2901 if (Lex.getKind() == lltok::MetadataVar)
2902 return ParseSpecializedMDNode(N);
2904 return ParseToken(lltok::exclaim, "expected '!' here") ||
2908 bool LLParser::ParseMDNodeTail(MDNode *&N) {
2910 if (Lex.getKind() == lltok::lbrace)
2911 return ParseMDTuple(N);
2914 return ParseMDNodeID(N);
2919 /// Structure to represent an optional metadata field.
2920 template <class FieldTy> struct MDFieldImpl {
2921 typedef MDFieldImpl ImplTy;
2925 void assign(FieldTy Val) {
2927 this->Val = std::move(Val);
2930 explicit MDFieldImpl(FieldTy Default)
2931 : Val(std::move(Default)), Seen(false) {}
2934 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
2937 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
2938 : ImplTy(Default), Max(Max) {}
2940 struct LineField : public MDUnsignedField {
2941 LineField() : MDUnsignedField(0, UINT32_MAX) {}
2943 struct ColumnField : public MDUnsignedField {
2944 ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
2946 struct DwarfTagField : public MDUnsignedField {
2947 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
2949 struct DwarfAttEncodingField : public MDUnsignedField {
2950 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
2952 struct DwarfVirtualityField : public MDUnsignedField {
2953 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
2955 struct DwarfLangField : public MDUnsignedField {
2956 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
2959 struct MDSignedField : public MDFieldImpl<int64_t> {
2963 MDSignedField(int64_t Default = 0)
2964 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
2965 MDSignedField(int64_t Default, int64_t Min, int64_t Max)
2966 : ImplTy(Default), Min(Min), Max(Max) {}
2969 struct MDBoolField : public MDFieldImpl<bool> {
2970 MDBoolField(bool Default = false) : ImplTy(Default) {}
2972 struct MDField : public MDFieldImpl<Metadata *> {
2973 MDField() : ImplTy(nullptr) {}
2975 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
2976 MDConstant() : ImplTy(nullptr) {}
2978 struct MDStringField : public MDFieldImpl<std::string> {
2979 MDStringField() : ImplTy(std::string()) {}
2981 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
2982 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
2990 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
2991 MDUnsignedField &Result) {
2992 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
2993 return TokError("expected unsigned integer");
2995 auto &U = Lex.getAPSIntVal();
2996 if (U.ugt(Result.Max))
2997 return TokError("value for '" + Name + "' too large, limit is " +
2999 Result.assign(U.getZExtValue());
3000 assert(Result.Val <= Result.Max && "Expected value in range");
3006 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3007 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3010 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3011 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3015 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3016 if (Lex.getKind() == lltok::APSInt)
3017 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3019 if (Lex.getKind() != lltok::DwarfTag)
3020 return TokError("expected DWARF tag");
3022 unsigned Tag = dwarf::getTag(Lex.getStrVal());
3023 if (Tag == dwarf::DW_TAG_invalid)
3024 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3025 assert(Tag <= Result.Max && "Expected valid DWARF tag");
3033 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3034 DwarfVirtualityField &Result) {
3035 if (Lex.getKind() == lltok::APSInt)
3036 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3038 if (Lex.getKind() != lltok::DwarfVirtuality)
3039 return TokError("expected DWARF virtuality code");
3041 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3043 return TokError("invalid DWARF virtuality code" + Twine(" '") +
3044 Lex.getStrVal() + "'");
3045 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3046 Result.assign(Virtuality);
3052 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3053 if (Lex.getKind() == lltok::APSInt)
3054 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3056 if (Lex.getKind() != lltok::DwarfLang)
3057 return TokError("expected DWARF language");
3059 unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3061 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3063 assert(Lang <= Result.Max && "Expected valid DWARF language");
3064 Result.assign(Lang);
3070 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3071 DwarfAttEncodingField &Result) {
3072 if (Lex.getKind() == lltok::APSInt)
3073 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3075 if (Lex.getKind() != lltok::DwarfAttEncoding)
3076 return TokError("expected DWARF type attribute encoding");
3078 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3080 return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3081 Lex.getStrVal() + "'");
3082 assert(Encoding <= Result.Max && "Expected valid DWARF language");
3083 Result.assign(Encoding);
3089 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3090 MDSignedField &Result) {
3091 if (Lex.getKind() != lltok::APSInt)
3092 return TokError("expected signed integer");
3094 auto &S = Lex.getAPSIntVal();
3096 return TokError("value for '" + Name + "' too small, limit is " +
3099 return TokError("value for '" + Name + "' too large, limit is " +
3101 Result.assign(S.getExtValue());
3102 assert(Result.Val >= Result.Min && "Expected value in range");
3103 assert(Result.Val <= Result.Max && "Expected value in range");
3109 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3110 switch (Lex.getKind()) {
3112 return TokError("expected 'true' or 'false'");
3113 case lltok::kw_true:
3114 Result.assign(true);
3116 case lltok::kw_false:
3117 Result.assign(false);
3125 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3126 if (Lex.getKind() == lltok::kw_null) {
3128 Result.assign(nullptr);
3133 if (ParseMetadata(MD, nullptr))
3141 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
3143 if (ParseValueAsMetadata(MD, "expected constant", nullptr))
3146 Result.assign(cast<ConstantAsMetadata>(MD));
3151 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3153 if (ParseStringConstant(S))
3156 Result.assign(std::move(S));
3161 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3162 SmallVector<Metadata *, 4> MDs;
3163 if (ParseMDNodeVector(MDs))
3166 Result.assign(std::move(MDs));
3170 } // end namespace llvm
3172 template <class ParserTy>
3173 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3175 if (Lex.getKind() != lltok::LabelStr)
3176 return TokError("expected field label here");
3180 } while (EatIfPresent(lltok::comma));
3185 template <class ParserTy>
3186 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3187 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3190 if (ParseToken(lltok::lparen, "expected '(' here"))
3192 if (Lex.getKind() != lltok::rparen)
3193 if (ParseMDFieldsImplBody(parseField))
3196 ClosingLoc = Lex.getLoc();
3197 return ParseToken(lltok::rparen, "expected ')' here");
3200 template <class FieldTy>
3201 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3203 return TokError("field '" + Name + "' cannot be specified more than once");
3205 LocTy Loc = Lex.getLoc();
3207 return ParseMDField(Loc, Name, Result);
3210 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3211 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3213 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
3214 if (Lex.getStrVal() == #CLASS) \
3215 return Parse##CLASS(N, IsDistinct);
3216 #include "llvm/IR/Metadata.def"
3218 return TokError("expected metadata type");
3221 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3222 #define NOP_FIELD(NAME, TYPE, INIT)
3223 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
3225 return Error(ClosingLoc, "missing required field '" #NAME "'");
3226 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
3227 if (Lex.getStrVal() == #NAME) \
3228 return ParseMDField(#NAME, NAME);
3229 #define PARSE_MD_FIELDS() \
3230 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
3233 if (ParseMDFieldsImpl([&]() -> bool { \
3234 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
3235 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
3238 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
3240 #define GET_OR_DISTINCT(CLASS, ARGS) \
3241 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3243 /// ParseMDLocationFields:
3244 /// ::= !MDLocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3245 bool LLParser::ParseMDLocation(MDNode *&Result, bool IsDistinct) {
3246 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3247 OPTIONAL(line, LineField, ); \
3248 OPTIONAL(column, ColumnField, ); \
3249 REQUIRED(scope, MDField, ); \
3250 OPTIONAL(inlinedAt, MDField, );
3252 #undef VISIT_MD_FIELDS
3254 auto get = (IsDistinct ? MDLocation::getDistinct : MDLocation::get);
3255 Result = get(Context, line.Val, column.Val, scope.Val, inlinedAt.Val);
3259 /// ParseGenericDebugNode:
3260 /// ::= !GenericDebugNode(tag: 15, header: "...", operands: {...})
3261 bool LLParser::ParseGenericDebugNode(MDNode *&Result, bool IsDistinct) {
3262 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3263 REQUIRED(tag, DwarfTagField, ); \
3264 OPTIONAL(header, MDStringField, ); \
3265 OPTIONAL(operands, MDFieldList, );
3267 #undef VISIT_MD_FIELDS
3269 Result = GET_OR_DISTINCT(GenericDebugNode,
3270 (Context, tag.Val, header.Val, operands.Val));
3274 /// ParseMDSubrange:
3275 /// ::= !MDSubrange(count: 30, lowerBound: 2)
3276 bool LLParser::ParseMDSubrange(MDNode *&Result, bool IsDistinct) {
3277 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3278 REQUIRED(count, MDUnsignedField, (0, UINT64_MAX >> 1)); \
3279 OPTIONAL(lowerBound, MDSignedField, );
3281 #undef VISIT_MD_FIELDS
3283 Result = GET_OR_DISTINCT(MDSubrange, (Context, count.Val, lowerBound.Val));
3287 /// ParseMDEnumerator:
3288 /// ::= !MDEnumerator(value: 30, name: "SomeKind")
3289 bool LLParser::ParseMDEnumerator(MDNode *&Result, bool IsDistinct) {
3290 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3291 REQUIRED(value, MDSignedField, ); \
3292 REQUIRED(name, MDStringField, );
3294 #undef VISIT_MD_FIELDS
3296 Result = GET_OR_DISTINCT(MDEnumerator, (Context, value.Val, name.Val));
3300 /// ParseMDBasicType:
3301 /// ::= !MDBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3302 bool LLParser::ParseMDBasicType(MDNode *&Result, bool IsDistinct) {
3303 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3304 REQUIRED(tag, DwarfTagField, ); \
3305 OPTIONAL(name, MDStringField, ); \
3306 OPTIONAL(size, MDUnsignedField, (0, UINT32_MAX)); \
3307 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
3308 OPTIONAL(encoding, DwarfAttEncodingField, );
3310 #undef VISIT_MD_FIELDS
3312 Result = GET_OR_DISTINCT(MDBasicType, (Context, tag.Val, name.Val, size.Val,
3313 align.Val, encoding.Val));
3317 /// ParseMDDerivedType:
3318 /// ::= !MDDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3319 /// line: 7, scope: !1, baseType: !2, size: 32,
3320 /// align: 32, offset: 0, flags: 0, extraData: !3)
3321 bool LLParser::ParseMDDerivedType(MDNode *&Result, bool IsDistinct) {
3322 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3323 REQUIRED(tag, DwarfTagField, ); \
3324 OPTIONAL(name, MDStringField, ); \
3325 OPTIONAL(file, MDField, ); \
3326 OPTIONAL(line, LineField, ); \
3327 OPTIONAL(scope, MDField, ); \
3328 REQUIRED(baseType, MDField, ); \
3329 OPTIONAL(size, MDUnsignedField, (0, UINT32_MAX)); \
3330 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
3331 OPTIONAL(offset, MDUnsignedField, (0, UINT32_MAX)); \
3332 OPTIONAL(flags, MDUnsignedField, (0, UINT32_MAX)); \
3333 OPTIONAL(extraData, MDField, );
3335 #undef VISIT_MD_FIELDS
3337 Result = GET_OR_DISTINCT(MDDerivedType,
3338 (Context, tag.Val, name.Val, file.Val, line.Val,
3339 scope.Val, baseType.Val, size.Val, align.Val,
3340 offset.Val, flags.Val, extraData.Val));
3344 bool LLParser::ParseMDCompositeType(MDNode *&Result, bool IsDistinct) {
3345 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3346 REQUIRED(tag, DwarfTagField, ); \
3347 OPTIONAL(name, MDStringField, ); \
3348 OPTIONAL(file, MDField, ); \
3349 OPTIONAL(line, LineField, ); \
3350 OPTIONAL(scope, MDField, ); \
3351 OPTIONAL(baseType, MDField, ); \
3352 OPTIONAL(size, MDUnsignedField, (0, UINT32_MAX)); \
3353 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
3354 OPTIONAL(offset, MDUnsignedField, (0, UINT32_MAX)); \
3355 OPTIONAL(flags, MDUnsignedField, (0, UINT32_MAX)); \
3356 OPTIONAL(elements, MDField, ); \
3357 OPTIONAL(runtimeLang, DwarfLangField, ); \
3358 OPTIONAL(vtableHolder, MDField, ); \
3359 OPTIONAL(templateParams, MDField, ); \
3360 OPTIONAL(identifier, MDStringField, );
3362 #undef VISIT_MD_FIELDS
3364 Result = GET_OR_DISTINCT(
3366 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3367 size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3368 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3372 bool LLParser::ParseMDSubroutineType(MDNode *&Result, bool IsDistinct) {
3373 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3374 OPTIONAL(flags, MDUnsignedField, (0, UINT32_MAX)); \
3375 REQUIRED(types, MDField, );
3377 #undef VISIT_MD_FIELDS
3379 Result = GET_OR_DISTINCT(MDSubroutineType, (Context, flags.Val, types.Val));
3383 /// ParseMDFileType:
3384 /// ::= !MDFileType(filename: "path/to/file", directory: "/path/to/dir")
3385 bool LLParser::ParseMDFile(MDNode *&Result, bool IsDistinct) {
3386 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3387 REQUIRED(filename, MDStringField, ); \
3388 REQUIRED(directory, MDStringField, );
3390 #undef VISIT_MD_FIELDS
3392 Result = GET_OR_DISTINCT(MDFile, (Context, filename.Val, directory.Val));
3396 /// ParseMDCompileUnit:
3397 /// ::= !MDCompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
3398 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
3399 /// splitDebugFilename: "abc.debug", emissionKind: 1,
3400 /// enums: !1, retainedTypes: !2, subprograms: !3,
3401 /// globals: !4, imports: !5)
3402 bool LLParser::ParseMDCompileUnit(MDNode *&Result, bool IsDistinct) {
3403 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3404 REQUIRED(language, DwarfLangField, ); \
3405 REQUIRED(file, MDField, ); \
3406 OPTIONAL(producer, MDStringField, ); \
3407 OPTIONAL(isOptimized, MDBoolField, ); \
3408 OPTIONAL(flags, MDStringField, ); \
3409 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
3410 OPTIONAL(splitDebugFilename, MDStringField, ); \
3411 OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX)); \
3412 OPTIONAL(enums, MDField, ); \
3413 OPTIONAL(retainedTypes, MDField, ); \
3414 OPTIONAL(subprograms, MDField, ); \
3415 OPTIONAL(globals, MDField, ); \
3416 OPTIONAL(imports, MDField, );
3418 #undef VISIT_MD_FIELDS
3420 Result = GET_OR_DISTINCT(MDCompileUnit,
3421 (Context, language.Val, file.Val, producer.Val,
3422 isOptimized.Val, flags.Val, runtimeVersion.Val,
3423 splitDebugFilename.Val, emissionKind.Val, enums.Val,
3424 retainedTypes.Val, subprograms.Val, globals.Val,
3429 /// ParseMDSubprogram:
3430 /// ::= !MDSubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
3431 /// file: !1, line: 7, type: !2, isLocal: false,
3432 /// isDefinition: true, scopeLine: 8, containingType: !3,
3433 /// virtuality: DW_VIRTUALTIY_pure_virtual,
3434 /// virtualIndex: 10, flags: 11,
3435 /// isOptimized: false, function: void ()* @_Z3foov,
3436 /// templateParams: !4, declaration: !5, variables: !6)
3437 bool LLParser::ParseMDSubprogram(MDNode *&Result, bool IsDistinct) {
3438 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3439 OPTIONAL(scope, MDField, ); \
3440 REQUIRED(name, MDStringField, ); \
3441 OPTIONAL(linkageName, MDStringField, ); \
3442 OPTIONAL(file, MDField, ); \
3443 OPTIONAL(line, LineField, ); \
3444 OPTIONAL(type, MDField, ); \
3445 OPTIONAL(isLocal, MDBoolField, ); \
3446 OPTIONAL(isDefinition, MDBoolField, (true)); \
3447 OPTIONAL(scopeLine, LineField, ); \
3448 OPTIONAL(containingType, MDField, ); \
3449 OPTIONAL(virtuality, DwarfVirtualityField, ); \
3450 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
3451 OPTIONAL(flags, MDUnsignedField, (0, UINT32_MAX)); \
3452 OPTIONAL(isOptimized, MDBoolField, ); \
3453 OPTIONAL(function, MDConstant, ); \
3454 OPTIONAL(templateParams, MDField, ); \
3455 OPTIONAL(declaration, MDField, ); \
3456 OPTIONAL(variables, MDField, );
3458 #undef VISIT_MD_FIELDS
3460 Result = GET_OR_DISTINCT(
3461 MDSubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val,
3462 line.Val, type.Val, isLocal.Val, isDefinition.Val,
3463 scopeLine.Val, containingType.Val, virtuality.Val,
3464 virtualIndex.Val, flags.Val, isOptimized.Val, function.Val,
3465 templateParams.Val, declaration.Val, variables.Val));
3469 /// ParseMDLexicalBlock:
3470 /// ::= !MDLexicalBlock(scope: !0, file: !2, line: 7, column: 9)
3471 bool LLParser::ParseMDLexicalBlock(MDNode *&Result, bool IsDistinct) {
3472 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3473 REQUIRED(scope, MDField, ); \
3474 OPTIONAL(file, MDField, ); \
3475 OPTIONAL(line, LineField, ); \
3476 OPTIONAL(column, ColumnField, );
3478 #undef VISIT_MD_FIELDS
3480 Result = GET_OR_DISTINCT(
3481 MDLexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
3485 /// ParseMDLexicalBlockFile:
3486 /// ::= !MDLexicalBlockFile(scope: !0, file: !2, discriminator: 9)
3487 bool LLParser::ParseMDLexicalBlockFile(MDNode *&Result, bool IsDistinct) {
3488 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3489 REQUIRED(scope, MDField, ); \
3490 OPTIONAL(file, MDField, ); \
3491 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
3493 #undef VISIT_MD_FIELDS
3495 Result = GET_OR_DISTINCT(MDLexicalBlockFile,
3496 (Context, scope.Val, file.Val, discriminator.Val));
3500 /// ParseMDNamespace:
3501 /// ::= !MDNamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
3502 bool LLParser::ParseMDNamespace(MDNode *&Result, bool IsDistinct) {
3503 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3504 REQUIRED(scope, MDField, ); \
3505 OPTIONAL(file, MDField, ); \
3506 OPTIONAL(name, MDStringField, ); \
3507 OPTIONAL(line, LineField, );
3509 #undef VISIT_MD_FIELDS
3511 Result = GET_OR_DISTINCT(MDNamespace,
3512 (Context, scope.Val, file.Val, name.Val, line.Val));
3516 /// ParseMDTemplateTypeParameter:
3517 /// ::= !MDTemplateTypeParameter(scope: !0, name: "Ty", type: !1)
3518 bool LLParser::ParseMDTemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
3519 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3520 REQUIRED(scope, MDField, ); \
3521 OPTIONAL(name, MDStringField, ); \
3522 REQUIRED(type, MDField, );
3524 #undef VISIT_MD_FIELDS
3526 Result = GET_OR_DISTINCT(MDTemplateTypeParameter,
3527 (Context, scope.Val, name.Val, type.Val));
3531 /// ParseMDTemplateValueParameter:
3532 /// ::= !MDTemplateValueParameter(tag: DW_TAG_template_value_parameter,
3533 /// scope: !0, name: "V", type: !1,
3535 bool LLParser::ParseMDTemplateValueParameter(MDNode *&Result, bool IsDistinct) {
3536 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3537 REQUIRED(tag, DwarfTagField, ); \
3538 REQUIRED(scope, MDField, ); \
3539 OPTIONAL(name, MDStringField, ); \
3540 REQUIRED(type, MDField, ); \
3541 REQUIRED(value, MDField, );
3543 #undef VISIT_MD_FIELDS
3545 Result = GET_OR_DISTINCT(
3546 MDTemplateValueParameter,
3547 (Context, tag.Val, scope.Val, name.Val, type.Val, value.Val));
3551 /// ParseMDGlobalVariable:
3552 /// ::= !MDGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
3553 /// file: !1, line: 7, type: !2, isLocal: false,
3554 /// isDefinition: true, variable: i32* @foo,
3555 /// declaration: !3)
3556 bool LLParser::ParseMDGlobalVariable(MDNode *&Result, bool IsDistinct) {
3557 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3558 OPTIONAL(scope, MDField, ); \
3559 REQUIRED(name, MDStringField, ); \
3560 OPTIONAL(linkageName, MDStringField, ); \
3561 OPTIONAL(file, MDField, ); \
3562 OPTIONAL(line, LineField, ); \
3563 OPTIONAL(type, MDField, ); \
3564 OPTIONAL(isLocal, MDBoolField, ); \
3565 OPTIONAL(isDefinition, MDBoolField, (true)); \
3566 OPTIONAL(variable, MDConstant, ); \
3567 OPTIONAL(declaration, MDField, );
3569 #undef VISIT_MD_FIELDS
3571 Result = GET_OR_DISTINCT(MDGlobalVariable,
3572 (Context, scope.Val, name.Val, linkageName.Val,
3573 file.Val, line.Val, type.Val, isLocal.Val,
3574 isDefinition.Val, variable.Val, declaration.Val));
3578 /// ParseMDLocalVariable:
3579 /// ::= !MDLocalVariable(tag: DW_TAG_arg_variable, scope: !0, name: "foo",
3580 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
3582 bool LLParser::ParseMDLocalVariable(MDNode *&Result, bool IsDistinct) {
3583 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3584 REQUIRED(tag, DwarfTagField, ); \
3585 OPTIONAL(scope, MDField, ); \
3586 OPTIONAL(name, MDStringField, ); \
3587 OPTIONAL(file, MDField, ); \
3588 OPTIONAL(line, LineField, ); \
3589 OPTIONAL(type, MDField, ); \
3590 OPTIONAL(arg, MDUnsignedField, (0, UINT8_MAX)); \
3591 OPTIONAL(flags, MDUnsignedField, (0, UINT32_MAX)); \
3592 OPTIONAL(inlinedAt, MDField, );
3594 #undef VISIT_MD_FIELDS
3596 Result = GET_OR_DISTINCT(
3597 MDLocalVariable, (Context, tag.Val, scope.Val, name.Val, file.Val,
3598 line.Val, type.Val, arg.Val, flags.Val, inlinedAt.Val));
3602 /// ParseMDExpression:
3603 /// ::= !MDExpression(0, 7, -1)
3604 bool LLParser::ParseMDExpression(MDNode *&Result, bool IsDistinct) {
3605 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3608 if (ParseToken(lltok::lparen, "expected '(' here"))
3611 SmallVector<uint64_t, 8> Elements;
3612 if (Lex.getKind() != lltok::rparen)
3614 if (Lex.getKind() == lltok::DwarfOp) {
3615 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
3617 Elements.push_back(Op);
3620 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
3623 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3624 return TokError("expected unsigned integer");
3626 auto &U = Lex.getAPSIntVal();
3627 if (U.ugt(UINT64_MAX))
3628 return TokError("element too large, limit is " + Twine(UINT64_MAX));
3629 Elements.push_back(U.getZExtValue());
3631 } while (EatIfPresent(lltok::comma));
3633 if (ParseToken(lltok::rparen, "expected ')' here"))
3636 Result = GET_OR_DISTINCT(MDExpression, (Context, Elements));
3640 /// ParseMDObjCProperty:
3641 /// ::= !MDObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
3642 /// getter: "getFoo", attributes: 7, type: !2)
3643 bool LLParser::ParseMDObjCProperty(MDNode *&Result, bool IsDistinct) {
3644 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3645 REQUIRED(name, MDStringField, ); \
3646 OPTIONAL(file, MDField, ); \
3647 OPTIONAL(line, LineField, ); \
3648 OPTIONAL(setter, MDStringField, ); \
3649 OPTIONAL(getter, MDStringField, ); \
3650 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
3651 OPTIONAL(type, MDField, );
3653 #undef VISIT_MD_FIELDS
3655 Result = GET_OR_DISTINCT(MDObjCProperty,
3656 (Context, name.Val, file.Val, line.Val, setter.Val,
3657 getter.Val, attributes.Val, type.Val));
3661 /// ParseMDImportedEntity:
3662 /// ::= !MDImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
3663 /// line: 7, name: "foo")
3664 bool LLParser::ParseMDImportedEntity(MDNode *&Result, bool IsDistinct) {
3665 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3666 REQUIRED(tag, DwarfTagField, ); \
3667 REQUIRED(scope, MDField, ); \
3668 OPTIONAL(entity, MDField, ); \
3669 OPTIONAL(line, LineField, ); \
3670 OPTIONAL(name, MDStringField, );
3672 #undef VISIT_MD_FIELDS
3674 Result = GET_OR_DISTINCT(MDImportedEntity, (Context, tag.Val, scope.Val,
3675 entity.Val, line.Val, name.Val));
3679 #undef PARSE_MD_FIELD
3681 #undef REQUIRE_FIELD
3682 #undef DECLARE_FIELD
3684 /// ParseMetadataAsValue
3685 /// ::= metadata i32 %local
3686 /// ::= metadata i32 @global
3687 /// ::= metadata i32 7
3689 /// ::= metadata !{...}
3690 /// ::= metadata !"string"
3691 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
3692 // Note: the type 'metadata' has already been parsed.
3694 if (ParseMetadata(MD, &PFS))
3697 V = MetadataAsValue::get(Context, MD);
3701 /// ParseValueAsMetadata
3705 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
3706 PerFunctionState *PFS) {
3709 if (ParseType(Ty, TypeMsg, Loc))
3711 if (Ty->isMetadataTy())
3712 return Error(Loc, "invalid metadata-value-metadata roundtrip");
3715 if (ParseValue(Ty, V, PFS))
3718 MD = ValueAsMetadata::get(V);
3729 /// ::= !MDLocation(...)
3730 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
3731 if (Lex.getKind() == lltok::MetadataVar) {
3733 if (ParseSpecializedMDNode(N))
3741 if (Lex.getKind() != lltok::exclaim)
3742 return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
3745 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
3749 // ::= '!' STRINGCONSTANT
3750 if (Lex.getKind() == lltok::StringConstant) {
3752 if (ParseMDString(S))
3762 if (ParseMDNodeTail(N))
3769 //===----------------------------------------------------------------------===//
3770 // Function Parsing.
3771 //===----------------------------------------------------------------------===//
3773 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
3774 PerFunctionState *PFS) {
3775 if (Ty->isFunctionTy())
3776 return Error(ID.Loc, "functions are not values, refer to them as pointers");
3779 case ValID::t_LocalID:
3780 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
3781 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
3782 return V == nullptr;
3783 case ValID::t_LocalName:
3784 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
3785 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
3786 return V == nullptr;
3787 case ValID::t_InlineAsm: {
3788 PointerType *PTy = dyn_cast<PointerType>(Ty);
3790 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : nullptr;
3791 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
3792 return Error(ID.Loc, "invalid type for inline asm constraint string");
3793 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
3794 (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
3797 case ValID::t_GlobalName:
3798 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
3799 return V == nullptr;
3800 case ValID::t_GlobalID:
3801 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
3802 return V == nullptr;
3803 case ValID::t_APSInt:
3804 if (!Ty->isIntegerTy())
3805 return Error(ID.Loc, "integer constant must have integer type");
3806 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
3807 V = ConstantInt::get(Context, ID.APSIntVal);
3809 case ValID::t_APFloat:
3810 if (!Ty->isFloatingPointTy() ||
3811 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
3812 return Error(ID.Loc, "floating point constant invalid for type");
3814 // The lexer has no type info, so builds all half, float, and double FP
3815 // constants as double. Fix this here. Long double does not need this.
3816 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
3819 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
3821 else if (Ty->isFloatTy())
3822 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
3825 V = ConstantFP::get(Context, ID.APFloatVal);
3827 if (V->getType() != Ty)
3828 return Error(ID.Loc, "floating point constant does not have type '" +
3829 getTypeString(Ty) + "'");
3833 if (!Ty->isPointerTy())
3834 return Error(ID.Loc, "null must be a pointer type");
3835 V = ConstantPointerNull::get(cast<PointerType>(Ty));
3837 case ValID::t_Undef:
3838 // FIXME: LabelTy should not be a first-class type.
3839 if (!Ty->isFirstClassType() || Ty->isLabelTy())
3840 return Error(ID.Loc, "invalid type for undef constant");
3841 V = UndefValue::get(Ty);
3843 case ValID::t_EmptyArray:
3844 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
3845 return Error(ID.Loc, "invalid empty array initializer");
3846 V = UndefValue::get(Ty);
3849 // FIXME: LabelTy should not be a first-class type.
3850 if (!Ty->isFirstClassType() || Ty->isLabelTy())
3851 return Error(ID.Loc, "invalid type for null constant");
3852 V = Constant::getNullValue(Ty);
3854 case ValID::t_Constant:
3855 if (ID.ConstantVal->getType() != Ty)
3856 return Error(ID.Loc, "constant expression type mismatch");
3860 case ValID::t_ConstantStruct:
3861 case ValID::t_PackedConstantStruct:
3862 if (StructType *ST = dyn_cast<StructType>(Ty)) {
3863 if (ST->getNumElements() != ID.UIntVal)
3864 return Error(ID.Loc,
3865 "initializer with struct type has wrong # elements");
3866 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
3867 return Error(ID.Loc, "packed'ness of initializer and type don't match");
3869 // Verify that the elements are compatible with the structtype.
3870 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
3871 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
3872 return Error(ID.Loc, "element " + Twine(i) +
3873 " of struct initializer doesn't match struct element type");
3875 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
3878 return Error(ID.Loc, "constant expression type mismatch");
3881 llvm_unreachable("Invalid ValID");
3884 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
3887 return ParseValID(ID, PFS) ||
3888 ConvertValIDToValue(Ty, ID, V, PFS);
3891 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
3893 return ParseType(Ty) ||
3894 ParseValue(Ty, V, PFS);
3897 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
3898 PerFunctionState &PFS) {
3901 if (ParseTypeAndValue(V, PFS)) return true;
3902 if (!isa<BasicBlock>(V))
3903 return Error(Loc, "expected a basic block");
3904 BB = cast<BasicBlock>(V);
3910 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
3911 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
3912 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue
3913 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
3914 // Parse the linkage.
3915 LocTy LinkageLoc = Lex.getLoc();
3918 unsigned Visibility;
3919 unsigned DLLStorageClass;
3920 AttrBuilder RetAttrs;
3922 Type *RetType = nullptr;
3923 LocTy RetTypeLoc = Lex.getLoc();
3924 if (ParseOptionalLinkage(Linkage) ||
3925 ParseOptionalVisibility(Visibility) ||
3926 ParseOptionalDLLStorageClass(DLLStorageClass) ||
3927 ParseOptionalCallingConv(CC) ||
3928 ParseOptionalReturnAttrs(RetAttrs) ||
3929 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
3932 // Verify that the linkage is ok.
3933 switch ((GlobalValue::LinkageTypes)Linkage) {
3934 case GlobalValue::ExternalLinkage:
3935 break; // always ok.
3936 case GlobalValue::ExternalWeakLinkage:
3938 return Error(LinkageLoc, "invalid linkage for function definition");
3940 case GlobalValue::PrivateLinkage:
3941 case GlobalValue::InternalLinkage:
3942 case GlobalValue::AvailableExternallyLinkage:
3943 case GlobalValue::LinkOnceAnyLinkage:
3944 case GlobalValue::LinkOnceODRLinkage:
3945 case GlobalValue::WeakAnyLinkage:
3946 case GlobalValue::WeakODRLinkage:
3948 return Error(LinkageLoc, "invalid linkage for function declaration");
3950 case GlobalValue::AppendingLinkage:
3951 case GlobalValue::CommonLinkage:
3952 return Error(LinkageLoc, "invalid function linkage type");
3955 if (!isValidVisibilityForLinkage(Visibility, Linkage))
3956 return Error(LinkageLoc,
3957 "symbol with local linkage must have default visibility");
3959 if (!FunctionType::isValidReturnType(RetType))
3960 return Error(RetTypeLoc, "invalid function return type");
3962 LocTy NameLoc = Lex.getLoc();
3964 std::string FunctionName;
3965 if (Lex.getKind() == lltok::GlobalVar) {
3966 FunctionName = Lex.getStrVal();
3967 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
3968 unsigned NameID = Lex.getUIntVal();
3970 if (NameID != NumberedVals.size())
3971 return TokError("function expected to be numbered '%" +
3972 Twine(NumberedVals.size()) + "'");
3974 return TokError("expected function name");
3979 if (Lex.getKind() != lltok::lparen)
3980 return TokError("expected '(' in function argument list");
3982 SmallVector<ArgInfo, 8> ArgList;
3984 AttrBuilder FuncAttrs;
3985 std::vector<unsigned> FwdRefAttrGrps;
3987 std::string Section;
3991 LocTy UnnamedAddrLoc;
3992 Constant *Prefix = nullptr;
3993 Constant *Prologue = nullptr;
3996 if (ParseArgumentList(ArgList, isVarArg) ||
3997 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
3999 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4001 (EatIfPresent(lltok::kw_section) &&
4002 ParseStringConstant(Section)) ||
4003 parseOptionalComdat(FunctionName, C) ||
4004 ParseOptionalAlignment(Alignment) ||
4005 (EatIfPresent(lltok::kw_gc) &&
4006 ParseStringConstant(GC)) ||
4007 (EatIfPresent(lltok::kw_prefix) &&
4008 ParseGlobalTypeAndValue(Prefix)) ||
4009 (EatIfPresent(lltok::kw_prologue) &&
4010 ParseGlobalTypeAndValue(Prologue)))
4013 if (FuncAttrs.contains(Attribute::Builtin))
4014 return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4016 // If the alignment was parsed as an attribute, move to the alignment field.
4017 if (FuncAttrs.hasAlignmentAttr()) {
4018 Alignment = FuncAttrs.getAlignment();
4019 FuncAttrs.removeAttribute(Attribute::Alignment);
4022 // Okay, if we got here, the function is syntactically valid. Convert types
4023 // and do semantic checks.
4024 std::vector<Type*> ParamTypeList;
4025 SmallVector<AttributeSet, 8> Attrs;
4027 if (RetAttrs.hasAttributes())
4028 Attrs.push_back(AttributeSet::get(RetType->getContext(),
4029 AttributeSet::ReturnIndex,
4032 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4033 ParamTypeList.push_back(ArgList[i].Ty);
4034 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4035 AttrBuilder B(ArgList[i].Attrs, i + 1);
4036 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4040 if (FuncAttrs.hasAttributes())
4041 Attrs.push_back(AttributeSet::get(RetType->getContext(),
4042 AttributeSet::FunctionIndex,
4045 AttributeSet PAL = AttributeSet::get(Context, Attrs);
4047 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4048 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4051 FunctionType::get(RetType, ParamTypeList, isVarArg);
4052 PointerType *PFT = PointerType::getUnqual(FT);
4055 if (!FunctionName.empty()) {
4056 // If this was a definition of a forward reference, remove the definition
4057 // from the forward reference table and fill in the forward ref.
4058 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
4059 ForwardRefVals.find(FunctionName);
4060 if (FRVI != ForwardRefVals.end()) {
4061 Fn = M->getFunction(FunctionName);
4063 return Error(FRVI->second.second, "invalid forward reference to "
4064 "function as global value!");
4065 if (Fn->getType() != PFT)
4066 return Error(FRVI->second.second, "invalid forward reference to "
4067 "function '" + FunctionName + "' with wrong type!");
4069 ForwardRefVals.erase(FRVI);
4070 } else if ((Fn = M->getFunction(FunctionName))) {
4071 // Reject redefinitions.
4072 return Error(NameLoc, "invalid redefinition of function '" +
4073 FunctionName + "'");
4074 } else if (M->getNamedValue(FunctionName)) {
4075 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4079 // If this is a definition of a forward referenced function, make sure the
4081 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
4082 = ForwardRefValIDs.find(NumberedVals.size());
4083 if (I != ForwardRefValIDs.end()) {
4084 Fn = cast<Function>(I->second.first);
4085 if (Fn->getType() != PFT)
4086 return Error(NameLoc, "type of definition and forward reference of '@" +
4087 Twine(NumberedVals.size()) + "' disagree");
4088 ForwardRefValIDs.erase(I);
4093 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4094 else // Move the forward-reference to the correct spot in the module.
4095 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4097 if (FunctionName.empty())
4098 NumberedVals.push_back(Fn);
4100 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4101 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4102 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4103 Fn->setCallingConv(CC);
4104 Fn->setAttributes(PAL);
4105 Fn->setUnnamedAddr(UnnamedAddr);
4106 Fn->setAlignment(Alignment);
4107 Fn->setSection(Section);
4109 if (!GC.empty()) Fn->setGC(GC.c_str());
4110 Fn->setPrefixData(Prefix);
4111 Fn->setPrologueData(Prologue);
4112 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4114 // Add all of the arguments we parsed to the function.
4115 Function::arg_iterator ArgIt = Fn->arg_begin();
4116 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4117 // If the argument has a name, insert it into the argument symbol table.
4118 if (ArgList[i].Name.empty()) continue;
4120 // Set the name, if it conflicted, it will be auto-renamed.
4121 ArgIt->setName(ArgList[i].Name);
4123 if (ArgIt->getName() != ArgList[i].Name)
4124 return Error(ArgList[i].Loc, "redefinition of argument '%" +
4125 ArgList[i].Name + "'");
4131 // Check the declaration has no block address forward references.
4133 if (FunctionName.empty()) {
4134 ID.Kind = ValID::t_GlobalID;
4135 ID.UIntVal = NumberedVals.size() - 1;
4137 ID.Kind = ValID::t_GlobalName;
4138 ID.StrVal = FunctionName;
4140 auto Blocks = ForwardRefBlockAddresses.find(ID);
4141 if (Blocks != ForwardRefBlockAddresses.end())
4142 return Error(Blocks->first.Loc,
4143 "cannot take blockaddress inside a declaration");
4147 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4149 if (FunctionNumber == -1) {
4150 ID.Kind = ValID::t_GlobalName;
4151 ID.StrVal = F.getName();
4153 ID.Kind = ValID::t_GlobalID;
4154 ID.UIntVal = FunctionNumber;
4157 auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4158 if (Blocks == P.ForwardRefBlockAddresses.end())
4161 for (const auto &I : Blocks->second) {
4162 const ValID &BBID = I.first;
4163 GlobalValue *GV = I.second;
4165 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4166 "Expected local id or name");
4168 if (BBID.Kind == ValID::t_LocalName)
4169 BB = GetBB(BBID.StrVal, BBID.Loc);
4171 BB = GetBB(BBID.UIntVal, BBID.Loc);
4173 return P.Error(BBID.Loc, "referenced value is not a basic block");
4175 GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4176 GV->eraseFromParent();
4179 P.ForwardRefBlockAddresses.erase(Blocks);
4183 /// ParseFunctionBody
4184 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
4185 bool LLParser::ParseFunctionBody(Function &Fn) {
4186 if (Lex.getKind() != lltok::lbrace)
4187 return TokError("expected '{' in function body");
4188 Lex.Lex(); // eat the {.
4190 int FunctionNumber = -1;
4191 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4193 PerFunctionState PFS(*this, Fn, FunctionNumber);
4195 // Resolve block addresses and allow basic blocks to be forward-declared
4196 // within this function.
4197 if (PFS.resolveForwardRefBlockAddresses())
4199 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4201 // We need at least one basic block.
4202 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4203 return TokError("function body requires at least one basic block");
4205 while (Lex.getKind() != lltok::rbrace &&
4206 Lex.getKind() != lltok::kw_uselistorder)
4207 if (ParseBasicBlock(PFS)) return true;
4209 while (Lex.getKind() != lltok::rbrace)
4210 if (ParseUseListOrder(&PFS))
4216 // Verify function is ok.
4217 return PFS.FinishFunction();
4221 /// ::= LabelStr? Instruction*
4222 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4223 // If this basic block starts out with a name, remember it.
4225 LocTy NameLoc = Lex.getLoc();
4226 if (Lex.getKind() == lltok::LabelStr) {
4227 Name = Lex.getStrVal();
4231 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4232 if (!BB) return true;
4234 std::string NameStr;
4236 // Parse the instructions in this block until we get a terminator.
4239 // This instruction may have three possibilities for a name: a) none
4240 // specified, b) name specified "%foo =", c) number specified: "%4 =".
4241 LocTy NameLoc = Lex.getLoc();
4245 if (Lex.getKind() == lltok::LocalVarID) {
4246 NameID = Lex.getUIntVal();
4248 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4250 } else if (Lex.getKind() == lltok::LocalVar) {
4251 NameStr = Lex.getStrVal();
4253 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4257 switch (ParseInstruction(Inst, BB, PFS)) {
4258 default: llvm_unreachable("Unknown ParseInstruction result!");
4259 case InstError: return true;
4261 BB->getInstList().push_back(Inst);
4263 // With a normal result, we check to see if the instruction is followed by
4264 // a comma and metadata.
4265 if (EatIfPresent(lltok::comma))
4266 if (ParseInstructionMetadata(Inst, &PFS))
4269 case InstExtraComma:
4270 BB->getInstList().push_back(Inst);
4272 // If the instruction parser ate an extra comma at the end of it, it
4273 // *must* be followed by metadata.
4274 if (ParseInstructionMetadata(Inst, &PFS))
4279 // Set the name on the instruction.
4280 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
4281 } while (!isa<TerminatorInst>(Inst));
4286 //===----------------------------------------------------------------------===//
4287 // Instruction Parsing.
4288 //===----------------------------------------------------------------------===//
4290 /// ParseInstruction - Parse one of the many different instructions.
4292 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
4293 PerFunctionState &PFS) {
4294 lltok::Kind Token = Lex.getKind();
4295 if (Token == lltok::Eof)
4296 return TokError("found end of file when expecting more instructions");
4297 LocTy Loc = Lex.getLoc();
4298 unsigned KeywordVal = Lex.getUIntVal();
4299 Lex.Lex(); // Eat the keyword.
4302 default: return Error(Loc, "expected instruction opcode");
4303 // Terminator Instructions.
4304 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
4305 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
4306 case lltok::kw_br: return ParseBr(Inst, PFS);
4307 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
4308 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
4309 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
4310 case lltok::kw_resume: return ParseResume(Inst, PFS);
4311 // Binary Operators.
4315 case lltok::kw_shl: {
4316 bool NUW = EatIfPresent(lltok::kw_nuw);
4317 bool NSW = EatIfPresent(lltok::kw_nsw);
4318 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
4320 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4322 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
4323 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
4326 case lltok::kw_fadd:
4327 case lltok::kw_fsub:
4328 case lltok::kw_fmul:
4329 case lltok::kw_fdiv:
4330 case lltok::kw_frem: {
4331 FastMathFlags FMF = EatFastMathFlagsIfPresent();
4332 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
4336 Inst->setFastMathFlags(FMF);
4340 case lltok::kw_sdiv:
4341 case lltok::kw_udiv:
4342 case lltok::kw_lshr:
4343 case lltok::kw_ashr: {
4344 bool Exact = EatIfPresent(lltok::kw_exact);
4346 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4347 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
4351 case lltok::kw_urem:
4352 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
4355 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
4356 case lltok::kw_icmp:
4357 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal);
4359 case lltok::kw_trunc:
4360 case lltok::kw_zext:
4361 case lltok::kw_sext:
4362 case lltok::kw_fptrunc:
4363 case lltok::kw_fpext:
4364 case lltok::kw_bitcast:
4365 case lltok::kw_addrspacecast:
4366 case lltok::kw_uitofp:
4367 case lltok::kw_sitofp:
4368 case lltok::kw_fptoui:
4369 case lltok::kw_fptosi:
4370 case lltok::kw_inttoptr:
4371 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
4373 case lltok::kw_select: return ParseSelect(Inst, PFS);
4374 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
4375 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
4376 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
4377 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
4378 case lltok::kw_phi: return ParsePHI(Inst, PFS);
4379 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
4381 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None);
4382 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail);
4383 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
4385 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
4386 case lltok::kw_load: return ParseLoad(Inst, PFS);
4387 case lltok::kw_store: return ParseStore(Inst, PFS);
4388 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
4389 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
4390 case lltok::kw_fence: return ParseFence(Inst, PFS);
4391 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
4392 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
4393 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
4397 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
4398 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
4399 if (Opc == Instruction::FCmp) {
4400 switch (Lex.getKind()) {
4401 default: return TokError("expected fcmp predicate (e.g. 'oeq')");
4402 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
4403 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
4404 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
4405 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
4406 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
4407 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
4408 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
4409 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
4410 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
4411 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
4412 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
4413 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
4414 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
4415 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
4416 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
4417 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
4420 switch (Lex.getKind()) {
4421 default: return TokError("expected icmp predicate (e.g. 'eq')");
4422 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
4423 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
4424 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
4425 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
4426 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
4427 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
4428 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
4429 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
4430 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
4431 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
4438 //===----------------------------------------------------------------------===//
4439 // Terminator Instructions.
4440 //===----------------------------------------------------------------------===//
4442 /// ParseRet - Parse a return instruction.
4443 /// ::= 'ret' void (',' !dbg, !1)*
4444 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
4445 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
4446 PerFunctionState &PFS) {
4447 SMLoc TypeLoc = Lex.getLoc();
4449 if (ParseType(Ty, true /*void allowed*/)) return true;
4451 Type *ResType = PFS.getFunction().getReturnType();
4453 if (Ty->isVoidTy()) {
4454 if (!ResType->isVoidTy())
4455 return Error(TypeLoc, "value doesn't match function result type '" +
4456 getTypeString(ResType) + "'");
4458 Inst = ReturnInst::Create(Context);
4463 if (ParseValue(Ty, RV, PFS)) return true;
4465 if (ResType != RV->getType())
4466 return Error(TypeLoc, "value doesn't match function result type '" +
4467 getTypeString(ResType) + "'");
4469 Inst = ReturnInst::Create(Context, RV);
4475 /// ::= 'br' TypeAndValue
4476 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
4477 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
4480 BasicBlock *Op1, *Op2;
4481 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
4483 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
4484 Inst = BranchInst::Create(BB);
4488 if (Op0->getType() != Type::getInt1Ty(Context))
4489 return Error(Loc, "branch condition must have 'i1' type");
4491 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
4492 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
4493 ParseToken(lltok::comma, "expected ',' after true destination") ||
4494 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
4497 Inst = BranchInst::Create(Op1, Op2, Op0);
4503 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
4505 /// ::= (TypeAndValue ',' TypeAndValue)*
4506 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
4507 LocTy CondLoc, BBLoc;
4509 BasicBlock *DefaultBB;
4510 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
4511 ParseToken(lltok::comma, "expected ',' after switch condition") ||
4512 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
4513 ParseToken(lltok::lsquare, "expected '[' with switch table"))
4516 if (!Cond->getType()->isIntegerTy())
4517 return Error(CondLoc, "switch condition must have integer type");
4519 // Parse the jump table pairs.
4520 SmallPtrSet<Value*, 32> SeenCases;
4521 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
4522 while (Lex.getKind() != lltok::rsquare) {
4526 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
4527 ParseToken(lltok::comma, "expected ',' after case value") ||
4528 ParseTypeAndBasicBlock(DestBB, PFS))
4531 if (!SeenCases.insert(Constant).second)
4532 return Error(CondLoc, "duplicate case value in switch");
4533 if (!isa<ConstantInt>(Constant))
4534 return Error(CondLoc, "case value is not a constant integer");
4536 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
4539 Lex.Lex(); // Eat the ']'.
4541 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
4542 for (unsigned i = 0, e = Table.size(); i != e; ++i)
4543 SI->addCase(Table[i].first, Table[i].second);
4550 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
4551 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
4554 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
4555 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
4556 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
4559 if (!Address->getType()->isPointerTy())
4560 return Error(AddrLoc, "indirectbr address must have pointer type");
4562 // Parse the destination list.
4563 SmallVector<BasicBlock*, 16> DestList;
4565 if (Lex.getKind() != lltok::rsquare) {
4567 if (ParseTypeAndBasicBlock(DestBB, PFS))
4569 DestList.push_back(DestBB);
4571 while (EatIfPresent(lltok::comma)) {
4572 if (ParseTypeAndBasicBlock(DestBB, PFS))
4574 DestList.push_back(DestBB);
4578 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
4581 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
4582 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
4583 IBI->addDestination(DestList[i]);
4590 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
4591 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
4592 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
4593 LocTy CallLoc = Lex.getLoc();
4594 AttrBuilder RetAttrs, FnAttrs;
4595 std::vector<unsigned> FwdRefAttrGrps;
4598 Type *RetType = nullptr;
4601 SmallVector<ParamInfo, 16> ArgList;
4603 BasicBlock *NormalBB, *UnwindBB;
4604 if (ParseOptionalCallingConv(CC) ||
4605 ParseOptionalReturnAttrs(RetAttrs) ||
4606 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
4607 ParseValID(CalleeID) ||
4608 ParseParameterList(ArgList, PFS) ||
4609 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
4611 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
4612 ParseTypeAndBasicBlock(NormalBB, PFS) ||
4613 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
4614 ParseTypeAndBasicBlock(UnwindBB, PFS))
4617 // If RetType is a non-function pointer type, then this is the short syntax
4618 // for the call, which means that RetType is just the return type. Infer the
4619 // rest of the function argument types from the arguments that are present.
4620 PointerType *PFTy = nullptr;
4621 FunctionType *Ty = nullptr;
4622 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
4623 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
4624 // Pull out the types of all of the arguments...
4625 std::vector<Type*> ParamTypes;
4626 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
4627 ParamTypes.push_back(ArgList[i].V->getType());
4629 if (!FunctionType::isValidReturnType(RetType))
4630 return Error(RetTypeLoc, "Invalid result type for LLVM function");
4632 Ty = FunctionType::get(RetType, ParamTypes, false);
4633 PFTy = PointerType::getUnqual(Ty);
4636 // Look up the callee.
4638 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
4640 // Set up the Attribute for the function.
4641 SmallVector<AttributeSet, 8> Attrs;
4642 if (RetAttrs.hasAttributes())
4643 Attrs.push_back(AttributeSet::get(RetType->getContext(),
4644 AttributeSet::ReturnIndex,
4647 SmallVector<Value*, 8> Args;
4649 // Loop through FunctionType's arguments and ensure they are specified
4650 // correctly. Also, gather any parameter attributes.
4651 FunctionType::param_iterator I = Ty->param_begin();
4652 FunctionType::param_iterator E = Ty->param_end();
4653 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4654 Type *ExpectedTy = nullptr;
4657 } else if (!Ty->isVarArg()) {
4658 return Error(ArgList[i].Loc, "too many arguments specified");
4661 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
4662 return Error(ArgList[i].Loc, "argument is not of expected type '" +
4663 getTypeString(ExpectedTy) + "'");
4664 Args.push_back(ArgList[i].V);
4665 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4666 AttrBuilder B(ArgList[i].Attrs, i + 1);
4667 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4672 return Error(CallLoc, "not enough parameters specified for call");
4674 if (FnAttrs.hasAttributes())
4675 Attrs.push_back(AttributeSet::get(RetType->getContext(),
4676 AttributeSet::FunctionIndex,
4679 // Finish off the Attribute and check them
4680 AttributeSet PAL = AttributeSet::get(Context, Attrs);
4682 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
4683 II->setCallingConv(CC);
4684 II->setAttributes(PAL);
4685 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
4691 /// ::= 'resume' TypeAndValue
4692 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
4693 Value *Exn; LocTy ExnLoc;
4694 if (ParseTypeAndValue(Exn, ExnLoc, PFS))
4697 ResumeInst *RI = ResumeInst::Create(Exn);
4702 //===----------------------------------------------------------------------===//
4703 // Binary Operators.
4704 //===----------------------------------------------------------------------===//
4707 /// ::= ArithmeticOps TypeAndValue ',' Value
4709 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
4710 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
4711 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
4712 unsigned Opc, unsigned OperandType) {
4713 LocTy Loc; Value *LHS, *RHS;
4714 if (ParseTypeAndValue(LHS, Loc, PFS) ||
4715 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
4716 ParseValue(LHS->getType(), RHS, PFS))
4720 switch (OperandType) {
4721 default: llvm_unreachable("Unknown operand type!");
4722 case 0: // int or FP.
4723 Valid = LHS->getType()->isIntOrIntVectorTy() ||
4724 LHS->getType()->isFPOrFPVectorTy();
4726 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
4727 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
4731 return Error(Loc, "invalid operand type for instruction");
4733 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4738 /// ::= ArithmeticOps TypeAndValue ',' Value {
4739 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
4741 LocTy Loc; Value *LHS, *RHS;
4742 if (ParseTypeAndValue(LHS, Loc, PFS) ||
4743 ParseToken(lltok::comma, "expected ',' in logical operation") ||
4744 ParseValue(LHS->getType(), RHS, PFS))
4747 if (!LHS->getType()->isIntOrIntVectorTy())
4748 return Error(Loc,"instruction requires integer or integer vector operands");
4750 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4756 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
4757 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
4758 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
4760 // Parse the integer/fp comparison predicate.
4764 if (ParseCmpPredicate(Pred, Opc) ||
4765 ParseTypeAndValue(LHS, Loc, PFS) ||
4766 ParseToken(lltok::comma, "expected ',' after compare value") ||
4767 ParseValue(LHS->getType(), RHS, PFS))
4770 if (Opc == Instruction::FCmp) {
4771 if (!LHS->getType()->isFPOrFPVectorTy())
4772 return Error(Loc, "fcmp requires floating point operands");
4773 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
4775 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
4776 if (!LHS->getType()->isIntOrIntVectorTy() &&
4777 !LHS->getType()->getScalarType()->isPointerTy())
4778 return Error(Loc, "icmp requires integer operands");
4779 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
4784 //===----------------------------------------------------------------------===//
4785 // Other Instructions.
4786 //===----------------------------------------------------------------------===//
4790 /// ::= CastOpc TypeAndValue 'to' Type
4791 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
4795 Type *DestTy = nullptr;
4796 if (ParseTypeAndValue(Op, Loc, PFS) ||
4797 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
4801 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
4802 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
4803 return Error(Loc, "invalid cast opcode for cast from '" +
4804 getTypeString(Op->getType()) + "' to '" +
4805 getTypeString(DestTy) + "'");
4807 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
4812 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
4813 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
4815 Value *Op0, *Op1, *Op2;
4816 if (ParseTypeAndValue(Op0, Loc, PFS) ||
4817 ParseToken(lltok::comma, "expected ',' after select condition") ||
4818 ParseTypeAndValue(Op1, PFS) ||
4819 ParseToken(lltok::comma, "expected ',' after select value") ||
4820 ParseTypeAndValue(Op2, PFS))
4823 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
4824 return Error(Loc, Reason);
4826 Inst = SelectInst::Create(Op0, Op1, Op2);
4831 /// ::= 'va_arg' TypeAndValue ',' Type
4832 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
4834 Type *EltTy = nullptr;
4836 if (ParseTypeAndValue(Op, PFS) ||
4837 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
4838 ParseType(EltTy, TypeLoc))
4841 if (!EltTy->isFirstClassType())
4842 return Error(TypeLoc, "va_arg requires operand with first class type");
4844 Inst = new VAArgInst(Op, EltTy);
4848 /// ParseExtractElement
4849 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
4850 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
4853 if (ParseTypeAndValue(Op0, Loc, PFS) ||
4854 ParseToken(lltok::comma, "expected ',' after extract value") ||
4855 ParseTypeAndValue(Op1, PFS))
4858 if (!ExtractElementInst::isValidOperands(Op0, Op1))
4859 return Error(Loc, "invalid extractelement operands");
4861 Inst = ExtractElementInst::Create(Op0, Op1);
4865 /// ParseInsertElement
4866 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
4867 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
4869 Value *Op0, *Op1, *Op2;
4870 if (ParseTypeAndValue(Op0, Loc, PFS) ||
4871 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
4872 ParseTypeAndValue(Op1, PFS) ||
4873 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
4874 ParseTypeAndValue(Op2, PFS))
4877 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
4878 return Error(Loc, "invalid insertelement operands");
4880 Inst = InsertElementInst::Create(Op0, Op1, Op2);
4884 /// ParseShuffleVector
4885 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
4886 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
4888 Value *Op0, *Op1, *Op2;
4889 if (ParseTypeAndValue(Op0, Loc, PFS) ||
4890 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
4891 ParseTypeAndValue(Op1, PFS) ||
4892 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
4893 ParseTypeAndValue(Op2, PFS))
4896 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
4897 return Error(Loc, "invalid shufflevector operands");
4899 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
4904 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
4905 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
4906 Type *Ty = nullptr; LocTy TypeLoc;
4909 if (ParseType(Ty, TypeLoc) ||
4910 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
4911 ParseValue(Ty, Op0, PFS) ||
4912 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
4913 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
4914 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
4917 bool AteExtraComma = false;
4918 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
4920 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
4922 if (!EatIfPresent(lltok::comma))
4925 if (Lex.getKind() == lltok::MetadataVar) {
4926 AteExtraComma = true;
4930 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
4931 ParseValue(Ty, Op0, PFS) ||
4932 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
4933 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
4934 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
4938 if (!Ty->isFirstClassType())
4939 return Error(TypeLoc, "phi node must have first class type");
4941 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
4942 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
4943 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
4945 return AteExtraComma ? InstExtraComma : InstNormal;
4949 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
4951 /// ::= 'catch' TypeAndValue
4953 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
4954 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
4955 Type *Ty = nullptr; LocTy TyLoc;
4956 Value *PersFn; LocTy PersFnLoc;
4958 if (ParseType(Ty, TyLoc) ||
4959 ParseToken(lltok::kw_personality, "expected 'personality'") ||
4960 ParseTypeAndValue(PersFn, PersFnLoc, PFS))
4963 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
4964 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
4966 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
4967 LandingPadInst::ClauseType CT;
4968 if (EatIfPresent(lltok::kw_catch))
4969 CT = LandingPadInst::Catch;
4970 else if (EatIfPresent(lltok::kw_filter))
4971 CT = LandingPadInst::Filter;
4973 return TokError("expected 'catch' or 'filter' clause type");
4977 if (ParseTypeAndValue(V, VLoc, PFS)) {
4982 // A 'catch' type expects a non-array constant. A filter clause expects an
4984 if (CT == LandingPadInst::Catch) {
4985 if (isa<ArrayType>(V->getType()))
4986 Error(VLoc, "'catch' clause has an invalid type");
4988 if (!isa<ArrayType>(V->getType()))
4989 Error(VLoc, "'filter' clause has an invalid type");
4992 LP->addClause(cast<Constant>(V));
5000 /// ::= 'call' OptionalCallingConv OptionalAttrs Type Value
5001 /// ParameterList OptionalAttrs
5002 /// ::= 'tail' 'call' OptionalCallingConv OptionalAttrs Type Value
5003 /// ParameterList OptionalAttrs
5004 /// ::= 'musttail' 'call' OptionalCallingConv OptionalAttrs Type Value
5005 /// ParameterList OptionalAttrs
5006 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5007 CallInst::TailCallKind TCK) {
5008 AttrBuilder RetAttrs, FnAttrs;
5009 std::vector<unsigned> FwdRefAttrGrps;
5012 Type *RetType = nullptr;
5015 SmallVector<ParamInfo, 16> ArgList;
5016 LocTy CallLoc = Lex.getLoc();
5018 if ((TCK != CallInst::TCK_None &&
5019 ParseToken(lltok::kw_call, "expected 'tail call'")) ||
5020 ParseOptionalCallingConv(CC) ||
5021 ParseOptionalReturnAttrs(RetAttrs) ||
5022 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5023 ParseValID(CalleeID) ||
5024 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5025 PFS.getFunction().isVarArg()) ||
5026 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5030 // If RetType is a non-function pointer type, then this is the short syntax
5031 // for the call, which means that RetType is just the return type. Infer the
5032 // rest of the function argument types from the arguments that are present.
5033 PointerType *PFTy = nullptr;
5034 FunctionType *Ty = nullptr;
5035 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
5036 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
5037 // Pull out the types of all of the arguments...
5038 std::vector<Type*> ParamTypes;
5039 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5040 ParamTypes.push_back(ArgList[i].V->getType());
5042 if (!FunctionType::isValidReturnType(RetType))
5043 return Error(RetTypeLoc, "Invalid result type for LLVM function");
5045 Ty = FunctionType::get(RetType, ParamTypes, false);
5046 PFTy = PointerType::getUnqual(Ty);
5049 // Look up the callee.
5051 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
5053 // Set up the Attribute for the function.
5054 SmallVector<AttributeSet, 8> Attrs;
5055 if (RetAttrs.hasAttributes())
5056 Attrs.push_back(AttributeSet::get(RetType->getContext(),
5057 AttributeSet::ReturnIndex,
5060 SmallVector<Value*, 8> Args;
5062 // Loop through FunctionType's arguments and ensure they are specified
5063 // correctly. Also, gather any parameter attributes.
5064 FunctionType::param_iterator I = Ty->param_begin();
5065 FunctionType::param_iterator E = Ty->param_end();
5066 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5067 Type *ExpectedTy = nullptr;
5070 } else if (!Ty->isVarArg()) {
5071 return Error(ArgList[i].Loc, "too many arguments specified");
5074 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5075 return Error(ArgList[i].Loc, "argument is not of expected type '" +
5076 getTypeString(ExpectedTy) + "'");
5077 Args.push_back(ArgList[i].V);
5078 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5079 AttrBuilder B(ArgList[i].Attrs, i + 1);
5080 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5085 return Error(CallLoc, "not enough parameters specified for call");
5087 if (FnAttrs.hasAttributes())
5088 Attrs.push_back(AttributeSet::get(RetType->getContext(),
5089 AttributeSet::FunctionIndex,
5092 // Finish off the Attribute and check them
5093 AttributeSet PAL = AttributeSet::get(Context, Attrs);
5095 CallInst *CI = CallInst::Create(Callee, Args);
5096 CI->setTailCallKind(TCK);
5097 CI->setCallingConv(CC);
5098 CI->setAttributes(PAL);
5099 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
5104 //===----------------------------------------------------------------------===//
5105 // Memory Instructions.
5106 //===----------------------------------------------------------------------===//
5109 /// ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)?
5110 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
5111 Value *Size = nullptr;
5112 LocTy SizeLoc, TyLoc;
5113 unsigned Alignment = 0;
5116 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
5118 if (ParseType(Ty, TyLoc)) return true;
5120 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
5121 return Error(TyLoc, "invalid type for alloca");
5123 bool AteExtraComma = false;
5124 if (EatIfPresent(lltok::comma)) {
5125 if (Lex.getKind() == lltok::kw_align) {
5126 if (ParseOptionalAlignment(Alignment)) return true;
5127 } else if (Lex.getKind() == lltok::MetadataVar) {
5128 AteExtraComma = true;
5130 if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
5131 ParseOptionalCommaAlign(Alignment, AteExtraComma))
5136 if (Size && !Size->getType()->isIntegerTy())
5137 return Error(SizeLoc, "element count must have integer type");
5139 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
5140 AI->setUsedWithInAlloca(IsInAlloca);
5142 return AteExtraComma ? InstExtraComma : InstNormal;
5146 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
5147 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
5148 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
5149 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
5150 Value *Val; LocTy Loc;
5151 unsigned Alignment = 0;
5152 bool AteExtraComma = false;
5153 bool isAtomic = false;
5154 AtomicOrdering Ordering = NotAtomic;
5155 SynchronizationScope Scope = CrossThread;
5157 if (Lex.getKind() == lltok::kw_atomic) {
5162 bool isVolatile = false;
5163 if (Lex.getKind() == lltok::kw_volatile) {
5168 if (ParseTypeAndValue(Val, Loc, PFS) ||
5169 ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5170 ParseOptionalCommaAlign(Alignment, AteExtraComma))
5173 if (!Val->getType()->isPointerTy() ||
5174 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
5175 return Error(Loc, "load operand must be a pointer to a first class type");
5176 if (isAtomic && !Alignment)
5177 return Error(Loc, "atomic load must have explicit non-zero alignment");
5178 if (Ordering == Release || Ordering == AcquireRelease)
5179 return Error(Loc, "atomic load cannot use Release ordering");
5181 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
5182 return AteExtraComma ? InstExtraComma : InstNormal;
5187 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
5188 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
5189 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
5190 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
5191 Value *Val, *Ptr; LocTy Loc, PtrLoc;
5192 unsigned Alignment = 0;
5193 bool AteExtraComma = false;
5194 bool isAtomic = false;
5195 AtomicOrdering Ordering = NotAtomic;
5196 SynchronizationScope Scope = CrossThread;
5198 if (Lex.getKind() == lltok::kw_atomic) {
5203 bool isVolatile = false;
5204 if (Lex.getKind() == lltok::kw_volatile) {
5209 if (ParseTypeAndValue(Val, Loc, PFS) ||
5210 ParseToken(lltok::comma, "expected ',' after store operand") ||
5211 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5212 ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5213 ParseOptionalCommaAlign(Alignment, AteExtraComma))
5216 if (!Ptr->getType()->isPointerTy())
5217 return Error(PtrLoc, "store operand must be a pointer");
5218 if (!Val->getType()->isFirstClassType())
5219 return Error(Loc, "store operand must be a first class value");
5220 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5221 return Error(Loc, "stored value and pointer type do not match");
5222 if (isAtomic && !Alignment)
5223 return Error(Loc, "atomic store must have explicit non-zero alignment");
5224 if (Ordering == Acquire || Ordering == AcquireRelease)
5225 return Error(Loc, "atomic store cannot use Acquire ordering");
5227 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
5228 return AteExtraComma ? InstExtraComma : InstNormal;
5232 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
5233 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
5234 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
5235 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
5236 bool AteExtraComma = false;
5237 AtomicOrdering SuccessOrdering = NotAtomic;
5238 AtomicOrdering FailureOrdering = NotAtomic;
5239 SynchronizationScope Scope = CrossThread;
5240 bool isVolatile = false;
5241 bool isWeak = false;
5243 if (EatIfPresent(lltok::kw_weak))
5246 if (EatIfPresent(lltok::kw_volatile))
5249 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5250 ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
5251 ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
5252 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
5253 ParseTypeAndValue(New, NewLoc, PFS) ||
5254 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
5255 ParseOrdering(FailureOrdering))
5258 if (SuccessOrdering == Unordered || FailureOrdering == Unordered)
5259 return TokError("cmpxchg cannot be unordered");
5260 if (SuccessOrdering < FailureOrdering)
5261 return TokError("cmpxchg must be at least as ordered on success as failure");
5262 if (FailureOrdering == Release || FailureOrdering == AcquireRelease)
5263 return TokError("cmpxchg failure ordering cannot include release semantics");
5264 if (!Ptr->getType()->isPointerTy())
5265 return Error(PtrLoc, "cmpxchg operand must be a pointer");
5266 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
5267 return Error(CmpLoc, "compare value and pointer type do not match");
5268 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
5269 return Error(NewLoc, "new value and pointer type do not match");
5270 if (!New->getType()->isIntegerTy())
5271 return Error(NewLoc, "cmpxchg operand must be an integer");
5272 unsigned Size = New->getType()->getPrimitiveSizeInBits();
5273 if (Size < 8 || (Size & (Size - 1)))
5274 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
5277 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
5278 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
5279 CXI->setVolatile(isVolatile);
5280 CXI->setWeak(isWeak);
5282 return AteExtraComma ? InstExtraComma : InstNormal;
5286 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
5287 /// 'singlethread'? AtomicOrdering
5288 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
5289 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
5290 bool AteExtraComma = false;
5291 AtomicOrdering Ordering = NotAtomic;
5292 SynchronizationScope Scope = CrossThread;
5293 bool isVolatile = false;
5294 AtomicRMWInst::BinOp Operation;
5296 if (EatIfPresent(lltok::kw_volatile))
5299 switch (Lex.getKind()) {
5300 default: return TokError("expected binary operation in atomicrmw");
5301 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
5302 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
5303 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
5304 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
5305 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
5306 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
5307 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
5308 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
5309 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
5310 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
5311 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
5313 Lex.Lex(); // Eat the operation.
5315 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5316 ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
5317 ParseTypeAndValue(Val, ValLoc, PFS) ||
5318 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
5321 if (Ordering == Unordered)
5322 return TokError("atomicrmw cannot be unordered");
5323 if (!Ptr->getType()->isPointerTy())
5324 return Error(PtrLoc, "atomicrmw operand must be a pointer");
5325 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5326 return Error(ValLoc, "atomicrmw value and pointer type do not match");
5327 if (!Val->getType()->isIntegerTy())
5328 return Error(ValLoc, "atomicrmw operand must be an integer");
5329 unsigned Size = Val->getType()->getPrimitiveSizeInBits();
5330 if (Size < 8 || (Size & (Size - 1)))
5331 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
5334 AtomicRMWInst *RMWI =
5335 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
5336 RMWI->setVolatile(isVolatile);
5338 return AteExtraComma ? InstExtraComma : InstNormal;
5342 /// ::= 'fence' 'singlethread'? AtomicOrdering
5343 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
5344 AtomicOrdering Ordering = NotAtomic;
5345 SynchronizationScope Scope = CrossThread;
5346 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
5349 if (Ordering == Unordered)
5350 return TokError("fence cannot be unordered");
5351 if (Ordering == Monotonic)
5352 return TokError("fence cannot be monotonic");
5354 Inst = new FenceInst(Context, Ordering, Scope);
5358 /// ParseGetElementPtr
5359 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
5360 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
5361 Value *Ptr = nullptr;
5362 Value *Val = nullptr;
5365 bool InBounds = EatIfPresent(lltok::kw_inbounds);
5367 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
5369 Type *BaseType = Ptr->getType();
5370 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
5371 if (!BasePointerType)
5372 return Error(Loc, "base of getelementptr must be a pointer");
5374 SmallVector<Value*, 16> Indices;
5375 bool AteExtraComma = false;
5376 while (EatIfPresent(lltok::comma)) {
5377 if (Lex.getKind() == lltok::MetadataVar) {
5378 AteExtraComma = true;
5381 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
5382 if (!Val->getType()->getScalarType()->isIntegerTy())
5383 return Error(EltLoc, "getelementptr index must be an integer");
5384 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
5385 return Error(EltLoc, "getelementptr index type missmatch");
5386 if (Val->getType()->isVectorTy()) {
5387 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
5388 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
5389 if (ValNumEl != PtrNumEl)
5390 return Error(EltLoc,
5391 "getelementptr vector index has a wrong number of elements");
5393 Indices.push_back(Val);
5396 if (!Indices.empty() && !BasePointerType->getElementType()->isSized())
5397 return Error(Loc, "base element of getelementptr must be sized");
5399 if (!GetElementPtrInst::getIndexedType(BaseType, Indices))
5400 return Error(Loc, "invalid getelementptr indices");
5401 Inst = GetElementPtrInst::Create(Ptr, Indices);
5403 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
5404 return AteExtraComma ? InstExtraComma : InstNormal;
5407 /// ParseExtractValue
5408 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
5409 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
5410 Value *Val; LocTy Loc;
5411 SmallVector<unsigned, 4> Indices;
5413 if (ParseTypeAndValue(Val, Loc, PFS) ||
5414 ParseIndexList(Indices, AteExtraComma))
5417 if (!Val->getType()->isAggregateType())
5418 return Error(Loc, "extractvalue operand must be aggregate type");
5420 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
5421 return Error(Loc, "invalid indices for extractvalue");
5422 Inst = ExtractValueInst::Create(Val, Indices);
5423 return AteExtraComma ? InstExtraComma : InstNormal;
5426 /// ParseInsertValue
5427 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
5428 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
5429 Value *Val0, *Val1; LocTy Loc0, Loc1;
5430 SmallVector<unsigned, 4> Indices;
5432 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
5433 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
5434 ParseTypeAndValue(Val1, Loc1, PFS) ||
5435 ParseIndexList(Indices, AteExtraComma))
5438 if (!Val0->getType()->isAggregateType())
5439 return Error(Loc0, "insertvalue operand must be aggregate type");
5441 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
5443 return Error(Loc0, "invalid indices for insertvalue");
5444 if (IndexedType != Val1->getType())
5445 return Error(Loc1, "insertvalue operand and field disagree in type: '" +
5446 getTypeString(Val1->getType()) + "' instead of '" +
5447 getTypeString(IndexedType) + "'");
5448 Inst = InsertValueInst::Create(Val0, Val1, Indices);
5449 return AteExtraComma ? InstExtraComma : InstNormal;
5452 //===----------------------------------------------------------------------===//
5453 // Embedded metadata.
5454 //===----------------------------------------------------------------------===//
5456 /// ParseMDNodeVector
5457 /// ::= { Element (',' Element)* }
5459 /// ::= 'null' | TypeAndValue
5460 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
5461 if (ParseToken(lltok::lbrace, "expected '{' here"))
5464 // Check for an empty list.
5465 if (EatIfPresent(lltok::rbrace))
5469 // Null is a special case since it is typeless.
5470 if (EatIfPresent(lltok::kw_null)) {
5471 Elts.push_back(nullptr);
5476 if (ParseMetadata(MD, nullptr))
5479 } while (EatIfPresent(lltok::comma));
5481 return ParseToken(lltok::rbrace, "expected end of metadata node");
5484 //===----------------------------------------------------------------------===//
5485 // Use-list order directives.
5486 //===----------------------------------------------------------------------===//
5487 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
5490 return Error(Loc, "value has no uses");
5492 unsigned NumUses = 0;
5493 SmallDenseMap<const Use *, unsigned, 16> Order;
5494 for (const Use &U : V->uses()) {
5495 if (++NumUses > Indexes.size())
5497 Order[&U] = Indexes[NumUses - 1];
5500 return Error(Loc, "value only has one use");
5501 if (Order.size() != Indexes.size() || NumUses > Indexes.size())
5502 return Error(Loc, "wrong number of indexes, expected " +
5503 Twine(std::distance(V->use_begin(), V->use_end())));
5505 V->sortUseList([&](const Use &L, const Use &R) {
5506 return Order.lookup(&L) < Order.lookup(&R);
5511 /// ParseUseListOrderIndexes
5512 /// ::= '{' uint32 (',' uint32)+ '}'
5513 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
5514 SMLoc Loc = Lex.getLoc();
5515 if (ParseToken(lltok::lbrace, "expected '{' here"))
5517 if (Lex.getKind() == lltok::rbrace)
5518 return Lex.Error("expected non-empty list of uselistorder indexes");
5520 // Use Offset, Max, and IsOrdered to check consistency of indexes. The
5521 // indexes should be distinct numbers in the range [0, size-1], and should
5523 unsigned Offset = 0;
5525 bool IsOrdered = true;
5526 assert(Indexes.empty() && "Expected empty order vector");
5529 if (ParseUInt32(Index))
5532 // Update consistency checks.
5533 Offset += Index - Indexes.size();
5534 Max = std::max(Max, Index);
5535 IsOrdered &= Index == Indexes.size();
5537 Indexes.push_back(Index);
5538 } while (EatIfPresent(lltok::comma));
5540 if (ParseToken(lltok::rbrace, "expected '}' here"))
5543 if (Indexes.size() < 2)
5544 return Error(Loc, "expected >= 2 uselistorder indexes");
5545 if (Offset != 0 || Max >= Indexes.size())
5546 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
5548 return Error(Loc, "expected uselistorder indexes to change the order");
5553 /// ParseUseListOrder
5554 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
5555 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
5556 SMLoc Loc = Lex.getLoc();
5557 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
5561 SmallVector<unsigned, 16> Indexes;
5562 if (ParseTypeAndValue(V, PFS) ||
5563 ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
5564 ParseUseListOrderIndexes(Indexes))
5567 return sortUseListOrder(V, Indexes, Loc);
5570 /// ParseUseListOrderBB
5571 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
5572 bool LLParser::ParseUseListOrderBB() {
5573 assert(Lex.getKind() == lltok::kw_uselistorder_bb);
5574 SMLoc Loc = Lex.getLoc();
5578 SmallVector<unsigned, 16> Indexes;
5579 if (ParseValID(Fn) ||
5580 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
5581 ParseValID(Label) ||
5582 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
5583 ParseUseListOrderIndexes(Indexes))
5586 // Check the function.
5588 if (Fn.Kind == ValID::t_GlobalName)
5589 GV = M->getNamedValue(Fn.StrVal);
5590 else if (Fn.Kind == ValID::t_GlobalID)
5591 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
5593 return Error(Fn.Loc, "expected function name in uselistorder_bb");
5595 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
5596 auto *F = dyn_cast<Function>(GV);
5598 return Error(Fn.Loc, "expected function name in uselistorder_bb");
5599 if (F->isDeclaration())
5600 return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
5602 // Check the basic block.
5603 if (Label.Kind == ValID::t_LocalID)
5604 return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
5605 if (Label.Kind != ValID::t_LocalName)
5606 return Error(Label.Loc, "expected basic block name in uselistorder_bb");
5607 Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
5609 return Error(Label.Loc, "invalid basic block in uselistorder_bb");
5610 if (!isa<BasicBlock>(V))
5611 return Error(Label.Loc, "expected basic block in uselistorder_bb");
5613 return sortUseListOrder(V, Indexes, Loc);